Example from the 6th Lecture

Decide which project is preferable for investors. The initial costs of investment for the project A are \$ 90,

WACC 0.0582 Project A 0 1 2 3 4 5 IRR t -90000 10000 17000 34000 11000 38000 -90000 9450.009 15181.46 28692.98 8772.465 28638.14 NPV of Project A NPV PB -90000 -80550 -65368.5 -36675.6 -27903.1 735.0496 PB= 4.974333 Years + Project B Costs 10000 2000 2000 2000 10000 1890.002 1786.054 1687.822 NPV 30% 2000 3000 7000 NPV 1890.002 2679.08 5907.378 50% 4000 6000 9000 NPV 3780.004 5358.161 7595.2 20% 5000 7000 10000 NPV 4725.005 6251.188 8439.112 4733.042 3402.003 7257.636 **NPV of Project B** PΒ -10000 -8488 -5541.01 28.80354 IRR ~ PB= 2.996031 Years + = > A << B

000.00, and in the fourth year it is required to pay the repairing costs of \$ 30,000.00. Project implementc

				4	3	2	1
			PV				
6.08	0.0582			12539 23	20144 3	38072 77	116/0 2
735.0496	0.0382	-CF	-90000	12555.25	20144.5	50072.77	11040.2
		MIRR =	5.99%				
					2	1	0
				0	1	2	3
			PV				
		MIRR					
		+CF					
-15363.9		30%	, D		2239.574	3174.6	7000
		50%	, ,		4479.149	6349.2	9000
		20%			5598.936	/40/.4	10000
10476.46		-CF	-15363.9	10000	1890.002	1786.054	1687.822
16733.36		MIRR =	2.56%				
19415.3		= > A >>	> B				
28.80354	= > A >> R						
5.95	= > A >> B						

ation is planned for five years with the generation of the following cash flows after one year: \$ 10,000.00

0 FV 38000 120396.5

FV

16574.66 3724.252 5948.505 6901.901), \$ 17,000.00, \$ 34,000.00, \$ 41,000.00, \$ 38,000.00. All cash flows are definite. Furthermore, it is known

n, that the price of the foreign capital is 6%, and shareholders require interest at minimal rate of 7,5%. TI

he total debt is up to 70% in the capital structure. The project B has the following structure of investment

ts: \$ 10,000.00 as initial costs and \$2,000.00 as annual additional costs. Estimated life of the project is 3

years. Project might generate different payoff: \$ 2,000.00, \$ 3,000.00, \$ 7,000.00 with 30% probability, \$

\$ 4,000.00, \$ 6,000.00, \$ 9,000.00 with 50% probability, and \$ 5,000.00, \$7,000.00, \$ 10,000.00 with 20\$

% probability. The inclusion of income tax (15%) into the calcu