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PREFACE TO THE SECOND EDITION

Nearly one year has elapsed since the first edition of this book came
into existence in early 1997. Within the past year, two significant events oc-
curred which are directly related to the derivatives profession. The first was
that on October 14, 1997, the Nobel committee gave the 1997 Nobel Prize
in Economic Sciences to Professor Robert Merton of Harvard University and
Professor Myron Scholes of Stanford University for their work on the devel-
opment of option pricing theory. The Nobel committee made it clear that
had he lived, Fischer Black would have shared the prize. As described in
the first edition of this book, most of the models and pricing formulas in
this book have been within a Black-Scholes-Merton world which has been
central to the development of financial engineering as both a discipline and
profession.

The other is the still-going-on financial crisis spreading from East Asia
to around the globe. This crisis started with the rapid devaluation of Thai-
land’s bhat early in July, spreaded to the neighboring Southeast Asian coun-
tries of Indonesia, Malaysia, Singapore, and Philippines. Because of similar
economics structures and foreign exchange rate policies, these countries be-
gan their competitive devaluation of their currencies. Within months, the
crisis moved North to Hong Kong, Taiwan, and then South Korea. After
defending the New Taiwan dollar for one week, the Taiwan central bank
also followed the Southeast countries on October 16, by letting its currency
float against the US dollar. The devaluation of the New Taiwanese dollar
pressured Hong Kong Hang Seng Stock Index down for four consecutively
days from October 17 to October 20 with an accumulated 3175 points, or
nearly 15%. The tremendous fall of Hong Kong Stock market pushed the
US stock markets (the Dow Jones Index dived 554 points on October 27, the
largest one-day drop since the Black Monday in October 1987) and stock
markets around the world down significantly. Volatilities in both currency
and equity markets have increased signiﬁcantly during the crisis. Derivatives
should have good potentiality for wider use, especially in East Asia, as there
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viii Ezotic Options

still shows no signs that the crisis will tranquilize in the near future as
evidenced from the second-round of crisis starting from Indonesia on January
9, 1998. '

As stated in the first edition of this book, the innovation process for
newer products has slowed down because the concept of vanilla options has
been extended in almost every aspect. With only a few new types of ex-
otic options such as “pure vega digital” options (it could be classified as
one type of correction option with the measurement asset specified as the
implied volatility of another option, see Chapter 15 of this edition for more
details), the market has been learning and familiarizing with the existing
products as evidenced in the foreign exchange options markets with various
types of barrier options, knockouts, range binaries, one-touch bets, and etc.
covered in Chapters 10, and 11, and 15, and particularly the use of average
rate barriers (these barrier options are special cases of outside Asian-barrier
options classified in Section 11.9) [see Nusbaum (1997) for more detailed
descriptions of recent uses of exotic options]. At the same time, traders have
been improving the ways to hedge various types of exotic options and re-
searchers incorporating volatility surface into pricing many types of exotic
options.

Also as stated in the first edition of this book, exotic option have been
applied to many exotic underlying markets, especially in the fast growing
credit derivatives market. As credit derivatives expand investor universe,
popular with different investor classes including insurance companies, mu-
tual funds, pension funds, banks hedge funds, and corporations, they have
expanded exponentially in the past few years. Trigger options are among the
most popular types of credit options amounted nearly 20% of all the credit
derivatives market size or over 40% of all types of credit options (Finan-
cial Times, November 22, 1996). The release of a draft of standardized term
sheet for credit swaps defining specifically default-event and other important
legal terms by ISDA (International Swaps and Derivatives Association) and
the launch of JP Morgan’s CreditMetrics package in the first half of 1997 will
help this growing market to develop more smoothly with less legal confusion
and boost credit derivatives including various types of credit exotic options.

There are some changes in this edition. First of all, a lot of types have
been detected and corrected in this edition. Secondly, quite a few errors have
been found and corrected in this edition. Thirdly, new materials such as lim-
iting cases of the Black-Scholes model, “pure vega” digital options, outside
double-barrier options, trigger compound options, joint quanto options, and
some other materials are included in this edition.
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Since the publication of the first edition in early 1997, I have received
many letters, calls, and e-mails both directly and through the publisher.
I have also received many messages through many of my friends and col-
leagues. All these letters, calls, and messages either pointed out some typos,
errors, questions or gave me good suggestions.

I want to take this opportunity to thank all these who have helped me
to improve the quality and contents of the book. It would be too long to
list the names of all these people. Still, I particularly want to thank Keiji
Ohmori, Andrew H. Chen, Lixin Wang, Steven Allan, Bay Way Wee, 1. R.
Low, A. A. Kotze, Svein Stokke, John Murray, Peng Wei, Cindy Wong, Tim
Owens, Gaile Gong, Garry de Jagger, James Xu, Yuko Kawai, Michel Kurek,
and many others.

Peter G. Zhang
January 10, 1998 in Tokyo, Japan






PREFACE TO THE FIRST EDITION

In memory of Fisher Black, without whose tremendous contribution to
both theory and practice, derivatives research and industry would not have
reached the current stage, and certainly, this book which concentrates on a
Black-Scholes environment would not have been started.

With derivatives you can have almost any payoff pattern you want.
If you can draw it on paper, or describe it in words, someone can
design a derivative that gives you that payoff.

Fisher Black (1995)

These days we often come across such terms as exotic options in news-
papers, journals, magazines, and many other financial reports. You may
wonder, as I did two years ago, what exactly they are. At that time I had
just started to work in the financial industry and was much puzzled by the
phrase “exotic options”. Such puzzlement left me feeling uneasy as I had
previously spent a few years at school studying option pricing theory. I tried
to find some systematic sources to reeducate myself, and it turned out to be
nearly impossible as there was no systematic source on this subject. Two
years later, although the situation has changed somewhat, exotic options
still remain mysterious to many people. I have tried to keep a systematic
record on this subject, though initially it was not my intention to write a
book on exotic options.

My first research paper on this subject was on spread options nearly
two years ago. Since then, many other papers have followed. The writing
process has been so wonderful that I would never have learned so fast and
thoroughly had I not written this book. This book records the accumulation
of my knowledge on exotic options, and I would like to share my learning
curve with all of you.

To some degree, exotic options are as old as vanilla options. The ear-
liest article on exotic options can be traced to an article titled “Alterna-
tive Forms of Options” by Snyder, published in the Financial Analysts
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xii Ezxotic Options

Journal. It was in 1969, four years earlier than the establishment of the
Chicago Board of Options Exchange (CBOE), the first organized options
exchange in the world, and four years earlier than the birth of the seminal
work of Black and Scholes, who made the path-breaking contribution to
derivatives industry. However, exotic options became somewhat popular
only from the late 1970s and have experienced significant growth in the past
decade or so. The primary motivations driving the recent innovations of
derivatives are cost-reduction and special customer needs such as off-balance
sheet opportunities, tax considerations, and so on.

The study of exotic options is indispensable not only for their own ac-
tive and important trading but also because they provide easy and efficient
building blocks for other more complicated financial derivatives. In order
not to inundate many readers, I try to spend a significant amount of time in
almost every chapter on how to use the pricing formulas and how to apply
them in practice.

A series of events in the derivatives industry since 1994, Orange County,
Kidder Peabody, Procter & Gamble, Gibson Greetings, Askin Capital, and
so on, has attracted a lot of attention in the financial industry as well as
among the general public. These events created calls for transparency of
special-purpose derivatives activities. One of the objects of this book is to
provide a convenient source of information for exotic options and thus to
improve the transparency of the market. I try to provide as complete a
source as possible on this subject. In each chapter I try to introduce one
type of exotic options, what it can achieve, and how to price and use it.

We will concentrate on a Black-Scholes environment throughout this
book for the purpose of transparency and easy comparisons with vanilla
options, because the Black-Scholes model is best known. In Section 4.3 of
Chapter 4, we provide a derivation of the Black-Scholes formula using the
method to solve the related partial differential equation. And in Section 4.4
of Chapter 4, we provide an intuitive and concise method to derive the Black-
Scholes formula. The method shown in Section 4.4 to derive the Black-
Scholes formula is the same method we use to price essentially all exotic
options in this book.

It is well-known in physics that energy can neither be created nor de-
stroyed, it can only be transferred from one form to another. Risk, or
more specifically, financial risk, is such a complicated subject that many
researchers and financial institutions have been struggling to find ways to
measure it. Yet intuition suggests that risk, like energy, can neither be cre-
ated nor destroyed: it is inherent within the financial system. If we consider
standard options as vehicles to transfer risk between two parties (writers
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and buyers), then exotic options are vehicles tailored or specially-designed
to transfer risk between them. These tailored vehicles are more effective in
risk-transferring and at the same time they require more training to drive.
Therefore, exotic options are also called risk management products.

Although there has been continuing concern in recent years about the
future of the derivatives industry — especially in 1994 as a result of the losses
in the market — the general trend is still promising. This is because risk
will be better understood with new technology and new studies. Improved
understanding will lead investors and institutions to decide what kind of
risk they have to tolerate and what they will have to eliminate. This trend
will keep institutions not only using most of their existing vehicles but also
creating more to meet their increasingly specific needs.

This book is organized as follows. Part I includes two chapters. Chap-
ter 1 gives a bird’s eye view of exotic options, and Chapter 2 reviews option
pricing theory — the arbitrage-free principle, which will be used to price all
options. Part II reviews vanilla options in two chapters. Chapter 3 reviews
various aspects of vanilla options, the extensions of the Black-Scholes option
pricing formula, modern Greeks, implied volatilities and so on. Chapter 4
reviews the methods to price American options. The review is necessary
because most of the terminology used in describing exotic options are from
vanilla options. Comparisons between each type of exotic option and its
corresponding vanilla option are helpful for us to grasp the characteristics of
exotic options. Those with good understanding of vanilla options may skip
Chapters 2 to 4 without losing any integrity.

Besides a few chapters which review theories on vanilla options (Chap-
ters 3 and 4), introduce an approximation method (Chapter 6), or point out
some limitations of existing methods in pricing correlation options (Chap-
ter 28), each of the other chapters is designed to cover one kind of exotic
options. Part III introduces and prices one of the most popular exotic op-
tions — path-dependent options — in eight chapters. Chapter 5 introduces
geometric Asian options and finds closed-form solutions for them. Chap-
ter 6 illustrates how to approximate arithmetic Asian options with their
corresponding geometric Asian options. Using the general mean which in-
cludes all existing averages as special cases, we find a linear approximation
for any arithmetic average with its corresponding geometric average. This
result is used to approximate many other kinds of exotic options in this
book. Chapter 7 extends standard Asian options with equal weights to all
observations to flexible Asian options which allow uneven weights to differ-
ent observations in the average. Chapter 8 introduces forward-start options,
and Chapter 9 analyzes one-clique options.
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Chapter 10 studies vanilla or standard barrier options. We first de-
scribe the difficulty in pricing barrier options and then derive the condi-
tional density functions necessary to price all eight types of barrier options.
Closed-form solutions are obtained for all eight types of vanilla barrier op-
tions including knockout barrier options with time-dependent, or deferrable,
rebates. Because of the great variety of barrier options, we study nonstan-
dard -or exotic barrier options in Chapter 11. We study time-dependent
barrier options, forward-start barrier options, earlier-ending barrier options,
window-barrier options, outside barrier options, Asian barrier options, dual-
barrier options, and so on. The most interesting feature of our analysis in
this chapter is that we provide unified closed-form pricing formulas for all
eight types of earlier-ending as well as outside barrier options. These unified
pricing formulas include all the pricing formulas of vanilla barrier options as
special cases. The unified pricing formulas make it much easier to analyse
Greeks. Chapter 12 studies lookback options including floating strike, fixed
strike, lookback options, and partial lookback options.

Part IV covers fifteen popular correlation options in sixteen chapters.
The order of the chapters largely follows the complexity of the products.
Chapter 13 introduces and prices exchange options. Chapter 14 discusses
options paying the best/worst of two risky assets and cash. Chapter 15 re-
views standard digital options and introduces and prices correlation digital
options which include standard digital options as special cases. Chapter 16
studies quotient options or options written on the ratio of two asset prices.
Chapter 17 covers product options and prices foreign equity options with
domestic strikes using the product option pricing formula. Chapter 18 in-
troduces foreign equity options. Chapter 19 studies equity-linked foreign
exchange options. Chapter 20 prices quanto options. Chapter 21 prices
rainbow options on two or more than two underlying assets. Chapter 22 dis-
cusses both simple spread options and multiple spread options. Chapter 23
covers options written on the spread between the two rainbows or between
the maximum and minimum of two asset prices. Chapter 24 discusses dual-
strike options or options with two underlying assets and two different strike
prices. Chapter 27 prices basket options and discusses basket digital options.
Chapter 28 points out the limitations of using constant correlation coefhi-
cients in pricing all correlation options in Part IV and tries to estimate the
errors of constant correlation coefficients, when they are non-deterministic.

Part V covers exotic options not covered in Part III and Part IV.
Chapter 29 describes package options or portfolios of vanilla options, their
underlying assets, and cash. Chapter 30 studies nonlinear payoff options.
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Chapter 31 prices compound options and discusses how to use the com-
pound option pricing formula to price American options. Chapter 32 studies
chooser’s options or “as-you-like-options”. Chapter 33 describes contingent
premium options or pay-later options. Chapter 34 describes many other
kinds of exotic options such as Bermuda options, installment options, and
SO on.

Part VI covers the hedging of exotic options and their further develop-
ment. Chapter 35 briefly describes the popular methods in hedging most
kinds of exotic options and the difficulties. Chapter 36 discusses possible
directions in the future development of exotic options and concludes the
book.

We have designed questions and exercises at the end of each chapter.
The questions are designed for readers to review the important concepts
in each chapter, and the exercises are designed to provide some hands-on
experiences on how to calculate option prices and other related measures
such as sensitivities. Most of the exercises are straightforward applications
of the contents in the corresponding chapters. There are, however, a few
exercises in each chapter marked with “*” which require more mathematical
training. These exercises are mainly designed for analysts or Ph.D. students.

Peter G. Zhang
August 31, 1995 in New York
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PART I: INTRODUCTION TO EXOTIC
OPTIONS AND OPTION PRICING
METHODOLOGY

We give a bird’s eye view of the world of exotic options in Chapter 1.
Particularly, we describe briefly the basic characteristics of major exotic
options and their historical development. After a brief review of standard
options, we classify exotic options into three major groups: path-dependent
options, correlation options, and other exotic options. We emphasize how
each kind of exotic options is different from standard options or plain vanilla
options.

After describing the principle in pricing all kinds of derivatives including
options — the no-arbitrage or the “no-free-lunch” argument — in Chapter 2,
we show various methods in pricing options. We provide two methods to
derive the Black-Scholes pricing formula, one by solving the option partial
differential equation and the other using the risk-neutral evaluation relation-
ship. We also describe the popular methods of Monte Carlo simulations and
the recombining trees to price various kinds of options.






Chapter 1

FROM VANILLA OPTIONS
TO EXOTIC OPTIONS

One day, on my way back home on the PATH train from New York to
New Jersey, I was working on the preliminary version of this book when
a lady sitting beside me glanced at my work and asked: “What are exotic
options? Are they similar to exotic dancing?”

“Sort of,” 1 replied even though I knew little about exotic dancing, “they
share the same exoticness.”

I believe there are many more people who know exotic dancing than
those who know exotic options. After finishing this book, I would like to
find someone to teach me exotic dancing.

Exotic options are not new to the financial markets. Some came into
existence several years before the birth of the Chicago Board of Options
Exchange (CBOE) — the first organized options exchange in the world, es-
tablished in 1973 [Snyder (1969)]. Trading volume for standard options was
rather thin in the pre-CBOE period, and for nonstandard options, it was
even thinner. A few years after the establishment of the CBOE, a slow
and inconspicuous revolution in option concepts and trading started to take
place. Towards the end of the 1970’s and the beginning of the 1980’s, when
standard options trading at exchanges became better understood and their
trading volume exploded, financial institutions began to search for alter-
native forms of options to meet their particular needs and increase their
business. All these alternative options are called exotic options. In the late
1980’s and early 1990’s, exotic options became more visible in daily presses
and more popular among financial communities. Their trading became more
active in the over-the-counter (OTC) marketplace, and their users were
big corporations, financial institutions, fund managers, and recently private
bankers.
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Most of these exotic options are traded at the OTC, although a few
have been listed in exchanges recently. The American Stock Exchange, for
example, trades quanto options, while the New York Mercantile Exchange
trades spread options. Trading of these options in exchanges represents only
a small percentage of all exotic options volume. Because of the opaque
nature of the OTC marketplace, exotic options still remain exotic to many
investors, professionals, and even many of those who have good knowledge of
standard options. These exotic products have been incorporated into general
books to such an extent that many financial institutions now feel that they
can neither live with nor without them.

If we call standard options first-generation options, nonstandard op-
tions can be called second-generation options. Second-generation options
are exotic options, which are also called special-purpose options or customer-
tailored options, implying that each type of exotic options can somehow serve
a special purpose which standard options cannot do conveniently or cheaply.
These names somehow explain why exotic options came into existence, and
why they have grown significantly in varieties and volumes. Although there
are many different kinds of exotic options, all of them are, in one way or
another, either direct or indirect extensions of standard options.

Exotic options differ from standard options in at least one aspect. For
example, a deferred option or forward-start option is an option whose ef-
fective starting time is sometime in the future after the contract is signed
rather than in the present. A compound option is an option written on a
standard option rather than on an underlying asset directly. A spread option
is an option written on the difference between two prices or indices, rather
than on one single price or index as in the case of standard options, and
so on. In general, exotic options are almost exclusively traded in the OTC
marketplace rather than in the exchanges. It is difficult to find a source
which classifies these products into a small number of groups. This chapter
will provide a bird’s eye view of exotic options.

Before we enter into exotic options, Section 1.1 reviews some concepts
of standard, or plain vanilla, options. Section 1.2 describes the most popular
group of exotic options — path-dependent options, which include Asian or
average-price options, barrier ‘options, lookback options, and forward-start
options. Section 1.3 introduces another large group of exotic options —
correlation options which include spread options, out-performance options,
two-color rainbow options, quanto options, exchange options, basket op-
tions, and others. Section 1.4 introduces other popular exotic options such
as chooser options or as-you-like options, power options, binary or digital
options, and so on. Section 1.5 concludes the chapter.
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1.1. PLAIN VANILLA OPTIONS

Although options have existed for about a century, it was the establish-
ment of the Chicago Board of Options Exchange (CBOE) in October 1973
— the first options exchange in the world — that brought legitimacy to
option trading and made option trading more attractive to hedgers as well
as speculators through reducing counter-party risks by the Exchange. The
earliest options trading at the CBOE were call options on 16 US stocks, and
put options on stocks were introduced to the Exchange a few years later.
Options on many other underlying assets such as bonds and currencies were
later introduced to the CBOE and other exchanges. Options trade nowa-
days on stocks and stock indexes, bonds and bond indexes, currencies and
currency indexes, many commodities and commodity indexes, futures, and
other indexes or underlying instruments.

Before we start to describe exotic options, it is necessary for us to review
some basic terms of standard or plain vanilla options. A standard option
is a financial contract which gives its holder the right to buy or sell the
underlying asset at a prespecified price (called exercise or strike price) within
a prespecified time (called time to maturity or time to expiration of the
option). If the holder can exercise his/her right to buy or sell the underlying
asset only at maturity, the option is called a European option. If the holder
can exercise his/her right to buy or sell the underlying asset any time at
or before the option’s maturity, the option is called an American option.
As American options permit their holders to exercise any time before the
expiration of the options, they are at least as expensive as the corresponding
European options. The amount of money the holder has to pay the seller or
the writer of an option is called the premium of the option.

There are many ways to classify standard options. The most popular one
divides options into two groups: call options and put options. A call (put)
option gives its holder the right to buy (sell) the corresponding underlying
asset at a prespecified strike price. If the strike price of a call option is lower
(higher) than the spot price of the underlying asset, it is called an in-the-
money or I'TM call option (out-of-the-money or OTM call option). If the
strike price of a call option is equal to the spot price of the underlying asset,
it is called an at-the-money or ATM call option. The word “moneyness” is
often used to represent whether an option is ITM, ATM, or OTM.

Black and Scholes (1973) pioneered the modern option pricing theory.
Interestingly enough, this model was published in the same year as the estab-
lishment of the CBOE in 1973. The most important feature of the Black-
Scholes model is that option prices are determined by observable factors
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which can be found readily. This theoretical breakthrough in pricing, to :
large degree, has helped not only the development of option industry bu
also the entire derivative industry. :

In general, the premium of a vanilla option is affected by a number o
factors such as volatility, strike price, time to maturity, and so on. In the
well-known Black-Scholes option pricing theory, the following five factors
affect the option prices: (1) current price of the underlying asset; (2) exer-
cise or strike price of the option; (3) time to maturity; (4) volatility of the
underlying asset; and (5) interest rate. The Black-Scholes pricing theory
is easily extended to include the payout rate of the underlying asset as the
sixth factor. The payout rate of the underlying asset is a foreign interest
rate in the case of currency options, and dividend yield in the case of domes-
tic equity options. European options can be conveniently priced using the
Black-Scholes formula with which the premiums of European options can be
calculated directly by substituting values of the above-mentioned parame-
ters into the pricing expressions. Unfortunately, compact formulas are not
available for American options, and we can only use approximation formulas
or numerical methods to obtain the premiums of American options.

All vanilla options share a few common characteristics: one underlying
asset; the effective starting time is present; only the price of the underlying
asset at the option’s maturity affects the payoff of the option; whether an
option is a call or a put is known when sold; the payoff is always the difference
between the underlying asset price and the strike price, and so on. Vanilla
options have many limitations resulting from their lack of flexibility. Each
kind of exotic options, to some degree, overcomes one particular limitation
of vanilla options. This will be clearly seen in the following sections.

Table 1.1 lists the total option trading volumes in the six options ex-
changes in the US (CBOE, American Stock Exchange, Philadelphia Stock
Exchange, Pacific Stock Exchange, Midwest Stock Exchange, and the New
York Stock Exchange) and the annual growth rates as percentages over the
years from 1973 to 1991. We can observe that the total trading volume
increased more than one hundred times in the first ten years from 1973 to
1982. The US equity options markets matured in the early 1980’s and trad-
ing volumes have remained above one hundred million contracts since 1983.
Among many reasons that could explain the maturity, the obvious one is
that equity index options and futures attracted substantial volumes away
from the individual equity options markets.

Following the CBOT, CME, CBOE, and other exchanges in the US,
futures and options exchanges have been established in many other countries.
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Table 1.1. Total equity options contract volume and growth rates.

Year Total contracts Annual growth (%) Year Total contracts Annual growth (%)

1991 104850686 23.15 1981 109405782 13.1
1990 111785744 28.05 1980 96728546 50.5
1989 141839748 33.94 1979 64264863 12.3
1988 114927638 28.14 1978 57231018 44.4
1987 164431851 34.30 1977 39637328 224
1986 141930945 39.69 1976 32373927 78.8
1985 118556094 43.09 1975 18102569 218.5
1984 118925239 51.52 1974 5682907 407.9
1983 135658976 62.88 1973 1119177

1982 137264816 25.20

Data source: market statistics 1991, The Chicago Board of Options Exchanges

Table 1.2 gives the names and their corresponding countries of 42 major
futures and options exchanges around the world. We can readily observe
from Table 1.2 that the US has 13 out of the 42 exchanges. Besides the US,
Britain, Japan, the Netherlands, most industrialized countries have active
futures and options exchanges.

1.2. PATH-DEPENDENT OPTIONS

The payoff of a vanilla option depends only on the relative magnitude of
its underlying asset price at maturity and its strike price, no matter whether
the price of the underlying asset at maturity is reached from above, be-
low, or in a zigzag way. The way the settlement price is reached should be
of significant relevance to option values; vanilla options have limitations in
not capturing how settlement prices are reached. Path-dependent options
are, however, designed to capture how the settlement prices of the under-
lying assets are reached. There are four popular kinds of path-dependent
options: Asian options, barrier options, lookback options, and forward-start
options.

As Asian options are options with payoffs determined by some averages
of the underlying asset prices during a prespecified period of time before the
option expiration, they are also called average-price or average-rate options.
They also include average-strike Asian options in which strike prices are some
averages of the underlying asset prices rather than fixed as in vanilla options.
Asian options can be used by corporations with reasonably predictable cash
flows to hedge conveniently as a cheaper alternative to a string of vanilla
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Table 1.2. The major futures and options exchanges in the world.

Abbreviation Exchange Name Country
AMEX American Stock Exchange USA

ATA Agricultural Futures Exchange, Amsterdam Netherlands
BELFOX Belgium Futures & Options Exchange Belgium
BM&F Bolsa De Mercardorias & Futuros, Brazil Brazil
CBOT Chicago Board of Trade USA

CME Chicago Mercantile Exchange USA
COMEX Commodity Exchange, Inc. USA

CSCE Coffee Sugar & Cocoa Exchange USA

DTB Deutsche Terminborse Germany
EOE European Options Exchange Netherlands
FFMA Financial Futures Market Amsterdam Netherlands
FINEX Financial Instrument Exchange USA

FOX London Futures and Options Exchange UK
FUTOP Gurantee Fund Danish Options and Futures Denmark
HKFE Hong Kong Futures Exchange Ltd. HK

IFOX Irish Futures and Options Exchange Ireland
IPE International Petroleum Exchange UK

KCBT Kansas City Board of Trade USA

KRE Kobe Rubber Exchange Japan
LIFFE London Int’l Financial Futures Exchange UK

LME London Metal Exchange UK

MACE Midamerica Commodity Exchange USA
MATIF Marche a Terme International de France France
MEFFRF Meff Renta Fija, Spain Spain
MERFOX Mercado de Futuros y Opciones S.A., Argentina Argentina
MGE Minneapolis Grain Exchange USA
MONEP Marche des Options Negociables de Paris France
MONTREAL Montreal Exchange Canada
NYCE New York Cotton Exchange UsA
NYFE New York Futures Exchange USA
NYMEX New York Mercantile Exchange USA
NZFE New Zealand Futures & Options Exchange New Zealand
OSAKA Osaka Securities Exchange Japan
PHLX Philadelphia Stock Exchange USA

SFE Sydney Futures Exchange Australia
SIMEX Singapore Int’] Monetary Exchange Singapore
SOFFEX Swiss Options and Financial Futures Exchange Switzerland
SOM Stockholm Options Market Sweden
TFE Toronto Futures Exchange Canada
TGE Tokyo Grain Exchange Japan
TIFFE Tokyo Int’l Financial Futures Exchange Japan
TOCOM Tokyo Commodity Exchange Japan

TSE Tokyo Stock Exchange Japan
WCE Winnipeg Commodity Exchange Canada
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options. They are thus popular in the commodity and currency markets.
Although Asian options can be either arithmetic or geometric depending
upon the averages, traders almost exclusively use arithmetic averages to
construct Asian options. However, geometric Asian options also have their
attractiveness as their prices can be expressed in closed-form similar to the
Black-Scholes formula, and can also be used to approximate arithmetic Asian
option prices.

Most Asian options are based on equally weighted arithmetic averages of
the underlying asset prices. Zhang (1993) introduced the concept of flexible
Asian options which allocate different weights to various observations under
consideration. Zhang (1994) provided a closed-form solution and examples
for flexible Asian options based on geometric averages. The concepts of
flexible Asian options were later extended to arithmetic Asian options [Zhang
(1995a)] . Flexible Asian options are of interest to traders who wish to assign
greater (lesser) emphasis to the role played by more (less) recently observed
prices in the average. They are attractive because of the flexibility in weight
distribution and are now being used by many institutions.

Barrier options are probably the oldest of all exotic options. Sny-
der (1969) discussed “down-and-out” options although he used the phrase
limited-risk special options. Donaldson, Lufkin and Jenrette started to use
“down-and-out” options as early as 1970 [Fortune, Nov., 1971, p. 213]. These
options were geared to the needs of sophisticated investors such as managers
of hedge funds. They provided investors with two things they could not
get otherwise. One was that most “down-and-out” options were written on
more volatile stocks where premiums on standard calls are normally high.
The other was increased convenience during a time when trading volume of
stock options was rather low. Barrier options are actually conditional op-
tions, conditioned on whether some barriers or triggers are reached or not
during the lives of options. Barrier options are also called trigger options.

There are two kinds of barrier options: knock-in and knock-out options,
or simply knock-ins and knock-outs. A knock-in is an option whose holder
is entitled to receive a European option if the barrier is hit, or a rebate at
expiration if otherwise. A knock-out is an option whose holder is entitled
to receive a rebate as soon as the barrier is hit, or a European option if
otherwise. As it makes a difference whether the settlement price is breached
from above or below, there are down knock-ins and down knock-outs as well
as up knock-ins and up knock-outs, depending upon whether the barrier is
below or above the current underlying asset price. Therefore, there are in
total eight kinds of barrier options: down-in calls, up-in calls, down-out calls,
up-out calls, down-in puts, up-in puts, down-out puts, and up-out puts. The
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advantage of barrier options is that they are cheaper than vanilla options as
the sum of the premiums of a knock-in and its corresponding knock-out is
the same as that of the corresponding vanilla option.

A lookback option is an option whose payoff is determined not only
by the settlement price but also by the maximum or minimum prices of the
underlying asset within the option’s lifetime. There are two kinds of lookback
options: floating-strike and fixed-strike lookback options. Floating-strike
lookback options are true “no regret” options because their payoffs are the
maximum. Specifically, the payoff of a floating-strike lookback call option
is the difference between the settlement price and the minimum price of the
underlying asset during the option’s lifetime, and the payoff of a floating-
strike lookback put option is the difference between the maximum price
during the option’s lifetime and the settlement price of the underlying asset.
Thus the payoffs of these call and put options are the greatest that could be
possibly achieved.

The payoff of a fixed-strike lookback call (put) option is the difference
between the maximum price of the underlying asset and the fixed strike price
(resp. the difference between the fixed strike and the minimum price) during
the life of the option. Lookback options can somehow capture investors’
fantasy of buying low and selling high, to minimize regret, as Goldman,
Sosin, and Gatto (1979) argued. However, the “no-free-lunch” principle
guarantees that these options are expensive to buy. The high premiums of
lookback options prevent them from being widely used.

Forward-start options are options with up-front premium payments, yet
they start in prespecified future time with strike prices equal to the starting
underlying asset prices. Thus, forward-start options can be considered as
simple spread options in which the spreads are the differences between the
prices of the same underlying asset at two different time points compared
to standard simple spread options over the differences of two underlying
assets. Forward-start options normally exist in the interest-rate markets
where investors can use them to bet on interest-rate fluctuations.

1.3. CORRELATION OPTIONS

Correlation options are options whose payoffs are affected by more than

one underlying asset, unlike vanilla options. These underlying assets can
be of either the same or different asset classes, for example, equity, bond,
currency, commodity, and so on. If the two underlying assets are of differ-
ent asset classes, the correlation options are often called cross-asset options.
With the development of international finance, cross-market products have
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become more and more important. Market integration has stimulated
growth in cross-market products, and financial market globalization has
accelerated investments across national boundaries. The New York Stock
Exchange has been considering trading foreign stocks in different currencies
in an effort to maintain its prestige in the global marketplace (Wall Street
Journal, Wednesday, March 23, 1994, C1&C20). Such measures are de-
signed to prevent the market from becoming a regional exchange in a global
marketplace. The National Association of Securities Dealers (NASDAQ),
the second largest stock market in the world measured by dollar trading
volume, is also making such efforts.

Correlation options can be divided into first-order and second-order cor-
relation options according to the ways correlation affects option payofls.
Correlation has first-order or primary effect if it directly influences option
payoffs, as in spread options and out-performance options. They are thus
first-order correlation options. Differential swaps and quanto options have
second-order correlation effect because correlation merely modifies the pay-
offs of options. An option can reflect both first- and second-order correla-
tion effects, for example, an out-performance option on the DAX-30 ! and
CAC-40% denominated in British Sterling. The first-order effect is on the
covariance of these indices. The second-order effect comes from the degree
of relationship between movements in both of these indices (and their covari-
ance) and changes in the French Franc/Sterling and German Mark/Sterling
exchange rates.

Spread options are simple correlation options. A spread option is written
on the difference of two indices, prices, or rates, for example, the spread
between refined and crude oil prices which fluctuates due to international
economic and financial information. Options written on this spread can
be used by oil refiners to hedge the risks of their gross profit. Another
popular spread option involve spreads between a long-term treasury interest
rate and a short-term rate. In the early stage when spread options were
used, the spread was regarded as some imaginary single asset price, and
the well-known Black-Scholes formula was used to approximate the spread
option price. This method is the so-called one-factor model. Garman (1992)
pointed out the limitations and problems of this model and discussed how to

1The German Share Index (Deutscher Aktienindez or DAX) of 30 of the most heavily
traded stocks listed on the Frankfurt Stock Exchange ( Frankfurt Wertpapierborse or FWB),
representing over 75% of the total turnover in German equities.

2The French Stock Market Index ( Cotation Assistee en Continue or CAQ) of 240 (CAC-
240) stocks trading at the Paris Bourse (Bourse de Paris), reflecting the price activity of
the 700 plus listed stocks on the Paris Bourse.
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price spread options with a two-factor model. Ravindran (1993) attempted
to price spread options with a two-factor model using statistical procedures
and numerical analysis. We will provide closed-form formulas in a two-factor
model for spread options in a Black-Scholes environment in this book.

Spread options written on more than two underlying assets or indices
are less known even to many who have some knowledge of the OTC exotics.
For example, options can be written on the spread between X; + X, and
X3 + X4, where X; is either an asset price or index. We may call this
kind of spread options multiple spread options, as compared to standard
spread options written on two underlying assets. Multiple spread means
that the spread is between at least three underlying assets. Multiple spread
options are used by quite a few institutions in the OTC marketplace. With
further development in OTC derivatives, increasing sophistication in risk
management, and accelerating globalization of international capital market,
multiple spread options will certainly rise in popularity.

An out-performance option is a special call option which allows investors
to take advantage of the expected differences in the relative performance of
two underlying instruments or indices. The payoff of an out-performance
option at maturity is the performance of one instrument minus the perfor-
mance of a second instrument, multiplied by a fixed notional or face amount.
The performance is normally measured by the rate of return as a percent-
age. The underlying instruments may be any combinations of stocks, bonds,
currencies, commodities, or indices. One popular out-performance instru-
ment might be on the spread between a bond index and a stock index or
vice versa. Out-performance options are also often used to capitalize the
relative performance of two stock markets such as the US market (measured
by Standard & Poor’s 500) relative to the Japanese market (measured by
the Nikkei 225). From the above description, an out-performance option can
be viewed as a spread option between the returns of two instruments rather
than the actual instrument values.

An exchange option is an option which exchanges one underlying asset
for another. Exchange options were first studied by Margrabe (1978). An
exchange option can be interpreted either as a call option on asset one with
a strike price equal to the future price of asset two at the option maturity, or
a put option on asset two with a strike price equal to the future price of asset
one at the option maturity. Exchange options are basic correlation options.
They can be used to construct many other exotic options such as rainbow
options or two-color rainbow options, since payoffs of options written on the
better or worse performing of two assets can be valued in terms of their
corresponding exchange options.
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Complex options are options written on the better or worse performing
(the maximum or minimum) of two or more underlying assets. These op-
tions are often called two-color rainbow options, or simply rainbow options
in practice, because the maximum and the minimum prices of two assets
look very much like the shape of a rainbow in a two-dimensional diagram,
with the two asset prices as the two axes. Rainbow options can be either
valued directly or in terms of the corresponding exchange options. They are
useful in many financial applications such as pricing foreign currency debts,
compensation plans, and risk-sharing contracts.

Currency-translated options have been created to meet investors’ in-
creasing demand in the international equity market as they can link foreign
equity and currency exposures. They can be either foreign equity options
with strike prices in domestic currency, domestic equity options with strike
prices in foreign currency, foreign equity options translated into domestic
currency, or domestic equity options translated into foreign currency. In all
four cases, both equity and currency risks are involved. The most popular
kind of currency-translated options is quanto options, or simply quantos.
Quantos are foreign equity options with fixed exchange rates. With them,
an investor can capture the upward potential on his foreign equity invest-
ment by hedging away all currency risks through fixing the exchange rate.
The payoff will then be paid in domestic currency. Quantos are traded in
the OTC market as well as in the American Stock Exchange.

A basket option is written on a basket of assets rather than one single
asset. Basket options are also called portfolio options. The popular basket
options are those written on baskets of currencies. As correlations among
various components in a basket largely determine the characteristic of the
basket, basket options are correlation options. They can be used by port-
folio managers to hedge their positions on the basis of their whole portfolio
performance, instead of individual assets within the portfolio. Or they can
be used to speculate based on the same information about their portfolios.

1.4. OTHER EXOTIC OPTIONS

It is not easy to classify existing exotic options into small groups ac-
cording to their characteristics. Besides the two groups we have described
above, there are quite a few other kinds of exotic options popular in the
OTC marketplace. We will introduce these options in this section.

Because of their simple payoff patterns and unique characteristics, digi-
tal options are especially attractive to many participants in the OTC mar-
ketplace. They are also called binary options or bet options because their
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payoffs are either something or nothing. Generally speaking, the payoff of a
digital option can be either a fixed amount of cash, an asset, or the difference
between an asset price and a prespecified level which is often different from
the strike price. These digital options are often called cash-or-nothing, asset-
or-nothing, and gap options, respectively. Cash-or-nothing and asset-or-
nothing options are similar to betting in daily usage. When the gap is zero,
a gap option becomes exactly the same as a vanilla option. In other words,
vanilla options are gap options with zero gaps. In general, digital options can
be used to capitalize investors’ views of market movements. These digital
options are popular mainly because they are easy to use. However, they
cannot be hedged easily in practice because of limited liquidity, although
there are some theoretical methods to hedge them.

Compound options are options written on other standard options. As
there are two kinds of vanilla options, calls and puts, there are four kinds
of compound options: a call option written on a call option, a call option
written on a put option, a put option written on a call option, and a put
option written on a put option. Compound options are often used to hedge
difficult investments which are contingent on other conditions. The buyer of
a compound option normally pays an initial up-front premium for an option
which he/she may need later on. The buyer will have to pay an additional
premium only if this option is needed. If the buyer finds that the option is
not necessary, he/she can simply give up the right.

Chooser options, or as-you-like options, are options which permit the
holders to choose between a vanilla call and a vanilla put at some prespecified
time during the life of the option. The buyer of the option pays some up-
front premium to the writer but does not specify whether the option is a
call or a put until the prespecified time. At this time the buyer can decide
between a vanilla call and a vanilla put. Therefore, chooser options are also
called pay-now-choose-later options. Obviously, chooser options can reduce
option buyers’ regret resulting from mistakes in buying vanilla calls or puts
with specific views of the underlying market.

Nonlinear payoff options, as their name implies, are options with non-
linear payoffs compared to linear payoffs of vanilla options. The popular
nonlinear options are power options which exhibit payoffs as power func-
tions of the underlying asset prices. These power functions can be either
concave or convex. For example, let St stand for the underlying asset price
at maturity and K the strike price of the option. The payoff of a power
option can then be expressed as (St)P — K for those in-the-money options,
where p can be any real number. Obviously, when p = 1, the payoff of the
power option becomes precisely the same as that of a vanilla call option.
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When p > (<) 1, the payoff of the power option is a convex (concave) func-
tion of the underlying asset price at maturity, and is always greater (smaller)
than that of the corresponding vanilla call option. As a convex (concave)
power option always has higher (lower) expected payoff than that of the
corresponding vanilla option, power options are normally more expensive
(cheaper) than the corresponding vanilla options. If an investor believes
that the underlying asset is going to be bullish, she can buy a power option
with p > 1, say p = 2, and obtain a payoff of (S1)? — K instead of ST — K
as with a vanilla call option. From the above discussion, we can readily infer
that power options can be used to take better advantage of investors’ views.

Contingent premium options are also called pay-later options. The hold-
ers of pay-later options, as the name implies, do not pay the writers any
up-front premiums. Actually, the holders of pay-later options do not pay
any money at all if the options expire out-of-the money. Nevertheless, they
need to pay the writers a prespecified premium only when the option turns
out to be in-the-money. Clearly, pay-later options capture investors’ desires
to avoid unnecessary payment for out-of-the-money options, as they have to
pay only when the options are in-the-money. However, they are not riskless
because the holder of a pay-later option has to pay a prespecified premium
which is very often more expensive than the otherwise equivalent vanilla
option even when the option is slightly in-the-money. In other words, the
gain from the next-in-the-money option may not be enough to cover the
prespecified premium.

Mid-Atlantic options are known as Bermuda options or limited exercise
options. As the phrase Mid-Atlantic indicates something between America
and Europe, Mid-Atlantic option is a hybrid of American and European
options. Instead of being exercised any time before maturity as standard
American options, they can be exercised only at discrete time points before
maturity. Thus, Bermuda options are quasi-American options. They are
sometimes called modified American options because of this quasi-American
property. At the inception of a Mid-Atlantic option, besides the regular
specifications on a vanilla option, the discrete dates of exercise must also
be specified. As Mid-Atlantic options possess the properties of both Amer-
ican and European options, their premiums are thus between those of the
corresponding American and European options.

Installment options allow investors to pay the premiums in installments,
therefore offering the flexibility of canceling the options if necessary. An
installment option can be considered as a series of compound options or a
string of extendable calls on a put option. After paying a minimum up-front
premium, the investor has a choice of making the installment payments or
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letting the option expire. A typical installment option calls for a buyer to
make four equal payments on a quarterly basis. If a payment is not made,
then the option expires worthless automatically.

1.5. INSTITUTIONS INVOLVED IN EXOTIC OPTIONS

Banks have responded to the loss of some of their best customers in old
businesses by embracing new products and taking efforts to create new ones,
trying to entice them back with a new concept — financial risk management
using derivatives. Most leading international financial institutions have paid
a lot of attention to product development. Table 1.3 provides seventeen
active product developer banks with established derivatives operations in
London. Although product development is not solely for exotic options, ex-
otic options represent a significant portion in product development. It should
be noticed that Bankers Trust, the major product developer in derivatives
business, is not included in Table 1.3 because its product development for
derivatives was predominantly undertaken in the US.

Table 1.3. Active product developer banks with established derivatives operations in
London.

Location of head office

Barclays Bank England
Chase Manhattan Bank Us
Chemical Bank USs
Citicorp Investment Bank US

Credit Suisse First Boston Us

First National Bank of Chicago Us
Goldman Sachs International Us
Hambros Bank England
Morgan JP Securities Us
Midland Montagu England
Morgan Stanley Us
National Westminister Bank England
Noimura Bank International England
Salomon Brothers International us

Societe Generale France
Swiss Bank Corporation Switzerland
Union Bank of Switzerland Switzerland

Source: Telerate Bank Register (1991) and field study areas. The above 17 banks were
identified by industry experts as innovative in terms of product development undertaken
from a London base. Bankers Trust was excluded because its product development for
derivatives was reported to us as predominantly undertaken in the US.
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Table 1.4. Leading players in the second generation derivatives by September 1993.

Bankers Trust (194374214 16+24+26+30+19+24) 216
JP Morgan (11+10+22) 43
Credit Swiss Financial Products (12+11+10+10) 42
General Re FP (19+7) 26
Societe Generale (10+8) 18
Union Bank of Switzerland (15) 15
Mitsubishi Finance (12) 12
Merrill Lynch (11) 11
Swiss Bank Corporation (11) 11
Solomon Brother (10) 10
Barclay’s Bank (8) 8
Morgan Stanley 8) 8
Goldman Sachs (7 7

Source: RISK Magazine.

Table 1.5. Leading players in the second generation derivatives by September 1994.

Bankers Trust (26+17+11+16+11-+23+17+16+10+11) 158
Swiss Bank Corp (21+14+14+11+15+11) 86
Goldman Sachs (12+11+14+11) 58
CSFP (18+14+14+11) 57
Union Bank of Switzerland (27 27
Morgan Stanley (11+14) 25
Merrill Lynch (11+10) 21
Solomon Brother (13) 13
JP Morgan (12) 12
Societe Generale (10) 10

Source: RISK Magazine.

Tables 1.4 and 1.5 list the institutions which are the active players in
the second-generation derivatives market. The tables are based on the in-
formation from risk rankings from the Risk magazine in 1993 and 1994.
The rankings ‘were done for the ten most popular second-generation deriva-
tives, six of them being second-generation options. These second-generation
options include Asian (average) options, spread options, lookback options,
barrier options, quanto options, and compound options. The original risk
rankings gave a percentage for the top three institutions which are the most
active in one particular product. In order to compare various institutions
easily, we provide the sums of all percentages for all the ten products for
each institution in Table 1.4. These tables clearly show that Bankers Trust,
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the New York based investment bank, is by far the leader in the second-
generation derivatives. The tables also show that the dominant position
of Bankers Trust declined significantly from 1993 to 1994, and other houses
such as Swiss Bank Corporation, Goldman Sachs and Credit Swiss Financial
Products are quickly catching up.

1.6. SUMMARY

We presented a bird’s eye view on the world of exotic options. Af-
ter a brief description of vanilla options, we described the most popular
group of exotic options — path-dependent options which include four pop-
ular exotic options: Asian options, barrier options, lookback options, and
forward start options. We then introduced another popular group of ex-
otic options — correlation options which include six popular exotic options:
spread options, out-performance options, exchange options, rainbow options,
currency-translated options, and basket options. And in Section 1.4, we ex-
plained seven other popular exotic options: digital or binary options, com-
pound options, chooser’s options, nonlinear payoff options, pay-later op-
tions, Mid-Atlantic options or Bermuda options, and installment options.
Although there are a few other exotic options besides those options we have
described in this chapter, they are not as popular.

There are other types of exotic options which we have not discussed in
this chapter. Although we try to provide a complete source on the existing
exotic options, it is impossible to cover all of them because of the opaque
nature of the OTC marketplace. What is more, product development is an
on-going process. We will introduce and analyze the major kinds of exotic
options and show how new exotic options can be made with a mixture of
these existing products in the following chapters.

The majority of this chapter has been based on Zhang (1995b) which
appeared in Furopean Financial Management.

QUESTIONS

1.1. Describe briefly how exotic options are different from standard options
or vanilla options.

1.2.  What are path-dependent options? Give three examples of path-
dependent options.

1.3. What are correlation options? Why are they becoming more impor-
tant these days and will be more important in the future?
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Do correlation coefficients play important roles only in correlation op-
tions? If not, give a few examples of exotic options in which correlation
coefficients play important roles in determining their values.

Find an exotic option that may be considered as either a path-
dependent or correlation option.

What are Asian options? What are average-strike options?

Are Asian options always cheaper than their corresponding vanilla
options? Why?

What are barrier options? Why are they becoming more popular these
days?

Are barrier options always cheaper than their corresponding vanilla
options?

Are exotic options more expensive, or cheaper than vanilla options?
Give two exotic options according to your intuition which are more
expensive and two cheaper than vanilla options.

What are the three basic kinds of digital options? Describe them
graphically.

Why is it true that exotic options are as old as exchange-traded op-
tions and why do they become very popular only in recent years?
Describe how you can use two types of existing exotic options to struc-
ture a new kind of option. What purpose may this new option serve?
If the strike price is specified in a contract and the option is to become
valid in three months, is this option a forward-start option?

Why are floating lookback options true “no-regret” options?
Chooser options can somewhat minimize option buyer’s regret, why?
Are chooser options “no-regret” options because they can minimize
buyers’ regret?

Is it true that pay-later options are riskless for buyers because they
do not have to pay money up-front and do not have to pay at all if
the options turn out to be out-of-the money?

Is it true that Bermuda options are more expansive than their cor-
responding European options and cheaper than their corresponding
American options? Why?

Are exotic options exclusively traded in the OTC marketplace?
What exotic options are traded in both the OTC marketplace and
exchanges?

What are the three most popular path-dependent options?

What are the most popular correlation options?

What are the six most popular exotic options?






Chapter 2
OPTION PRICING METHODOLOGY

2.1. EQUILIBRIUM AND ARBITRAGE
2.1.1. Equilibrium

Equilibrium is very likely the most often used term in modern economics.
It appears in college and even high-school economics text books. In general,
an equilibrium stands for the state of a market when supply is matched
by demand. In other words, we say that a market is in equilibrium when
the supply is precisely the same as the demand for a product. Relating
to equilibrium of a particular market, general equilibrium means that all
markets in an economy are in equilibrium simultaneously. The concept of
equilibrium is so important that almost all existing economic theories are
based on it.

Not only most economic theories but also most nonderivative financial
theories are based on equilibrium. The first financial theory in modern fi-
nance, the theory of capital structure by Modigliani and Miller (1958, 1963),
was based on capital-market equilibrium in perfect market. The celebrated
capital asset pricing model or CAPM by Sharpe (1964), Lintner (1965),
and Mossin (1966) is an equilibrium model which determines the expected
returns of risky assets in equilibrium. Every MBA (Master of Business Ad-
ministration) student or college student with a business major knows that
the expected return of a risky asset in equilibrium is largely determined by
its beta, or the ratio of its market risk measured by the covariance of its re-
turn and the market return, and the variance of market return. Thousands
of papers have been written on these two subjects to extend the basic results
in the past two to three decades and many more are still coming. Most of
these studies are also based on the concept of equilibrium.

21
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2.1.2. Arbitrage

Arbitrages can simply be considered as “free lunches”. The everyday
economic principle “there is no such thing as a free lunch” simply indicates
that there exists no arbitrage. Arbitragers are traders who search for price
differentials in different markets, buying at low prices in some markets and
selling at high prices in others, thus making net profits without investing in
any assets. Such profit opportunities are called arbitrage opportunities. Ev-
eryone would like to be an arbitrager to make money quickly out of nothing,
yet it is not easy to find such opportunities without good understanding of
how different markets are working individually and interactively. It is dif-
ficult to find such opportunities because there are many professionals using
newly developed computer systems to process large amount of on-line data
to search for such opportunities. More frequently, arbitrages are very im-
portant concepts in derivative theory. In this chapter, we will turn to how
the “arbitrage-free” opportunity argument could be used to price derivative
securities.

Arbitrage opportunities are “free lunch” opportunities. Such opportuni-
ties are too good to exist for long, because many people are looking for such
opportunities and thus, price differentials diminish as the lower prices are
bid up with more buying pressures and the higher prices are reduced with
more selling pressures. Therefore, we can say that arbitraging activities help
improve market efficiency through eliminating irrational price differentials.

2.1.3. Relationship Between Equilibrium and Arbitrage

Equilibrium analysis has been used to price many financial assets. In
general, investors’ preferences such as risk aversion, the distribution of en-
dowments and preference across investors, and demand conditions, normally
enter pricing expressions as they determine the equilibrium parameter val-
ues. The arbitrage-free argument, or no-arbitrage argument, has been used
to price all derivative securities. In all no-arbitrage pricing models, investors’
preferences such as risk aversion and demand conditions are irrelevant. In
particular, expected returns of the underlying assets do not appear in pricing
formulas for derivative securities but normally appear in equilibrium-based
theories. Therefore, no-arbitrage argument is different from equilibrium
analysis.

However, these two kinds of analyses may yield the same results under
certain conditions. Rubinstein (1976) showed that the arbitrage-free pricing
formula of Black-Scholes still holds under four conditions: (1) single-price
law of markets, (2) non-satiation, (3) the marginal utility of consumption
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and the stock price are jointly lognormal, and (4) investors agree on the
volatility of the underlying asset. We need to review two economic concepts
before we can further explain the relationship between equilibrium and ar-
bitrage analyses. When an investor’s utility function is a power function
W1+ /(14 @) or his marginal utility is W, where « is a constant parameter
and W stands for his total wealth, we say that this investor exhibits constant
proportional risk aversion (CPRA). When an investor’s utility function is a
negative exponential with constant coefficient — exp(—aW), or its marginal
utility is exp(—aW), we say that this investor exhibits constant absolute risk
aversion (CARA). Risk aversion is an economic term meaning disliking risk.
Brennan (1979), and Stapleton and Subrahmanyam (1984) showed that the
representative investor exhibits constant proportional (resp. absolute) risk
aversion for arbitrary bivariate lognormal (resp. normal) distributions of the
price of the underlying asset, and the aggregate wealth is necessary and suf-
ficient for the equilibrium and arbitrage methods to yield the same results.

As it will be shown in the following chapters in the book, the no-arbitrage
argument has replaced the equilibrium analysis in pricing all types of deriva-
tive securities, and become the single most important principle in pricing
options. Any pricing model which includes arbitrage can no longer be easily
accepted by researchers and professionals.

2.2. BASIC OPTION TERMINOLOGY

Let us start with an example. Suppose you believe that a stock price will
rise from $100 per share today to $125 half a year from now, what would
you like to do with your $10,000? You would most likely buy 100 shares
with all the $10,000 and make 25% return on the stock in half a year if the
stock turns out to be $125 as you expect. You may also buy the stock by
margin. Suppose that you can borrow $10,000 from your broker and you pay
20% annual interest on the money you borrow. With the additional $10,000,
you can buy 200 shares, these 200 shares will make $5000 for you. After
paying $1000 interest (the annual interest rate is 20%, the semiannual rate
is 10%) for the money you borrow, you net $4000 profit, thus making 40%
in half a year on your initial $10,000. Clearly, the second strategy works
better than the first, yet you involve higher risks with the second strategy
because you have the interest obligation. In general, the amount of money
you can borrow is limited, so you cannot take the best advantage of your
expectation even if you are right. With the existence of options market, you
have another much better way to make higher profit with your money. We
will return to this after clarifying some jargon of options.



24 Ezotic Options

There are different ways to classify options according to their character-
istics. Most often, they are grouped as call options and put options. A call
option is a financial contract that gives its buyer or holder the right to buy
the underlying asset at a prespecified price within a prespecified time period.
This prespecified price is called the exercise price or strike price of the option,
and the prespecified time is called the time-to-maturity, time-to-expiration,
or tenor of the call option. A put option, on the other hand, is a financial
contract that gives its buyer or holder the right to sell the underlying asset
at a prespecified price within a prespecified time. The underlying market is
often called the cash market. If an option can only be exercised at maturity
or expiration, the option is called a European option. If it can be exercised
any time before or on the expiration day, it is called an American option.

Options are somewhat similar to futures — they are both financial con-
tracts which can be exercised at a prespecified time in the future. However,
there is a very important difference between them. A futures contract rep-
resents obligations on both sides of the contract, whereas an option contract
represents rights for the holder to buy and obligations for the seller to sell.
Thus, if the price of the underlying asset is higher than the strike price at or
before the expiration time, the call option holder can simply exercise his/her
rights to make a profit by buying the underlying stock at the strike price
and selling it at a higher market price. If the market price falls below the
strike price, he/she can simply let the call option expire without doing any-
thing. Figure 2.1 represents the payoff pattern of a European call option.
Obviously, there is one kinked point at the strike price in the option’s payoft
diagram. If the stock price at expiration is at or below the strike price, then
the call option will expire worthless, and if it is greater than the strike price,
then the payoff of the option is simply the difference between the stock price
at expiration and the strike price.

Analytically, the payoff of a European call option (EC) can be formally
expressed as follows:

EC = Max|[S(7) - K,0], (2.1)
where S(7) and K stand for the underlying asset price at maturity and the
strike price of the option respectively; 7 = t* —t is the time to maturity,
where t and ¢* stand for the current time and time to maturity of the option,
respectively; and Max [.,.] is the mathematical function which gives the
larger of two numbers involved.

Similarly, the payoff of a European put (EP) option is given by

EP = Max[K — S(7),0], (2.2)
where S(7), K, and Max [. , .] are the same as in (2.1).
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Fig. 2.1. Payoff of a European call, given spot price = strike price = $100.
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Fig. 2.2. Payoff of a European put, given spot price = strike price = $100.

Figure 2.2 depicts the payoff pattern of a European put option. Com-
pared to that of a European call option given in Figure 2.1, there is also one
kinked point at the strike price in the put option’s payoff diagram. However,
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the curve is upward to the left rather than to the right as in the case of a
European call option.

From the definition of a call option, we know that its buyer has a positive
expected payoff, as the worst case is the situation when the option expires
worthless and the best case is when he/she can obtain unlimited payoff if
the stock price rises unlimitedly. On the other hand, the seller or writer of
the call option has a negative expected payoff, as he/she has to meet the
obligation to sell the underlying asset at the strike price even if it is lower
than the market price. There is no such thing as a free lunch for either
the buyer or the seller. The seller of an option is often called the writer of
the option as he/she simply writes a selling contract. Unlike the forwards
or futures buyer, the option buyer has to pay some money to the writer to
compensate the expected loss. The amount of money the option buyer pays
the writer is called the premium of the option. Thus, the worst case for the
option buyer is that he loses the premium when the option expires worthless.
That is why it is often said that call options have limited liabilities (the
premiums) and unlimited payoffs or returns. In order to obtain the right to
buy or sell the underlying assets, option buyers have to pay some premiums
to the writer. This is another important difference between option contracts
and futures contracts.

There are a few other terms often used in option literatures and pro-
fessional discussions. If the current underlying asset price is greater (resp.
smaller) than the strike price of a call option, the call option is said to be
in-the-money or ITM (resp. out-of-the-money or OTM); if the underlying
asset price is smaller (resp. greater) than the strike price of a put option,
then the put option is called ITM (resp. OTM); and if the underlying asset
spot price is the same as the strike price of an option, then the option is said
to be at-the-money or ATM. In general, when the option is ITM, it is more
likely that it will be worth exercising. The word moneyness stands for the
relative magnitudes of the underlying spot and strike prices or whether an
option is ITM, ATM, or OTM.

We can now return to the example at the beginning of this section. As
you believe that the stock will go up from $100 per share today to $125 half
a year from now, you can simply buy a European call option to expire half
a year from now. You may need to pay a few dollars premium to buy a call
option that gives you the right to buy the underlying stock at a prespecified
price. To make our example simple, we assume that the price for a call option
with exercise price $105 written on the stock is $5 (we will study how option
prices are determined in the following section). Thus, you can buy 10,000/5
= 2000 call options written on the stock. As one option contract normally
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controls 100 shares of the underlying stock, buying 2000 call options is the
same as buying 20 call option contracts. If the stock price rises to $125 per
share at maturity as you expected, you exercise your right to buy 2000 shares
of the underlying stock at $105 per share, selling these shares at the price of
$125 per share, thus making a net profit of 2000 x ($125 — $105) = $40, 000.
The $40,000 is equivalent to 300% return on your initial $10,000 capital.

The above example shows how to make profits with call options if you
believe that the underlying asset will become more expensive. When you
forecast that the price of the underlying asset will go up, buying call options
is an alternative way to profit from the appreciation of the underlying asset
and very often a cheaper one. Put options, on the other hand, can be used to
protect you from potential losses in the underlying market. Because of this
protective nature, buying put options are very similar to buying insurance
for the underlying assets.

2.3. THE BLACK-SCHOLES OPTION PRICING MODEL

In the previous section, we came across the problem of how to deter-
mine the premium of an option. Finding appropriate prices for options is
the crucial part in options trading, because trading can be carried out by
comparing the option market prices with these appropriate prices or true
values. If the market price of an option is smaller than the true value of the
option, we say that the option is undervalued, and it is profitable to buy the
option; and if its market price is greater than the true value of the option,
we say that the option is overvalued, and it is profitable to write or sell the
option. Therefore, to determine the fair prices for all kinds of options and
all other derivative securities is the central topic in the option business.

The concepts of options we have discussed so far are pretty straightfor-
ward. What makes them appear difficult are the techniques used to rep-
resent the arbitrage conditions from which we can find their appropriate
values. Thus, we suggest that those first-time readers of a derivative book
skip some sections of this chapter, and concentrate on the general ideas and
arguments first. After finishing reading the whole book, they may have a
much better understanding when returning to these sections.

Before any houses or buildings can be built, constructors normally ex-
amine the underlying land very carefully. They have to know the underly-
ing land very well before they decide whether they can build a house or a
building on it. The same is true for constructing derivative securities. In
order to price any derivative securities, we have to know the underlying as-
sets very well. Unfortunately, our knowledge of the stock market, currency
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market, debt market, and other underlying markets is still so limited that
we can hardly describe the fluctuations of these underlying assets satisfac-
torily. Therefore, we have to make some assumptions about the fluctuations
of these underlying asset prices. Any imaginary world in which a certain
number of assumptions are satisfied is often called a model as in natural
science and engineering. Two models are different if the set of assumptions
is different from each other.

Although there are many option pricing models, the Black-Scholes log-
normal model, in which the underlying asset price is assumed to be log-
normally distributed, is still by far the most popular one. To some degree,
the Black-Scholes option pricing model has facilitated option trading and
helped the growth of the whole financial derivative market. Most option
pricing models either follow it directly or indirectly. The Black-Scholes pric-
ing model is rather difficult to be described thoroughly without using some
advanced mathematics. In order to concentrate on the basic arguments in
this section, we will explain the assumptions that are made in the Black-
Scholes model and the properties that the pricing formula possesses, and
leave the derivation of the formula in the following sections.

Black and Scholes (1973) pioneered the modern option pricing theory.
Interestingly enough, this model came into existence in the same year that
the Chicago Board of Options Exchange (CBOE) was established, in 1973.
This model, as its name implies, was the joint work of the late Fisher Black, a
former Professor at the University of Chicago and a former partner at Gold-
man Sachs, and Myron Scholes, a research Professor at Stanford University
and now with Long Term Capital Management, a hedge fund in Connecti-
cut. Hundreds of academic papers have been published to extend this model
in various directions. Professionals started to use this model to evaluate op-
tions soon after it was published. However, it took some time for this model
to be well understood. Although different firms may use their own models
which reflect their beliefs of the fluctuations of the underlying assets, most
of these models can, to a large degree, be considered as extensions of the
Black-Scholes model. Although there are all kinds of extended versions of
the Black-Scholes model, the original model is still by far the most widely
used by professionals as a benchmark.

In a typical Black-Scholes environment the underlying asset return is
assumed to follow a lognormal random walk. Suppose that the underly-
ing asset price S follows the geometric Brownian motion (named after the
English botanist R. Brown):

dS = uSdt + 0Sdz(t), (2.3)
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where z(7) is a standard Gauss-Wiener process,! and p and o are the in-
stantaneous mean and standard deviation of the underlying asset price, re-
spectively. The instantaneous standard deviation o is more often called the
volatility of the underlying asset.

Solving equation (2.3) using the standard method (see Appendix for the
procedure) yields

S(r) = Sexp [(p - 302) T+ az('r)] . (2.4)

Taking natural logarithm to both sides of (2.4), we can readily obtain

ln{ig‘)} = (#— %02>T+az('r),

which is normally distributed because z(7) is normally distributed with zero
mean and variance 7. That is why the Black-Scholes model is also called
a lognormal model. Figure 2.3 depicts the curve of the density function of
a standard normal distribution which looks very much like a bell. Figure
2.4 depicts the density function of the lognormal distribution. Figure 2.3 is
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Fig. 2.3. Density function of the standard normal distribution.

1 A standard Gauss-Wiener process can be simply understood as a normal variable with zero mean
and variance which equals the difference between the future time and current time. Thus, the
standard Gauss-Wiener process z(7) is normally distributed with zero mean and variance 7.
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symmetric around zero and Figure 2.4 is skewed to the left. From these two
figures, we can observe that the variables can be either negative or positive
in the normal distribution, yet they cannot be negative in the lognormal dis-
tribution. Thus lognormal distributions are used in pricing options instead
of normal distributions because lognormal distributions can overcome the
negativeness problem associated with normal distributions.
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Fig. 2.4. Density function of the lognormal distribution.

As in most other theoretical models, the Black-Scholes model requires
many assumptions. Besides the lognormal assumption, Black and Scholes
made a few others:

(1) the short-term interest rate is known and is constant through time;

(ii) the underlying asset pays no dividend;

(iii) the option is European;

(iv) there are no transaction costs in buying or selling the underlying asset
or option;

(v) it is possible to borrow any fraction of the price of a security to buy it
or hold it, at the short-term interest rate;

(vi) trading can be carried on continuously; and
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(vii) there are no penalties to short selling.2

Of all the above assumptions, continuous trading is a major one. It
makes it possible to use continuous time calculus conveniently. With these
assumptions, Black and Scholes obtained the amazing formula for the Eu-
ropean call option price using the no-arbitrage argument. This formula is
given as follows (see the following sections for the derivation):

C =SN(d))— Ke ""N(dy), (2.5)
where
n r+02/2)r
P SBT3
dy = In(S/K) + (r — a%/2)r
o\/T ’

K is the exercise price of the option, 7 is the risk-free rate of return, o is the
volatility of the return of the underlying asset, €® is the natural exponential
function with power z, e™* = 1/¢%, In(z) is the natural logarithm function,
and N(z) is the value of the cumulative function of the standard normal
distribution at .

The cumulative function of the standard normal distribution N(z) gives
the probability that all normal random variables are not greater than z, or
N(z) = Probability (X < z). Figure 2.5 depicts the cumulative function
value for various values of z. As N(z) stands for probability, it is always
between zero and one. We can observe that N(z) approaches zero when z
becomes smaller than —4, and N(z) approaches one when = becomes greater
than 4. Figure 2.5 also indicates that N(z) is an increasing function of the
argument z. Appendix I at the end of this book provides values of N(z)
for 0 < z < 3.99. To find the value of N(1.38), for example, we need to
locate 1.3 in the first column and then locate 0.08 from the first row. The
number at the intersection of column 1.3 and row 0.08 gives the probability
N(1.38) = 0.9162.

It is easy to find the value of N(z) when z is negative. As the standard
normal distribution is symmetric about zero, we use the identity N(z) =
1 — N(—z) to find N(z) when z is negative. For example, N(—1.38) =
1— N[—(-1.38)] =1 — N(1.38) =1 —0.9126 = 0.0874.
2Simply speaking, short selling means selling some securities the seller does not own or selling
other people’s securities. Specifically, a seller who does not own a security accepts the price of

the security from a buyer and agrees to settle the buyer on some future date by paying him an
amount equal to the price of the security.
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Fig. 2.5. Cumulative function of the standard normal distribution.

The Black-Scholes formula given in (2.5) is clearly a function of five
factors: (1) underlying asset spot price S; (2) option strike price K; (3) time
to maturity 7; (4) risk-free rate of return r, and (5) volatility of the return
of the underlying asset . The first and the fourth factors can be observed
from the market, and the second and the third are specified in the option
contract. The last factor, the volatility of the return of the underlying asset,
or the annualized standard deviation of the return of the underlying asset,
is neither specified in the option contract nor directly observable from the
market. We have to estimate this volatility value using historical data of the
underlying asset in order to use the Black-Scholes formula.

Although there are various ways to estimate the volatility parameter
depending upon the particular markets and particular problems, most often
daily prices or index data from certain number of days back are used to
estimate the volatility. The daily prices or index data, often called level
prices, are converted into daily gross returns — ratios of each daily price
over the previous daily price. The standard deviation of these daily returns,
or more specifically the logarithm of these daily gross returns is calculated.
The standard deviation thus calculated is the daily standard deviation. The
last step is to annualize the standard deviation: multiply the daily standard
deviation by the square root of 253 because there are approximately 253
business days in a year.
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Example 2.1. Suppose that the underlying spot price is $100, the strike
price $105, interest rate 20%, the volatility of the underlying stock 30%,
what is the price of the call option to expire in half a year?

Substituting S = $100, K = $105, ¢ = 30%, r = 20%, and 7 = 0.50
into (2.5) yields the two arguments d; and dj:

di =dy +0v/7=0.14+0.30 x V0.5 = 0.35,

_ In(S/K)+ (r —o?/2)r

= G

_ In(100/105) + (0.20 — 0.30%/2) x 0.5
0.301/0.5

Using the table of the cumulative function for the standard normal dis-
tribution at the end of this book, we get N(dz) = N(0.14) = 0.5557 and
N(d;) = N(0.35) = 0.6368. Substituting these values into (2.5), we obtain
the call option price:

do

=0.14.

C = SN(dy)-Ke ™ N(dz) = 100x0.6368—105xe~%-2%%-5 % (0.5557 = $10.89.

Following the same procedure, we can obtain the call option prices with
various current underlying asset prices. Figure 2.6 depicts the call option
prices for $80 < S < $120, K = $100, o = 15%, interest rate r = 10%, and
time to maturity 7 = 1 year and three months. The top curve represents
various prices of call options to expire in one year, the dotted curve represents
various prices of call options to expire in three months, and the kinked line
represents the value of call options at maturity. It is obvious that the call
option price curves are concave and well above the kinked payoff line below.
This is because the time to maturity is one year and three months, i.e.,
greater than zero. The difference between the concave curve and the kinked
payoff line is called the time value of the call options, since the concave curve
approaches the kinked payoff line as the time to maturity approaches zero.

If we increase or decrease both the spot and strike prices by the same
percentage, say A > 0, the call option price would increase or decrease by the
same percentage. In other words, the pricing formula given in (2.5) is homo-
geneous of degree one for spot and strike prices.?> If we use C(S, K, o,7,7)
to stand for the call option price given in (2.5), the call option price with

3A function F(z,y) is said to be homogeneous of degree k for the variables z and y if F(\z, Ay) =
A*F(z,y).
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spot AS and strike AK can be expressed as
C(AS,A\K,o,r,7) = MC(S,K,0,7,7T), (2.6)

which is the so-called scaling property of the Black-Scholes formula. This
is true for both call and put options. The scaling property is always valid
simply because the scaling parameter A cancels out in In{(AS)/(AK)] in the
d; and d, functions. The scaling property is a very useful characteristic of the
pricing formula which can be used to simplify many problems significantly.
We will use it in the following chapters.

2.3.1. Limiting Cases of the Black-Scholes Model

From the pricing formula given in (2.5), we can readily find the following
always holds:
C<SN(d)<S (2.7

which indicates that the price of a European call option can never surpass
that of its corresponding underlying asset.

The implication of (2.7) is also intuitive because the value of any call
option is derived from that of its underlying asset, and therefore should not
be greater than its underlying asset price.

The inequality given in (2.7) gives the upper limit of the price of a
European call option in relation to its underlying asset price. There are
a few limiting cases of the Black-Scholes model in which a European call
option price could exactly reach this upper limit values.

2.3.1.1. When time to maturity is infinity

Figure 2.6 illustrates the time value of a call option, which increases
with longer time to maturity. What should be the price of a European call
option if its time to maturity goes to infinity, given other parameters?

Substituting 7 — +oco into (2.5). We can readily find (we leave this as
an Exercise by the end of this chapter)

cC=S. (2.8)
2.3.1.2. When interest rate is infinity

Substituting 7 — +oo into (2.5) yields (we leave this as an Exercise by
the end of this chapter)
c=S. (2.9)
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Fig. 2.6. Call option values for various spot prices and maturity.

2.3.1.3. When volatility is infinity

Substituting o — +oo into (2.5) yields (we leave this as an Exercise by
the end of this chapter)
c=S. (2.10)

2’.4. PRICING OPTIONS USING THE ARBITRAGE-FREE
ARGUMENT

We described the concept of arbitrage at the beginning of this chapter.
In this section, we will illustrate how the arbitrage-free or “no-free-lunch”
argument can be used to obtain the celebrated Black-Scholes formula. Black
and Scholes (1973) constructed a portfolio including one unit of the underly-
ing asset long and w/w; units of call options written on the underlying asset
short, where w stands for the value of a call option which is assumed to be
a function of the underlying spot price z and the time to maturity of the
option 7; and w; stands for the first-order partial derivative of the call option
value with respect to its underlying spot price. Following Black-Scholes, the
value of the hedged portfolio is given by
w

z——, (2.11)
w1
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and the small change of the value of the hedged portfolio given in (2.11) in
a very short period of time At can be obtained as

Az - =2, (2.12)

where A stands for an infinitesimal change in value.
Using stochastic calculus, or more specifically It6’s lemma,* we can ex-

press the change in the call option value in terms of its partial derivatives:

Aw =w Az + % w1022 At + wo At (2.13)
where o stands for the constant standard deviation or volatility of the un-
derlying asset, and wy and w); represent the first-order partial derivative
of the option value function with respect to the time to maturity and the
second-order partial derivative of the call option value with respect to the
underlying spot price.

Substituting (2.13) into (2.12) yields the change in the hedged portfolio
value as follows:

A (:c - -1—1)-) = - (l wyolz? + w2> At . (2.14)
wy 2 w1

As trading of both the underlying asset and the call option is assumed
to be continuous and thus the hedging ratio can be adjusted continuously
without any cost in the Black-Scholes model, the risk of the hedged portfolio
is very small and can be diversified away totally. Therefore, the change in
the hedged portfolio value must equal the interest made with the hedged
portfolio over the infinitesimal period of time At:

At
(z - ﬂ) TAt = — (% wpo’z? + wz) — (2.15)

wy w1
where r is the net risk-free rate of return which is assumed to be a constant.
41t5's lemma is the basic stochastic calculus rule for computing stochastic differentials of composite
stochastic functions. Specifically, for any function y(t) = uft, Z(t)], where Z(t) is a stochastic

process dz(t) = f(t)dt + o(t)du(t), 1td’s lemma states that the process y(t) has a differential on
[0, T] given by

dy(t) = {wt, Z(1)] + ue(t, Z(D))F(1) + % uzzlt, Z(t)]o? (t)}dt + uz[t, z(D)]o(t)du(t) -

In our example w is a function of time and the underlying asset price which is also a stochastic
process.
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Deleting At from both sides of (2.15) and multiplying w; to both sides
of it yields the following:

(zw, — w)r + w110°22/24+wy =0, (2.16)

which is a second-order partial differential equation with the boundary con-
dition as the final payoff of the European call option:

w(z,t*) =z~ K for > K and
=0 otherwise, (2.17)

where t* and K stand for the time at maturity and strike price of the option,
respectively.

Solving the second-order partial differential equation (2.16) for the op-
tion value w under the boundary condition given in (2.17) gives us precisely
the European call option pricing formula (2.5) in terms of the time to ma-
turity 7 = t* — t > 0, strike price K, volatility o, spot price z, and interest
rate 7. In order to keep the transparency of how the arbitrage-free argument
is used to price options, we leave the question of how to solve the partial
differential equation to the following section.

2.5. SOLVING PARTIAL DIFFERENTIAL EQUATIONS

Following Black and Scholes (1973), we established the second-order par-
tial differential equation (PDE) (2.16) using the arbitrage-free argument in
the previous section. The solution with the corresponding boundary condi-
tion (2.17) should be the pricing formula for the European-style call option
in terms of the current stock price S, exercise price K, interest rate r, volatil-
ity of the underlying asset o, and time to maturity 7 = t* — t. In order to
concentrate on the way the arbitrage-free argument is used in our analysis
and to separate financial argument with mathematical solution, we did not
solve the PDE. We concentrate on how to solve the PDE in (2.16) in this
section, with both analytical and numerical methods.

2.5.1. Analytical Method

Many analyses in physics, chemistry, engineering, and other fields of sci-
ence involve the PDEs with some specific initial and boundary conditions. A
lot of effort has been taken to find efficient methods to solve PDEs. In gen-
eral, it is not easy to solve second-order or higher order PDEs. The general
method is to transform or simplify relevant PDEs into some standard PDEs
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whose solutions can be more easily found. In order to be consistent with
our notation, we use S to stand for the current spot price of the underlying
asset. Let’s make the following substitution first:

w(S,t) = e ""y(z1,22), (2.18)

=2 (3 () (-3

2 1 ,)\?
z2-—(r—~0'2) 7, and T=¢t*"—1t.

where

T o2 2
With the substitution given in (2.18), the PDE given in (2.16) can be
shown to be transformed to the following standard form:
Oy _ oy
ou?  ot’
and the boundary condition given in (2.17) becomes the following initial
condition

(2.19)

y(u,0) =0 for u <0 and
=K [e"(%"z)/("%"2) - 1] for u>0. (2.20)

Equation (2.19) with the initial condition (2.20) is the heat-transfer equation
in physics. Black and Scholes used the existing solution of Churchill (1963):

K o0 1 1
= (utoqv2s)(30%)/(r—30%) _ 1] ¢—9*/2
y(u, s) \/ﬂ/—u/ - [e 2 2 1] e dg. (2.21)

Substituting (2.21) into (2.18) yields

w(S,t) = 77 .\7{.{_2? /O: [e(ln(S/K)+aq\/?+(1'—%a2)‘r _ 1] e—q2/2dq
—az

S [ 1 1.2 1.2 o 1 2

=K _/ — eloavT—30%T—34%) g, _ —TT/ -¢*/2g
[K 4y Vom 1= Javam: ™
o 1

=5 [ e VP g - e - N ()], (2.22)
—a2

=z [m(3)+ (--37)7].

and N(z) is the cumulative function of the standard normal distribution.

where
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Using the substitution v = ¢—o+/7 and the identity N(z)+ N(~z) = 1,
we can simplify (2.22) to

w(S,t) = S[1 — N(—dz — 0/7)] — Ke™""[1 — N(—d2)]
— SN(dg + ov/7)] = Ke~""N(dy), (2.23)
which is precisely the Black-Scholes formula given in (2.5).

2.5.2. Numerical Method

The above analytical derivation involves one critical step — the trans-
formation given in (2.18). For a general PDE with arbitrary boundary con-
ditions, it can be rather difficult to find an appropriate transformation so
that a standard form can be obtained. What makes the matter worse is that
analytical transformations do not exist for many PDEs with given bound-
ary conditions. Thus the corresponding analytical solutions do not exist.
Although analytical solutions are beautiful and convenient, this method is
very limited in practical use.

From the rapid progress in computer technology, a lot of studies have
been done to solve PDEs numerically. Brennan and Schwartz (1978) first
introduced finite-difference — a numerical method to solve PDEs to obtain
option prices. This method has also been widely used in pricing various kinds
of complex derivatives. Wilmott, Dewynne, and Howison (1993) is a good
source for explaining various aspects of finite-difference and its applications
in pricing derivatives.

2.5.3. Finite-Difference

The basic idea of finite-difference approximation is very simple: to re-
place partial derivatives used in any PDEs with their corresponding finite-
difference approximations. More specifically, instead of treating the change

~ of the independent variable infinitesimal as in the definition of partial deriva-
tives, the change is small and its magnitude depends on the currency level
required in a specific problem. Put mathematically, the partial derivative of
a function f(z,y) with respect to y is given

of(,y) _ .. flz,y+Ay) - f(z,y)
oy~ Am, Ay : (2:24)

which is approximated with

of(z,y) o, flz,y+8y) — flz,y)
oy oy

(2.25)
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in finite-difference approximation, where dy represents a small change of the
variable y.

The difference given in (2.25) is called a forward difference since the
difference is in the forward direction. Similarly, the following finite-difference
is called a backward difference

of(z,y) o, f(z,y) — flz,y - dy)
oy oy ’

(2.26)

since the difference is in the backward direction. The central difference is
similarly defined as follows

of(z,y) . flz,y+dy) — f(z,y — 0y) _

Oy 20y

(2.27)

The central finite-difference approximation given in (2.27) is not used
in practice as it often leads to unstable numerical schemes. Instead, the
following central finite-difference approximation is often used

0f(z,y) ., f(z,y+0y/2) — f(z,y — y/2)
9y dy '

(2.28)

Similarly, second-order partial derivatives can also be approximated with
the finite-difference method. For example, the second-order partial deriva-

tive of the function f(z,y) with respect to y may be approximated using
(2.28)

0*f(z,y) _ 8 [3f(z,y+6y/2) Of(z.y—~y/2)

oy? Oy dy dy
~ f@y+6y) - 2f(z,y) + f(z,y — dy)
(6y)?
Substituting the above approximations into specific second-order PDEs,

we can find the corresponding finite-difference equations for the approxi-
mated values of the desired variables.

(2.29)

2.5.4. Finite-Element

Besides the finite-difference method in solving PDEs, there is a more
sophisticated method which involves the finite-element approximation. The
finite-element method is currently used by mathematicians and engineers
to solve complicated PDEs with several dimensions. The advantages of the
finite-element method over the finite-difference method are that the former



Option Pricing Methodology 41

is more accurate and can handle more complicated boundary conditions than
the latter. The finite-element method derives necessary discrete equations
automatically following a set of rules which are programed into the computer.
For most existing options, both vanilla and exotic, only two dimensions (nor-
mally time and asset price) are involved; the boundary conditions are most
often straightforward, therefore the finite-difference method can solve most
problems and the finite-element method may not show its advantages. How-
ever, the finite-element method may find its use with further development
of the derivatives industry to solve more complicated financial problems.

Although both the finite-difference and finite-element methods are pow-
erful enough to solve most of the problems in pricing derivatives products,
they share one obvious disadvantage: lack of intuition. Unlike the lattice
or the tree method (to be discussed in Section 2.8), intuition is somewhat
buried in the mathematics or computer programs with these two methods.
Thus, these methods are like a “black box” which is supposed to give correct
answers to some specific problems. Yet whenever problems arise, they are
not as easily fixed as with the tree or lattice method.

2.6. RISK-NEUTRAL VALUATION RELATIONSHIP
2.6.1. Risk-Neutral Valuation Relationship

Cox and Ross (1976) analyzed the structure of option valuation models
and developed an intuitive technique to solve many option pricing problems.
Essentially, they showed that as long as hedge positions can be constructed,
the values of European call options can be obtained by discounting the ex-
pected payoffs of the options at maturity by the risk-free rate of return.
They argued that whenever a portfolio can be constructed, which includes
a contingent claim and its underlying asset in such proportions that the in-
stantaneous return on the portfolio is non-stochastic, the resulting valuation
relationship is risk-neutral. A risk-neutral valuation relationship (RNVR)
is a formula relating the value of the contingent claim to the value of the
underlying asset and other directly or indirectly observable exogenous vari-
ables. Under risk neutrality, values of any contingent claims do not involve
any parameters of investor’s preferences such as risk aversion as if investors
were risk-neutral.

Harris and Kreps (1979) showed that the RNVR holds in general. Their
theory is based on a somewhat abstruse statistic concept called martingales.
Loosely speaking, a martingale represents a sequence of events; the expected
value of every next trial is, on average, to be neither larger nor smaller than
the value of the current trial. If each trial represents the return of a trial in
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a game, the gambler is expected to be neither wealthier nor poorer in the
next trial than he was before this trial. Thus, a martingale measures a fair
game as the gambler’s fortune on the next play is on average his current
fortune and is not otherwise affected by the previous history. Harris and
Kreps showed that as long as the underlying security price model does not
permit free lunches or arbitrages, arbitrage pricing methods hold; or there
exists one single value for a derivative product if and only if there exists a
unique equivalent martingale measure.

2.6.2. Compounding and Discounting Factors

Before we derive the Black-Scholes formula using the RNVR, it is useful
for us to review the concepts of compounding and discounting. Compound-
ing relates to the way in which interest is calculated. If the annual interest
rate 7 is constant and the number of interest calculation is n in a year, then
the interest rate per calculation period is r/n, and the principle plus interest
from one dollar invested today by the end of the first calculation period is
simply (1+7/n)!, the principle plus interest by the end of the second period
is (1 +7/n)?, and that by the end of one year from now is (1 + r/n)". The
principle plus interest by the end of ¢ year(s) from now is

CPDF(n,t) = (1 + %)m , (2.30)

where CPDF(n,t) stands for the compounding factor with n calculations
in a year in ¢ years, the number (1+7/n)™" is called the compounding factor
for n calculations per year and t years from today, because it represents the
amount of money that will be available t years from now; for any amount
of deposit today is simply the amount deposited today multiplied by this
factor.

If the compounding frequency is annual, semiannual, quarterly, monthly,
weekly, daily, and minute by minute, we need only set n = 1, 2, 4, 12, 52,
365, 8700, and 525600, respectively. Table 2.1 gives the compounding factors
with daily, weekly, monthly, semiannual, and annual compounding and for
various interest rates r = 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, and 80%. We
can readily see that the more frequently compounding is carried, the larger
the compounding factor because interest is put to make more interest faster
with higher compounding frequency.

For example, if you deposit $1000 in your bank for one year with the
annual interest rate 15% and monthly compounding, the money you will
have in the bank by the end of one year is the product of 1000 and the
compounding factor 1.1608, or $1160.80.
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Table 2.1. Compounding factors for various interest rates and compounding frequencies.

n 1 2 4 12 52 365 8760 525600 Infinity
annual semi-an quarterly monthly weekly daily hourly minute continuous

interest
5% 1.05 1.050625 1.050945 1.051162 1.051246 1.051267 1.051271 1.051271 1.0512711

10% 1.1 1.1025 1.103813 1.104713 1.105065 1.105156 1.10517 1.105171 1.1051709
15% 1.15 1.155625 1.15865 1.160755 1.161583 1.161798 1.161833 1.161834 1.1618342
20% 1.2 1.21 1.215506 1.219391 1.220934 1.221336 1.2214 1.221403 1.2214028
25% 1.25 1.265625 1.274429 1.280732 1.283256 1.283916 1.284021 1.284025 1.2840254
30% 1.3 1.3225 1.335469 1.344889 1.348696 1.349692 1.349852 1.349859 1.3498588
40% 1.4 1.44 1.4641 1.482126 1.489543 1.491498 1.491811 1.491824 1.4918247
50% 1.5 1.5625 1.601807 1.632094 1.644788 1.648157 1.648698 1.648721 1.6487213
60% 1.6 1.69 1.749006 1.795856 1.81587 1.821221 1.822081 1.822118 1.8221188
70% 1.7 1.8225 1.906125 1.974557 2.004371 2.012403 2.013696 2.013752 2.0137527
80% 1.8 1.96 2.0736 2.169425 2.212025 2.223593 2.22546 2.22554  2.2255409

If you deposit $1000 in your bank for one year with the annual interest
rate 15% and continuous compounding, the money you will have in the bank
by the end of one year is the product of 1000 and the continuous compound-
ing factor 1.1618, or $1161.80. Calculations show that daily compounding
is rather close to continuous compounding and hourly compounding is very
close to continuous compounding. For instance, the compounding factor for
r = 15% and t = 1 is 1.161833 with hourly compounding, as can be seen
in Table 2.1, and it is 1.161798 with daily compounding, the corresponding
continuous compounding factor being 1.161834.

If the compounding is continuous, the number of compounding n will
approach infinity. Therefore, the following limit result represents the com-
pounding factor for continuous compounding:

r\t" r n/r]Tt
CPDF(c0,t) = lim (1 + —) — | lim (1 + —) et (2.31)
n—o00 n n—00 n

Table 2.1 provides the continuous compounding factors for the chosen
interest rates. We can readily observe that compounding factors with daily
compounding frequency are almost the same as those of continuous com-
pounding frequency.

Discounting is the opposite process of compounding. As compounding
gives the future value of some current investment, discounting gives the
present value of some future value. If we deposit A dollars in the bank today,
there will be Ae™ dollars in the account ¢ years in the future if interest is
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compounded continuously and the interest rate r is constant. Discounting
solves the opposite problem: how much money should we deposit today at
the constant annual interest rate r compounding continuously in order to
have B dollars in the account ¢ years from today? The problem can be
readily solved by assuming that = dollars need to be deposited today, then
ze™ will be the amount of money available in the account ¢ years from today
using (2.31), thus ze™ = B, therefore z = Be™"t, which implies that in order
to have one dollar ¢ years from today, we need to deposit e~ in the account
today. The amount of money z is called the present value of the future value
B, and B is called the future value of the present value . The factor e~
is called the discounting factor, which is the reciprocal of the compounding

factor e™t.

Therefore, we have the continuous discounting factor (CDCF) at a con-
stant rate r in ¢ years: /

(

CDCF(r,t) = 1/CPDF(co,t) = e~ ™, (2.32)

which will be used repeatedly throughout this book.

Whenever we need to discount some expected payoffs at a constant in-
terest rate r continuously, we simply multiply the expected payoffs by the
continuous discounting factor given in (2.32).

Similarly, the discrete discounting factor (DDFT) corresponding to
(2.31) is given

DDFT(n,t) = 1/CPDF(n,t) = (1 + %) - (2.33)

which is often used in discrete models such as the tree-related models to be
introduced later in Section 2.8.

Table 2.2. lists all the discounting factors corresponding to those com-
pounding factors in Table 2.1. Because compounding factors are always
greater than one with positive interest rates, discounting factors are always
between zero and one.

2.6.3. Black-Scholes Formula Using RNVR

In the remaining of this section, we will show how the Black-Scholes
formula can be derived using the RNVR discussed in 2.6.1 by discounting
the expected payoff of the European call option at the risk-free rate of return
rate r.
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Table 2.2. Discounting factors for various interest rates and discounting frequencies.

n 1 2 4 12 52 365 8760 525600 Infinity
annual semi-an quarterly monthly weekly daily hourly minute continuous

interest
5%  0.9252381 0.951814 0.951524 0.951328 0.951252 0.951233 0.95123 0.951229 0.9512294

10% 0.909091 0.907029 0.905951 0.905212 0.904924 0.90485 0.904838 0.904837 0.9048374
15% 0.869565 0.865333 0.863073 0.861509 0.860894 0.860734 0.860709 0.860708 0.860708

20%  0.833333 0.826446 0.822702 0.820081 0.819045 0.818776 0.818733 0.818731 0.8187308
25%  0.800000 0.790123 0.784665 0.780804 0.779267 0.778867 0.778804 0.778801 0.7788008
30% 0.769231 0.756144 0.748801 0.743556 0.741457 0.74091 0.740822 0.740818 0.7408182
40% 0.714286 0.694444 0.683013 0.674706 0.671347 0.670467 0.670326 0.67032 0.670320

50% 0.666667 0.640000 0.624295 0.61271 0.607981 0.606738 0.606539 0.606531 0.6065307
60% 0.625000 0.591716 0.571753 0.556837 0.5507 0.549082 0.548823 0.548812 0.5488116
70% 0.588235 0.548697 0.524624 0.506443 0.49891 0.496918 0.496599 0.496586 0.4965853
80% 0.555556 0.510204 0.482253 0.460952 0.452074 0.449722 0.449345 0.449329 0.449329

Taking natural logrithm to both sides of (2.4) yields

In [gg—)] =|p- 92—2 T+ o0z(T). (2.34)

Equation (2.34) shows that In[S(r)/S] is normally distributed with mean
(1 — 0?/2)7 and variance 0. Denoting z = In[S(7)/S], then z is a normal
distribution with mean p; = (4 — 02/2)7 and variance 02 = o7 because
z(7) is a standard Gauss-Wiener process and z(7) is normally distributed
with zero mean and variance 7.

It is straightforward to obtain the expected payoff of the call option as

follows

E(PFC) = /o * max[S(r) — K, 0)dG[S(r)] = /l:K/S)(sez _ K)f(z)dz,

(2.35)
where G[S(7)] is the cumulative function of the underlying asset price at
maturity, and f(z) is the standard normal density function as discussed
above.

Making the standard substitution u = (z — pz)/0z, the lower bound of
the integration on the right-hand side of (2.35) becomes

o (5) e[ (3) e
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Letting d2 = [In($) + iz]/0- and carrying out the integration in (2.35)
yields

E(PFC)=S§ / j e#e % f(y)du — K / c: f(w)du

= ek /_c: e“%* f(u)du — K[1 — N(-dy)]

= Seb= /Oo e““’i e gy — K[l — N(—dy)]
—d2 vV 2T

oo 1 1,2_u2
= Selu=+a/2) / el gy _ K1 — N(—d
—dy \/% [ ( 2)}
© 1 2
= Se‘”/ ——=e" =) 2y — K[1 — N(~dyp)]. 2.36
—dy \/’2"7; [ ( 2)] ( )
Making the substitution v = u — ¢, to the last step of (2.32) yields

o0 1
—do—0z V 2

= Se*"{1 — N(—dy — 0;)] — K[1 — N(-da))

E(PFC) = Set e " 2gy — K[1 — N(—d3)]

= Se*"N(dy) — KN(dy), (2.37)

where dy = (In(£) + el /0 = [In(£) + (1= 02/2)7)/(0/7), di = dp + 0, =
dy + o+/7T.

The last step in (2.33) was carried out using the identity N(z)+N(-z2) =
lor

N(z) =1- N(-2),

for any real number z.

Using the RNVR, the expected return of the underlying asset g must
be the same as the risk-free rate of return r. Substituting p = r into (2.33)
and discounting the expected payoff of the European call option given in
(2.33) at the continuously compounding risk-free rate of return r [using the
discounting factor given in (2.28)] yields the following

C = 8N(dy) — Ke"""N(ds), (2.38)

where dy = [In($) + (r — 0%/2)7]/(0/7), d1 = da + 0\/7, which is exactly
the same as the Black-Scholes formula given in (2.5).



Option Pricing Methodology 47

2.7. MONTE CARLO SIMULATIONS

Boyle (1977) first introduced the Monte Carlo simulation method into
finance. Essentially, Monte Carlo methods involve generating large numbers
of numerically simulated realizations of some random walks followed by the
underlying asset prices, and these simulated realizations are used to price
derivative products. Monte Carlo simulation is simple and flexible in the
sense that it can be easily modified to accommodate different processes gov-
erning the underlying instrument movement. The use of Monte Carlo simu-
lations to price path-dependent derivatives has increased because products
have become more complex in nature and it is difficult to obtain closed-form
solutions for many of these complicated products, or closed-form solutions
simply do not exist. Another obvious advantage of the Monte Carlo simula-
tion method over other procedures is that it can value derivative products
with several underlying assets more efficiently.

However, the potential drawback of the Monte Carlo method is that the
standard deviation error of estimate is inversely proportional to the square
root of the number of simulation trials. Although any desired level of accu-
racy can be obtained by increasing the number of simulated trials, there are
more efficient ways to reduce the standard deviation error. There are two
techniques often used in simulations which can reduce variances quickly,
namely the control-variate method and the antithetical variate method.
These techniques are normally called variance-reduction techniques. The
former is often used when a pair of similar problems which possess similar
characteristics can be easily found, and the solution of the easier one, usu-
ally in closed-form, is used to solve the other relatively more difficult one.
The solution to the easier problem is often called a control variate. The effi-
ciency in reducing standard deviation error depends on the degree to which
the control variate mimics the behavior of the other problem. Thus, the
efficiency of the control-variable method depends on how well the control
variate mimics the target problem. For example, the price of any geometric
Asian option can be expressed in closed-form and the solution is usually used
as a control variate for its corresponding arithmetic Asian option for which
the closed-form solution has yet to be found. The difficulties in selecting a
control variate are that it must mimic the target function well and must give
rise to an integral that is easy to evaluate.

The antithetical variate method always calculates two values of a deriva-
tive security, one being calculated in the normal way and the other calculated
through changing the sign of all the samples from standard normal distribu-
tions. That is, if the first is calculated using the normal sample y, then the
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other value is calculated by using the sample —y. The average of the two
values is considered as the value of the derivative security from the sample y.
The final estimation of the value of the derivative security is the average of all
the averages of the pairs of values. The total standard error is significantly
reduced using the antithetical variate method.

The antithetical variate method is more general than the control-variate
method for it can be used to solve many problems without additional con-
ditions. This is because the control-variate method is efficient only when
we know a similar problem which mimics the target problem well. There-
fore, the antithetical variate method is more reliable for a very new product
which we know little about, whereas the control variate method can be more
efficient if we can find a good control variate. There are many other proce-
dures which can either reduce standard errors significantly or lead to rapid
convergence. These topics are beyond the scope of this section.

2.8. LATTICE- AND TREE-BASED METHOD

The binomial model was originally developed to price standard options.
It was then extended to trinomial tree model in which the underlying asset
price is assumed to follow three different paths in each following period.
Since the late 1970s, the lattice- and tree-based method has been widely
used in pricing essentially all kinds of derivative products, especially path-
dependent and other complicated products such as interest-rate derivatives
involving the term structure of interest rate. It has become a powerful and
efficient method because of its intuitive nature.

There are essentially two types of models relating to the lattice- and
tree-based method: the recombining tree model and the bushy tree model.
In models of the first type, any upward move followed by a downward move
is indifferent to the downward move followed by the corresponding upward
move. In other words, the total number of upward moves and that of the
downward moves determine a path completely. The recombining tree is of-
ten used to price many derivatives. The popular term structure of interest
rate model of Black, Derman, and Toy (1991) utilizes the recombining tree
model. The recombining tree model is convenient, yet it does not accurately
represent reality as an upward move followed by a downward move is nor-
mally different from a downward move followed by the corresponding upward
move,

The second type of lattice- and tree-based models, the bushy tree model,
is used to overcome the order-indifference limitation of the recombining
model. It obviously possesses advantages over the recombining tree model,



Option Pricing Methodology 49

yet this advantage is achieved with many more paths and thus in general,
involves much more computing time. For a n-period model, there are 2"
paths in a bushy tree model and only (n + 1) paths in a recombining tree
model, the former increasing exponentially and the latter only linearly with
the number of periods. Because our purpose in this chapter is to overview
various kinds of methods used to price derivatives but not to analyze these
methods in depth, we simply close this section and return to other binomial
tree models in Chapter 3 and the binomial tree model in Chapter 4 to price
American options.

2.9. METHOD USED IN THIS BOOK

As the universal principle in pricing all kinds of derivative products is
the so-called arbitrage-free principle or “no-free lunch” argument, it should
also be the principle to price all kinds of exotic options. Of all the pricing
methods described above, the risk-neutral valuation method is the most in-
tuitive and convenient one. This is because the likelihood of the underlying
instrument being within a certain range can be calculated conveniently, and
the characteristics of the underlying instrument distribution can be seen
more easily than with other methods such as finite-difference or partial-
differential equations. As the focus of this book is to introduce and price
various forms of exotic options but not to illustrate various methods in pric-
ing options, we mainly use the risk-neutral valuation relationship to find
option prices by discounting their expected payoffs at the risk-free rate of
return.

Solutions in terms of univariate integrations should be considered as
closed-form solutions because of two reasons. One is that univariate integra-
tions can be carried out quickly with very high accuracy with any computer
system or personal computer. The other is that the Black-Scholes formula
requires univariate integrations to calculate the two cumulative function val-
ues of the standard normal distribution, since normal distribution tables do
not provide values for arbitrary arguments and are thus inconvenient to use.
We provide, in this book, closed-form solutions for almost all European-style
exotic options in terms of the cumulative functions of the standard normal
distribution as in the Black-Scholes formula. For a few exotic options such
as spread options, alternative options, and dual-strike options, we provide
closed-form solutions in terms of univariate integrations first and then ap-
proximate these univariate integrations in terms of the standard normal cu-
mulative functions. Integration solutions and their corresponding analytical
approximations is a major characteristic of this book.
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Closed-form solutions in terms of univariate integrations have clear ad-
vantages over their corresponding simulation methods because sensitivities
can also be expressed in univariate integrations, and thus sensitivities of var-
ious degrees can be obtained quicker than in the corresponding simulation
methods. We mainly work with European-style options in this book in order
to illustrate the basic concepts of all kinds of exotic options simply because
European options are easier to work with and closed-form solutions are more
likely to be obtained. American-style exotic options can be priced using the
binomial method, to be introduced in Chapter 4.

QUESTIONS AND EXERCISES
Questions

2.1. What is an arbitrage opportunity?

2.2.  What is an equilibrium? What is a general equilibrium?

2.3.  What are the major characteristics of the solutions of arbitrage and
equilibrium models?

2.4. What is the relationship between an equilibrium model and its cor-
responding arbitrage model?

2.5.  What are ITM, ATM, and OTM options?

2.6. Is it always true that when calls are ITM, the corresponding puts
are OTM? Is it true that whenever calls are ATM, puts are also
ATM?

2.7. What is the time value of an option? What is the intrinsic value of
an option?

2.8.  What is the difference between an European option and its corre-
sponding American option? Why are American options generally
more expensive than their corresponding European options?

2.9. Is the time value of an option larger or smaller with longer time to
maturity? Why?

2.10. Why is it more difficult to find the values of American options?

2.11. What is a compounding factor? What is a discounting factor?

2.12. What is the relationship between a discounting factor and its corre-
sponding compounding factor?

2.13. What are Monte Carlo simulations?

2.14. What is the problem often associated with Monte Carlo simulations?

2.15. What are the two popular methods to reduce variance when using
Monte Carlo simulations?

2.16. What is finite-difference method? What is finite-element method?
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2.17. What is the common disadvantage of finite-difference and finite-
element methods?

2.18. What is the most important advantage of the binomial tree method?

2.19. What is a risk-neutral valuation relationship (RNVR)?

2.20. Why are RNVRs useful in pricing options?

Exercises

2.1.  Find the call option price using the Black-Scholes formula, given the
annual interest rate 10%, time to maturity one year, strike price $110,
current stock price $105, and volatility of the return of the underlying
asset o = 20%.

2.2. Find the call option price using the Black-Scholes formula if the spot
price is $100 and other parameters are the same as in Exercise 2.1.

2.3. Find the call option price using the Black-Scholes formula if the
volatility is 10% and other parameters are the same as in Exercise 2.1.

2.4. Find the call option price using the Black-Scholes formula if the inter-
est rate is 6% and other parameters are the same as in Exercise 2.1.

2.5. Find the prices of the call options to expire in one and three months
if other parameters are the same as in Exercise 2.1.

2.6. Find the prices of the ATM call options in Exercise 2.5.

2.7. Show that the scaling property in (2.6) always holds for the European
call option pricing formula in the Black-Scholes model.

2.8. Find the call option price if the strike price is $121, current stock price
$115.5, and other parameters are the same as in Exercise 2.1 (Hint:
use the scaling property of the Black-Scholes formula given in (2.6)).

2.9. Find the call and put option prices if the strike price is $99, current
stock price $94.5, and other parameters are the same as in Exercise 2.1.

2.10. What is the compounding factor in 8 months if annual interest rate
is 10% and compounding is monthly?

2.11. What is the compounding factor in 8 months if annual interest rate
is 10% and compounding is weekly?

2.12. What is the annual compounding factor when annual interest rate is
8% and compounding is monthly?

2.13. What are the annual compounding factors when annual interest rate
is 8% and compounding is weekly and daily?

2.14. Find the discounting factors for the two cases in Exercises 2.10 and
2.11.

2.15. Find the corresponding discounting factors in Exercises 2.12 and 2.13.
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2.16. Show (2.8) is true when 7 — +o0.
2.17. Show (2.9) is true when r — +oo0.
2.18. Show (2.10) is true when o — +o0.

APPENDIX

Solving Equation (2.3)

Let y(t) = In[S(¢)]. Equation (2.10) indicates that S(¢) depends on
the Wiener process z(t), thus y(t) also depends on the Wiener process z(t).
Using 1t6’s lemma, we can obtain the change in y(t) as follows:

2
dy(t) = ysdS(t) + %yss[ds(t)]2 = ﬁ(tt)) - % [d;((tt))] . (A2.1)
Substituting (2.10) into (A2.1) yields the following
dy(t) = pdt + odz(t) — —;— [udt + odz(t)]?, or
dy(t) = pdt + odz(t) — ?12- {3 (dt)? + 2udtodz(t) + o*[dz(t)])} .
(A2.2)

In standard stochastic calculus, [dz(t)]? is treated as dt and terms higher
than dt is assumed to be zero. Substituting [dz(t)]> = dt, (dt)? = 0, and
dtdz(t) = 0 into (A2.2) yields [see Protter (1992) for further information on
stochastic calculus]

dy(t) = (u - %02) dt + oda(t). (A2.3)

Equation (A2.3) is a standard stochastic equation which can be solved
by stochastic integration as follows:

v v = [ (n-3o?)dero [ dx)
= (u - -;—02) T+ odz(T), or
InS(r) —InS(¢) = (u - 302) T+ odz(T). (A2.4)

Rearranging (A2.4) yields the solution given in (2.4).
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Approximating N(z)

Abramowitz and Stegun (1972) provided a polynomial approximation
for the cumulative function of a standard normal distribution N(z). With
this approximation, we can find the values of the cumulative function for the
standard normal distribution much more conveniently and thus increase the
calculating efficiency in using the Black-Scholes formula. This approximation
is given as follows:

N(z) =1- (a1y + agy® + asy®)f(z) for x>0, and

N{EZ)=1-(N-z) for 2<0, (A2.5)
where
_ 1
vy= 14+ agzx’
ap = 0.33267,

a; = 0.4361836,
as = —-0.1201676,
az = 0.9372980, and

flz) = e % /v/2 is the density function of a standard normal distribution.

The approximation given in (A.25) are normally accurate to four decimal
places and are always accurate to 0.0002. For a more accurate approxima-
tion, we can use the following

N(z)=1-(a1y + azy® + asy® + agy? +asy®)f(z) for z >0, and
N(z)=1—- N(-z) for z<0, (A2.6)

where
1

iy aoz’
ag = 0.2316419,

a; = 0.319381530,
ay = —0.356563782,
az = 1.781477937,
as = —1.821255978,
as = 1.330274429,

Y

The approximation given in (A2.6) can be accurate to six decimal places.






PART II: STANDARD OPTIONS

Because each kind of exotic options differs in one or two aspects from
vanilla options, it is very efficient to learn exotic options by comparing them
to their corresponding vanilla options. Thus, a systematic review of vanilla
options is highly necessary as a reference. Chapter 3 first extends the Black-
Scholes model to incorporate the payout rate of the underlying asset, then
extends the Black-Scholes model to price futures options, or options written
on futures. We will review other popular extensions of the Black-Scholes
model in Chapter 3. We will review standard Greeks representing sensitivi-
ties of option values to various parameters and also higher sensitivities such
as speed, charm, and color. The brief description of the term structure of
volatility and volatility smile is also helpful in pricing exotic options.

Chapter 3 is almost exclusively on European options. We will concen-
trate on American options in Chapter 4. We will show that American op-
tions can be priced using the well-known binomial model. As a by-product,
options on underlying assets with less liquidity can be obtained using the
binomial method. As an example to show how American option prices can
be approximated analytically, we will describe a popular quadratic method
or quasi-quadratic method in Chapter 4.
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Chapter 3
VANILLA OPTIONS

In describing option pricing methodology using the arbitrage-free or “no-
free-lunch” argument in the previous chapter, we described the European
options and how to price them in the Black-Scholes model. There are many
other kinds of standard options and many extensions of the Black-Scholes
model in various directions. These standard options and extensions of the
Black-Scholes model are very useful for our description and analysis of exotic
options in later parts of this book. The purpose of this chapter is to intro-
duce other kinds of standard options and to price them in the Black-Scholes
environment, to introduce the major extensions of the Black-Scholes model,
and to review other aspects of vanilla options.

3.1. EQUITY OPTIONS WITH DIVIDEND AND
FOREIGN CURRENCY OPTIONS

Obviously, the yield of the underlying asset during the life of an option is
not considered in the Black-Scholes model. Yet most assets have significant
yields: stocks have dividend yields, foreign currencies have yields equal to
foreign interest rates, and so on. In this section, we try to show how the
Black-Scholes model can be immediately extended to incorporate the payout
of the underlying asset.

3.1.1. Equity Options with Dividend

Let g stand for the annual continuous dividend yield on the underly-
ing asset. The stochastic process which governs the underlying asset price
movement given in (2.3) becomes

dS = (u — ¢)Sdt + 0Sdz(t), (3.1)

where all other parameters are the same as in (2.3).
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With the same method as that used to derive the standard Black-Scholes
model in the previous chapter, the Black-Scholes formula given in (2.5) can
be modified as follows: ’

C =8e"9"N(dy) — Ke ""N(dy), (3.2)

where

_In(S/K)+(r—g+ o?/2)r _

= " =

_ In(S/K)+ (r—g—02/2)
o\T ’

and other parameters are the same as in (2.5).

Comparing (3.2) with (2.5), we can easily find that there are two dif-
ferences between them. Firstly, the constant interest r is replaced by the
difference r — g in the expressions of d; and dj, and secondly, there is a
discounting factor in the first term at the payout rate g. Obviously, (3.2)
degenerates to (2.5) when g = 0.

dl d2+0’\/;,

dy

Example 3.1. What is the European call option price in Example 2.1 if
the underlying stock has a continuous dividend of 5%?

Substituting interest rate r = 20%, g = 5%, time to maturity T = 0.50,
strike price K = $105, current stock price S = $100, and volatility of the
return of the underlying asset o = 30% into (3.2) yields:

. In(S/K)+(r—g-— 0’2)7‘

- o~

__In(100/105) + (0.20 — 0.05 — 0.30%/2) x 0.50
0.30+/0.50

dy = dy + o/7 = 0.0175 + 0.30 x v/0.50 = 0.2296,

C = Se 9"N(d;) — Ke~""N(dy)

= 100e~%95%05 « (0.5908 — 105e%-2%%5 x 0.2296 = $9.455.

dy

= 0.0175,

3.1.2. Foreign Currency Options

The Black-Scholes formula for pricing foreign currency options is pre-
cisely the same as the one given in (3.2) if we substitute the annual con-
tinuous payout rate on the underlying asset g with the foreign interest rate
5. Because the foreign interest rate is exactly the yield on the underlying
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asset — foreign currency, the pricing formula for options written on an un-
derlying asset with continuous yield (3.2) can be used directly without any
modification for currency options.

Example 3.2. The US dollar/Japanese yen exchange rate is ¥85 per dollar.
The Japanese interest rate is 3%, the US interest rate r = 8%, the volatility
of the dollar/yen exchange rate is 15%. What is the European call option
on the yen/dollar exchange rate with strike price ¥90 per dollar to expire in
half a year?

Substituting interest rate » = 0.08, ry = 0.03, spot price § = 1/85 =
$0.0175, strike price K = 1/90 = $0.01111, time to maturity 7 = 1/2 = 0.50,
and volatility o = 15% into (3.2) yields

_ In(S/K)+(r—g— a?/2)r

= ~c

_ In(0.0175/0.01111) + (0.08 — 0.03 — 0.15%/2) x 0.50
B 0.15v/0.50

dy = dy + o+/T = 4.466 + 0.15 x v/0.50 = 4.572,

C = Se""I"N(d;) — Ke™""N(dy)

= 0.0175 x e %03%05 » N(4.572) — 0.0111 x =080 x N(4.466)
= $0.00657 .

dy

= 4.466,

3.2. FUTURES AND FUTURES OPTIONS
3.2.1. Futures

Before we introduce futures options, it is necessary for us to review
the concepts of forwards and futures. A forward contract is a financial
contract which involves two parties, one agreeing to deliver a certain amount
of the underlying commodity of a certain quality at a prespecified price to a
prespecified place at some specific time in future, and the other agreeing to
buy the same amount of the commodity as specified. This specified price is
called the forward price, and the specified time is called the expiration time,
or maturity time of the contract. The forward contract carries obligations
for both parties involved. The underlying commodity does not have to be
a physical commodity. It can also be currency, bonds, or indexes. The
settlement does not have to be actual delivery of the underlying commodity.
The contract can be settled by cash according to the then market price of
the underlying commodity and the prespecified forward price. The largest
forward market in the world is the currency forward market.
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Futures contracts are standardized forward contracts in which the qual-
ity of commodity, the amount of commodity, the place, and the time to
deliver the commodity are all standardized by an exchange. Or simply, fu-
tures contracts are exchange-traded forward contracts. Buyers and sellers of
the futures contracts do not meet to make their transactions. They buy or
sell through exchanges. Through a clearing house, the exchange guarantees
the delivery of the underlying products. According to a very recent report by
the Group of Thirty, the notional amount of futures traded annually is now
estimated to be several times larger than the total Gross National Product
in the world.

Futures contracts trade in exchanges with daily market-to-market set-
tlement. Like all other assets trading in exchanges with prices quoting on
real time, futures contracts also have on-line prices reflecting markets’ as-
similation of expected information and/or heterogeneous expectation of per-
spective market movement. Prices of most active futures trading in all the
major exchanges around the world are available on most on-line financial
service systems such as Telerate, Bloomberg, Reuters, Knight Ridder, and
so on. All these systems charge certain service fees, therefore they are not
available for the general public. Daily close prices of active futures can be
obtained in financial newspapers such as the Wall Street Journal.

We have so far described forward and futures contracts and their basic
properties. Many may wonder how futures prices are determined in general.
In the remaining of this section, we will discuss how to price futures using
the arbitrage-free or “no-free-lunch” argument. Futures prices are normally
different from forward prices on the same underlying assets even with the
same time to expiration because of taxes, transaction cost, and other factors.
Fortunately, prices of forward and futures contracts with the same time to
expiration are generally very close to each other. Thus we can simply regard
them as the same for convenient understanding and analysis. Forwards are
easier to analyze than futures because no daily settlement is involved. We
will treat the two concepts as the same in the rest of this book.

To show how a forward price is determined in general, we take an exam-
ple of a foreign-currency forward, or more specifically, a US dollar-Japanese
yen forward contract which governs ¥1 million. Suppose the US interest rate
r is 10% constant, the Japanese interest rate ry 5% constant, and the current
US dollar-Japanese yen exchange rate S = $10 per ¥1000 or S = $0.01 per
¥. Let the forward dollar-yen exchange rate in one year be represented by
F dollar per yen. Let’s consider the following steps:
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(1) Short a forward contract which controls ¥1 million to expire in one year.
We can obtain US$F million in one year by selling ¥1 million at the

. prespecified exchange rate F;

(2) Converting the US$F million into the present value. US$F million in one
year is actually US$Fe™" million today because we need to discount the
future value US$F million into the present value using the discounting
factor given in (2.28);

(3) Buy Japanese yen with US$Fe™" at the current dollar-yen exchange rate
S = $0.01. We can buy ¥Fe~"/S because S is the current price of each
yen in US dollars;

(4) Deposit the ¥Fe™"/S million into a bank. We can make interest on
the Japanese yen bought in step (3) and the value of the yen will be
(Fe~"/S)e"™s million using the continuous compounding factor in (2.27).

If the forward price F is greater than Se’~"f = 0.01 x ¢%10-005 —
0.010512, say F = 0.0106, the value of the yen obtained in step (4) will be

(0.0106 x e=%19/0.01)€%% = ¥1.0083 million,

which is ¥8300 more than the initial ¥1 million to be sold in one year.
This ¥8300 is arbitrage or “free lunch” because we would be able to make
¥8.3 billion in one year if we follow the above four steps selling one million
such contracts with no initial cost. Certainly this is too good to be true.
To eliminate such free lunches, the forward price F cannot be greater than
Se™""f. The arbitrage comes from the fact that the forward price is too
high compared to the current exchange with given home and foreign interest
rates. That is why we chose to shorten the forward contract.

On the other hand, if the forward price F is less than Se"~"f = 1.0512,
say F = 1.05, we find that we could make ¥1209 by buying one forward
contract with notional value of one million. Again, this is “free lunch”. To
eliminate free lunches, the forward price cannot be smaller than Se"~"f. As
the forward price can be neither greater nor smaller than Se" "/ in order to
be arbitrage free, it has to be equal to Se"~"f.

Generalizing the above example with arbitrary time to expiration ¢ in
number or fraction of year(s) and interest rates r and r; using the discount-
ing and compounding factors developed in Appendix I, we can obtain the
following expression:

F = 8elr—mo7 | (3.3)

where F and S stand for the current futures and spot prices of the exchange
rate per unit of foreign currency, respectively; r and ry are domestic and
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foreign interest rates, respectively, and 7 is the time to explratlon of the
forward contract in number or fraction of year(s).

Equation (3.3) connects the forward price and the spot price given the
time to expiration of the contract and both the domestic and foreign interest
rates. It is called the forward or futures pricing formula. It is often called
the interest-rate parity condition in economics. It actually indicates that
the future price of the commodity should be the same as the present value
compounding continuously at the interest rate spread r — ry.

The pricing formula in (3.3) for currency futures can be readily gener-
alized for futures on underlying assets with continuous dividend yield g

F = Selr=9) (3.4)

where all parameters are the same as in (3.3).

3.2.2. Futures Options

Options written on forwards are called frations and options written on
futures are called futures contracts. Because forwards are not traded in
exchanges, frations are thus not as popular as futures options. For many
underlying markets, both futures and futures options exist, and futures op-
tions are very often more popular than options written on the underlying
assets directly. This is especially true for foreign-currency options as volumes
of options on foreign currencies futures trading at the International Mone-
tary Market (IMM) in Chicago Mercantile Exchange far out pace those of
options on foreign currencies trading at Philadelphia Stock Exchange. The
most important reason is that futures markets often exhibit more volatility
than their corresponding underlying markets and thus creating more room
for option trading activities.

Using the futures pricing formula in (3.4), we can readily express the
spot price S in terms of the futures price F, § = Fel9=")7. Substituting
S = Fe9=7)7 into (3.2), we can easily obtain the pricing formula for a call
futures option

C =e¢"[FN(dy) — KN(d2)], (3.5)
Where
LT ELT S
d — In(F/K) — 10%/2
2 0_‘/; ’

and other parameters are the same as in (3.2).
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Example 3.3. The September 1995 S&P-500 futures price is $510, the
volatility 18%, the US interest rate 7%. What is the S&P-500 futures call
option price with strike price $515 to expire in five months?

Substituting F = $510, o = 0.18, r = 0.07, K = $515, and 7 = 5/12
year into (3.5) yields

_ In(F/K) - 10?/2 _ In(510/515) — 5 x 0.18%/(2 x 12)
- o1 B 0.18./5/12

dy =d2 +0.18 x 1/5/12 = -0.03,

Using the table of the cumulative function for the standard normal dis-
tribution given in Appendix I at the end of the book, we get N(dz) =
1 - N(0.03) =1—0512 = 0.488 and N(d;) =1 — N(0.14) = 1 — 0.5557 =
0.4443. Substituting these values into (3.6), we obtain the futures call option
price:

dy = —0.14.

C =e ""[FN(d,) — KN(d3)]
= ¢ 007x5/12[510) x 0.488 — 515 x 0.4443] = $11.27.

3.3. OTHER POPULAR MODELS

Following the celebrated work of Black and Scholes (1973), many re-
searchers have extended it in several directions. We briefly introduce these
extensions in this section so that it will help us understand exotic options
and extend them along these directions.’

3.3.1. Uncertain Strike Prices

The strike price is assumed to be constant in the Black-Scholes model.
Fisher (1978) extended the model to include uncertainties in strike prices.
Fisher assumed that the strike price follows a geometric Brownian process
similar to the underlying asset price given in (2.10) with the current strike
price K:

dK = a; Kdt + 0. Kdz, (1), (3.6)
where z,(7) is a standard Gauss-Wiener process, and ay and o, are the
instantaneous mean and standard deviation of the stated strike price,
respectively.

IThere is another direction relating to the Black-Scholes model which is worth mentioning here.
Rubinstein (1976), Brenan (1979), Stapleton and Subrahmanyam (1984), and others showed that

with certain restrictions of the preferences of the representative investor, the Black-Scholes pricing
formula can still hold even if trading is not continuous.
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The standard Gauss-Wiener process 2 (7) in (3.6) for the strike process
is assumed to be correlated to the standard Gauss-Wiener process z(7) in
(2.3) for the underlying asset price with an instantaneous constant correla-
tion coefficient p;, and

dzz(T)dz(T) = pgdt. (3.7

With the assumption of the strike price in (3.6), the current strike price
K, the correlation coefficient in (3.7), Fisher obtained the following pricing
formula for a European call option:

C = SN(dy) — Ke ""N(dy), (3.8)

where

. X _ 52
di=dy+6v7, do= n(S/K) j\(;;—_ o/ ,

\/02 — 2pg00, + 02,

7= pmzaz(rm - T)/Um ’

g

rm and o, stand for the expected return of the market and the standard
deviation of the market return, respectively and pp,; is the correlation coef-
ficient between the market return and the stated strike price.

The pricing formula in (3.8) is of Black-Scholes type with modified
volatility parameter. When o, = o, = 0, r = r, the formula (3.8) de-
generates to the Black-Scholes formula. The only drawback of this model is
that it depends on the expected market return, market volatility, and the
correlation between the market return and the strike price.

3.3.2. Constant Elasticity Model

In the general constant elastic volatility (CEV) model, the underlying
asset price is assumed to be governed by the diffusion process

dS = pSdt + 65°/%dz 3.9
n

where § is the elasticity parameter which reflects the sensitivity of the un-
derlying asset price with respect to the spot price S.

Obviously, the process governed by (3.9) becomes identical to the log-
normal process given in (2.3) in the well-known Black-Scholes model when
B = 2. We need only to consider the two cases of 5 < 2 and 8 > 2.
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The CEV Model for 8 < 2

Cox and Ross (1976) obtained an expression for the value of a European
call option, and Schroder (1989) simplified the formula in terms of the non-
central x? cumulative functions

C = S5Q[2y;2+2/(2-f),2¢] — Ke™""{1 - Q[26;2/(2 — B), 2]}, (3.10)
where

y = kK* 5,

_ 2p
T BB -T)
£€= Kgf—ﬂe(%ﬂ)u‘r ,

Q[s; v, A] is the complementary distribution function of the non-central x?
distribution F(s;v, A) with v degrees of freedom, non-central parameter A,
the lower integrand limit s, and Q[s;v,A\| =1 — F(s;v, ).

The cumulative function for the non-central x2, F(s;v, A), can be ob-
tained as follows?

F(s;v,A) = Z [()\ﬁ—?)]] . Pr[X.2/+2j <, (3.11)

=0

where P[xZ,,; < s] is the cumulative distribution function of the central
x? distribution;® v = 2+2/(2 — 8) and A = 2£. F(s;v, A) can be considered
as a mixture of the central x2 distribution and the Poisson distribution.

The CEV Model for 3 > 2

Emanuel and MacBeth (1982) showed that, for a CEV process with
B > 2, the density function of S(7) conditional on the current stock price S
in a risk-neutral world is

FIS(T)] = (8 — 2)xM @) (g )/ U=2B)e~C~v o oy (2VEW), (3.12)

where x and £ are the same in (3.10), w = nStZ_ﬂ, and I, /(g-2) is the modified
Bessel function of the first kind of order 1/(8 — 2). See Appendix of this
chapter for the specific functional form of I 5_j).

2See Johnson and Kotz (1970), p. 132 for the cumulative distribution function of the non-central
x?2 distribution.
3See Appendix of this chapter for the formulae to calculate the cumulative functions of the central
x? distribution.
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It can be shown that using the same parameters k, £, and w as in the
case of 8 < 2, the value of a European call option can be expressed as follows:

C = 5{1-Q[26;2/(6 - 2),2y] — Ke ™" Q[2y; 2+ 2/(8 - 2),2¢], (3.13)

where y = kK?# and Q[s;v, )] is the same complementary distribution
function as given in (3.10).

The expression is the same as (3.10) as it is indicated in Schroder (1989).
The reason why we use this formula is to avoid the negativeness of the
parameter of degrees of freedom 2 + 2/(2 — 3) for some 8 > 2. The formula
can be readily obtained by using the identity

Q(2ya 2- 2/(;6 - 2)a2€)] + Q(2£7 2/(:B - 2)a 2y] =1.

3.3.3. Brownian Motion with Jumps

Merton (1976) extended the Black-Scholes model to include situations
when the underlying asset returns are discontinuous. As in many economic
models, the discontinuity is modeled with a Poisson process. Assuming
that the underlying asset returns are discontinuous resulting from arrivals
of important information. The Poisson-distributed “event” is the arrival of
an important piece of information about the underlying instrument. The
arrivals of information are assumed to be independently and identically dis-
tributed. The probability of an event during a time interval of length h (h
can be as small as possible) can be written as

Prob. [the event does not occur in the time interval (t,t + k)] = 1 —
Ah + O(h),

Prob. [the event occurs in the time interval (¢,t + h)] = Ak + O(h),

Prob. [the event occurs more than once in the time interval (¢, + h)] =

O(h),

where O(h) represents a function of h which goes to zero faster than h.
With the above description of the Poisson distribution, Merton (1976)
assumed the following stochastic process for the underlying asset:

dS/S = (u — Ak)dt + odz + dgq, (3.14)

where p and o are the instantaneous mean and standard deviation of the
underlying asset return without jumps; dz is a standard Gauss-Wiener pro-
cess; q is the independent Poisson process described above; dg and dz are
assumed to be independent; A is the mean number of arrivals per unit of
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time; k = E(Y — 1), where (Y —1) is the random variable percentage change
in the underlying asset price if the Poisson event occurs, and E is the expec-
tation operator over the random variable Y; and Y > 0, {Y'} from successive
jumps are independently and identically distributed.

With the Poisson distribution assumption of information arrivals and
the underlying asset return distribution process described in (3.14), Merton
obtained a pricing expression for a European call option with strike price K
as follows

o0 AT n
goopwips=3 <O

n=0

{BnlC(SXne ™, 7, K,,0]},  (3.15)

n!

where X,, has the same distribution as the product of n independently and
identically distributed variables Y, Xy = 1; E, represents the expectation
operator over the distribution of X,;; n! is the factorial function, meaning
the product of all integers from 1 through n; and C(W, K, 1,r,0) is the
standard Black-Scholes formula for a European call option given in (3.5)
with spot price W and strike price K.

The expression given in (3.15) is not in closed-form and it is not easy
to use because the distribution of X,, can be rather complicated. It can be
readily shown that when there are no jumps, or when A = 0, (3.15) degen-
erates to the standard European call option pricing formula C(S, K, 7,7, 0)
as Xp = 0! = lim,_,02* = 1.

3.3.4. A Pricing Model with Transaction Cost

As the Black-Scholes model is a frictionless model, transaction cost in-
validates the Black-Scholes assumption for option pricing (for continuous
revision implies infinite trading which in turn implies infinite transaction
cost). There have been many studies incorporating transaction cost into the
standard option pricing theory. In the first, and very likely, the most popu-
lar study, Leland (1985) developed a technique for replicating option returns
in the presence of transaction cost. The strategy depends upon the level of
transaction cost and the time period between portfolio revisions. The ad-
ditional parameters enter in a very simple way, through adjustment of the
volatility in the Black-Scholes formula.

Within the same framework as in the Black-Scholes model, with the
only exception that transaction cost is included, Leland considered that the
hedging strategy depends on a percent transaction cost and the revision
frequency. The central point in his model is the following modified variance
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function as a function of the transaction cost:

6%(0?, Kk, At) = o [1 +xE

S)/ean)]

= o? [1 + K4/ (2/m) /(a\/ZZ)J : (3.16)

where k is the round-trip transaction cost measured as a fraction of the
volume of transactions, o2 is the same variance of the underlying asset, and
At is the revision interval.

With the above modified variance function and a modified replicating
strategy, Leland obtained the following option pricing formula with transac-
tion cost

C(S;K,0%, 7,5, At) = SN(dy) — Ke ™ N(d; — 6/7), (3.17)

where

dy = [In (%) + r‘r] /(6v/T) + %a\/?,
S,K,r, and 7 are the same as in the Black-Scholes model described previ-
ously.

It is obvious that the pricing formula given in (3.17) becomes exactly the
same as the standard Black-Scholes formula if K = 0, because the modified
variance becomes the same as the standard variance. Another interesting
fact about this model is that although transaction cost is path-dependent,
a path-independent net result can be achieved with probability one in the
limiting case of zero revision time interval.

There are a few limitations with this model. First of all, there is no
convenient way to calculate the transaction parameter x which is the most
important parameter in this model. Another limitation of this model is that
transaction cost may become arbitrarily large with very short revision peri-
ods as At — 0. In practice, revision is discrete. Discrete revision generates
hedging errors which are correlated with the market, and do not approach
zero with more frequent revision when transaction cost is included.

3.3.5. Stochastic Volatility Model

The Black-Scholes model and almost all other extended models assume
constant volatility. As a matter of fact, volatilities change dramatically from
time to time in all markets. Several researchers have attempted to incorpo-
rate the fluctuation of volatility into option pricing models. Coincidentally,
three well-known papers were published in 1987 on this very topic: Hull and
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White (1987), Scott (1987), and Wiggins (1987). Among these studies, Hull
and White (1987) may be the most popular and easiest to follow. In this
section, we illustrate how option prices are affected by variable volatility
based on the Hull and White model.

Hull and White assumed that the underlying asset price follows the
same process described in (2.3) with the only exception that the volatility
parameter o is not constant. They assumed that the instantaneous variance,
V = o2, follows the stochastic process:

dV = qVdt + ¢Vdw, (3.18)

where 7 and £ stand for the instantaneous drift and standard deviation of
the variance V, w is a standard Gauss-Wiener process which is assumed to
be correlated with the standard Gauss-Wiener process z given in (2.3) with
a correlation coefficient p.

The variables n and £ may depend on ¢ and ¢, but it is assumed that
they do not depend on S. The actual process that a stochastic variance
follows is probably fairly complex. As variance is lognormally distributed,
it cannot take on negative values. The average variance can be defined as
follows:

=1 /0 " o?(t)dt . (3.19)

T

Since In(S7/Sp) conditional on the mean variance V is normally dis-
tributed with variance V, when S and V are instantaneously uncorrected,
the option value given the mean volatility can be shown to be the following
expression: '

C(V)=SN(d)) - Xe ""N(ds), (3.20)

where

d

& = log(S/K)+ (r+V/2)r an
VVr ’

dy=dy - VVr.

With the conditional option pricing formula given in (3.20), the option
value can be given by

C(S,0%) = / C(VR(V|02)dV (3.21)

where h(V|o?) is the density function of the mean volatility given the current
variance.
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Although formula (3.21) is concise, it is not convenient to use because
the functional form of h(V|o?) is not known. However, the moments of V

can be obtained and C(V) can be expanded in a Taylor series about its mean
E(V):

_ 182 _ _ _
C(Suo}) = C7) + 1 5‘7—6; ] 17~ B@PR@)av -+
- 18°C -, 18C _
= C(V) + 5 W ‘_/Var(V) + 6 W VSkeW(V) +---,

where Var(V) and Skew (V') are the second and third central moments of
V, respectively. For sufficiently small values of &27, this series converges
very quickly. Using the moments for the distribution of V, the above series
becomes, when n = 0:

+ ST —tN'(d1)(dydz — 1) {204(6’“ —-k-1) 04]

C(S,0%) = C(c?)

403 k?
N SVT —tN'(dy)[(d1d2 — 3)(d1d2 — 1) — (d? + d2)]
8a5
6 [€3F — (9 + 18k)ek + (8 + 24k + 18k? + 6k3)
X o 353 + ,

where k = £2(t* — t) = £27.
The above analysis is very good, yet the results are not concise and

therefore not convenient to use. It is beyond the scope of this book to
discuss this topic in more detail.

3.3.6. The Term Structure of Interest Rate

In the original Black-Scholes model and its extensions described above,
interest rate is assumed to be constant. Although it is probably not so
problematic to assume constant interest rate for short-term equity options
with time to maturity less than one year, it is not reasonable to assume
constant interest rate for long-term options such as LEAPS (long-term equity
anticipation securities) with time to maturity of at least two years currently
trading in major exchanges. Furthermore, it is not reasonable even for short-
term interest-rate options which comprise the bulk of derivatives industry
because their values are much more sensitive to interest-rate fluctuations.

Merton (1973) first established a pricing model with stochastic interest
rates. In Merton’s model, stochastic interest rates are indirectly modeled on
the prices of a discount bond which follows a geometric Brownian motion.
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Option prices are given in closed-forms in this model. It was used as the basis
for many studies on interest-rate derivatives. Jamshidian (1989) provided
closed-form solutions for European options on discount bonds in a mean-
reverting model® of interest rate. The early stage of the studies on the
term structure of interest rate was mainly based on equilibrium, such as
Vasick’s (1977) “An Equilibrium Characterization of the Term Structure”
and Cox, Ingersoll, and Ross’s (1985) or simply CIR’s “A Theory of the
Term Structure of Interest Rate”.

Ho and Lee (1986) marked a milestone in the study of the term structure
of interest rates by including the arbitrage-free argument. As in the origi-
nal Black-Scholes model where the current spot is given and option prices
are derived from the no-arbitrage argument, Ho and Lee took the current
yield curve as given and applied the no-arbitrage argument to price all kinds
of interest-rate derivatives. Black, Derman, and Toy (1990) extended this
argument by assuming that short rates are lognormally distributed in a sin-
gle discrete time binomial process with equal probability. Hull and White’s
(1990) model is essentially the extension of Vasick (1977) and CIR (1985),
incorporating the mean-reverting process of interest rates and taking the
current yield curve as given. The Ho-Lee, Black-Derman-Toy, and Hull-
White models are all one-factor models. Heath, Jarrow, and Merton (HIM)
(1987) provided a multiple model in which multiple random factors are in-
troduced so that default-free bonds of different maturities can have positive
but not perfectly correlated returns, and continuous trading is introduced
so that estimating parameters becomes easier. The HJM model utilizes for-
ward rates instead of spot rates as in most other models. Theoretically, it is
currently the most general model which includes known models of the term
structure of interest rate as special cases and allows flexible term structure
of volatility.®

The most important characteristic of the modern study on the term
structure of interest rate is that the current yield curve is taken as given and
the no-arbitrage principle is used to price all kinds of interest-rate derivatives.

4A mean-reverting process is a stochastic process in which the stochastic variable tends to move
to a mean target value.

5All:hough it is general theoretically, the HIM model has been found to have certain limitations
in practical implementation. Flesaker and Hughston (1996) described a new theory of interests
which prevents the possibility of negative rates in the general HIM model. As Flesaker and Hugh-
ston’s approach is consistent’ with the economic arguments of the HIM model, particularly with
the methodology for contingent claims valuation, the Flesaker and Hughston's approach can be
regarded as a precise identification and characterization of the subclass of the HIM model for pos-
itive interest rates. Based on their academic paper in 1995, Li, Ritchken and Sankarasubramanian
described another subclass of the HIM model which requires a finite number of state variables
with only slight restrictions in the class of volatility functions for forward rates.
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This characteristic is clearly in contrast to the current spot as given, as in the
original Black-Scholes and all its following models. The current yield curve
is implied from the prices of government bonds with various maturities or
from forward or futures prices of these bonds. In other words, information
from government bond markets with various maturities or from government
bond forward or futures markets is used to price various kinds of derivatives
in the absence of arbitrage. As we have argued above, the Black-Scholes and
most of its extended models are not problematic for pricing options written
on individual stocks for which no futures or forward markets exist.

However, they can be problematic for currency options, stock-index op-
tions such as options written on the S&P-100 Index,® and commodity options
such as gold options because futures markets exist for both S&P-100 Index
and gold, and both futures and forward markets exist for the major curren-
cies. The information contained in the futures or forward markets is not
used in the original Black-Scholes model and most of its extensions. Tak-
ing the spot price as given without considering information from the futures
or forward markets in the Black-Scholes and many of its extended mod-
els, arbitrage is absent among the underlying cash market, option market,
and the bond market. Existing models price futures and forwards based
on the arbitrage-free relationship between the underlying cash market and
the futures/forward market [see Eq. (2.15)], and value options based on the
arbitrage-free relationship between the underlying cash market and the op-
tion market. Thus, no arbitrage condition is imposed between the option
market and the futures market. In other words, the information contained
in the futures or forward market is not used to price options on the same
underlying cash market. The arbitrage-free method in studying the term
structure of interest rate discussed in this section can be used to utilize
this information to price stock-index options, currency options, commodity
options, and some other options.

3.4. PUT-CALL PARITY

Curious readers may wonder why we’ve only covered pricing call options
in Chapter 2 and the previous sections of this chapter. Actually, the same
method can be used to price put options. In this section, we are going to
introduce an important relationship between a call and its corresponding
put option prices with the same strike price. The put option price can then

SStandard and Poor’s 100 Index is a US stock index for 100 large US stocks trading in the New
York Stock Exchange.
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be conveniently calculated from this relationship.

Put-call parity is actually an equality that connects the current prices of
a call option and a put option with the same strike price and time to maturity.
In other words, it gives a condition under which there is no arbitrage or
“no-free-lunch” between a call option and its corresponding put option with
the same strike price. This parity relationship can be demonstrated by
considering the portfolio: a long call (C) and a short put (—P) with the
same strike price and on the same underlying asset.

If the underlying asset price at the expiration of the option S(7) is
greater than the strike price K, the payoff of the call option is S(r) - K
and the payoff of the put option is zero. Thus the net payoff of the portfolio
becomes

S(r)y-K—-0=8(r)- K, (3.22)

from the payoffs of a call and a put given in (2.1) and (2.2), respectively.
Similarly, if the underlying asset price at the expiration of the option S (r)is
smaller than the strike price K, the payoff of the call option is zero and the
payoff of the put option is K — S(7), and thus the net payoff of the portfolio
becomes

0—[K-S(r)}=5(r) - K,

which is exactly the same as the payoff of the portfolio given in (3.22) if the
underlying stock price is greater than the strike price.

The above analysis shows that the portfolio has the same payoff S(7)—K
regardless of whether the underlying stock price is greater or smaller than
the strike price at maturity. Because the portfolio C — P always has the
same future payoff S(7) — K, the value of the portfolio must be the same as
the present value of the payoff S(7) — K, otherwise there would be arbitrage.
Equalizing the present value of the portfolio C — P and the present value of
the future payoff S(7) — K,” we can readily obtain

C-P=S—-Ke " ,or
P=C-S+Ke ™, (3.23)
where C, P stand for the call option and put option prices, respectively. S

is the spot stock price, K represents the strike price of the options, and r
and T represent the interest rate and time to maturity, respectively.

7Using the solution of the standard geometric Brownian motion given in (2.4), we can readily find
that the expected value of the underlying asset price at maturity S(7) is Se™ . Discounting the
expected payoff Se™™ — K by the continuous factor e~77 yields S — K e TT.
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The equality given in (3.23) is calléd the put-call parity in options lit-
erature. Substituting the call option pricing formula (2.5) into (3.23) yields
the following pricing formula for the put option:

P=—SN(~d) + Ke""N(~dy), (3.24)

where d) and d; and all other parameters are the same as in (2.5).

Example 3.4. What is the corresponding put option price in Example 2.17
The put option price P can be calculated directly by substituting C =
$10.89, S = $100, K = $105, r = 20%, and 7 = 0.50 into the put-call parity
(3.23):
P=C-S+Ke ™
= 10.89 — 100 + 105¢05%0-20 — g5 898 .

Alternatively, substituting dy = 0.35, d = 0.14 (from Example 2.1),
S = $100, K = $105, r = 20%, and 7 = 0.50 into the put option pricing
formula (2.38) yields

P=—-SN(—di)+ Ke ""N(—d)
= —100N (—0.35) + 105¢~%-3*0-20 N (_0.14) = $5.898,
which is precisely the same value obtained using the put-call parity.

The put-call parity in (3.23) and (3.24) can be readily extended to incor-
porate the yield on the underlying asset using the call option pricing formula
given in (3.14):

P=C—-Se 97 +Ke™ ™, (3.25)
where C, P stand for the call option and put option prices, respectively, and

all other parameters are the same as in (3.2).
Alternatively, the equality in (3.25) can be given as

P=—-8e"9"N(—d1)+ Ke ""N(-d3), (3.26)
where d; and d; and all other parameters are the same as in (2.5).

Example 3.5. What are the corresponding put option prices in Examples
3.1 and 3.27

The price of the corresponding put option in Example 3.1 can be calcu-
lated directly by substituting C = $9.455, S = $100, K = $105, r = 20%,
g = 5%, and 7 = 0.50 into the put-call parity (3.25)

P=C-8e 9 +Ke ™
= 9.455 — 100e~%-5%0-05 4 105¢~0:5%0-20 — g6 932
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and the price of the corresponding put option in Example 3.2 can be calcu-
lated directly by substituting C = $0.00657, S = $0.0175, K = $0.0111, r =
8%, r¢ = 3%, and 7 = 0.50 into the put-call parity (3.25)

P=C-8e ™ + Ke ™
= 0.00675 — 0.0175¢~2-5%0-03 | 0.0111e~9-5%%-08 = $0.000005 .

Following the similar method as in deriving the put-call parity given in
(3.23) and (3.24), we can obtain the put-call parity between the prices of a
futures call option and its corresponding put option:

P=C—-Fe ™ +Ke ™, (3.27)

where all parameters are the same as in the futures call option pricing for-
mula (3.5).
Similarly, we can obtain the put option pricing formula using (3.2) and
(3.27):
P=¢e""[-FN(-d1) + KN(—dy)], (3.28)

where d;, dp, and other parameters are the same as in (3.5).

3.5. MODERN GREEKS

In the previous sections, we studied how to price call and put options.
We know that both the European call and put option prices are affected by
the five factors in the Black-Scholes model without considering the payout
rates of the underlying assets. It is useful to know how sensitive call and put
option prices change with these factors. As a matter of fact, there are a few
popular terms characterizing the sensitivities of option prices with respect
to these factors. These sensitivities are often named by Greek alphabets.
They play an important role in both trading activities and risk management
in all financial institutions with any derivative securities. In this section, we
first introduce the traditional sensitivities which are more familiar to most
people in the derivatives industry, and then some higher sensitivities.

3.5.1. Traditional Greeks
Delta(d)

An option’s delta measures how fast an option price changes with the
price of the underlying asset. There are other explanations to an option’s
delta: mathematicians interpret an option’s delta as the first-order partial
derivative of the option price with respect to the price of its underlying asset,
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and economists interpret it as the sensitivity of the option price toward the
price of its underlying asset. The call option’s delta in the Black-Scholes

model can be obtained by taking partial derivative of (2.5) with respect to
S

5]
O = N(dt) + 51(eh) S8 peemrmy(ay) 22
= N(@h) + [f(dr) ~ Ke™ f ()] g = (3.29)

The delta given in (3.29) can be simplified using the following identity:

;233 _ (\/%_ﬂ e—d’;’/2> / (\/_% e—d’s’/z) = eB3-B)/2

= g (d1-d2)(di1+d3)/2 _ ,—0y/T(2d2+0y/T)/2
— e—cr\/'?(d2+a\/7_'/2) _ e—dza\/?—azr

= e~ [In(S/K)+(r—0?/2)7]+(0%7/2)
— e~"Te~In(S/K) — g-rr in(k/s) _ K e
S
thus,
Sf(dl) = Ke‘—"-f(dz) . (330)

Substituting (3.30) into (3.29) yields the delta of the call option in the Black-
Scholes model as N(d;). Similarly, the put option’s delta is —N (—di), the
negative sign implying that the put option price declines as the underlying
asset spot price goes up. The identity given in (3.30) is used to simplify
most other Greeks significantly.

In Examples 2.1 and 3.4, the delta of the call option is N (dh) =
N(0.35) = 0.6368 = 63.68% and the delta of the put option is —N(-dy) =
—0.3632 = —36.32%. Normally, the negative sign is omitted because every
person knows that the put option price changes at the opposite direction
with its underlying asset price. Thus we simply say that the call option has
a delta of 63.68% and the put has a delta of 36.32%. In general, deep-out-
of-the-money options have deltas close to zero, implying that these option
prices change little with the underlying asset prices; deep-in-the-money op-
tions have deltas close to one, indicating that these option prices change
about the same amount with the underlying asset prices.

Vega (v)

An option’s vega measures how fast an option price changes with its
volatility. Mathematically, an option’s vega is the first-order partial deriva-
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tive of the option price with respect to the volatility of its underlying asset.
Vega is important because the volatility of the underlying asset is of vital
importance to option trading. Volatility to options is what wind to kites.
Kites cannot fly without wind, and they tend to crash if there is too much
wind. Options would not exist without volatility, and they cannot trade
smoothly if there is too much volatility. From previous sections, we learned
that hedging is the most important reason for most derivative securities to
exist. If there does not exist enough noise in the market, the prices of the
underlying assets can remain relatively stable, then there is really not much
need for options to be traded on these assets. Even if options exist on these
assets, trading volumes are likely to be rather thin. If there are more uncer-
tainties in the market, there will be more risks for the option writers as there
is more possibility for them to lose. Thus, option writers normally charge
more for options with higher volatility, other things being equal. Therefore,
vegas of all options are always positive.

The formula for vega in the Black-Scholes model is simply S V7 f(dy) or
K+/Te™" f(d2) regardless of whether it is for a call or put. In Examples 2.1
and 3.4, S = $100, 7 = 0.5, d; = 0.35, then vega is

1 2
Vega = 100 x v/0.50 x —=— e~%/2 = 26.53,
g Vam
which implies that the call or put option values increase (resp. decrease)
26.53% for each percent increase (resp. decrease) of the underlying volatility.

Theta (6)

An option’s theta measures the sensitivity of its price with respect to
time to maturity. It is also called the time decay of an option. We know
that the value of a European option at expiration depends on the relative
price level of the underlying asset and the strike price of the option. Option
values at expiration are called intrinsic values of options. The intrinsic value
is only one part of an option’s value because it is a measure with zero time
to maturity. For an option with positive time to maturity, it also has value
changing with time, and this part of value is called the time value of an
option. Options have time values because there is always possibility for
the prices of the underlying assets to change when there is time left before
expiration. An option’s theta is always positive because there is always more
possibility for the prices of the underlying assets to change whenever there
is more time before expiration. The positiveness of thetas is also shown in
Figure 2.6, because the time value of options is larger with more time to
maturity for all spot prices under consideration.
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The formula for theta in the Black-Scholes model is

Theta = So ——12—— f(d1) + rKe ""N(dy) for a call, and
T

Theta = So f( —-rKe ""N(—dy) for a put.

1
dv) ——
V Var
In Examples 2.1 and 3.4, S = $100, 7 = 0.5, d; = 0.35, the theta for
the call is 21.79 and that for the put is 2.79, implying that the call and put
option values increase (resp. decrease) 21.79% and 2.79% for each percent
increase (resp. decrease) of the time to maturity.

Rho (p)

An option’s rho measures the sensitivity of the option’s value with re-
spect to the fluctuation of interest rate. Interest level reflects the opportu-
nity cost of holding options. The higher the interest rate, the higher the
opportunity cost for a call option, thus the higher the price of a call op-
tion. The formula of rho is 7Ke~""N(d,) for a European call option, and
—7Ke ""N(—dy) for a put. In Examples 2.1 and 3.4, the rho is 26.31 for
the call option and —21.19 for the put option, implying that the call option
will appreciate (resp. depreciate) approximately 26.31% for each percent in-
crease (resp. decrease) of the interest rate and the put option will depreciate
(resp. appreciate) approximately 21.19% for each percent increase (resp. de-
crease) of the interest rate.

Lamda (\)

We have discussed the sensitivities of option values with respect to four
important parameters: spot price, volatility, time to maturity, and interest
rate. Besides these four measures, there is another important measure, of-
ten called the lamda of an option. The lamda of an option measures how
much the option’s price changes in percentage for each percent change in
the price of the underlying asset. Clearly, an option’s lamda is related to
its delta. Simple mathematical manipulation shows that the lamda of an
option equals the option’s delta multiplied by the ratio of the spot prices of
the underlying asset and the option. In Examples 2.1 and 3.4, the delta of
the call option is 63.68%, and —36.32% for the put option. The lamda of
the call option is thus 0.6368 x 100/10.89 = 5.85, implying that the call op-
tion price will increase (resp. decrease) 5.85% if the underlying stock price
increases (resp. decreases) 1%. And the lamda of the corresponding put
option is equal to —0.3632 x 100/5.898 = —6.16, implying that the put op-
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tion price will decrease (resp. increase) 6.16% if the underlying stock price
increases (resp. decreases) 1%. These examples show that options are like
amplifiers that can expand the significance of the changes of the underlying
asset prices. Thus, we may also say that lamdas measure the leverage effects
of options.

Gamma ()

Gamma is another important sensitivity measure for an option. It mea-
sures how fast the option’s delta changes with the price of its underlying
asset. Gamma is clearly a second-order sensitivity. It is often used in
option trading strategies such as gamma hedging. An option’s gamma is
f(d1)/(8c+/T), the same for both call and put options with the same strike
price. In Examples 2.1 and 3.4, the gamma is 0.018 or 1.8%, implying that
the delta of both the call and put options will increase (resp. decrease) ap-
proximately 1.8% for one dollar increase (resp. decrease) of the spot price.

With the above descriptions, we can express the total change of a vanilla
option price (VOP) as follows:

APVOP = Delta(AS) + Vega(Ao) + Theta(A7) + Rho(Ar) + o(Ay?),
(3.31)
where O(Ay?) stands for the higher terms of the changes in the current spot
S, volatility, time to maturity, and interest rate, with the Greek alphabets
given as follows:

Delta = we™ 9" N(wd,), (3.32)
Vega = Sv/7e 9" f(dy) = Ke™"v/7f(ds), (3.33)
Theta = Ke™ ™" # f(d2) + wrN(wdg)] —wSge ™ 9"N(wdy), (3.34)
Rho = wrKe ™" N(wdyz), (3.35)
Lamda = Se 9" N(wd;)/[Se™9" N(wdy) — Ke™""N(wdz)], (3.36)
Gamma = e 9" f(d1) (3.37)

Sa/7

The traditional sensitivities named after these Greek alphabets are most
often used in risk management of most derivatives portfolios.

3.5.2. Higher Sensitivities

The traditional sensitivities discussed above are very useful for most
trading strategies. Their sensitivities to the underlying asset price and time
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to maturity are therefore of significant importance. Recently, higher sensi-
tivities, or sensitivities of the traditional sensitivities with respect to time
and underlying asset price are used by many traders. We now introduce
these higher sensitivities in the Black-Scholes model.

Speed

Speed measures the rate at which the gamma of a derivative asset
changes with one underlying asset price. Economically, it is the sensitiv-
ity of the gamma with respect to one underlying asset price. As there is
only one underlying asset in the Black-Scholes model, we can easily obtain
the speed formula of a vanilla option in the Black-Scholes model as

(dl +0'\/‘F)
S0t
_ d1+0'\/?
_——S_

Speedps = e~ f(d1)

Gamma. (3.38)

In Examples 2.1 and 3.4, the speed of both the call and put options is
—0.0001 or —0.01%, implying that the gamma will decrease (resp. increase)
0.01% for each dollar increase of the underlying spot price.

Charm

Charm measures the rate at which the delta of a derivative asset changes
with its time to maturity. The charm of a vanilla option in the Black-Scholes
model can be readily obtained as follows:

Charmps = (%‘;‘—ﬁ) f(d1). (3.39)

In Examples 2.1 and 3.4, the charm for the call and put options is 0.303,
implying that the delta will decrease (increase) 30.3% as the options 1%
closer to maturity.

Color

Color measures the rate at which the gamma of a derivative asset changes
with respect to the time to maturity. The color of a vanilla option can be
easily derived as follows:

Colorys = — (” + In(K/ 5;:;2’:; o/ Z)T]dl) F(dy). (3.40)
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In Examples 2.1 and 3.4, the color of the call option is —0.03 = —3% for
both the call and the put option, implying that their gamma will decrease
3% as the option is 1% closer to maturity.

Speed is obviously a third-order derivative with respect to the underlying
asset price. Both charm and color are cross sensitivities as they measure how
option values change, first with respect to the increase in the underlying spot
price, and then to the time to maturity.

The traditional and higher sensitivities we described in this section are
used to analyze risks of individual options or portfolios of options. There
are other risk measures of options such as skewness, kurtosis, the systematic
risk measured with beta, etc. For a systematic study of these measures and
related literature, see Lee and Zhang (1995).

3.6. DELTA HEDGING AND GAMMA HEDGING

After describing the traditional and higher Greeks in the previous sec-
tion, we can now introduce two important concepts in option trading: delta
hedging and gamma hedging. Delta hedging is a trading strategy to make
the delta of a portfolio neutral to the fluctuation of the underlying asset
price. For example, consider the standard portfolio in option pricing theory
which includes one unit of the underlying asset long, and N(d;) unit of a
call option on the underlying asset short. The value of this portfolio can
be expressed as S(7) — N(d1)C. The delta of this portfolio can be easily
obtained using the delta formula given in (3.32):

1- N(dl)Delta of C=1- N(dl)/N(dl) =0,

because the delta of the underlying asset is always one.

The portfolio including one unit of the underlying asset long and N(d;)
unit of a call option on the underlying asset short is a well-known example
of delta hedging. If a portfolio has a positive (resp. negative) delta DELTA,
to carry out delta hedging, we can simply write (resp. buy) DELTA/N(d;)
units of call option so that the delta of the portfolio will be zero.

Whereas delta hedging is to make the delta of a portfolio neutral to the
fluctuation of the underlying asset price, gamma hedging is to neutralize
the gamma of a portfolio or to make the gamma of the portfolio zero. In
the above example of delta hedging, the portfolio S(7) — N(d1)C is always
delta-hedged, yet it is not gamma-hedged because its gamma is

0 — N(d1)f(d1)/(Sov/T) = —N(d1)f(d1)/(Sov/T) <0,

because the gamma of the underlying asset is always zero (the second or-
der derivatives of S with respect to S is always zero) and the gamma of
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the call option is given in (3.37) with g = 0. If a portfolio has a positive
(resp. negative) gamma GAMMA, to carry out gamma hedging, we can
simply write (resp. buy) GAMMA/(f(d1)/(So+/7)] units of call option so
that the gamma of the new portfolio will be zero.

A portfolio may not be gamma-hedged when it is delta-hedged, as our
above example showed, or it may not be delta-hedged when it is gamma-
hedged. This is simply because when we change the composition of the
portfolio to achieve the goal of either delta hedging or gamma hedging, the
other is changed at the same time. However, this is not a serious problem
because the need for one hedge often dominates the other, so it is alright to
consider the more important issue and hedge it consequently.

3.7. IMPLIED VOLATILITY

In discussing the Black-Scholes model, we learned that all the parameters
in the model can be either observed from the market directly, or specified
in option contracts with one exception — volatility of the underlying asset.
We learned that historical data can be used to estimate the volatility of
the underlying asset. However, there is no general rule as to what kind
of historical data and how far back in history the data should be used to
estimate this parameter. Estimation can be very different using daily data of
the immediate past three months, six months, one year, or two years. Thus,
the prices of options can be different using different estimated volatility
parameters. That is a problem with the Black-Scholes pricing model and all
other models as well.

Academics have tried to overcome this problem. The market prices of
options, like market prices of all other securities, are determined by the
changing supply and demand conditions. The actual option prices can be
observed from the markets. Using the actual market prices and the Black-
Scholes formula inversely, we can solve for the value of the volatility param-
eter. The volatility value which equals the theoretical Black-Scholes formula
value and the actual market price is called the implied volatility. Mathemat-
ically, the implied volatility is the solution of the inverse equation from the
Black-Scholes formula.

Example 3.6. What is the implied volatility if the call option price is $9.00
and other parameters are the same as in Example 2.1?

We can solve the implied volatility by trial and error. If we substitute
o = 28%, the current underlying asset price S = $100, the strike price
K = $105, interest rate r = 20% = 0.20, time to maturity 7 = 0.50 into the
Black-Scholes formula in (2.5), we would obtain C = $10.44 > $9.00, the
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market price of the call; if we substitute o = 20%, we would get C = $8.35 <
$9.00. From these two trials, we know that the implied volatility must be
between 20% and 28% because the Black-Scholes formula is a monotonically
increasing function of volatility, or the call option’s vegas are always positive
in the Black-Scholes model. Continuing the trial and error procedure, we
could obtain o = 0.2252 or 22.52% with which the Black-Scholes formula
yields the same price as the actual market price $9.00. Therefore, the implied
volatility is 22.52% if the actual option price is $9.00.

As there is a one-to-one correspondence between the Black-Scholes op-
tion price and its volatility, it is equivalent to say that someone buys the call
option at the premium of $9.00 or at 22.52% implied volatility in the above
example. As a matter of fact, most option traders prefer implied volatilities
to premiums. The implied volatility can be used in several other ways. It
can be interpreted as the average volatility that the underlying asset will
have from now to the option’s expiration time, it can be used to forecast the
change of the underlying asset price in the short term. We will discuss this
more in the next section.

Example 3.7. What is the implied volatility if the put option price is $5.00
and other parameters are the same as in Example 3.47

Following the same procedure as in Example 3.6, we can find the implied
volatility of the put option price $5.00 is 0.263 or 26.3%.

Examples 3.6 and 3.7 show that implied volatilities can be different for
put and call options even with the same strike price and time to maturity.
The difference may imply the imperfection of the actual market which vi-
olates the assumptions of the Black-Scholes model. The imperfect factors
may include taxation, transaction cost, liquidity, and many others.

3.8. TERM STRUCTURE OF VOLATILITY AND
VOLATILITY SMILE

In the previous section, we discussed the concept of implied volatilities
and how to calculate them given the option prices and other parameters.
Normally, there are options written on the same underlying instrument with
various time to maturity. Using the same option pricing formula such as
the Black-Scholes formula and observing the option prices with various ma-
turities, we are able to find a set of implied volatilities with different time
to maturity. In practice, these implied volatilities are different from one an-
other. The reason for these differences is likely to be the market imperfection
discussed at the end of the previous section. The volatility structure with
different time to maturity is called the term structure of volatility. Normally,
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the implied volatilities are larger for options with shorter time to maturity.
The term structure of volatility is very useful for exotic options with time
to maturity different from that listed in exchanges. Reasonable implied
volatilities can be found for exotic options with various time to maturity by
interpolating along the implied volatility curve.

With the same time to maturity, there are often many options with vari-
ous strike prices written on the same underlying asset. Theoretically, implied
volatilities for options with various strike prices but the same maturity time
should be the same. However, empirical studies show that implied volatilities
of out-of-the-money options are on average higher than that of at-the-money
options. From the author’s experiences in currency futures options trading
at the International Monetary Market (IMM) of the Chicago Mercantile Ex-
change (CME), the implied volatilities normally become higher for deeper
out-of-the-money options. This phenomenon is called “volatility smile” by
professionals. The volatility smile obviously violates the Black-Scholes as-
sumption of constant volatility.

Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) inde-
pendently constructed models to incorporate the smile effect into pricing
models. The basic idea of these studies is to infer useful information about
the distribution of the underlying asset prices from exchange-traded options
and to price other derivatives using this information. These smile models
are very useful because reasonable implied volatilities can be estimated using
interpolation for exotic options with strike prices not listed in exchanges.

3.9. LIQUIDITY FACTOR

The Black-Scholes option pricing model has been extended in various
directions. But there is one important factor that has yet to be captured in
any pricing model — liquidity of the underlying market. Some may simply
consider that liquidity is characterized by volatility because the lower the
liquidity, the larger the bid-ask spread in general, and therefore the higher
the volatility of the underlying asset. However, the above argument is not
true because the volatility of the underlying asset can be low as a result of
infrequent activities in the market even though its bid-ask spread is rather
wide. Although liquidity may be, in general, correlated with volatility, these
two concepts are very different and one of them could not replace the other.
Volatility measures the degree of fluctuations of the underlying asset returns
or prices and it has nothing to do with trading volumes of the underlying
asset. However, liquidity measures the the trading frequency of the underly-
ing asset. It is generally measured by the bid-ask spread per unit of trading
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volume of the underlying asset within a specified period of time. Thus, lig-
uidity is normally determined by the average price spread and the average
trading volume, and cannot be generally replaced by volatility.

As different assets possess different degrees of volatility, different markets
normally exhibit different levels of liquidity. Some markets such as the US
Treasuries may have near perfect liquidity and other markets such as stocks
of some small firms or exotic currencies may have one transaction in one day
or even one week, and many art markets may have transactions in every five
to ten years. As liquidity can also be understood as the average time between
two consecutive tradings, low liquidity generally implies longer average time
between two consecutive transactions and in turn imply more difficulties in
hedging the underlying asset and/or selling and buying it. Thus, there exist
two kinds of risks resulting from low liquidity: one is that the underlying
asset can neither be bought nor sold at the option maturity between two
possible consecutive transactions, and the other is that desirable quantity of
the underlying asset may not be bought or sold even if the underlying asset
can be bought or sold at all. Therefore, liquidity is an important factor in
determining derivatives values written on an underlying asset which is less
than perfectly liquid. To date, there is no satisfactory model in the literature
that has incorporated liquidity into an option pricing theory.

A theoretical closed-form solution to incorporate the liquidity factor
may be hard to find, but the problem can be solved numerically using the
popular tree-model to be described in the following chapter. We will show
more specifically how liquidity affects option prices in Chapter 4 when we
use the binomial tree extensively to price American options.

3.10. SUMMARY

We have reviewed various aspects of vanilla option theories and markets,
from the well-known binomial model to the celebrated Black-Scholes model,
and its various extensions. The review is useful because all exotic options, as
we will illustrate later in this book, are extensions of vanilla options, which
can be used as benchmarks for our understanding of exotic options. The
term structure of volatility and volatility smile are of particular use to exotic
options because they can be used to infer reasonable implied volatilities
for exotic options with time to maturity and/or strike prices not listed in
exchanges. The review is also useful because most of the jargons of vanilla
options are also used for exotic options. This chapter can be used as a
quick reference for our following ones. For those readers who have a good
knowledge of vanilla options, this chapter may be used as a reference to
check specific formulas and expressions.
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Although the review has touched most topics about vanilla options, it is
impossible to include all aspects of standard options in one chapter. Of the
subjects on standard options we have not covered, option trading strategies
are well known and used by many traders. The chart on option trading
strategies made by the Chicago Mercantile Exchange (CME) is very popular
in the professional world. The chart includes 29 popular strategies most
often used in practice. The best book on this subject is Gary Geastiue’s The
Stock Options Manual (2nd ed., 1979).

QUESTIONS AND EXERCISES
Questions

3.1.  What are the effects of the underlying payout rate on the call option?

3.2.  What are frations?

3.3. What are futures options?

3.4. Why are futures options more popular than frations?

3.5.  What is the obvious shortcoming of Fisher’s extension of the Black-
Scholes formula incorporating uncertain strike prices?

3.6. What is the advantage of the CEV model over the standard Black-
Scholes model?

3.7. What is the major difference of the CEV models with positive and
negative elasticity parameters?

3.8.  What is the advantage of the pricing model with jump process over
the standard Black-Scholes model?

3.9. What is the advantage of Leland’s model with transaction cost over
the standard Black-Scholes model?

3.10. Why does the volatility parameter needs to be randomized? What
is the advantage of the stochastic volatility model over the standard
Black-Scholes model?

3.11. What are the disadvantages of all the extended versions of the Black-
Scholes model compared to the standard Black-Scholes model?

3.12. What is the term structure of interest rate? Why is it useful to price
derivatives?

3.13. What is the contribution of Ho and Lee (1987) to the study of interest-
rate derivatives?

3.14. What is the most important difference between interest-rate deriva-
tives and equity derivatives?

3.15. What are implied volatilities? Why are they useful?



3.16.

3.17.
3.18.
3.19.
3.20.
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Are implied volatilities the same from the prices of a call and its
corresponding put options with the same strike price? Why?

What is the term structure of volatility?

What is volatility smile? Why is it useful in practice?

Why is liquidity important in pricing options?

Has Leland’s model with transaction cost captured liquidity factor in
pricing options? Why?

Exercises

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

Find the call and put option prices, given the annual interest rate
10%, time to maturity four months, strike price $110, current stock
price $105, the underlying stock has a constant dividend yield of 6%,
and the volatility of the return of the underlying asset ¢ = 20%.
Find the delta, vega, theta, gamma and lamda for the call and put
options in Exercise 3.1.

Find the speed, charm, and color for both the call and put options in
Exercise 3.1.

Show that the identity Se™9"N(d;) = Ke ""N(d;) is always true
for the extended Black-Scholes model with constant payout of the
underlying asset.

Find the call and put option prices if the payout rate of the underlying
asset is 3% and other parameters are the same as in Exercise 3.1.
Find the European call and put option prices on the Japanese yen/US
dollar exchange rate with strike price ¥88 per dollar to expire in half
a year, given the spot US dollar/Japanese yen exchange rate ¥86 per
dollar, the Japanese interest rate is 2.5%, the US interest rate 7%,
and the volatility of the dollar/yen exchange rate 18%.

Find the European call and put option prices on the German mark/US
dollar exchange rate with strike price 1.50 mark per dollar to expire
in five months, given the spot US dollar/German mark exchange rate
1.45 mark per dollar, the German interest rate is 5%, the US interest
rate 8%, and the volatility of the dollar/mark exchange rate 15%.
Find the prices of the European call and put options on the September
1995 S&P-500 futures with strike price $520 to expire in four months,
given the spot September 1995 S&P-500 futures price is $510, the
volatility of the September 1995 S&P-500 futures is 18%, the US in-
terest rate is 7%.
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3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3:15.

3.16.

3.17.

3.18.

3.19.

Find the prices of the European call and put options on the December
1995 Nikkei-225 (Japanese stock market index) to expire in half a year,
given the current futures price is ¥16500, the volatility of the futures
price is 15%, interest rate is 3%, strike price ¥17000.

A straddle is a pair of call and put options with the same strike price.
Find the price of the straddle including the call and put options in
Exercises 3.1 and 3.5.

Find the price of the straddle including the call and put options in
Exercises 3.7 and 3.8.

A strangle is a pair of call and put options with the call’s strike price
greater than that of the put. Thus, a straddle is a special case of
a strangle when the strike prices of the two options are the same.
Find the price of the strangle including a call with strike price $100
and a put with strike price $110 and other parameters the same as in
Exercise 3.1.

Find the price of the strangle including a call with strike price $110
and a put with strike price $100 and other parameters the same as in
Exercise 3.1.

Find the call and put option prices if the strike price is $121, the
current stock price $115.5, and other parameters are the same as in
Exercise 3.1. (hint: use the scaling property of the Black-Scholes
formula).

Find the implied volatility of the call option if its price is $10 and
other parameters are the same as in Exercise 3.1.

Find the implied volatility of the put option if its price is $8 and other
parameters are the same as in Exercise 3.5.

Find the implied volatilities of the call options to expire in three
months and half a year if their prices are $5 and $6, respectively,
other parameters remaining the same as in Exercise 3.1.

If the implied volatilities for three call options written on one par-
ticular stock with time to maturity six, nine, and twelve months are
15%, 12%, and 10%, respectively, what are the implied volatilities for
call options written on the same underlying stock with time to ma-
turity seven, eight, ten, and eleven months? (hint: use the linear or
quadratic extrapolation).

In the above exercise, what are the prices of call options if the annual
interest rate 10%, time to maturity one year, strike price $110, and
current stock price $105.
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3.20. If the implied volatilities for three call options written on one partic-
ular stock with the same strike price; time to maturity six, nine, and
twelve months are 15%, 12%, and 10%, respectively, what are the im-
plied volatilities for call options written on the same underlying stock
with time to maturity seven, eight, ten, and eleven months? (hint:
use the linear extrapolation).

APPENDIX

Calculating the Cumulative Distribution Function of the
Central x2 Distribution

The cumulative distribution function of the central x? distribution
Q[x242; < C] is given as follows:
j 2;C/2)
2 oo 2Gtv/2
Q[XU+2] = C] F(] + V/z) )
where T'(j + v/2) is the standard gamma function and (Z,<) is the
incomplete gamma function which is defined as follows:

(A2.1)

y(v;C) = /OC 2" le™*dz, C >0and v > 0. (A2.2)
The incomplete gamma function can be approximated in a number of ways:
v v+1 v+2 v+3 00 Y

Yviz) = %_ 1$+v+ 2(;+u) - 6(m3+1/) +'”=myj§) ]'%7%’ o
(A2.3)

lrid .'l:"'“ _,L.u+2 00 :l:j+"
Vi) =e™ |+ B S R Yy I ¢ = Win
(A2.4)

Modified Bessel Function of the First Kind

I, is the modified Bessel function of the first kind of order ¢, and can be
expressed as follows:

(z/2) ! 2\q-1/2
Iq(.’lJ) = m /_1(1 -z ) exp(+xz)dz, q> —1/2 (A25)
The Bessel function given in (A2.5) can be approximated by the following:
PR C L LG AT T B ST okl

iT(g+7i+1)°
(A2.6)

T T(g+1) 1M +2)  2T(e+3) o






Chapter 4
AMERICAN OPTIONS

4.1. AMERICAN OPTIONS

A wide variety of options trading in exchanges such as commodity op-
tions, commodity futures options, call options on dividend paying stocks,
put options on dividend or non dividend paying stocks, foreign-exchange
options, index options, and so on, are American options and therefore may
be exercised optimally before the expiration of the contracts. As a matter
of fact, most options trading in exchanges in the US are American options.
Due to the wide spread of American options in the marketplace, it is thus
important to find appropriate ways to price them. However, the optimal-
ity of early exercise presents difficulties in evaluating them. All the pricing
models covered in Chapters 2 and 3 are for European options — options
which can only be exercised at maturity. The small conceptual difference
between American- and European-style options causes a big difference when
pricing them. Since American-style options can be exercised before matu-
rity, the actual exercising time is uncertain when the option is bought. No
efficient and accurate formulas have been found to price American options.
Numerical methods have to be used to price them in practice.

Analytically, the payoff of an American option (PAO) can be formally
expressed as follows:

PAQO = Max[wS(T) — wK, 0], (4.1)

where S(T') stands for the underlying asset price at any time between the
present time ¢t and the maturity time of the option t*,t < T < t*, wis a
binary operator (1 for a call option and —1 for a put option), and other
parameters and functions are the same as in (2.1) and (2.2).

The payoff given in (4.1) is a function of the exercise time T' which is
chosen to maximize the payoff. Since the optimal time T is uncertain, it is
more difficult to price American options than their European counterparts
as there is an additional dimension of time involved.

91
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A lot of efforts have been made in both academic and professional stud-
- ies to price American options, and they are more than enough for a separate
volume. Early efforts in pricing American options were taken in the case of
discrete dividends for which analytical solutions were found [see Roll (1977),
Geske (1979), and Whaley (1981) for such solutions]. These analytical so-
lutions were obtained under special conditions; they cannot be obtained in
general. When no analytical solutions are available, numerical methods have
to be used. Schwartz (1977), and Brennan and Schwartz (1977, 1978) intro-
duced the finite-difference method, and Cox, Ross, and Rubinstein (1979)
introduced the binomial tree method to price American options. Amin and
Khanna (1994) showed that the results from the binomial method converge.
The binomial method was later extended to include multinomial methods in
studies by Boyle (1988), Boyle, Evnine, and Gibs (1989), and others.

Besides the numerical methods above, various quasianalytical solutions
have been developed. Geske and Johnson (1984) gave an exact analytical
solution for pricing American options, but their formula is an infinite series
that can only be evaluated approximately by numerical methods. MacMil-
lan’s (1986), and Barone-Adesi and Whaley’s (1987) quadratic method is
based on exact solutions to the approximated partial differential equations
of the options. Various methods using Monte Carlo simulation have been
found, the most popular one being Tilley (1992). Using a bundeling method
and conditional expectation, Tilley found an efficient way to price American
options with Monte Carlo simulation.

As our focus in this book is to illustrate various kinds of exotic options
and how to price them, we will simply show how American options can be
priced using the intuitive binomial tree method and how the option prices
can be approximated with the quadratic methods.

4.2. THE BINOMIAL MODEL

Although there are many option pricing models, we may simply classify
them into two major groups according to their assumption of the underlying
asset price movement: the discrete model and the continuous model. The
most popular continuous model is the Black-Scholes lognormal model we
studied in Chapters 2 and 3, in which the underlying asset price is assumed to
be lognormally distributed. The most popular discrete model is the binomial
model in which the underlying asset price is assumed to either jump or
fall. Both models have some advantages and disadvantages. Whereas the
Black-Scholes lognormal model is concise in expression, the binomial model is
intuitive and can be used to price many kinds of options. The binomial model
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approaches the lognormal model as the time between each two consecutive
periods becomes very small.

The binomial tree model is the most widely used model because of
its simplicity, intuitiveness, and convenience in handling many complicated
problems. In the binomial option pricing model, the current asset price §
is always assumed to follow a binomial process, either going up or falling
down. More specifically, the spot price S is assumed to rise 100(uz — 1)% or
fall 100(1 — d)%, both u > 1 and 1 > d > 0 being known with certainty.
Graphically, the next-period asset price S(7) can be shown in Figure 4.1. In
Figure 4.1, p stands for the probability that the spot price will rise and 1 —p
the probability that the price will fall.

Fig. 4.1. Price movement in the single-period binomial model.

uS —hCu

ds - hCd

Fig. 4.2. Portfolio value movement in the single-period binomial model.

4.2.1. The Single-Period Binomial Model

With the stock price movement as described in Figure 4.1, we can con-
sider a portfolio including one share of the underlying asset long, and h call
options short. Let C stand for the current call option price, the current
portfolio value is therefore § — hC, and the value of the portfolio in the next
period can be shown in Figure 4.2, where

C, = max(S, — K,0) = max(uS — K,0),
Cy = max(Sy — K,0) = max(dS — K,0),

and K is the exercise price of the call option.
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Figure 4.2 shows that there are two possible outcomes for the portfolio
in the second period resulting from the two possible outcomes of the next-
period asset price. It is possible to choose a h so that these two possible
outcomes of the portfolio in the next period become the same. Equalizing
these two outcomes uS — hCy, and dS — hC, shown in Figure 4.2 and solving
for h yields:

* __ (u’ _ d)
h* = C._C, S. (4.2)

The value h* given in Equation (4.2) is called the optimal hedge ratio.
With this hedge ratio, the portfolio will be risk-free because the uncertainty
in the two possible outcomes simply disappears as there will be only one
certain outcome for the portfolio. Any risk-free portfolio should yield the
same return as the risk-free asset, otherwise there would be arbitrage op-
portunities. Using the arbitrage argument, the risk-free portfolio S — h*C
should yield the same return as the interest rate, thus

(S - h*C)R = uS — h*Cl, (4.3)

where R equals the interest rate in the period under consideration plus one.
Substituting ~* in (4.2) into (4.3) and solving the equation for the cur-
rent call option price C yields

C = _}Q_ {maCq + 1, Cy}, (4.4)

where
u—R _R-d

2T g =tc
u—d’ u—d’

Equation (4.4) is the one-period binomial option pricing formula which
gives the value of the European call option with known parameters u, d, S, K,
and R. The two intermediate parameters 7y and 7, can be considered as risk-
neutral or quasiprobability parameters, for they are positive and add up to
one. It is worth noticing that these two risk-neutral probability parameters
are independent of the probability p that the spot will rise. With my and
7, interpreted as probability parameters in the risk-neutral world, Equation
(4.4) can be readily interpreted as the expected payoff of a European call
option in the risk-neutral world discounted at the risk-free rate of return.

Ty = and w4+ m,=1.

Example 4.1. Asin Example 2.1, the current stock price S = $100, exercise
price K = $105, the upward stock price increase u = 125/100 = 1.25. If
the annual risk-free rate of return is 20%, and the downward decrease of the
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stock d = 0.80, then what is the price of the call option to expire in one
year?

To calculate the call option price using Equation (4.4), we need to find
the appropriate value of R. As the annual risk-free rate of return is 20%,
the risk-free rate of return R = 1+0.20/2 = 1.10 (one period is half a year).
Thus, C, = max(uS — K,0) = max(125—105,0) = $20, and Cgq = max(dS -
K,0) = max(70 — 105,0) = 0. Substituting Cy,Cq4, v = 1.25, d = 0.70, and
R =1.10 into (4.4) yields n4 = 0.2727, m, = 0.7273, and C = $13.22.

4.2.2. The Multiperiod Binomial Model

The single-period model we considered above is simple and intuitive, yet
it is very restrictive. We will now extend it to the multiperiod case. In the
standard multiperiod binomial model, the underlying asset price is assumed
to follow the same binomial jump-fall process illustrated in Figure 4.3, with
n periods from each period to the next. Figure 4.3 describes the possible
movements of the underlying asset price in a 4-period binomial tree. There is
only one path for the underlying asset price to rise four times consecutively,
four paths for it to rise three times and fall once, six paths to rise twice and
fall twice, four paths to rise once and fall three times, and one path to fall
four times consecutively.

u's
s
'S s
uS wdS
s WP
ud’s
ds
ud’s
&#s
d’s
s

Fig. 4.3. Price movement in a 4-period binomial model.
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In constructing Figure 4.3, we used an implicit assumption that an up-
ward move followed by a downward move is the same as a downward move fol-
lowed by an upward move. This is actually a path-independent assumption.
Figure 4.3 is also called a lattice. As vanilla options are path-independent,
it is reasonable to use such a method. In general, there are (?) paths for
the underlying asset price to rise 0 < 7 < n times and fall n — i times out of
n, where (7:) is the combinatorial number. Thus, we can obtain the payoff
of a European call option as follows:

PFC(n) =) mir} " max[Su'd"~* - K, 0], (4.5)
i=0

where 0 < i < n is the total number of jumps leading to the final state, and

e‘r‘r/n —d and u— e-rr/n
pu— Ty = —
u—d d u—d ’

using the risk-neutral probability given in (4.4), r and T representing the net
interest rate r = R — 1 and time to maturity of the option, respectively.

It is obvious that the larger the number of jumps i is, the more the
call option is in-the-money. There exists a smallest number of jumps j such
that the call option is in-the-money and out-of-the-money with j — 1 jumps.
Solving the following inequality

Sd" I -~ K >0

Ty =

yields

Jj = max {0, the smallest integer greater than In(K/S) - nlnd} . (4.68)
In(u/d)

With the j given in (4.6), we can rewrite (4.5) as follows:

n n
PFC(n)=S !Z ng-"w;;d"—"ui] -K lz wg-fw;] . (4.7)
i=j 1=j

Equation (4.7) gives the expected payoff of a European call option. To
find the call option price or the present value of the option, we need to
discount the expected payoff at the interest rate r. Discounting the expected
payoff in (4.7) with the discounting factor (14 7/n)™™ [see (2.29)] yields the
call option pricing formula in a n-period binomial model:

1 = n—i, i n—i, 1 = n—i_i
C(n)=(1—+r—/n—)n I:S;ﬂ'd 1rud" u —ngﬂ'd Wu] y (48)
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where
_(/fn)-d __u—(r/n)
vETa—d T Ta=ad
and r = R — 1 is the net return of the risk-free asset, j is given in (4.6).
It is straightforward to check that when n = 1, Equation (4.8) becomes
precisely the same as (4.4), the single-period model pricing formula.

Example 4.2. What is the call option price in Example 4.1 if we choose to
use each month as the calculating period?

In Example 4.1, the current stock price S = $100, the exercise price K =
$105, the upward stock price increase parameter v = 1.25, the downward
parameter d = 0.8, interest rate r = 10%, and time to maturity 7 = 0.5. The
time per period is 7/n = 0.5/4 = 0.125. We can find the smallest integer j
using (4.6)

j = max{0, the smallest integer greater than [In(K/S) — nlnd]/[In(u/d)]}
= max{0, the smallest integer greater than 4 x 0.35667/0.5798}
= max{0, the smallest integer greater than 2.46} = 3.

The risk-neutral probability can be found using (4.5):

Tu = (€™ — d)/(u — d)
= (e09%02/6 _ 0.70)/(1.25 — 0.70) = 0.576
and
rg=1—m, =0.424.

Substituting 7y, g, u, d, 7 = 0.1, n = 4, and S = K = $100 into (4.8)
yields

1 4 . . . 4 o
)= —— n—ipl 9sn—tg 70t — 105 n=i,t
C(4) A+ 0.1/4) (100?:3:”4 7i1.25 0 §i=3:7rd 11'")

= 0.9056 x (100 x 0.22044 — 105 x 0.083199) = $12.05.

4.3. PRICING AMERICAN OPTIONS
IN THE BINOMIAL MODEL

As we discussed in the previous section, the binomial model is a very
intuitive method and can be used to price essentially all kinds of derivatives.
We illustrated how to price European options using the binomial tree ap-
proach in the previous section. We will now show how to use it to price
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American options. The time to maturity is often divided into n equal pe-
riods At = 7/n. The current underlying asset price S is assumed to follow
a binomial process, or the current asset price can either go up to u.S or fall
down to dS from one period to the next. The two parameters u and d are
specified as follows

u(o,7,n) = VT, (4.9)

and

d(o,7,n) = e V™, (4.10)

where o and 7 are the volatility of the underlying asset and the time to
maturity of the option, and n is the number of periods in the binomial
model.

We can readily observe that the specification of the upward and down-
ward movement parameters u and d in (4.9) and (4.10) is path-independent,
that is, an upward movement followed by a downward movement is the
same as a downward movement followed by an upward movement, because
the product of u and d is always unitary. As volatility is in the power of
the two parameters u and d, it determines the degree of fluctuation in the
binomial process.

Using the result in (4.4) and the specification of the two parameters in
(4.9) and (4.10), we can obtain the probability that the underlying asset price
will go up m, and the probability that it will fall down n4 in the risk-neutral
case:

a(r,n) — d(o,7,n)

= =1- 4.11
u u(a,'r,n)—d(a,v',n)’ﬂd 1=, (4.11)

where

a(r,7,n) =€/, (4.12)

and d and u are given in (4.9) and (4.10), respectively.

The expression given in (4.12) is actually the continuous compounding
factor from one period to the next consecutive period. We can observe
directly how the prices are determined in a binomial tree with the movement
parameters specified in (4.9) and (4.10) with an example.

Example 4.3. What are the prices of the asset in each period in a 4-period
binomial model in four months if the spot asset price is $100, the volatility
of the asset 20%, and the interest rate 10%?
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Using (4.9) and (4.10), we can find the upward and downward movement
parameters as follows

u= CUVT/n — 60.2X\/1/(4X3) — 10594’

and

d= L = 0.9439.
u

Following the price specification given in Figure 4.1 in a binomial model
using the parameters u and d obtained above, we can find the prices of the
asset in each period in a 4-period binomial tree. These prices are shown in
Figure 4.4.

125.96
118.90
112.23 112.23
94
105.9, 105.94
100.00 100.00 100.00
94.39
94.39
89.09
89.09 \
84.10
79.38

Fig. 4.4. Price movement in a 4-period binomial tree.

4.3.1. The Backward Method

We expressed European option values in terms of n — j terms in Sec-
tion 4.2 in the multiple-binomial model. When the number of periods n
becomes extremely large, the number of terms in the summations in (4.8)
also becomes extremely large. In practice, an alternative method called back-
ward calculation is used instead of the expression given in (4.8). The idea
of backward calculation is straightforward because we know that the value
of any option at its maturity is simply its prespecified payoff. Discounting
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the expected payoff of the option one period backward using the discounting
factor 1/a(r, 7, n) given in (4.5), we can obtain its value one period away
from its maturity. Following the same method to discount the value one
period back, we can obtain the present value of the option. Let us see how
the backward method is used to price a European option in an example.

Example 4.4. The current underlying price S = $100, the volatility of the
underlying asset is 20%, the interest rate r = 10%, what is the price of the
at-the-money European put option to expire in four months in a 4-period
binomial model?

0.00

0.00

0.00

2.80 0.00

10.91

20.62

Fig. 4.5. Valuation of a European put option using the backward method.

We can use the prices shown in Figure 4.4 because all the parameters
are the same in the two examples. As the option is at-the-money, its strike
price is the same as its spot price $100. Of the five-terminal prices shown
in Figure 4.4, only the two smallest prices yield positive payoffs for the put
option using the European put option payoff formula given in (2.2):

100 — 89.09 = $10.91, and 100 — 79.38 = $20.62.

The two payoffs at maturity are shown in Figure 4.5. We can find the risk-
neutral probability using (4.11) and (4.12)
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a(r,n) — d(o,7,n)

’U-(O', T, TL) - d(U7 T, n)

_exp(0.5 x 0.1/4) — 1.0594

10504 — 00439 — 0-558 =55.8%

and
g=1—my,

=1-0.558 = 0.442 = 44.2%.

From node B in Figure 4.5, the upward value is $10.91 and the downward
value is $20.62 with probability 55.8% and 44.2%, respectively. Thus, we can
find the expected value in the next period from point B in the risk-neutral
case:

10.91 x 0.558 + 20.62 x 0.442 = $15.202.

Discounting the expected value $15.202 at the discounting factor
1/a(r,7,n) = 0.9917 = 99.17% yields

15.202 x 0.9917 = $15.08

which is the value at the point B.

Following the same method, we can obtain the value at node A to be
$4.78. Using the same method to work one period backward from nodes A
and B, we can obtain the values at nodes C and D to be $2.10 and $9.26. The
values of other nonzero nodes are shown in Figure 4.5. Continuing the same
method, we can reach the current node and its value is $2.80. The value of
the current node is exactly that of the European put option, which is about
two cents greater than its corresponding value $3.13 using the Black-Scholes
formula.

4.3.2. Pricing American Options

The method to price American options is approximately the same as
that to price European options as illustrated above in Example 4.4. The only
difference between a European option and an American option is that the
latter can be exercised optimally before maturity while the former cannot.
Because of this important difference, we have to consider the values of earlier
exercises before maturity in pricing American options. We will again show
how to price American options using the backward method in an example.
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Example 4.5. What is the price of an at-the-money American put option to
expire in four months in a 4-period binomial model with all other parameters
the same as in Example 4.47 ‘

There are three steps to price American options in a binomial model.
Firstly, we need to find the payoffs of the American put option at each node
in the binomial tree illustrated in Figure 4.4. The payofls can be easily
found using (4.1), and they are shown in Figure 4.6. From Figure 4.6,
we can readily observe that the payoffs at the two nodes H and G are
$15.90 and $5.61, respectively, if the put option is exercised at the third
period.

0.00

0.00
0.00

0.00 0.00

5.61

10.91

10.91 N
H
15.90
20.62

Fig. 4.6. Payoffs of an American put option in a 4-period model.

Secondly, we need to compare the payoff at each node if the option is
exercised at that node with that if the option is held to the next period using
the backward method shown in Example 4.3, and then choose the larger of
the two payoffs. In our example, the payoff at node H is $15.90 if the option
is exercised at H, as shown in Figure 4.6, and the value at node B if the
option is held to the next period is $15.07. Therefore, we should choose
the larger value $15.90 as the value of the American option at that node.
Similarly, we can find the value of the American put option at the other
nonzero node in the third period to be $5.61 because it is larger than its
corresponding value $4.78 if the option is held to the fourth period. The
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0.00
0.00
0.00
0.00
1.08 050
3.29 0.00
I
5.61
6.14
10.91
1091 K\
]
15.90
20.62

Fig. 4.7. Values of an American put option at various nodes in a 4-period model.

values at all nodes in the second last period are calculated in the same way.
These values are shown in Figure 4.7.

Lastly, we find the value of another period back using the backward
method, compare it with the payoff at each node, and choose the larger
value as the value of the American option at that node. For example, the
payoff of the option would be $5.61 at node G if exercised shown in Fig. 4.6,
yet its value would be $4.78 at node A shown in Fig. 4.5 if held to the next
period. Thus we choose the larger $5.61 as the value shown in Fig. 4.7.
Repeating the same method until we reach the current node, we find the
value of the American put option. Similarly, we obtain the value at node J
is $15.90. Following the same procedure, we can find the value at node K as
$10.91 which is the larger of $10.91 at node N in Fig. 4.6 and the discounted
value $10.08 of nodes I & J. In our example, values at all nodes are shown
in Figure 4.7 and the value of the option is $3.29, which is greater than the
corresponding European option value $2.80 shown in Fig. 4.5..

We found the value of an American put option with four periods in
Example 4.5. As the time to maturity of the option is four months, each
period corresponds to one month. The monthly period was used mainly
for illustrative purpose. In practice, it is too infrequent. We can shorten
the length of each period and find better value for the option. The method
illustrated above can be used for arbitrary number of periods.
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4.3.3. Number of Periods and Calculating Time

When the number of periods is increased, the underlying asset price
becomes smoother, yet these smoother prices are obtained with a higher
cost. As the number of periods becomes large, the time which the computer
needs to calculate the option prices becomes extremely long. This is the
major drawback of the binomial model. However, as long as the process
is convergent, we may obtain reasonably accurate values for the options at
moderate rather than very large number of periods.

4.3.4. Convergence From the Binomial Model to the
Black-Scholes Model

We described the Black-Scholes model in Chapter 2 and the binomial
model in the previous section of this chapter. Cox, Ross, and Rubinstein
(1979) showed that under certain conditions, the multiple-binomial model
will converge to the Black-Scholes model when the number of periods n
approaches infinity. Specifically, if the upward and downward parameters are
set as in (4.9) and (4.10), ud = du = 1 always hold, the multiple-binomial
model will approach the Black-Scholes model as n approaches infinity. This
convergent relationship indicates that the two models can yield very similar
results when the number of periods becomes very large.

4.3.5. A Pricing Method for Both American and
European Options Incorporating Liquidity

We have shown above that the binomial model approaches the Black-
Scholes model when the number of periods becomes extremely large. This
convergent relationship is intuitive because as the number of periods gets
larger and the time to maturity remains the same, the price difference be-
tween each two consecutive nodes in each period becomes smaller. In other
words, the price difference between each two consecutive nodes approaches
zero or the underlying asset price approaches continuity when the number of
periods approaches infinity. As the price approaches continuity, the option
prices in the binomial model approach those in the Black-Scholes model.

In reality, asset prices are not distributed continuously because price
quotations are in sixteenth, thirtysecond, or sixtyfourth of a dollar or one
percent in most exchanges, and liquidity of most assets is less than perfect as
we have argued in Chapter 3. If we constrain liquidity as an additional factor
in pricing options, we cannot increase the number of periods unlimitedly.
As liquidity can be understood as the average time between two consecutive
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transactions of the underlying market, lower liquidity implies smaller number
of periods given the same time to maturity.

In Examples 4.4 and 4.5, the European and American put option prices
are $3.0667 and $3.4069, respectively, with the number of periods n = 120.
As there are about 120 days in four months, n = 120 corresponds to a daily
period. Thus these values may be interpreted as the values of the European
and American options when the underlying market has such a level of lig-
uidity, when the average time span between two consecutive transactions is
about one day.

4.4. AN ANALYTICAL APPROXIMATION

For clarity, we simply consider one, and probably the most popular an-
alytical approximation in pricing American options, the “efficient analytical
approximation of American option values” by Barone-Adesi and Whaley
(1987). This method is also called quadratic approximation because the ap-
proximation uses one root of a standard quadratic equation. The basic idea
is that both European and American option values follow the same partial
differential equation (PDE) as given in (2.12). In other words, the difference
between an American option value and its corresponding European option
value also follows the same PDE. The PDE of the early exercise premium is

given as follows:

—;-0’282635 ~re+gSes+€ =0, (4.13)

where € = ¢(S, 7)—C(S, 7) is the early exercise premium. ¢(S,7) and C(S, 7)
are the American and European option values, respectively; S, 0,7, g stand
for the spot price, standard deviation, interest rate, and the cost of carrying
the underlying commodity, respectively; €; and ess represent the first- and
second-order partial derivatives of the early exercise premium with respect
to the underlying asset price; and 7 = t* — t is the time to maturity of the
option.

Equation (4.13) is a second-order partial differential equation. Using
the substitution (S, 7) = (S, X) = X(7)f(S,X) and X(7) =1—¢e7"", the
partial differential equation given in (4.13) can be rearranged as follows after
some algebraic simplifications:

§%fes + NSfs — (M/X)f — (1 - X)Mfx =0, (4.14)

where M = 2r/o%, N = 2b/o?, fs and fs, represent the first- and second-
order partial derivatives of f(S, X) with respect to S, and fx is the partial
derivative of f(S5, X) with respect to X.
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The focal point in the quadratic approximation is the assumption that
the last term in (4.14) (1 — X)fx is equal to zero. This assumption is
justified in the two polar cases: extremely short-term options (7 — 0) and
extremely long-term options (7 — +00), because for 7 — 0 (resp. +0), fx
approaches zero (resp. X — 1), the term (1 — X)fx — 0. Dropping the
last term in (4.14), it becomes a standard second-order PDE which can be
solved conveniently. Let f(S, X) = aS9, substituting it into (4.14) yields the
following

aS%¢*+ (N ~1)g— M/K] =0
or
@+ (N-1)g-M/K =0, (4.15)

since the term aS7? is not zero and the term in bracket must be zero.
Solving the quadratic equation given above (because the first term is
not equal to zero) yields

@ = [~V -1) - N =D /x| /2 (4.16a)

and

a=[-W -1+ /- ax] 2. (416b)

As q is always negative for any combination of given parameters, it is
not a reasonable solution because f(S, X) will approach infinity as the spot
price S approaches zero. With the second root ¢z, the American call option
price can be expressed as follows:

c(S,7)=C(S,7)+ (1 — e ")a8%, (4.17)

where a is a parameter to be determined later.

Equation (4.17) is a formula for American call options. However, the
parameter az is not known. We will now illustrate a method to determine
its value. There exists one critical commodity price $* above which an
American call option price is equal to S — X and below which its price is
given by Equation (4.17). Therefore

S*— X =C(8%, 1) + (1 — e ")ap(8%)%, (4.18)

and the sensitivity of the American call option with respect to the underlying
asset price for prices above §* and that for prices below S* should also be
equal to each other
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1= TN (S)] + (1 — €7 )azga(S)%7Y, (4.19)

where b is the difference between the risk-free rate of return and the payout
rate of the underlying asset.

Equations (4.18) and (4.19) are two independent equations for two vari-
ables a; and S*, thus a; and S* can be solved simultaneously. As both of
these equations are nonlinear equations, we cannot find a closed-form solu-
tion for ay. Solving (4.19) for a; and substituting it into (4.18) yields an
equation in one unknown variable S*:

S* — K = C(S*,7) + {1 - e " N[d1(S*)]}S* /a2 - (4.20)

With the solution from (4.20), we can express the approximated Amer-
ican call option price as follows

q2
o(8,7) = C(S,7) + Az(-SS—,,) . when § < §*

=S — K, when § > S*, (4.21)

where Ay = (%) {1 - "Nl (S")]} -

Similarly, we can express the approximated American put option price
as follows

aQ
p(S,7) = P(S,7) + Ax (;:_*> , when S§ > S**

=K — S, when S < 8™, (4.22)

where

A = (S;:) {1-e " N[-dy(S™)]},

§** is the solution of the following nonlinear equation
K —S*=P(S* 1)+ {1 —e " N[-d1 (5]} "/,

and gy is given in (4.16b), P(S,7) is the pricing formula for a European put
option with spot price S and time to maturity 7.

Example 4.6. Find the prices using the analytical approximation method
of at-the-money American call options to expire in three months, half a year,
and one year, respectively, given the spot underlying asset price $100, interest
rate 8%, volatility of the underlying asset 20%, yield on the underlying 12%.
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Substituting S = K = $100, r = 0.08, g = 0.12, ¢ = 0.20, 7 = 0.25,
0.50, and 1.00 into Equation (4.20) and solving for the critical price S*
yields '

S* = $114.5439,$118.2539, and $122.3524 for 7 = 0.25,0.50, and
1.00, respectively.

Substituting these critical prices into (4.21) yields the American call
option prices

¢(100,0.25) = $3.5249, ¢(100,0.50) = $4.7241, and ¢(100,1.00) = $6.1750.

As we pointed out earlier, the focal point in the above quadratic ap-
proximation is to assume that the last term in (4.14), (1 — X)fx, is equal
to zero which could be justified for extremely short-term and long-term op-
tions. However, most American options have time to maturity between half
a year and one year, and most long term options such as LEAPS (long-term
equity anticpation securities) trading in the Chicago Board of Options Ex-
change and American Stock Exchange have time to maturity of at least two
years. For American options with time to maturity of a few years, the above
quadratic approximation is likely to generate significant errors. It could be
extended to increase the accuracy, yet the discussion is very long and we
choose not to include it here.

Example 4.7. Compare the American call option prices in Example 4.6
using the analytical approximation with the corresponding prices using the
binomial tree method.

Using the binomial tree method introduced in Section 4.3 with the sub-
period number n = 800 and other parameters given in Example 4.6, we can
find the American call option prices to be $3.5242, $4.7091, and $6.1211
for 7 = 0.25, 0.50, and 1.00, respectively. Comparing the prices with those
in Example 4.6, we can readily find that the prices using the analytical
approximation are higher than those using the binomial method, and the
difference becomes larger with longer time to maturity. As a matter of fact,
the differences as percentages of the corresponding call option prices using
the binomial method are 0.02%, 0.32%, and 0.88% for 7 = 0.25, 0.50, and
1.00, respectively.

The results in Example 4.7 confirm our theoretical discussion above that
the analytical approximation becomes less accurate for options with longer
time to maturity.
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4.5. SUMMARY

We introduced the popular binomial model in this chapter and priced
American options using the binomial model. The only difference between
pricing American and European options is that the larger of the exercise
value and the value of holding the options one period further is used as the
value at each node for American options, compared to the simple backward
calculation starting from the payoff at maturity in the case of European
options. It is shown that the binomial model converges the Black-Scholes
model for European options when the number of periods approaches infin-
ity. Although the binomial method is an efficient model to price American
options, the computation time increases exponentially with the number of
periods. '

The binomial method is an efficient method to price not only standard
American options but also all American-style exotic options. Unless other-
wise specified,we will concentrate on European-style exotic options through-
out the remaining chapters of this book, to show the characteristics of various
exotic options rather than further explaining the corresponding American
exotic options.

QUESTIONS AND EXERCISES
Questions

4.1. What is the difference between an American option and its corre-
sponding European option?

4.2. What is the major difficulty in pricing American options?

4.3. What are the existing approaches to price American options?

4.4. How can liquidity be captured in the binomial model?

45. How can we make the results from the binomial and the Black-Scholes
models comparable?

4.6. What is the major advantage of the binomial model over the Black-
Scholes model?

4.7. What is the major shortcoming of the binomial model?

4.8. Under what conditions does the binomial model approach the Black-
Scholes model?

4.9. Why is Barone-Adesi and Whaley’s approximation to price American
options called a quadratic approximation?

4.10. Is it true that Barone-Adesi and Whaley’s quadratic approximation
is more accurate for short-term options? Why?
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Exercises

4.1.

4.2.
4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

Find the perfect hedging ratio and the put and call option prices
to expire in one year using the single-period binomial model if the
spot stock price is $100, the strike price $100, the upward parameter
u = 1.15, the downward parameter d = 0.9, the interest rate 8%.
Answer the same questions in Exercise 4.1 if d is changed to 0.75.
Answer the same questions in Exercise 4.1 if the interest rate is
changed to 15%.

Find the perfect hedging ratio and the put and call option prices in the
multiperiod binomial model with 4 periods and the time to maturity
is one year if the underlying stock price is $100, the strike price $100,
the upward parameter u = 1.15, the downward parameter d = 0.9,
the interest rate 8%.

Answer the same questions in Exercise 4.4 if the number of periods is
changed to 12 and other factors remain unchanged.

Answer the same questions in Exercise 4.4 if the number of periods is
changed to 52 and other factors remain unchanged.

Find the price of the straddle including the call and put options in
Exercises 4.4 and 4.6.

Find the price of the straddle including the call and put options in
Exercises 4.4 and 4.5.

Find the price of the strangle including a call with strike price $100
and a put with strike price $105 and other parameters the same as in
Exercise 4.4.

Find the price of the strangle including a call with strike price $105
and a put with strike price $100 and other parameters the same as in
Exercise 4.4.



PART III: PATH-DEPENDENT OPTIONS

The payoff of a vanilla option depends only on the relative magnitude
of its underlying asset price at maturity and its strike price, regardless of
how the price of the underlying asset at maturity is reached from above,
below, or in a zigzag way. Since the way the settlement price is reached
represents the change of the value in the underlying asset, it should also be
relevant to the option value written on the underlying asset. Path-dependent
options are designed to capture how the settlement prices of the underlying
assets are reached. There are several kinds of path-dependent options: Asian
options, barrier options, lookback options, one-clique options, shout options,
forward-start options, and others. These path-dependent options represent
the most popular options in the OTC marketplace.

We will analyze most of these path-dependent options in this Part. First
of all, we will analyze Asian options. After providing closed-form solutions
for various geometric Asian options in Chapter 5, we will concentrate on
how to approximated arithmetic averages with their corresponding geomet-
ric averages, and then find approximated closed-form formulas for arithmetic
Asian options in Chapter 6. This approximation method will be used to ob-
tain approximate pricing formulas for many other kinds of exotic options
such as multiple spread options, basket options, and so on. Chapter 7 intro-
duces the concept of flexible Asian options which allocates uneven weights
to various observations in the average, determines closed-form solutions to
flexible geometric Asian (FGA) options, and provides an analytical approx-
imation for flexible arithmetic Asian options using the method developed in
Chapter 6. Comparisons between the approximation and simulation results
show that the approximation formula provides very good approximations
with reasonable parameters. The approximation formula not only reduces
computation time substantially but also makes it possible to express the
Greeks in convenient expressions.

Chapter 8 introduces and prices forward-start options: options that do
not become valid right after the buying of the contracts but after some
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specific time in the future within the option’s maturity. Chapter 9 introduces
and prices one-clique options, and Chapter 10 introduces and prices barrier
options, or trigger options, which become a vanilla option or a fixed rebate,
depending on whether the trigger is touched or not within the life of the
option. Barrier options are getting more popular these days because they are
cheaper than their corresponding vanilla options in general, and can better
capture participants’ specific expectation of the underlying asset movement.
If we call the barrier options discussed in Chapter 10 standard or vanilla
barrier options, Chapter 11 illustrates and prices other more nonstardard
or second-generation barrier options such as Asian barrier options, forward-
start barrier options, window-barrier options, double-barrier options, and so
on.

Chapter 12 studies lookback options, options whose payoffs depend not
only on the terminal underlying asset but also on extrema values: the
maximum or minimum value of the underlying asset within the maturity
of the option. Besides regular lookback options, we also study partial look-
back options which are a percentage of the maximum or a multiple of the
minimum values of the underlying asset price within the option maturity.



Chapter 5
ASIAN OPTIONS

5.1. INTRODUCTION

Asian options, or options based on some average underlying asset prices,
indices, or rates, are one of the most popular path-dependent options. They
are the natural development of vanilla options to capture path-dependence.
Generally speaking, an Asian option is an option whose payoff depends on
the average price of the underlying asset during a prespecified period within
the option’s lifetime and a prespecified observation frequency. As there are
two kinds of averages — arithmetic and geometric, there are two kinds of
Asian options — arithmetic and geometric Asian options. Aside from the
path-dependent characteristic, Asian options are less susceptible to possible
spot manipulation at settlement, and their payoffs are generally less volatile
than vanilla options. As a result, they offer a cheaper way to hedge pe-
riodic cash flows and reduces costs for airlines and exporters. Because of
these characteristics, Asian options have attracted much attention and their
volume has grown rapidly in the OTC marketplace.

Asian options are also called average-price or average-rate options. They
also include average-strike Asian options in which strike prices are some
averages of the underlying asset prices rather than fixed as in vanilla options.
Asian options can be used by corporations with reasonably predictable cash
flows to hedge conveniently as a cheaper alternative to a string of vanilla
options. Longstaff (1995) pointed out the efficiency of Asian interest-rate
options in hedging average costs of funds and provided a closed-form solution
for a cap (a string of call options with periodic exercises) using the simple
interest-rate model of Vasicek (1977).

The characteristics of arithmetic and geometric averages certainly affect
the properties of Asian options. Arithmetic averages are very different from
their corresponding geometric averages. The most important difference be-
tween them is that geometric averages are lognormally distributed when the
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underlying asset prices are lognormally distributed whereas arithmetic aver-
ages are not lognormally distributed even when the underlying asset prices
are. Because of this difference, a closed-from solution for a geometric Asian
option is a straightforward extension of the Black-Scholes model. Yet, it
is very difficult, if not impossible, to obtain similar results for arithmetic
Asian options. We will analyze and price geometric Asian options in this
chapter to obtain closed-form solutions and these solutions will be used to
approximate arithmetic Asian options in the following chapter.

5.2. GEOMETRIC AND ARITHMETIC AVERAGES

The arithmetic average (AA) of n positive numbers ay,ay,...,an, is
defined as
1 n
AAn) ==Y a i =1,2,3,....n, 1
(n) - ga,, i=1,2,3 n (6.1)

where n is the number of observations and a; is the ith observation.

The standard geometric average (GA) of n positive numbers is defined
as follows:

n 1/n
GA(n) = (Ha,-> , i=1,2,3,...,n, (5.2)
i=1

where n is the number of observations and a; is the ith observation.

The arithmetic average defined in (5.1) is often used in daily life and
many other applications where average is concerned. Yet the geometric
average is not as popular as its corresponding arithmetic average for it is
not so often used. When n = 2, for example, the arithmetic average is
simply (2 + 4)/2 = 3 for the two numbers 2 and 4, and the corresponding
geometric average is /2 x 4 = /8 = 2¢/2 = 2.828 which is smaller than 3,
the corresponding arithmetic average. The geometric average is generally
smaller than its corresponding arithmetic average with the only exception
when all observations are the same.

Suppose that the underlying asset price S(7) follows the geometric Brow-
nian motion given in (3.1) with the underlying asset payout rate g. Using the
method described in Appendix of Chapter 2, we know that the underlying
asset price at any time T between current time ¢t and any time in the future
t* can be expressed

S(T) = Sexp [(r —g- %az) T+ az(T)] , (5.3)
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where t < T < t*, and t and t* stand for the current time and the time to
maturity of the option, respectively, and z(T) is a standard Gauss-Wiener
process.

The equation given in (5.3) includes the solution in the original Black-
Scholes model as a special case when g = 0. Suppose that the n prices are
taken from the geometric Brownian motion or from (5.3) with observation
frequency h, or

a1~=S[‘r—(n-—i)h]=Sexp{ (r—g—%oj) [t — (n—1)h]
+ oz[r —(n— z)h]} , (5.4)

where i =1,2,...,n, and 7 = t* — ¢t is the time to maturity.

From (5.4), we can see that the averaging period starts with the first
observation at T' = 7 — (n — 1)h and stops at the last observation (i = n) at
T = 7. The averaging time period is thus from 7 — (n — 1)k to 7, or (n — 1)h.

The payoff of a European-style option based on the geometric average
of n prices of the underlying asset can be expressed as follows:

PFGA = max[wGA(n) — wK, 0], (5.5)

where K stands for the strike price of the option, w is a binary indicator
(1 for a call option and —1 for a put option), and max[.,.] is the same
mathematical function as in (2.1) which gives the larger of the two numbers.

If we compare the payoff of a European geometric Asian option given in
(5.5) with that of a European call and put options given in (2.1) and (2.2),
we can readily obtain (5.5) by simply substituting the underlying asset price
at maturity S(7) with the geometric average GA(n).

The geometric Asian option defined in (5.5) is very general as it includes
standard geometric Asian options with averaging periods starting at the
same time with the option, and forward-start or deferred-start geometric
Asian options with averaging periods starting sometime in the future within
the option’s lifetime. This is because the beginning of the averaging period
T — (n — 1)k in our definition can be either zero or nonzero depending upon
the number of observations n and the observation frequency h.

5.3. PRICING GEOMETRIC ASIAN OPTIONS

In order to price the geometric Asian option with payoff given in (5.5),
we have to know the distribution of the geometric average GA(n), given (i)
the time to maturity of the option 7; (i) the observation frequency h; (iii)
the number of observations n; and (iv) the distribution of the underlying
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asset price in (2.4) or (4.3). To obtain the distribution of GA(n) is almost
the same as to find a closed-form solution of a geometric Asian option. For
a general formula, we need to consider two cases: first, the averaging period
has not started and second, it has already started. Let 0 < j < n be the
number of observations which have already been observed. When j = 0,
the averaging period has not started, when 7 = n, the option is expired,
when 1 < j < n, the option is within the averaging period. Clearly, the
uncertainty in the geometric average is reduced with more observations.

In order to obtain a distribution function for GA(n), we have to know
how various observations a;,i = 1,2,...,n are correlated among themselves.
The covariance between any two overlapping variables from the standard
Brownian motion is a standard result in stochastic calculus. As we need to
use this result repeatedly in this book, we express it formally in the following
proposition.

Proposition 5.1. The covariance of any two overlapping observations of the
standard Gauss-Wiener process equals the smaller of the two corresponding
time intervals. Mathematically,

Cov[z(t:), z(t;)] = min(t;, t;),

where 2(t;) and z(t;) are two observations from one standard Gauss-Wiener
process at two overlapping time points ¢; and ¢;, and min (.,.) is the math-
ematical function which gives the smaller of the two arguments.

Proof. See Malliaris and Brock (1982), page 37. W]

Substituting the specification (5.4) into the geometric average definition
(5.2) and using Proposition 5.1, we can have the following results:

Theorem 5.1. If the averaging numbers are specified as in (5.4), then the
natural logarithm of GA(n)/S or In[GA(n)/S] is normally distributed with

mean (7 — g — 02/2)Tjﬁ,_j + In B*%(j) and variance azT,f‘lj, where

. ] 1/n
Be(0) = 1, B(j) - (f[ Slr = (=) (;‘"J)h]) for 15j5n, (56)
i=1

sa n-—j h(n—3—1)
Tl-‘rn_j = n [T - 2 ] (57)

— 4\ 2 n—1i¥\n — 17 — n —4j
T,f‘lj=’r(¥) G ) 96n12)(4 G0y, (5.8)
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n is the number of observations specified in the contract; h is the observation
frequency or the time interval between two consecutive observations; j is the
number of observations already passed; B(j) is the geometric average of the
gross returns! of those observations that have already passed; and 7 is the
time to maturity of the option.

Proof. Using Proposition 5.1, and the following two summations

Zn:i n(n + 1) Z 2 _ n(n + 1)6(2n + 1) , (5.9)

we could obtain Theorem 5.1 after a few steps of derivations and simplifica-
tions. O

The two functions T;35,_; and T2, may be interpreted as the effective
mean and volatility time functions, respectively, because they largely deter-
mine the effective mean and variance of the geometric average. The effective
time functions T;5,_; and T,%; may be better understood if we compare
them to the mean and variance of the log-return of the spot price in the
Black-Scholes model, (r — g — 0%/2)7 and o?r. It can be readily shown that
both these effective time functions are always smaller than the actual time to
maturity of the option 7, implying that the actual variance of the log-return
of the geometric average is always smaller than that of the spot price at
maturity o%7. A larger j implies smaller effective volatility time and smaller

effective volatility, and therefore a smaller value of the option.

Example 5.1. What are the effective mean and volatility time values if
there are 12 observations in the geometric average, observation frequency
is monthly, the averaging period has not started, and the time to maturity
of the option is one year? What are the effective mean and variance of the
geometric average compared to those of the spot price at maturity?

'For any two prices P(t2) and P(t) of one asset at time t; and t2, P(t2)/P(t1) is called the
gross return and [P(t2) — P(t1)]/P(t1) is called the net return of this asset from ¢ to t2. Net
return is the net gain in price of the asset over the original asset price. Obviously, net return is
always equal to gross return less one for any asset in the same time period. There is another useful
relationship between these two returns: the logarithm of any gross return is approximately equal
to the corresponding net return. This is because net returns are normally a small percentage and
the relationship is simply the Taylor series expansion In(l + z) = x, where z represents any net
return.
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Substituting n = 12, h = 1/12, j = 0, and 7 = 1 into (5.7) and (5.8)
yields

LI R ST ED)

,"yn"—j n 2
_12-0 (1/12) x (12—0—1)] _
=1 [1 5 = (.542 year,
. 2 . . .
__(n—3J (n=j)n-j-14n-4j+1)
T:‘ij"T( n ) B 6n2 h
1 (12-0)2_ (12-0)(12-0-1)(4x12-4x0+1) 1
- 12 6 x 122 12
= 0.376 year.

Since the effective mean and variance of the geometric average are
(r—g—a2/2) un—j and azT,f‘ij, and (r—g-—o2%/2)r and o7
for the spot underlying asset at maturity from Theorem 5.1 and In[B*¢(0)] =
0, the effective variance of the geometric average 0.37602 is significantly
smaller than the variance of the underlying asset o? for any volatility
parameter chosen. The effective mean of the geometric average 0.542 x
(r — g — 0?/2) is significantly smaller (resp. greater) than the mean of the
spot price (r — g — 02/2) if the drift u is greater (resp. smaller) than o2/2.

Example 5.2. How would the results in Example 5.1 change if there are
253 observations in the geometric average, observation frequency is daily and
other parameters remain unchanged?

Substituting n = 253, h =1/253, j =0, and 7 = 1 into (5.7) and (5.8)
yields

AL N LS EL ]

mr—j T g 2
2530 (1/253) x (253—0—1)] _
=23 [1 — 5 = 0.502 year
_ . 2 . . _ . - _ .
S8 =1 (n J) _ -l —j-DEn—-4j+1)
J n 6n2
—1x (253—0)2_ (253 - 0)(253 —0—1)(4 x 253 —4x0+1) 1
- 253 6 x 2532 253

= 0.335 year.
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Example 5.3. What are the effective mean and variance time functions if
observation frequency is continuous and averaging starts from the present
time?

The number of observation n approaches infinity and the observation
frequency h approaches zero if the observation frequency is continuous. Sub-
stituting n — oo and h — 0, nh — 7 (because averaging starts from the
present) into (5.7) and (5.8) yields

T —7/2 and T3, —»7/3.

The effective mean time and variance time decreased from 0.542 to 0.502
and from 0.376 to 0.335, respectively. Thus, the effective variance of the
geometric average declines as the observation is more frequent.

With the distribution of the geometric average given in Theorem 5.1, we
can readily obtain a pricing formula for geometric Asian options in closed-
form:

Theorem 5.2. If the averaging numbers are specified in (5.4), then the price
of a European geometric average option is given by the following formula:

C* = wSA* (j)eTin-i N (wdst ; + w0 [T32 ) — wKe™ " N(wds ),
(5.10)
where

A%(f) = e T Tt )=0 (T~ Ti2 )2 gsa |

- [n(2)+ -0= 1) i) (7).

w is the same binary operator as in (5.5), and all other parameters are the
same as in Theorem 5.1.

Proof. Using the distribution of GA(n) given in Theorem 5.1, we can ob-
tain the expected payoff of the geometric Asian option" after integration.
Discounting the expected payoff at the risk free rate of return r yields
(5.10). 0

We can easily verify that the Black-Scholes formula is a special case of
(5.10). Since a vanilla option is an average option with only one observation,
substituting n = 1 and j = 0 into (5.10) yields T3%,_; = Tp2; = 7, A*(j) =
B*%(j) =1, thus

a5z = In(S/K) + (r =g = o*/2)71/ (ov/7) |
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and (5.10) collapses to the extended Black-Scholes formula given in (3.2)
with the underlying asset payout rate g and the Black-Scholes formula is a
special case of (3.2) when g = 0. '

Formula (5.10) is essentially of the Black-Scholes type and it is of the
same complexity level as the Black-Scholes formula. Formula (5.10) includes
a memory variable B%(j) keeping all observations already passed. In order
to use (5.10), we only need to calculate the values of the two effective time
functions and use them to calculate the argument d;* ;. We will return to
the topic on how to use (5.10) in Section 5.7.

Example 5.4. What are the prices of the call and put options with strike
price $400 to expire in one year, based on the geometric average of the
monthly gold price, given the spot gold price is $390 per ounce, interest rate
7%, yield on the gold zero, and volatility of gold return 20%?

Since the time to maturity, observation frequency, and the number of
observations are the same as in Example 5.1, we can use the two effective
time values in Example 5.1. Substituting S = $390, K = $400, r = 0.07,

g=0,0=020,w=1,T;%_; = 0542, and T332 ; = 0.376 into (5.10) yields

390 1
sa habihd _n_ 2 2
ay = {10 (20) + (007-0- 1 x02F) x 0502 + i)} /
(0.20 x v/0.376) = 0.0145,
C = SA(O)N (di; +0,/T52,) — Ke " N(ds2;)
= 390 x 6—0.07(1—0.542)—0.202x(0.542—0.376)/2
+ N(0.1372) — 400 x e~ %9 N(0.0145)
= 390 x 0.9652 x 0.5546 —400 x 0.9324 x 0.5058 — $20.117,

and the corresponding geometric put option price can be found by substi-
tuting w = —1 and other parameters into (5.10)

P =—SA*(O)N (—di2 ;o\ /T52 ;) + KeT"N(-d32 ;)

= —390 x 6—0.07(1—0.542)—0.202><(0.542—0.376)/2

+ N(—0.1372) + 400 x e %9 N(-0.0145)
= -390 x 0.9652 x (1 — 0.5546) — 400 x 0.9324 x (1 — 0.5058) = $16.637.
Example 5.5. What are the prices of the call and put options in Exam-

ple 5.3 if the observation frequency is daily and other parameters remain
unchanged?
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Since the time to maturity, observation frequency, and the number of
observations are the same as in Example 5.2, we can use the two effective
time values in Example 5.2. Substituting S = $390, K = $400, r = 0.07,

g=0,0=020,w=1,T55 _,=0502 and 732 ; = 0.335 into (5.10) yields

390 1 ) ‘
d:a_] = {ln (m) + (007 —-0- 5 x 0.20 ) x 0.502 + ln[l]}/

(0.20 x \/0.335) = —0.0019,

C = SA*(0)N (d:;“_j +0,/T j) — Ke "TN(d32 )

— 300 x g~ 0-07(1-0.502)~0.20? x (0.542~0.335) /2

+ N(0.1139) — 400 x e~ %97 N (-0.0019)
= $18.519

and the corresponding geometric put option price

P = —SA*(0O)N (—d:;‘_ja Tse ) + Ke T N(=d52 ;)

— 390 x e~0-07(1-0.502)—0.20% x (0.502~0.335)/2

+ N(—0.1139) + 400 x e~ N(0.0019)
= $16.091.

5.4. CONTINUOUS GEOMETRIC ASIAN OPTIONS

We defined arithmetic and geometric averages in discrete time in Sec-
tion 5.2 and obtained a closed-form solution for Asian options based on the
discrete geometric averages of the underlying asset prices in Section 5.3. In
general, continuous averages are good approximations of discrete averages
with very high observation frequency. In this section, we will turn to the
concepts of continuous arithmetic and geometric averages and price options
based on these averages.

Before we start our analysis, we need to establish a relationship between
the number of observation n, the observation frequency h, and the averaging
period T,p. If we know any two of these three parameters, we can readily
obtain the third using the following identity:

Tap = nha (511)

which obviously indicates that the averaging period is zero for vanilla options
with only one observation.
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The continuous arithmetic average (CAA) of the underlying asset price
S(7) between any specific time in the future s and the time to maturity of
the option t* is defined as follows: '

1

t* — s

=
CAA(s,t*) = S(T)dT, (5.12)
L]

where S(T) is given in (5.3).

As a matter of fact, (5.12) is not really a new definition. The identity
(5.11) indicates that the number of observations n has to approach infinity
when the observation frequency h approaches zero in the continuous case,
given the averaging period T, = t* — s fixed. With some simple calculus
manipulation, we can show that (5.12) is the limiting result of (5.1) when
the observation frequency approaches zero and the number of observations
approaches infinity.

Similarly, the continuous geometric average (CGA) of the underlying
asset price S(7) between any specific time in the future s and the time to
maturity of the option t* is defined as follows:

.

CGA(s,t") = exp {t* o - / ln[S(T)]dT} , (5.13)
s

where S(T) is given in (5.3).

We can also show that (5.13) is the limiting result of (5.2) when the
observation frequency approaches zero and the number of observations ap-
proaches infinity, given the averaging period Tgp, = t* — ¢ fixed. Again, the
continuous geometric average is not a new definition. It is the same geomet-
ric average when the observation frequency becomes infinitesimally small.

We can show that the continuous geometric average given in (5.13) is
equal to the following if we substitute (5.3) into (5.13)

t‘
CGA(s,t*) = S exp { <1‘ —g-— %az>% + t*" - / z(T)dT} , (5.14)
- 8

where z(T) is the same standard Gauss-Wiener process as in (5.3).
Options can be written on the continuous geometric average given in
(5.13) or (5.14). The payoff of such an option can be expressed as follows:

PFCGA = max[wCGA - wK, (0], (5.15)

where K,w, and max[.,.] are all the same as in (5.5).
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We express the price of an Asian option based on the continuous geo-
metric average in the following theorem.

Theorem 5.3. If averaging is continuous and the averaging period starts
at ¢, the current time, the price of a European continuous geometric average
option is given by

5 = wSe—(r‘r+¢72/6)/26—g‘r/2N (wdcsa + wo /7_/3) _ wKe—r‘rN(wdcsa) ,

o==[u(3)+ (-1 / ()

Proof. As the continuous geometric average CGA given in (5.13) is a limit-
ing case of the standard discrete geometric average in (5.2) when the obser-
vation frequency approaches zero and the number of observations approaches
infinity, the pricing formula of the Asian options based on the CGA should
also be the limiting case of the pricing formula (5.10). From Example 5.3,
we know that the two effective time functions 7};%, _; and T2 ; approach T/2
and 7/3, respectively as h — 0 and n — oco. Substituting these limiting
results into (5.10) yields (5.16). a

where

Example 5.6. What are the prices of the call and put options in Example
5.4 if the observation frequency is continuous and other parameters remain
unchanged? v

Substituting S = $390, K = $400, r = 0.07, g = 0, ¢ = 0.20, w = 1,
7 =1 into (5.16) yields

S 1 T
csa _ > L g— 242"
d _[ln<K)+(r g 2a>2]/(0 ‘r/3)
= [ (3% _1 2) L /
= [ln (400)+(0.07—0 2 x 0.20 ) X 2]
(0.20 X \/1/3> = —0.027434,
C = Se-—(rr+a2/6)/2e—-g-r/2N (dcsa +o /7/3) _ Ke—rTN(dcsa)

= 390 x e~ (007x1+0-20%/6) N1 112727) — 400 x =07 N(—0.027434)
= $18.440,
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and the corresponding geometric put option price
P=—SA(O)N (~di®; — 0 [T52 ) + Ke " N(-d52 )

= —390 x 6—(0'07x1+0'202/6)N(—0.1127)
+ 400 x e"%97N(0.0274)
= $16.064 .

Comparing the results with Examples 5.4 and 5.5, we can readily find
that the prices of the geometric Asian call and put options with daily ob-
servation $18.519 and $16.091 are very close to the two corresponding prices
with continuous observation $18.440 and $16.064, or the differences are only
0.43% and 0.17% of the corresponding option prices with continuous obser-
vation. These results show that continuous observation is a very good ap-
proximation of daily observation. Table 5.1 lists the number of observations,
observation frequency, and the differences between the geometric Asian call
option prices with discrete and continuous observations, and the differences
as percentages of the continuous geometric call option prices. From this ta-
ble, we can see that differences between the semi-daily or quarter-daily and
continuous observations are as small as 0.2% and 0.1%. Thus continuous
observation provides a very good approximation for observation frequency
more frequent than quarter-daily.

Table 5.1. Differences between prices of geometric Asian call options with discrete and
continuous observations.

Number of observation

n  Frequency Discrete Diff % Diff
12 0.083333 monthly 20.117 1.677 9.094360 ‘
52 0.019230 weekly 18.825 0.385 2.087852
253 0.003952 daily 18.519 0.079 0.428416
506 0.001976 semi-daily 18.479 0.039 0.211496
1012 0.000988 quarter-daily 18.459 0.019 0.103036

1518 0.000658  per 6-th of a day 18.453 0.013  0.070498
2024 0.000494  per 8-th of a day 18.449 0.009  0.048806
infinity 0  continuous 18.44 0 0

Formula (5.16) is much simpler than the corresponding formula (5.10).
As observation frequency gets as frequent as hourly, formula (5.16) can pro-
vide almost the same price as (5.10). The limiting value of the effective
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variance time function 7/3 in Theorem 5.3 explains the use of “the 1/v/3
rule” discussed by Levy and Turnbull (1992). However, the continuous for-
mula (5.16) cannot replace the discrete formula (5.13) because the differences
between prices with continuous observation and with less frequent observa-
tions can be too large to neglect, as shown in Table 5.1 with monthly or
weekly observations.

The Asian call option prices become higher with more frequent obser-
vations as shown in Table 5.1. This is because the volatility of the average
gets lower with more frequent observations (see Exercise 5.15).

5.5. GEOMETRIC-AVERAGE-STRIKE ASIAN OPTIONS

Theorems 5.2 and 5.3 provide closed-form formulas for European Asian
options based on discrete geometric average prices and continuous geometric
average prices with fixed strike prices respectively. There are Asian options
with strike prices specified as some average prices of the underlying assets.
In this section, we will price the Asian options with strike prices specified as
the geometric averages of the underlying asset prices.

The payoff of an Asian option with strike price specified as the geometric
average of the underlying asset price is given as follows:

PFCGA = max[wS(7) — wGA(n), 0], (56.17)

where GA(n) is given in (5.2), S(7) in (5.3), and w is the same as in (5.5).

In order to price Asian options with strike prices specified as the geo-
metric averages of their underlying assets, we need to know the correlation
coefficient between the log-return of the underlying asset and that of the
geometric average defined in (5.2).

Theorem 5.4. The correlation coefficient between the log-return of the un-
derlying asset and the log-return of the geometric average defined in (5.2) is

_ {o®+[r—g— %02]7}(7’ — %—lh) —[r-9- %02]27 sa

wiej (518
o?, JTT32 )
a

where T;3%,_; and T;;%; are the effective mean time and variance time func-
tions given in (5.7) and (5.8), respectively.

Proof. Using the definition of geometric averages in (5.2) and the covariance
between any two overlapping observations of the same underlying geometric
Brownian motion given in Proposition 5.1, we can obtain (5.18) after some
simplifications. a
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Example 5.7. What is the correlation coefficient between the log-return
of the underlying asset and that of the geometric average if the interest
rate is 7%, yield on the underlying asset is zero, volatility of the underlying
asset is 20%, time to maturity is one year, and observation frequency is
monthly?

We can use the results in Example 5.1, where T35, _; = 0.542 and T2 ; =
0.370, because the conditions of Example 5.1 are the same as in this example.
Substituting 7 =1, 55— = 0542, T32, = 0.370, r = 0.07, g = 0.00,
o = 0.20 into (5.18) yields p = 0.883 = 88.3%.

Example 5.8. What is the correlation coefficient between the log-return of
the underlying asset and that of the geometric average if averaging starts
from the present and observation is continuous? ‘

Substituting lim, R, = 7/3 and lim,_, T = 7/2, and (n —
1)h — 7 into (5.18) yields p. = v/3/2 = 0.866 = 86.60%. This result
indicates that the correlation coefficient with continuous observation is in-
dependent of any parameters which affect the correlation coefficient with
discrete observation.

With the correlation coefficient given in (5.18), we can obtain the pricing
formula for Asian options with payoffs specified in (5.17) in the following
theorem.

Theorem 5.5. The price of a European-style Asian option with strike price
specified as the geometric average of the underlying asset prices given in
(5.2) is

AGESTK = wS [ ™" N(wDg1) — A (j)e eI N(wDygo)| ,  (5.19)
where

=In[BG)] + (r — g - 30%)(r = Tpe, ;) + 0% (pyrT3e; - 1)

Dyy =
g2 0_\/;; 3
Dg1=Dgr +0yTe, Te=T1—2p/1T3%, + T35,

A%%(j) and B**(j) are the same as in (5.10), p is given in (5.18), and T35, _;

and 732 ; are the same effective mean and variance functions given in (5.7)
and (5.8).

Proof. We known that both S(r) and GA(n) are lognormally distributed
and they are correlated with the correlation coeflicient p given in (5.18).
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Using the standard bivariate normal distribution (to be illustrated in greater
detail at the beginning of Part IV) between S(7) and GA(n), we can obtain
the expected payoff of PFCGA given in (5.17). The pricing formula (5.19)
can be readily obtained by discounting the expected payoff of PFCGA given
in (5.17) at the risk-free rate of return using the RNVR. O

Example 5.9. What are the prices of the Asian call and put options with
the strike price specified as the geometric average of the underlying asset
prices, given other information the same as in Example 5.47

Because the time to maturity, observation frequency, and the number
of observations are the same as in Examples 5.1 and 5.7, we can use the
two effective time values in Example 5.1 and the correlation coefficient in
Example 5.7. Substituting S = $390, K = $400, r = 0.07, g = 0, ¢ = 0.20,

w=1, T,f?n_j = 0.542, T,fij = 0.376, p = 0.883 into (5.19) yields

Te=T7=2p/TT3%, + TpZ;
=1-2x0.883 x v1 x 0.376 + 0.376 = 0.4583,

(0.07 — 0 — 1 x 0.20%)(1 — 0.542) + 0.20% x (0.883 x /1 x 0.376 — 1)
- 2
0.20 x +/0.4583

Dys
=0.042,
Dy = Dy + 0+/7; = 0.034 + 0.20 x v/0.4583 = 0.151,
the call average-strike option price is then
C =8 [ N(Dg) — A (j)e™"n-3 N(Dy2)|
= 390[N(0.034) — 0.9652 x N(0.169)] = $23.76;

and the corresponding put option price can be found by substituting w = —1
into (5.19)

P = -5 [e"7 N(~Dg1) — A™(j)e™*Tn-i N(~Dga)|
= —390[N(—0.034) — 0.9652 x N(—0.169)] = $10.20.

Theorem 5.6. The price of a European-style Asian option with strike price
specified as the continuous geometric average of the underlying asset prices
given in (5.13) with averaging starting from the current time is

ACGESTK = wS [¢™9" N(wDeg1) — e~ 07+7"/9/2e=9 2N (wDega))
(5.20)
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where
(r—9-0%/2)5+0*5-1) [ a

Proof. Using the correlation coefficient between the log-returns of the un-
derlying asset and the geometric average given in Example 5.7, and sub-
stituting lim,—0 32, = 7/3 and limp 00 T5%—; = 7/2 into A**(j) yields
limy, 00 A%(5) = e~ (r7+02/6)/2, Substituting these three limiting values into
(4.15) yields (4.16). O

Example 5.10. What are the prices of the call and put options with strike
price as the continuous geometric average of the underlying asset prices and
other parameters being the same as in Example 5.47
Substituting § = $390, K = $400, r = 0.07, g = 0, 0 = 0.20, w = 1,
T55—; = 0.542, 132 ;= 0.376, p = 0.866 into (5.20) yields
Db _r=g=0*2F 4025 -1)
92 = o\/T/3
_ (0.07 -0 -10.20%/2)1 +0.20%(1 — 1)

0.20 x /1/3

Deg1 = Dega + 04/7/3 = 0.0433 + 0.20 x /1/3 = 0.1588,

= 0.0433,

the price of the call option is
C =S [e7N(Degr) ~ e=T+/02¢=97/2N (Dey)]
= 390 [N(0.1588) — 0.9624 x N(0.0433)] = $25.45;

and the corresponding put option price can be found by substituting w = —1
into (5.20)

P = -8 [e79" N(~Deg1) + e+ 60/ 2e=0T/2N (~ D, )]
= —390 [N(—0.1588) — N(—0.0433)] = $10.79.

5.6. ASIAN GREEKS

Sensitivities are used in most trading strategies. The Greeks of Asian
options have very interesting characteristics which those of vanilla options do
not possess. As an example, we will simply illustrate the delta of a geometric
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Asian option. Taking the first-order partial derivative of (5.10) with respect
to S yields the following after simplifications:?

Delta(GEASTAN) =w (22 ) AmG)N (wdit; +wo\[TEE,) . (521)
where all parameters are the same as in (5.10).

The delta formula in (5.21) clearly indicates that the delta is affected
by the number of observations passed and the actual passed observations.
Before averaging starts, the delta is also affected by averaging as the two
effective time functions are affected by the total number of observations and
the observation frequency. The delta of an Asian option based on contin-
uous geometric average is also the limiting case of (5.21) as the number of
observations approaches infinity and the observation frequency approaches
zero. The limiting result can be given as follows:

Delta(CGEASIAN) = we"+**/9/2N(wD¢q1), (5.22)
where all parameters are the same as in (5.20).

Example 5.11. What are the deltas of the call and put options in Example
547

Substituting S = $390, K = $400, r = 0.07, g = 0, 0 = 0.20, w = 1,
Tp5_; = 0542, T32, = 0.376, p = 0.883, &2 ; + 0,/T3%; = 0.1372 (see

Example 5.4) into (5.21) yields

("_;i)AsaU)N (2 +0\/T32;)

= '121; O‘ X e‘T(T—Tﬁf'n—j)“’z(T;?ﬂ-J‘ —T:Zj)/ZN(0.1372)
= ¢—0-07(1-0.542)-0.20(0.542-0.376)/2 Iy (1 372)

delta of the call

= 0.5353 = 53.53%,

2gimilar to the identity given in (3.30) of Chapter 3 (also see Exercise 3.4 of Chapter 3), we have
the following identity for geometric Asian options

sa®(j)f (d5; +o, [T32;) = KeT ™ f(d32 ),

which is used to simplify the delta expression and other geometric Asian Greeks. See Exercise 5.1.
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n—j . -
delta of the put = — (T)A“(J)N (—df,a_j —a\/T3,)

12-0
=— X

12
— ¢~0.07(1~0.542)—0.202(0.542-0.376) /2 N(~0.1572)

e T )= Tl = TR /2 N (Z0.1372)

= 0.4299 = 42.99%

Example 5.12. What are the deltas of the call and put options in Example
5.6 with continuous observation?

Substituting S = $390, K = $400, r = 0.07, g = 0, 0 = 0.20, w = 1,

T = 7/2, T2, = 7/3, p = 0.866 into (5.22) yields

delta of the call = e="™+*/8)/2N(D, ;)
— e—(o.07><1+0.2o2/6)2N(0_1127)
= (0.5244 = 52.44%,

delta of the put = —e_"+”2/6)/2N(-chl)
— _6—0.07x0.202/6)/2N(_0.1127)
= 0.4380 = 43.8%.

Zhang (1995c) provided specific expressions for other Greeks of flexible
geometric Asian options. They can be obtained by taking partial differential
derivatives of the pricing formula. We skip these expressions in this book.

5.7. AN APPLICATION

In this section, we are going to provide an example to show how to
apply geometric Asian options in practice. We argued that Asian options
can provide a cheaper way to hedge the underlying asset with periodic cash
flows. The example shows how Asian options can specifically hedge the
foreign currency risk more efficiently than a string of standard options.

Example 5.13. The current US dollar/Japanese yen exchange rate is
¥ 85 per dollar. Because of its huge trade surplus with the US, many peo-
ple still predict that the yen will appreciate further against the dollar. The
prospective appreciation of the yen will create risks for American importers
of Japanese products because they have to pay more for the same products.
Suppose that an importer has to import Japanese products at the end of
each month for one year. He has to buy twelve vanilla yen call options with
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the same strike price ¥ 85 per dollar to hedge the appreciation of the yen. In
order words, if the dollar/yen rate falls below 85, he can exercise his power
of these yen call options at ¥ 85 per dollar. What is the total cost of buying
twelve consecutive yen call options with strike price ¥ 85 per dollar, given
the US interest rate r = 6%, Japanese interest rate ry = 3%, volatility of
the dollar/yen exchange rate 18%?

Substituting S = K = 1/85 = $0.011765, r = 0.06, g = ry = 0.03,
r=1/12, 2/12, 3/12, 4/12, 5/12, 6/12, 7/12, 8/12, 9/12, 10/12, 11/12, and
1 into the extended vanilla option pricing formula in (3.2) yields the call
option prices for ¥ 1 million (in the order of increasing time to maturity):
$257.87, $372.23, $462.62, $540.45, $610.16, $674.02, $733.40, $789.18,
$841.98, $892.25, $940.34, and $986.50. The total cost of these call options
is $8,101.

Instead of buying twelve consecutive call options, the importer can buy
an Asian call option based on geometric average with monthly observation
as we analyzed in Section 5.3. Given the same information as above, we can
obtain the price of the geometric Asian option easily for ¥1 million: $482.91.

The cost ($482.91) is significantly smaller than the total cost of twelve
consecutive call options ($8,101). Therefore, Asian options can provide a
cheaper way to hedge the underlying assets.

5.8. CONCLUSIONS

A significant portion of the materials in this chapter is based on Zhang
(1994a). A few other authors, like Kemna and Vorst (1990), Turnbull and
Wakeman (1991), among others, have obtained similar pricing formulas for
geometric Asian options as given in Theorem 5.2. However, Theorem 5.2
is very general and intuitive as it is of the Black-Scholes type and includes
passed observations as well as expected observations. _

We concentrated on geometric Asian options in this Chapter and found
closed-form solutions for Asian options based on standard discrete geometric
averages, continuous geometric averages, and Asian options with strike prices
specified as geometric averages. These formulas are of the Black-Scholes type
and can be used very conveniently. Although these formulas can be used
directly for geometric Asian options, geometric Asian options are still not as
popular as their arithmetic Asian options. However, the study of geometric
Asian options can serve at least three purposes: actual use of geometric
Asian options, control variate for arithmetic Asian options in Monte Carlo
simulations, and basis for approximating arithmetic Asian options, as we
will show in the following chapter.
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Asian options can also be written on moving averages or averages in
process. These kinds of Asian options can easily be modified to American-
style Asian options. They can be priced using the binomial model in Chapter
4. As most Asian options are of European-style, we leave this topic without
further pursuing it.

QUESTIONS AND EXERCISES
Questions

5.1. © What are path-dependent options?

5.2.  Are Asian options always cheaper than their corresponding vanilla
options?

5.3.  What are geometric averages?

54.  Are arithmetic averages always greater than their corresponding ge-
ometric averages? Why?

5.5.  Are arithmetic Asian options always more expensive than their cor-
responding geometric Asian options? Why?

5.6.  What does effective time value in (5.8) mean?

5.7. What is “the 1/ V3 rule”?.

5.8.  Are geometric Asian optioﬁs always cheaper or more expensive with
continuous. observation than with discrete observation given other
parameters unchanged?

5.9.  What is the major advantage of the geometric Asian option pricing
formula with continuous observation given in (5.10) over that given
in (5.16)7

9.10.  Isthe correlation coefficient between the log-returns of the underlying
asset and the geometric average always constant?

Exercises

5.1.  Show the identity: SA*(j)f(dsL; + o, /T5%,) = Ke ™ f(d52 ;).

5.2.  Show that the continuous geometric average given in (5.13) is the lim-
iting case of the discrete geometric average (5.2) when n approaches
infinity and the averaging period t* — s is fixed.

5.3.  What are the effective mean and volatility time values if there are
52 observations in the geometric average, observation frequency is
weekly, the averaging period has not started, and the time to matu-
rity of the option is one year?

54. What are the effective mean and variance of the geometric average
compared to those of the spot price at maturity in Exercise 5.37



5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.
5.14.
5.15.
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Answer the questions in Exercises 5.3 and 5.4 if the observation is
bimonthly?

Find the prices of the geometric Asian call and put options with
weekly observations to expire in half a year, with strike price $460,
if the current underlying index is $450, interest rate is 8%, yield on
the underlying index is 4%, volatility of the index is 25%?

Answer the same questions in Exercise 5.6 if the observation fre-
quency is bimonthly and other parameters are the same as in Exer-
cise 5.67

Answer the same questions in Exercise 5.6 if the observation fre-
quency is continuous and other parameters are the same as in Exer-
cise 5.67

Show that the correlation coeflicient between the spot at maturity
S(7) and the geometric average are bivariate log-normally distributed
with the correlation coefficient given in (5.18)

Find the correlation coefficient between the log-returns of the under-
lying asset and the geometric average with geometric strike prices
with weekly observations, time to maturity 20 weeks, interest rate
7%, yield on the underlying asset 2%, and spot price $100.

Find the price of the European Asian options with geometric strike
prices with weekly observations, time to maturity 20 weeks, interest
rate 7%, yield on the underlying asset 2%, and spot price $100.
Answer the same questions in Exercise 5.10 with continuous obser-
vation and other parameters remain the same as in Exercise 5.10.
Find the deltas of the call and put options in Exercise 5.6.

Find the deltas of the call and put options in Exercise 5.8.

Show that the volatility of the geometric average gets lower with
more frequent observations.






Chapter 6

APPROXIMATING ARITHMETIC ASIAN
OPTIONS WITH CORRESPONDING
GEOMETRIC ASTAN OPTIONS

6.1. INTRODUCTION

The majority of Asian options trading in the OTC marketplace are
European-style options based on arithmetic average prices of the underly-
ing assets. There exists one problem in pricing these options: their prices
cannot be expressed in closed-forms under the same conditions of lognor-
mality and risk-neutrality. This is because the arithmetic average is not
lognormally distributed even when all the individual prices follow a lognor-
mal process. However, closed-form solutions exist for European-style Asian
options based on geometric average prices of the underlying assets, as we
showed in Chapter 5, because the geometric averages are lognormally dis-
tributed if the individual prices are lognormally distributed. Closed-form
solutions for options based on geometric average prices are often used as
initial values to price arithmetic Asian options numerically employing the
Monte Carlo control-variate method. This was first applied in financial eco-
nomics by Boyle (1977).

Attempts have been made to approximate values of arithmetic Asian
options using the closed-form solutions of geometric Asian options. Using a
lognormal distribution to approximate the arithmetic average of lognormal
variates, Turnbull and Wakeman (1991) provided an algorithm for pricing
European-style arithmetic Asian options. The accuracy of their algorithm
can be very high when the number of variates in the averaging period is either
very large or very small, yet it becomes rather low when the number of vari-
ates is within a certain range. Levy (1992) approximated arithmetic Asian
options using the otherwise identical geometric averages which have the same
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first two moments! with the corresponding arithmetic averages. Vorst (1992)
established an approximation formula of the Black-Scholes type, yet his for-
mula depends entirely on an inequality that is essentially an alteration of
the fact that a geometric mean is always a lower bound for its corresponding
arithmetic mean. Although the results can be reasonably accurate when
the difference between an arithmetic mean and its corresponding geometric
mean is very small, they become inaccurate when the difference is large.
The existing studies are obtained either from an arbitrarily fixed number of
equalized moments of an arithmetic average and its corresponding geometric
average [the first two moments in the case of Levy (1992) and the first four
moments in the case of Turnbull and Wakeman (1991)] or from an arbitrarily
reduced effective strike price as in the case of Vorst (1992). The results to be
shown in this chapter are firmly derived from mathematical approximation
using Taylor’s series expansion.

Yor (1992) derived formulas for the Laplace transform of an arithe-
matic Asian Option, yet there have been no numerical studies of the in-
version of this Laplace transform, and no simple analytical inversion has
been found. Rogers and Shi (1995) provided a method for computing lower
bounds on the price of an Asian option. Chalasani, Tha and Varikaoty
(1997) improved Rogers and Shi (1995) by choosing alternative base random
variables.

There are other studies on arithmetic Asian options. Ruttiens (1990)
discussed how to price arithmetic Asian options using Monte Carlo simula-
tion and Kemna and Vorst (1990) studied the European-style Asian options
and priced them using the same method. The standard control variate is
the otherwise identical geometric average option.

Little attention has been paid in literature to study what affects the dif-
ference between an arithmetic mean and its corresponding geometric mean.
Without a thorough understanding of this difference, it would be hard to
approximate mathematically arithmetic Asian options with geometric Asian
options with known accuracy. Using a generalized mean measure which in-
cludes arithmetic means, harmonic means, quadratic means and geometric
means as special cases, and the maximum and minimum observations as
limiting cases, we will first study how the difference between an arithmetic

!Moments are statistical concepts. The ith moment of a random variable z is simply the weighted
summation of z* weighted with the density function or the probability distribution function of z.
The ith central moment of the same random variable z is the weighted summation of [z — E(z))*
weighted with the density function or the probability distribution function of z, where E(z) is the
mean of . Mean price or return, for example, is the first moment of price or return. Variance is
actually a second-central moment. Two other popular statistical terms, skewness and kurtosis are
determined by the third- and fourth-central moments, respectively.
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means and its corresponding geometric mean is determined. Then we will
approximate the arithmetic mean with its corresponding geometric mean.
Finally, we will provide a closed-form formula of the Black-Scholes type for
an arithmetic Asian option. Our examples show that the results are quite
efficient and accurate.

Since the general mean used in this chapter includes both arithmetic
and geometric means as special cases, and the maximum and minimum
observations as limiting cases, the general mean has a potential to con-
nect Asian options and lookback options, and possibly generate new forms
of options between them.

6.2. THE GENERAL MEAN

All analyses in this and some other chapters are based on the general
mean that is defined as follows:

n 1/v 1/
M(ya) = (%Zag) _ (Zna‘f) " (6.1)
=1

where a;’s are all positive real numbers, i = 1,2,3,...,n,n represents the
number of observations and + is a real number that determines the charac-
teristic of the general mean M (v|a). For simplicity, we use M (-y) to represent
M(~y|a) unless it is necessary to use M(y|a) directly.

We can readily check Equation (6.1) in the trivial case when all the n
positive numbers are equal to one another, or a; = @ for ¢ = 1,2,3,...,n.
Substituting a; = @ into the general mean given in (6.1), we can easily obtain
M(v|a) = &, regardless of the parameter v. We consider the nontrivial cases
throughout this chapter for numbers not equal to each other, or the standard
deviation of the given n numbers is greater than zero.

We first examine a few special cases of the general mean given in (6.1).
When v = 1, M(1) is exactly the arithmetic mean AA(a); when v = 2, M(2)
becomes the quadratic mean or the root-mean square; when vy = —1, M(-1)
is the harmonic mean. As v approaches zero, we have the following limiting
result

1 n 1/v n 1/n
. 1 - ‘y — .
lim M(y) = lim, (n ;a) (I=Il az> , (6.2)

which is precisely the geometric mean G A(a) defined in (5.2). Therefore, we
define M(0) = GA(a).



138 Ezotic Options

The following are two interesting limiting cases

Y—+00 Y—+o00

1" 1/v ‘
lim M(y) = lim (;Zaj) = max(ay,az,...,a,) (6.3)
i=1

Y——00 Y——00

1 n 1/
lim M(y)= lim (—Ea?) =min(a1,ay,...,a,), (6.4)
M in1

where max(...) and min(...) are functions that give the largest and the
smallest numbers of a; through a,, respectively.

Table 6.1. Special and limiting cases of the general mean.

v value M(y) Results

—o0 Min(a) Degenerated to the Minimum Number
1
R R 21:

-1 Harmonic Mean

a1 az
n 1/n
0 G= H a.-) Geometric Mean
i=1
1 n
1 A= - Z ai Arithmetic Mean
nio
Lo 1/2
2 (— a?) Quadratic Mean
n =
+00 Max(a) Degenerated to the Maximum Number

where Max(a) and Min(a) are functions which give the largest and
the smallest numbers from a; through a, respectively.

Table 6.1. shows these special and limiting cases of the general mean.
We can observe that the two limiting cases when v approaches infinity
are two degenerated means in the sense that the general mean degener-
ates into one single special observation. As the minimum observation, the
harmonic mean, the geometric mean, the arithmetic mean, the quadratic
mean, and the maximum observation are obtained when the mean parame-
ter vy = 00, = -1, = 0, = 1,2, and — +00, respectively, we may consider
the mean parameter v as a weighting parameter in the general mean which
allocates heavier weights to larger numbers. As the general mean is a rather
complicated function, it is difficult for us to see clearly how it changes with
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given n = 3 and the three observations as 2, 4 and 10

- \/__——'-""
- /‘

_ /
: %

1

N ~N o W
1

Gonoral Mean
(%1%
T

- N
1

20-18 -16-14-12.10 8 5 4 -2 00 2 4 6 B8 10 12 14 16 18 20

Fig. 6.1. The general mean with various weight parameters.

various v values precisely. Figure 6.1 depicts M («y) for various v values, given
n=3,a; =2, az =4, and a3 = 10. It clearly demonstrates that the general
mean approaches the minimum value min(2,3,10) = 2 as -y approaches neg-
ative infinity, and it approaches the maximum value max(2,3,10) = 10 as v
approaches positive infinity.

Example 6.1. Find the harmonic, geometric, arithmetic, and quadratic
means given n = 3 and a = (2, 3, 10).
The harmonic average (HA) is
3 _ 3
(1/a1) + (1/a2) + (1/a3) ~ (1/2) +(1/3) + (1/10)

the geometric average (GA) is

HA = = 3.2143;

GA = (a1 x ag x a3)'/® = (2 x 3 x 10)/3 = 3.9149;

the arithmetic average (AA) is

ay +az +as _2+3+10_
3 B 3 B

and the quadratic average (QA) or the square-root mean is

2, 2, 2\1/?2 2, a2 2\ 1/2
QA= (____“1+a2+“3> = (_____—2 +3 +10> = 6.0828.

AA =

5;

3 3

The results in the above example show that the harmonic, geometric,
arithmetic, and quadratic means with the parameter v = —1,0,1, and 2
increase from 3.2143 to 3.9149, 5, and 6.0828, respectively.
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One interesting observation about the harmonic mean is that its recip-
rocal is actually the arithmetic mean of the reciprocals of all the numbers
under consideration. In our above example, the reciprocal of the harmonic
mean is

1 1 1 1 1 1/1 1 1
= =311=AA(—, —, ~)=1(L 1 1
HA 32143 (al’ as a3> 3 (al ay (13)

1711 1
=3 (5, 3’ m) = 3.111.

The above observation is useful because it can be used in calculating
the average exchange rates related to US dollars. It is well known that
most exchange rates are expressed in per US dollar basis in the US with
the exception of British pound which is expressed in US dollar per pound.
To compare the arithmetic average exchange rate of the US dollar /British
pound with other exchange rates in dollar basis, we simply find the reciprocal

of the harmonic mean of the dollar/pound exchange rate in the same time
period.

6.3. PROPERTIES OF THE GENERAL MEAN
6.3.1. Monotonicity

We can see the characteristic of the general mean function from its first
derivative with respect to the parameter 7,

v a"lna—-3Y a’In(} a"/n)
72 a” ’
where a7 =37 4] and Y 0" lna = Y%, o] Ina;.

It can be shown that the first derivative of the general mean at v=0is
of the following value

M'(y) = M(y)

(6.5)

M'(0) = G—AQ@ V(lna) >0, (6.6)

where V(lna) = Eflna — AA(lna)? = L3} Yi=it1(ln(ai/a;))? =
37 Yo Y-7-1lln(a;/a;)]?, which is the variance of the logarithm of the n
given positive numbers with equal weights, and GA(a) is the geometric mean
of these n positive numbers.

From the statistical meaning of the variance of V(In a), we could under-
stand that it measures the degree of dispersion of these positive numbers.

Var[V(Ina)] becomes zero when all the a;’s are the same.
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It can also be shown that the second-order derivative of the general mean
at zero is given as follows:

1 2
M"(0) = GA(a) [5 V(n a)] >0, (6.7)

which indicates that the general mean is always convex at v = 0 for any set
of positive numbers which are not equal to one another.

Using the two derivatives at v = 0 given in (6.6) and (6.7), we obtain
the following results.

Lemma 6.1. In the neighborhood of v = 0, M’(y|a) > 0 for a > 0 (or
ai >0fori=1,2,..., and n).

Proof. Using (6.7), we obtain M'(y) > M’(0) > 0 for v > 0. We can
readily show for any v # 0, M(qla) = 1/M(—v|}) is always true. For
any v < 0, taking derivative with respect to v to both sides of the identity
M(yla) = 1/M(—|}) yields

M'(yla) = M’ (—7I;11-) /M2 (—vlé) ,

which is always positive because —y > 0 and 1/a > 0 for any v < 0 and
a>0. 0O

Lemma 6.1 states that the general mean is an strictly increasing function
of the parameter + in the neighborhood of y¥ = 0. Actually, the general mean
is a strictly increasing function for any real value of v. The following theorem
guarantees this result.

Theorem 6.1 (Schlomilch 1858): M(y|a) < M(s|a) for any v < s.

Proof. The theorem is readily proven using Holder’s inequality for any
0 < v < s. See Theorem 16 of Hardy, Littlewood, and Polya (1934). For
4 < s < 0, the result can be obtained using the same method used in the
second part of the proof in Lemma 6.1. 0O

The strictly increasing property of the general mean guarantees that we
can safely regard + as a weight parameter that allocates heavier weights to
the larger numbers under consideration.

Proposition 6.1. An arithmetic mean is greater than or equal to its corre-
sponding geometric mean.



142 Ezotic Options

Proof. If a; = a for all i’s (i = 1,2,3,...,n), then AA(a) = GA(a) = a.
Otherwise, AA(a) = M(1|a) > M(0|a) = GA(a) using Lemma 6.1. O

Proposition 6.1 guarantees that the geometric mean is a lower bound
of the arithmetic mean for any set of positive real numbers. The difference
between any arithmetic mean and its geometric mean, in general, depends
on how much the given numbers are different from one another, or on the
standard deviation, skewness, kurtosis, and other higher moments of these
numbers. We will explore how this difference is affected and find bounds for
this difference in the following sections.

6.3.2. Brownian Motion

In the general case, we have to specify a; as in (3.1). With the specifi-
cation given in (3.1), V(Ina) becomes the variance of the n returns of the
underlying asset. As all the a;’s are lognormally distributed and mutually
correlated, V (Ina) is also stochastic. In principle, we can obtain the density
function of V/(In a) using the joint lognormal distribution of the a;’s, but this
calculation process is rather complicated and a compact expression is very
unlikely. However, the first two moments of V' (Ina) can be expressed rather
conveniently in compact forms.

Proposition 6.2. If all the n observations follow the Brownian motion
specified in (3.1), the first two moments of V(Ina) at v = 0 defined in (6.6)
can be expressed as:

(n? -1 |1 ( 1 2)2 1,
Ina)) =2 220 |2 (g 2 ! ,
E[V(Ina)) 5 5\T"9-50 h+na (6.8a)
and
_ (n*-1)(3n%-2) 1 5\ 5
| Var[V(lna)] = 153 ('r 9=30 ) o“h®. (6.8b)
Proof. See Appendix. O

It is obvious that in the trivial case with only one observation, or n = 1,
both the first two moments degenerate to zero. Alternatively, the above
moments can be expressed in terms of the averaging period Tup and the
number of observations for n > 1

E[V(lna)] = ﬁ%% [% (r -g- %az) + %02] (6.9a)
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and

n? —1)(3n2 — 2
Var[V(ina)] = ( 11)5(:6 2) Tfp <r —g- %0’2) o?. (6.9b)

Example 6.2. Find the mean and variance of V(Ina) given in (6.9a) and
(6.9b) if there are 12 observations in the arithmetic average, observation
frequency is monthly, the averaging period has not started, time to maturity
of the option is one year, interest rate is 6%, yield on the underlying market
is zero, and volatility of the underlying asset is 20%.

Substituting n = 12, h = 1/12, r =0.06, g =0, 0 = 0.20, and 7 = 1
into (6.8a) and (6.8b) yields

n? — 2
EV(na) = =D [1 (r-g-3e?) o 2o

6 2 2
(122 -1)/12 |1 1 2>2 1 1 9
=" |- {006-0-=x0. — 4+ - x02
5 2(006 0— 5 x0.20 5+ 5 %020
= 0.00675,
and
(n? - 1)(3n + 2) 1 ,\2 5.5
Var[V(lna)] = o3 (r 9= 50 ) a*h
_(122-1)(3x12-2) ( B 1 2)2
= 5 15 0.06 —0.02 — 5 x 0.20

3
x 0.20% x (%) =0.19195.

Example 6.3. Find the mean and variance of V(lna) given in (6.9a) and
(6.9b) if volatility of the underlying asset is changed to 25% and other pa-
rameters remain unchanged.

Substituting n = 12, h =1/12, r =0.06, g =0, 0 = 0.25, and 7 =1
into (6.8a) and (6.8b) yields

n? — 2
E[V(lna)] = (————G—I)—h [-;— (r—g— 202) h+ %02]

(122 - 1)/12 |1 1 2>2 1 1 9
== 7" 1 (0.06-0-- x0. — 4+ -x02
5 2<006 05 x025 5+t %02

= 0.01041,
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and

n? — 1)(3n2 — 2
Var[V(lna)] = ( 11)5(::3 2) (r ~-g- %az> o’h?

(122 -1)(3 x 122~ 2)
B 15 x 123

1 2
(0.06 -0.02 - 3 X 0.252)

1 3
252 x (=] =0.29987.
x 0.25% x (1 2) 0.29987
Comparing the results in Examples 6.2 and 6.3, we can readily find that
both the mean and the variance increase significantly with higher volatility.

The following corollary provides some general comparative statics results.

Corollary 6.1.

0 (n? — 1A 1
35 ElV(na)] = =——= (u - —a"’) h,

6 2
Srviol- T L (o L)

>0, if o2>2u—4/(nh)

<0, if otherwise,

n—1)%n n2 —
0 Y v(na) = A0 Do+ 1n? - 2) (u_% 02>02h37

Ou 15n3
0 _(n=-1)*(n+1)(3n* -2) (3 , 2, ,2\3
Fye) Var[V(lna)] = 53 <ZU —2uc” + p ) h*, or

<0, ify/2u/3 <0<+ 2u,

>0, if otherwise.

Proof. The derivatives are immediate from (6.92) and (6.9b), and the sign

of OVar[V(Ina)]/do? is obtained by solving the inequality dVar[V (Ina)]/
dc? > 0. 0

Corollary 6.1 clearly indicates that both the mean E[V(lna)] and the
variance Var[V(lna)] increase (decrease) with the instantaneous drift u
when o < (>)+/2p. Simple calculations show that /2 = 10%, 14.14%,
and 20% when p = 0.5%, 1%, and 2%, respectively. As annual volatilities of
most financial assets are around 10% under normal market conditions, both
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the mean E[V (Ina)] and the variance Var[V(Ina)] should increase with the
drift when g > 0.5%. Corollary 6.1 also indicates that the mean E[V(Ina)]
increases with the variance of the underlying asset return o2 when

0% > 2u—4/(nh) =2u—4/(Tap + h).

As the drift parameter u is almost always a small percentage, the fre-
quency h is often one month or less, and the averaging period is about one
year, 2u—4/(Tap+h) is almost certainly negative. Thus the mean E[V(Ina)]
almost certainly increases with the variance 0. The variance Var[V(lna))
increases (resp. decreases) with the instantaneous standard deviation o when
o < \/2u/3 or o > /2u (resp. v/2u/3 < o < /2u). Simple calculations
show that for u > 3%, the lower boundary /2u/3 > 14.1%, thus o < \/2u/3
is more likely to be satisfied as the normal market volatility may often be
smaller than 14%. Therefore, the variance Var[V (In a)} should increase with
the instantaneous volatility when u > 3%.

6.4. THE DIFFERENCE BETWEEN ARITHMETIC
AND GEOMETRIC MEANS

Geometric means are often used to approximate arithmetic means with
the same given data in statistical analysis. It is very useful if we could
understand what determines the difference between the two means. The
difference can be readily obtained if we use the well-known mean-value theory
in calculus. As M(v) is a continuous function of v, there must exist some ¥
between 0 and 1 such that

AA(a) - GA(a) = M(1) - M(0) = (1 - O)M'($) = M'(¥),

which states that the difference between an arithmetic mean and its cor-
responding geometric mean equals the first-order derivative of the general
mean with respect to the weight parameter at some point 0 < % < 1. Sub-
stituting (6.5) into the above expression yields the following relationship:

Y a¥lna— Y a?In(Ta¥/n)
P2y a? '
Equation (6.10) states that the difference between an arithmetic mean
and its corresponding geometric mean equals the multiplication of the gen-
eral mean with a weight parameter between 0 and 1 and a positive function
of this parameter. Although the difference is in explicit form, the right-hand
side is more complicated than the general mean expression such that we can-
not see clearly how the difference is affected by distribution measures of the

AA(a) — GA(a) = M(¥) (6.10)
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given data such as standard deviation. However, two approaches may gener-
ate useful results. One is to find a least up-bound and a tight low-bound for
the difference, and the other is to approximate the right-hand side of (6.10)
using Taylor’s series expansion.

The least up-bound for the difference is more interesting. Unfortunately
it cannot be easily expressed explicitly in terms of the n given numbers.
We can, however, obtain an universal up-bound for the difference given in
(6.10) through amplifying the first part [let a; = max(a;,as,--.,0n) = Gmax)
and reducing the second part [let a; = min(aj,az,...,an) = amin] of the
numerator in (6.10).

Proposition 6.3. The difference between an arithmetic mean and its cor-
responding geometric mean is always smaller than

UPB(a) = AA(a) In(amax) [(‘;’“a")w In( “’“‘“)} / b,

min ln(ama.x )

where 0 < 9 < 1 satisfies (6.10).
Proof. Immediate from the above construction. O

6.5. APPROXIMATING ARITHMETIC MEANS
WITH GEOMETRIC MEANS

The previous section analyzed the difference between an arithmetic mean
and its corresponding geometric mean. It cannot be used directly in Asian
option analysis. In this section, we try to express the difference in terms
of the distribution of the given observations using Taylor’s series expansion,
and then obtain an approximation formula for arithmetic means in terms of
their corresponding geometric means. As M(+y) is a continuous function for
0 <vy<1land0 <% <1in (6.10), using the derivative in (6.6) and Taylor’s
series expansion at v = 0 yields

M(y) = M(0) + $M'(0) + O(%*) = GA(a)[L +yv + O(¥*)],  (6.11)

where v = 3 Var[V(Ina)] = %, 37, [In(ai/a;)]?/(2n?)

The second term on the right-hand side of (6.10) can be approximated
with ¢ given in (6.11) because it approaches v if we allow s to approach zero.
This approximation could be somewhat justified by the fact that slopes of
the general means for weight parameters between 0 and 1 may not be very
different. This can be illustrated in Figures 6.1 and 6.2. Figure 6.2 is a more
detailed graph than Figure 6.1 for —0.2 < v < 1 for the simple data set
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given n = 3 and the three observations as 2, 4 and 10

5.5

525 /
“75 | /

45+ /
425 /

Fig. 6.2. The general mean with various weight parameter.

n=3, ai = 2, az = 4, and a3 = 10. Using (6.11) and the approximation
of the second term on the right-hand side of (6.10), we obtain the most
important result of this chapter in the following theorem.

Theorem 6.2. The arithmetic average of the underlying asset prices fol-
lowing the Brownian motion specified in (3.1) can be approximated with its
corresponding geometric mean as follows:

AA(a) = kGA(a), (6.12)

where k = 1+ E(v +v?) = 1+ 1E[V(Ina)] + 1{Var[V(Ina)] + E[V(Ina)]}?
and E[V(Ina)] and Var[V(Ina)] are given in (6.8).

Proof. Immediate from the above discussions. ]

Two points must be noted here. Firstly, we treated v-+1?v independent
of GA(a) in order to make the approximation feasible. Secondly, we enlarged
s to 1 to offset the decline of the second term on the right-hand side of (6.10)
as it is greater than v.

Although the procedure to derive (6.12) is long and complicated, the in-
tuition behind it is rather straightforward. As both the standard arithmetic
and geometric averages are two points of the general mean function which
is continuous and twice differentiable, we could use the mean-value theory
to find the difference between an arithmetic and its corresponding geometric
means. Then we could use Taylor’s series expansion to approximate the dif-
ference as a proportion of the geometric mean. The approximation given in
(6.12) indicates that the standard arithmetic average can be approximated
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by its corresponding geometric average multiplied by a coefficient which is a
function of the volatility of the underlying asset, observation frequency, the
number of observations, and the risk-free rate of return.

In the trivial case of only one observation in the averaging period, x = 1
as both E[V(Ina)] = Var[V(lna)] = 0. Substituting x = 1 into (6.12)
yields AA(a) = GA(a) which is obviously consistent with AA(a) = GA(a)
from definition. In the case of 4 = o = 0, it is easy to check that all
prices are constant starting from the current initial price S if they follow the
Brownian motion specified in (3.1). It is straightforward to show that kK = 1
as v = Var{V(Ina)] = 0 when all the observations are the same. Substituting
k = 1 into (6.12) again yields AA(a) = GA(a) which is consistent with
AA(a) = GA(a) = S from definition (the arithmetic and geometric means
are equal if all the prices are the same). We have the following comparative
statics results.

Example 6.4. What is the value of the approximation coefficient given in
(6.12) with the same information as in Example 6.27

From Example 6.2, we know E[V (Ina)] = 0.00675 and Var[V(Ina)] =
0.19195. Substituting these values into (6.12) yields

k=1+Ewv+v) =1+ %E[V(lna)] + % {Var[V(na)] + E[V(na)]}?

1 1
=1+ 5 x 0.00675 + 7 (0.19195 + 0.00675)" = 1.0132.

Example 6.5. What is the value of the approximation coefficient given in
(6.12) with the same information as in Example 6.3?

From Example 6.3, we know E[V(lna)] = 0.01041 and Var[V(Ina)] =
0.29987. Substituting these values into (6.12) yields

k=1+Ewv+v?) =1+ % E[V(lna)] + i {Var[V(lna)] + E[V(Ina)])}?
=1+ % x 0.01041 + i (0.29987 + 0.01041)2 = 1.02927.

Cyomparing the results in Examples 6.4 and 6.5, we can readily find that
the approximation coefficient increases with the volatility parameter. This
is consistent with our intuition that observations are more different from one
another with higher volatility, thus the arithmetic mean is greater than its
corresponding geometric mean.



Approzimating Arithmetic Asian Options with ... 149

Corollary 6.2. If the observation frequency and other factors are fixed, then
K increases (resp. decreases) with the drift when o < /2 (resp. o > /2p).

Proof. Immediate from taking partial derivative of x with respect to u and
using Corollary 6.1. O

Corollary 6.3. If the observation frequency and other factors are fixed,
then k

(1) increases with variance o2 when

D= {3# + 101 4 EV(na)] ‘5—‘}2 At Eymep 2 <o
3 8 52 n 52 ’

where

n? —1)h

5 = ( _ (n® —1)(3n?% - 2)

&y = h3.
3 2 10 ’

(2) increases with variance o? when D > 0 and

o? < ép— I {1 + E[V(Ina)] 4 _ \/B}
3 8 82

or %,u——;—hz{1+E[V(lna)]§—l+\/5<02};
2

and
(3) decreases when D > 0 and

5,1,— 1p2 {1 +E[V(1na)]5—1} -VD<o?®
37 8 82
< é“_ g2 {1 +E[V(1na)]6—1 +\/D} .
37 8 52

Proof. Solving the inequality Ox/802 > 0 using Corollary 6.1 yields the
above results after simplifications. ]

Corollary 6.3 indicates that x may or may not change in the same direc-
tion with variance o2. Comparing Corollary 6.3 to Corollary 6.1, the range
in which x changes inversely with variance o2 is much smaller than the range
in which Var[V(Ina)] changes inversely to o2.

In general, k can be easily calculated when the parameters n, h,u, and
o are given. With the value of x, we know how much an arithmetic mean
is larger than its corresponding geometric mean. Theorem 6.2 clearly shows
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that the difference between an arithmetic mean and its corresponding ge-
ometric mean depends on the degree of dispersion among the n positive
numbers or the parameter v = [V (Ina)]/2. When the asset prices follow the
Brownian motion specified in (3.1), the difference between an arithmetic av-
erage price and its corresponding geometric average price of the underlying
asset, on average, is determined by the first two moments of the distribution
of V(lna).

6.6. APPROXIMATING ARITHMETIC ASIAN OPTIONS
WITH GEOMETRIC ASIAN OPTIONS

The payoff of a European-style option based on the general average
price (AOPGMPF) of the underlying asset and a fixed strike price can be
expressed as follows:

AOPGMPF = max[wM (y) — wK, 0], (6.13)

where K stands for the strike price of the option and w is the same binary
indicator (1 for a call option and —1 for a put option).

If v =0, M(0) = GA(a), (6.13) becomes the same as the payoff of a
geometric Asian option given in (5.5) of Chapter 5. If y = 1, M(1) = AA(a),
it is the payoff of an arithmetic Asian option.

Theorem 6.3. The price of a European-style Asian option based on the
arithmetic average of the underlying asset prices following the Brownian
motion specified in (3.1) can be approximated to be

C* = wrSe ™ Tiin-1 A (j)N (wdi? ; + w0, [T32 ) = wKe™ "N (wds2 ),
where (6.14)

kS 1 ;
= o (52)+ (o 1) ] o)

K is given in (6.12), and all other parameters are the same as in Theorems
5.1 and 5.2 of Chapter 5.

Proof. Theorem 5.1 shows that GA(a) is lognormally distributed and Theo-
rem 6.2 states that AA(a) is approximately lognormally distributed because
the approximation coefficient « is constant. Following a similar procedure
to derive the results in Theorem 5.2, we can readily obtain (6.14). . O

Obviously, Equation (6.14) can be easily obtained by substituting the
current spot price S of the pricing formula for geometric Asian options in



Approzimating Arithmetic Asian Options with ... 151

Theorem 5.2 with 5. Before the averaging period starts, the parameter
B*%(j) is always 1. As k is always greater than one, it augments (resp. re-
duces) the Asian call (resp. put) option price through amplifying the effective
current spot price, making the call (resp. put) option more in- (resp. out-
of-) the-money. Thus, the arithmetic Asian call (resp. put) options are
always more (resp. less) expensive than the corresponding geometric calls

(resp. puts).

Example 6.6. What are the prices of the call and put options with strike
price $400 to expire in one year, and based on the arithmetic average of
monthly gold prices, given that the spot gold price is $390 per ounce, interest
rate 7%, yield on the gold is zero, and volatility of gold return is 20%?

Since the time to maturity, the observation frequency, and the number
of observations are the same as in Examples 5.1 and 6.4, we can use the
two effective time values in Example 5.1 and the approximation coefficient
in Example 6.4. Substituting S = $390, K = $400, r = 0.07, ¢ = 0,
0=020, w=1,T3% ,;=0542, T2, = 0.376, and x = 1.0132 into (6.14)
yields

() -9 3w 075

1.0132 x 390 1 \
(0.20 x \/0.376) = 0.3966,

the call option price

C = kSe™Tin—3 A= (G)N (do ; + 0\ /T32 ) — Ke™""N(ds2 ;)

aa
dee

— 10132 X 390 X 6—0.07(1—0.542)—-0.202)((0.542—0.376)/2N(0'4988)
— 400 x e %97 N'(0.3966)
= $31.472,

and the corresponding geometric put option price can be found by substi-
tuting w = —1 and other parameters into (6.14)

P = —kSe~9Tan-35 A% ()N (—d‘:;‘_j —0\/T3;) + Ke "N (—d3 )
= —1.0132 x 390 x 6—0'07(1_0'542)_0'202X(0'542—0'376)/2N(—0.4988)
+ 400 x e~ N (—0.3966)

= $9.900.
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We may also partially interpret our approximation in (6.14) as reducing
the effective strike price if we rewrite kS/K as S/(K/k). As k is always
greater than 1, K/k is always smaller than K, therefore the effective strike
price K is reduced to K/k. The second explanation is somewhat similar to
that of Vorst’s (1992) approximation; however, there exists three important
differences. The first difference is that Vost’s effective strike price is obtained
by subtracting the expected difference between the arithmetic and geometric
means from the actual strike price, whereas our effective strike price is ob-
tained by dividing the actual price by a number greater than 1. The second
difference is that whereas Vorst’s approximation is a one-moment approxi-
mation in the sense that the degree of effective strike price reduction depends
only on the first moment of the difference of the two means, our approxi-
mation is a two-moment approximation. Lastly, Vorst’s approximation is
obtained by using the upper bound of the difference between the arithmetic
and geometric Asian option prices arbitrarily as a correction of the differ-
ence between the expectation of the arithmetic average and the geometric
average, ours is derived firmly from mathematical approximation.

6.7. CONTINUOUS ARITHMETIC ASIAN OPTIONS

We defined continuous arithmetic and geometric averages in Section 5.4
and provided closed-form solutions for continuous geometric Asian options.
An exact formula for continuous arithmetic Asian options do not exist as for
discrete arithmetic Asian options. However, we can find an approximated

pricing formula for continuous arithmetic Asian options using the result in
Theorem 6.2.

Proposition 6.4. The approximation coefficient x given in Theorem 6.1
approaches

1 1 5\ 2 1 5\ .
K°=1+§Z r-g9-50 Topt+ =2 r-9-50 Top (6.15)

when the observation frequency approaches zero and the averaging period is
fixed.

Proof. From (6.9), the number of observation n must approach infinity when
the observation frequency approaches zero and the averaging period is fixed.
Taking limits to both E[V(Ina)] and Var[V(Ina)] in (6.9) as n approaches
infinity yields E[V(Ina)] — (r — g — 0?/2)*T2,/12 and Var[V(lna)] — 0.
Substituting these limiting results into the expression of the coefficient x in
Theorem 6.1 yields Proposition 6.4. O
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Example 6.7. What is the continuous approximation coefficient given in
(6.15) if observation is continuous, the averaging period has not started,
and the time to maturity of the option is one year, interest rate is 6%,
yield on the underlying market is zero, and volatility of the underlying asset
is 20%7

Substituting r = 0.06, g =0, ¢ = 0.20, and Ty, = 1 into (6.15) yields

1 1 \% 1 4T4
Kc=1+§Z rT—g9-50 T+ =5 rT-g-30 ap

—1+i>< (606—0—1x0202>2x12
- 24 ' 27

1 1 2\, 4
— (006 -0— = . 1" =1. .
+ 576 (0 06 -0 5 x020) X 1.00007

The payoff of an Asian option based on the continuous arithmetic aver-
age of the underlying asset prices can be expressed as follows:

R = max{wCAA(n) - wK, 0], (6.16)

where CAA(n) is defined in (5.9) and w is a binary indicator (1 for a call
option and —1 for a put option).

Theorem 6.4. The price of an Asian option based on the continuous arith-
metic average defined in (5.9) can be approximated as follows:

Ccea o wncse—g‘r/Ze—(rr-t-a?/G)hN (wd%a_aj + wo /7_/3)

— wKe T N(wd2®%), (6.17)

@ = o (%2) + (r-9-50") 3] / (ov/723)

K¢ is given in (6.15), and all other parameters are the same as in Theorems
5.1 and 5.2.

where

Proof. As the continuous arithmetic average in (5.12) is the limit of the
discrete arithmetic in (5.1), the continuous arithmetic Asian option prices
should be the limit of the discrete arithmetic Asian option prices of (6.14).
The rest of the proof is the same as that of Theorem 5.4. O
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Example 6.7. What are the prices of the call and put options with strike
price $400 to expire in one year and based on the continuous arithmetic
average of gold prices, given that the spot gold price is $390 per ounce, the
interest rate 7%, yield on the gold is zero, and volatility of gold return is
20%?

Since the time to maturity, observation frequency, and the number of
observations are the same as in Examples 5.3 and 6.6, we can use the two
effective time values in Example 5.3 and the approximation coefficient in
Example 6.6. Substituting § = $390, K = $400, r = 0.07, ¢ = 0, 0 =
020, w=1,Tz%_; =7/2=050, T2, = 7/3 = 0.3333, and £ = 1.00007
into (6.17) yields

= [ (55) + (r-0-34) 2] / (o)

. {1.00007 x 390 1 )
= [m( 100 ) + (0.07 05 x0.20 ) X 0.50]/

+ (0.20 b \/0.3333) = —0.0268,

the call option price

C = KkSe™97/2e~ 7+ /0)/2 Y (df,“_“j + a\/7—/3> — Ke " N(dS™%)
= 1.00007 x 390 x e~ (@0T+0-2%/6)/2 \7(_0,0268 + 0.1155)
— 400 x e~ %97 N (—0.0268)
= $20.749

and the corresponding geometric put option price can be found by substi-
tuting w = —1 and other parameters into (6.14)

P = —reSe 3TN (e, — 0\ [r/3) + Ke N (~dii)

= —1.00007 x 390 x e~ ©07+020%/6)% nr(0 0268 — 0.1155)
+ 400 x e %07 N'(0.0268)

= §7.427.
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6.8. ARITHMETIC-AVERAGE-STRIKE ASIAN OPTIONS

We provided a closed-form formula for Asian options with geometric
average strike prices in Chapter 5. We will find the approximated formula
for Asian options with arithmetic average strike prices in this section. The
results are given in the following theorem.

Theorem 6.5. The price of an Asian option whose strike price is the arith-
metic average of the underlying asset prices following the Brownian motion
specified in (5.4) can be approximated as:

ASC® = S [fce_g"'N(wDal) — A*(j)e 9 Tuin-i N(wDaz)] ,
where

~InfsB ()] +(r — g = Jo?)(r = Tih,_ ) + 0 (py/TTE; - 1)
0'\/—73 )
Do1 = Doz + 0\/Te, Te =7 = 2p, [TT32, + T2 5,

a2 =

A®%(j) is the same as in (4.7), T,;5,_; and T2, are the same effective mean
and variance functions given in Theorem 5.1, and all other parameters are

the same as in Theorem 5.4.
Proof. Similar to the proofs of Theorems 5.4 and 6.3. ]

Example 6.8. What are the Asian call and put option prices with strike
price specified as the arithmetic average of the underlying asset prices, given
other information the same as in Example 5.47

Since the time to maturity, observation frequency, and the number of
observations are the same as in Examples 5.1 and 5.7, we can use the two ef-
fective time values in Example 5.1 and the correlation coefficient in Example
5.7. Substituting S = $390, K = $400, r = 0.07, ¢ =0, 0 = 0.20, w =1,

Tse . =0.542, 3%, = 0.376, p = 0.883 into (6.18) yields

Te =T = 2p/TT3%; + T,f‘ij=l —2x0.883 x v1 x 0.376 + 0.376 =0.4583,

_ (0.07 - 0— § x 0.20%)(1 — 0.542) + 0.20% x (0.883 x /1 x 0.376 — 1)

D
92 0.20 x +/0.4583

=0.042,
Dg1 = Dy + 0+/Te = 0.034 + 0.20 x v0.4583 = 0.151,
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the call average-strike option price

C =5 [ N(Dy) - A*(j)e "3 N(Dya)|
= 390[N(0.151) — 0.9652 x N(0.042)] = $23.76;

and the corresponding put option price can be found by substituting w = —1
into (6.18)
P = -5 [e"9"N(=Dg) + A*(j)e™* -1 N(Dyo)|
= —390[N(—0.151) + 0.9652 x N(—0.042)] = $10.20.

Theorem 6.6. The price of a European-style Asian option with strike price
specified as the continuous arithmetic average of the underlying asset prices
given in (5.3} is

ACAASTK =wS [e_g"N(chal) - ne_(TT+”2/6)/ze‘gT/2N(chaz)] ,

where

Doy = (r—g-30)3+0%(3;-1)-Ink
o+\/7/3
and
Dot = Deg2 + gy T/3. (6.19)
Proof. Similar to the proofs of Theorems 5.5 and 6.3. 0

Example 6.9. What are the Asian call and put options prices with strike
price specified as the continuous arithmetic average of the underlying asset
prices, given other information the same as in Example 5.47

Substituting S = $390, K = $400, r = 0.07, g = 0, 0 = 0.20, w = 1,

T —; = 0.542, T3 ; = 0.376, p = 0.866, and « = 1.00007 into (6.19) yields

(r—g—o02/2)3+0*(5—1)—Ink
oy/7/3
_ (0.07 - 0.202/2)% + 0.20%(3 — 1) — 0.0007

0.20 x /1/3

Deg1 = Deaz + 04/ 7/3 = 0.0427 + 0.20 x 4/1/3 = 0.1582,

Dca2 =

= 0.0427,
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the price of the call option with strike price specified as the continuous
arithmetic average of the underlying asset prices;

C=S5 [C_gTN(Dcal) - K'e_(TT+02/6)/26_9T/2N(Dca2)]
= 390[N(0.1582) — 1.00007 x 0.9624 x N(0.0427)] = $11.399;

and the corresponding put option price can be found by substituting w = -1
into (6.19)

P=S [e—gTN(Dml) _ K/e_(TT+02/6)/26—9T/2N(Dcaz)]
= 390[N(—0.1582) — 1.00007 x 0.9624 x N(—0.0427)] = $18.069.

6.9. GENERAL MEANS AND LOOKBACK OPTIONS

The payoff of a European-style option whose strike price is based on the
general average price of the underlying asset can be expressed as follows:

R = max[wS(7) — wM(v),0], (6.20)

where w is a binary indicator (1 for a call option and —1 for a put
option).

If w = 1(-1) and v — —o00, (6.20) becomes the payoff of a call (put)
option on the minimum of the underlying asset prices studied by Goldman,
Sosin, and Gatto (1979); if w = 1(—1) and v — 00, (6.20) becomes the payoff
for a call (put) option on the maximum of the underlying asset prices also
studied by Goldman, Sosin, and Gatto (1979); if v = 0, (6.20) becomes the
payoff of an Asian option with strike price specified as the geometric average
of the underlying asset prices; if v = 1, (6.20) becomes the payoff of an Asian
option with strike price specified as the arithmetic average of the underlying
asset prices. Thus, the parameter vy of the general mean connects lookback
options and Asian options with average strike prices. Although lookback
options can minimize investors’ regret, they are, in general, very expen-
sive. With the general mean, we may somehow structure partial lookback
options.

6.10. AN APPLICATION

We have given quite a few examples in the previous sections of this
chapter. In this section, we will provide an additional example to show how
to apply arithmetic Asian options in practice. We argued that Asian options
can provide a cheaper way to hedge the underlying asset with periodic cash
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flows. This example will show how Asian options can specifically hedge the
foreign currency risks more efficiently than a string of standard options.

Example 6.10. Instead of using a geometric Asian option as in Example
5.13, let us look at the effectiveness of hedging with a continuous arithmetic
Asian option in this example.

Instead of buying twelve consecutive call options, the importer can buy
an Asian call option based on arithmetic average with monthly observation
as we analyzed in Section 5.3. Given the same information, we can obtain
the price of the arithmetic Asian option easily for one-million Japanese yen:
$987.074, which is larger than $482.91, the price for the geometric Asian
option in Example 5.13. This increase in price is expected as arithmetic
options are more expensive than geometric ones. Although the premium
(8987.074) for the arithmetic Asian option is significantly larger than that of
the corresponding geometric Asian option ($482.91), it is still much smaller
than the total cost of twelve consecutive call options ($8101) as we calcu-
lated in Example 5.13. Thus, it is cheaper to hedge with arithmetic Asian
options.

6.11. CONCLUSIONS

The general mean measure used in this chapter includes arithmetic, har-
monic and quadratic means as special cases and geometric means and cases,
the maximum and the minimum observations as limiting cases. We have
shown that the mean parameter can be considered as a weight parameter
which allocates heavier weights to larger prices in average. Using this gen-
eral mean measure, we first showed that the difference between an arithmetic
mean and its corresponding geometric mean is determined by the dispersion
of the prices under consideration. We then found an efficient approximation
for arithmetic means with their corresponding geometric means. Finally, we
provided closed-form approximated formulas for European-style Asian op-
tions based on arithmetic prices and arithmetic strike prices. These formulas
are of the Black-Scholes type. Our numerical examples show that the results
are quite efficient and accurate.

Whereas the existing studies are based on either an arbitrarily fixed
number of moments [the first two moments in the case of Levy (1992) and
the first four moments in the case of Turnbull and Wakeman (1991)] or on
an arbitrarily reduced effective strike price as in the case of Vorst (1992), our
results are firmly derived from mathematical approximation using Taylor’s
expansion series and a general mean measure which connects any arithmetic
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mean with its corresponding geometric mean. Besides the use of mathemat-
ical expansion in this paper, the general mean measure has the potential to
connect Asian options with lookback options and possibly generates other
forms of options between them.

APPENDIX

Outline to the proof of Proposition 6.2
Taking logarithm to both sides of (5.4) yields

In(a;) =S+ (r — g — ?/2)[r — (n —)h] + oz[r — (n —i)h),
1=1,2,...,n.

Thus

In(ai/a;) = (r — g — 0%/2)(i — )h + o{z[r — (n — §)h] — 2[r — (n — j)A},
J#Fi
and
(n(ai/a;))* = (r — g — 0%/2)%(i - j)*h* + 2(r — g — 0*/2)(i — j)
X ho{z[t — (n — i)/h] — z[t — (n — j)h]}
+ 0% {2%[r — (n = ))h] + 2%[r — (n — j)A]
— 22[(1 - (n — i)h]z[r — (n — 3)A]},
Elln(ai/a;)] = (r — g — 0*/2)*(i — 5)*h?
+o{[r = (n =9k + [r — (n — j)h]
— 2min[r — (n — i)k, 7 — (n — j)A]}.
Using the simplification
[r—=(m—9h}+[r—(n—j)h] — 2min[r — (n —i)h, 7 — (n — j)h)
= h[max(i, j) — min(s, j)] = hli — j|

and summations of i (¢ = 1,2,...,n and p = 1,2, and 3) yields (6.8a).
Equation (6.8b) can be similarly obtained by simplifying 3>, 327, (i —
32— 4l = T 5= i — §I® using summations of # (i = 1,2,...,n and
p=1,2,3 and 4).
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QUESTIONS AND EXERCISES

Questions

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

6.7.

6.8.

6.9.

6.10.

What is meant by a general mean?

What is a harmonic mean?

Is a quadratic mean always greater than a harmonic mean?

Is it possible that a harmonic mean is greater than the corresponding
geometric mean?

Are arithmetic averages always greater than their corresponding
geometric averages? Why? ,
Under what conditions are arithmetic means equal to their corre-
sponding geometric means?

Why can we regard the parameter in the general mean function
as a weight parameter which allocates more weights to larger
observations?

Are the effective mean time and variance time the same for arithmetic
and geometric Asian options?

Are arithmetic Asian options always cheaper or more expensive with
continuous observation than with discrete observation given other
parameters unchanged?

Why is the correlation coefficient between the log-returns of the un-
derlying asset and the arithmetic average approximation in Theo-
rem 6.1 always constant and the same as the correlation coefficient
between the log-returns of the underlying asset and the geometric
average?

Exercises

6.1.

6.2.

6.3.

6.4.

Find the harmonic, geometric, arithmetic, and quadratic means of
four observations a = (2, 3,4,5).

Find the mean and variance of V(lna) given in (6.9a) and (6.9b)
if there are 52 observations in the arithmetic average, observation
frequency is weekly, the averaging period has not started, and the
time to maturity of the option is half a year, interest rate is 9%, yield
on the underlying market is 3%, and volatility of the underlying asset
is 20%7?

Answer the same questions in Exercise 6.2 if volatility is changed to
30% and other parameters remain unchanged.

Find the approximation coefficient in Theorem 6.2 with the same
information as in Exercise 6.2.



6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.
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Find the approximation coefficient in Theorem 6.2 with the same
information as in Exercise 6.3.

Show that the continuous arithmetic average given in (5.12) is the
limiting case of the discrete arithmetic average (5.1) when n ap-
proaches infinity and the averaging period t* — s is fixed.

Find the prices of the arithmetic Asian call and put options with
weekly observations to expire in half a year and with strike price
$460 if the current underlying index is $450, interest rate is 8%,
yield on the underlying index is 4%, volatility of the index is 20%.
Answer the same questions in Exercise 6.7 if the observation fre-
quency is bimonthly and other parameters are the same as in Exer-
cise 6.77

Answer the same questions in Exercise 6.7 if the observation fre-
quency is continuous and other parameters are the same as in
Exercise 6.77

Show that the correlation coefficient between the log-returns of the
underlying asset and the approximated arithmetic average in Theo-
rem 6.2 is always constant and the same as the correlation coefficient
between the log-returns of the underlying asset and the geometric
average.

Find the correlation coefficient between the log-returns of the un-
derlying asset and the arithmetic average with weekly observations,
time to maturity 20 weeks, interest rate 7%, yield on the underlying
asset 2%, and spot price $100.

Find the prices of European-style Asian options with arithmetic
strike prices with weekly observations, time to maturity 20 weeks,
interest rate 7%, yield on the underlying asset 2%, volatility of the
underlying asset 15%, and spot price $100.






Chapter 7
FLEXIBLE ARITHMETIC ASIAN OPTIONS

7.1. INTRODUCTION

Despite the fact that geometric and arithmetic averages are very differ-
ent, as shown in Chapters 5 and 6, they share at least one characteristic
— equal weighting. In other words, all observations are equally important
in both geometric and arithmetic averages as defined in (5.1) and (5.2).
Whereas equal weighting is not problematic for many applications, it can-
not represent many problems satisfactorily. For example, an exporter who
has monthly cash inflows in a foreign currency knows that the cash flows in
a few particular months are far greater than those in other months. With
monthly exchange rates treated with equal weights, the foreign exchange
risks cannot be appropriately hedged. With a flexibly weighted average
on monthly exchange rates, the exporter may simply assign heavier (less)
weights for those months with greater (less) cash flows and may very likely
obtain better hedging performance than with an equally weighted average.

Another example is from technical analysis used by most traders in
almost all markets. Moving averages! are used in technical analysis to rep-
resent and detect trends of prices or market indices. Moving averages with
different weights clearly possess advantages over those with equal weights
as heavier weights are allocated for more recent observations. This is be-
cause more recent observations can better present and therefore should be
more useful to forecast the future. It is this intuition that stimulates us to
structure Asian options based on weighted averages of the underlying asset
prices. Zhang (1993) discussed these Asian options. Zhang (1994a) intro-
duced the concept of flexible Asian options (FAOs) and priced them based on

1A moving average is an average with changing numbers in the average. For example, a 10-
day daily moving average always includes ten observations and the oldest observation is always
dropped when each new observation is added into the average every day. Thus, moving averages
are averages with periodically updated observations.

163
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geometric averages within a Black-Scholes environment. Zhang (1995b)
provided approximated closed-form pricing formulas for flexible arithmetic
Asian options. The FAOs are no longer esoteric imaginations; many banks
have been trading these products for some time since early 1994 [see Deriva-
tives WeekIII (16), April 25, 1994]. The simple reason behind the popularity
of FAOs is that they provide additional flexibility.

It should be clear that by “flexible” we mean flexibility in giving weights
to a series of observations, but not the flexible options trading in the Chicago
Board Options Exchange in which strike prices, time to maturity, ways to
settle options, and other factors can be customized in contrast to most vanilla
options currently trading in most options exchanges.

The purpose of this chapter is to illustrate the concepts of Asian op-
tions based on flexible averages of the underlying asset prices, to price flex-
ible geometric Asian options in closed-form, and to approximate Asian op-

tions based on flexible arithmetic averages using the method developed in
Chapter 6.

7.2. FLEXIBLE WEIGHTED AVERAGES

The most general flexible average may be obtained with the following

weighting scheme: )
. q\

W(n,1) ) (7.1)
where ¢(i) can be any non-negative function of the ith observation and = is
the number of observations under consideration.

The function ¢(¢) in (7.1) can either be a power function, logarithm
function, exponential function, or any other functions. If we choose g(i) = €,
where || <1and i =1,2,...,n, then the weight function given in (7.1) will
become an exponential weight function. If we choose ¢(i) = i* (although o
can be any real number, we restrict it to be non-negative for convenience),
the weighting scheme given in (7.1) becomes

N4
W(n,a,i) = =0——, i=1,2,...,n, (7.2)

=11
which is precisely the general weighted moving average (GWMA) measure
developed in Hutchinson and Zhang (1993).

The exponential weighting scheme when g(i) is specified as €' may have
some advantages over the scheme in (7.2). We choose the latter in most
of the examples and analyses in this book in order to be consistent with

the majority of existing weighting schemes in moving averages. Interested
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readers may wish to work out the corresponding formulas for the exponential
weighting function and they may find them a little more compact than those
using the weighting scheme given in (7.2).

Example 7.1. What is the weight distribution if there are five observations
and we choose the weight function ¢(i) in (7.1) as g(i) = e~%%7

We can readily find the summation
iq(z) = e 1X05 | —2x05 4 —3x0.5 | ,—4x05 | —5x0.5 _ 1 4150.
i=1

Substituting i = 1,2,3,4, and 5 and ¢(i) = %5 into (7.1) yields

n

W(5,1) = g(1) / 3" g(i) = 0.6065/1.4150 = 0.4287 = 42.87%,
i=1
1"n

W (5,2) = ¢(2) / 3" g(i) = 0.3679/1.4150 = 0.2600 = 26.00%,
et
171

W(5,3) = q(3) / (i) = 0.2231/1.415 = 0.1577 = 15.77%,
i=1

n
W (5,4) = q(4) / 3" q(3) = 0.1353/1.4150 = 0.0956 = 9.56% ,
i=1
and

W (5,5) = q(5) / 3" q(3) = 0.0821/1.4150 = 0.0580 = 5.80% .
i=1

Example 7.2. What is the weight distribution if there are five observations
and the weight parameter a = 0.57

We can readily find the summation
n
Zia — 10.5 + 20.5 + 30.5 + 40.5 + 50.5 = 8.3823.
i=1

Substituting i = 1, 2, 3, 4, and 5, = 0.5 into (7.2) yields

n
W(5,0.5,1) =103 / > i% =1/8.3823 = 0.1193 = 11.93%,
i=1
n
W(5,0.5,2) = 2°° / > % =1.4142/8.3823 = 0.1687 = 16.87%,
i=1

W(5,0.5,3) = 3%° / > i* = 1.7321/8.3823 = 0.2066 = 20.66% ,
i=1
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. | ,
W (5,0.5,4) = 495 / D i = 2/8.3823 = 0.2386 = 23.86%,,
i=1 .
and

n
W(5,0.5,5) = 595 = 505 / > i* = 2.2361/8.3823 = 0.2668 = 26.68% .
=1

With the weight scheme given in (7.1) or (7.2), we can construct the
general weighted average (GWA) as follows:

n
GWA(n,a) = ZW(n, i)ai, 1=1,2,...,n, (7.3)
i=1

where a; stands for the ith observation.

We can readily find the special cases of the GWA given in (7.2) and
(7.3): when a =0, W(n,a,i) = 1/n for all i, which is precisely the simple
average with equal weights. Whena =1, W(n, a,i) =4/ 37 i = 2i/[n(n+
1)], which is exactly the linearly weighted average with linearly increasing
weights. When o approaches infinity, weights given to all previous observa-
tions approach zero or W(n,a,%) — 0 for i = 1,2,...,n — 1, and nearly all
weights are centered at the most recent observation, or W(n,a,n) — 1, and
therefore GW A(n, +00) = P(n).

The obvious advantage of the GWA is its flexibility. The weight dis-
tribution is always fixed once the number of observations is chosen in the
traditional average measures. However, weights can be adjusted through ei-
ther choosing different weight functions g(i) in (7.1) or adjusting the weight
control parameter a in the special case (7.2).

7.3. A MEASURE OF INEQUALITY IN WEIGHTING

The weight control parameter « in (7.2) is easy to grasp. The larger
the value of a, the heavier the weights are allocated to the most recent
observations. Nevertheless, a is not very convenient as it ranges between
zero and infinity. We can, however, use the following measure to represent
inequality in the weight distribution:

B=1-1/1+a)=a/(1+a),

where (3 measures the degree of inequality in the weight allocation and is
a better measure because it is always between 0 and 1, or between 0 and
100 percent. For example, when a = 0 (the equally weighted case), 8 =
a/(1+a) = 0%; when a = 0.50, B = a/(1 +a) = 1/3 = 33.3%; when a = 1
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(the linearly weighted case), 8 = /(1 + &) = 0.50 = 50%; when a = 2,
B =a/(l+a)=2/3=266.7%; and when a - +00 (the unweighted spot),
B=ca/(l1+a)—1=100%. Thus, a larger a always yields a larger (.

7.4. FLEXIBLE GEOMETRIC AND ARITHMETIC AVERAGES

The flexible geometric average (FGA) is obtained by extending the stan-
dard geometric average given in (5.2) as follows:

n
FGA(n) = [J(@)*® = (a1)*®(a2)*® ... (an)*™, (7.4)
i=1
where n is the number of observations, S; is the ith observation, and w(7) can
be either W (n, 1) given in (7.1) or W(n, a,t) given in (7.2),71=1,2,3,...,n.
Similarly, the flexible arithmetic average (FGA) is obtained by extending
the standard arithmetic average in (5.1) to:

n
FAA(n) = Zw(i)ai =w(1l)a; + w(2)az + - - - + w(n)ay, (7.5)
i=1
where all parameters are the same as in (7.4).

The flexible geometric average defined in (7.4) is actually a flexible arith-
metic average of the log-returns of the underlying asset. Obviously, the flex-
ible arithmetic average defined in (7.5) becomes the same as the standard
equal-weight average when a = 0 and w(i) = 1/n.

7.5. FLEXIBLE GEOMETRIC ASIAN OPTIONS

We may call Asian options based on flexible geometric averages of the
underlying asset prices flexible geometric Asian options (FGAQO). The payoff
of a FGAO can be given as follows:

PFGA = max[wFGA(n) — wK, 0}, (7.6)

where FGA(n) is given in (7.4), K stands for the strike price of the option,
w is a binary indicator (1 for a call option and —1 for a put option), and max
[,.] is the same mathematical function as in (3.1) which gives the larger of
the two numbers.

Suppose that the underlying asset price S follows the geometric Brown-
ian motion as specified in (2.10) and that all observations are specified as in
(5.3). Substituting (5.3) into the flexible geometric average defined in (7.4)
and using Proposition 5.1, we can have the following results:

Theorem 7.1. If the averaging numbers are specified as in (5.3), then the
natural logarithm of FGA(n)/S or In[FGA(n)/S] is normally distributed
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with mean (r —g—02/2)T . +In Bf(j) and variance UZT,{_]-, where

=]
BY(0) =1,B/(j) = f[ = f[{S[T —(n—R)/SY*D, for i<j<n,
i=1 i=1
T,{ nej = f: w(i)[r — (n —i)h], (7.7)

i=j+1

n

n-—1 n
T = 3 w(i)lr - (n—i)h] + 2 S N wEwk)[r — (n - k)h],

i=j+1 i=j+1 k=i+1 (7.8)

ll

BY(j) is the weighted geometric average of the gross returns of those obser-
vations that have already passed; 7 is the time to maturity of the option,
and other parameters are the same as in Theorem 5.1.

Proof. Similar to that of Theorem 5.1. ]

The two functions Tl{, n—j and T,{_j may be interpreted as the effective
mean and volatility time functions for flexible geometric Asian options, re-
spectively. Actually they are extensions of the mean and volatility time
functions of standard geometric Asian options in Chapter 5. It can be
readily shown that both these effective time functions for flexible geomet-
ric Asian options degenerate to those for standard geometric Asian options
when o = 0. It can also be shown that these two effective time functions are
always smaller than the actual time to maturity of the option 7, implying
that the actual variance of the log-return of the flexible geometric average is
also always smaller than that of the spot price at maturity o?r.

Example 7.3. What are the effective mean and volatility time values if
there are 12 observations in the geometric average, observation frequency is
monthly, the averaging period has not started, the time to maturity of the
option is one year, and the weight parameter o = 0.50?

Substituting o = 0.5 and n = 12 into (7.2) yields
w(1) = 0.034, w(2) = 0.048, w(3) = 0.059, w(4) = 0.068,
w(5) = 0.076, w(6) = 0.084,
w(7) = 0.090, w(8) = 0.097,w(9) = 0.103, w(10) = 0.108,
w(11) = 0.113,w(12) = 0.118.
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Substituting n = 12, h = 1/12, j = 0, 7 = 1, and the weight distribution
given above into (7.7) and (7.8) yields

T = 3wl - (- k)

i=j+1

—Z (@)1 - (12 —4)/12] = 0.629,

n—1 n
T ;= Y w@r-@n-dh+2 Y Y w@wk)r - (n- k)]

i=j+1 i=j+1 k=i+1

11
—Zw )[1—(12—1)/12]+2ZZ k)1 - (12 — k)/12]

i=1 k=i+1
= 0.476.

If we compare the effective mean and variance time values in Examples
5.1 and 7.3, we find that both the effective mean and variance time values
with a = 0.50 increase significantly from 0.542 and 0.376 to 0.629 and 0.476,
respectively. The increased effective variance time indicates that the call op-
tions on flexible geometric averages with a = 0.50 should be more expensive
than those on standard geometric averages because of the increased effective
volatility.

With the distribution of the flexible geometric average given in Theo-
rem 7.1, we can readily obtain a pricing formula for flexible geometric Asian
options.

Theorem 7.2. If the averaging numbers are specified in (5.3), then the
price of a European-style geometric Asian option is given by the following
formula:

cl, = wSAfa(j)N(wd{;i i+ wa,/T,{_j) ~wKeN (wdf?;)  (79)
where

Al (j) = &)= Wiy~ B (j)

2 e 2ot (0T

w is the same binary operator as in (5.5), and all other parameters are the
same as in Theorem 5.1.
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Proof. Similar to that of Theorem 5.1. O

We can readily show that the pricing formula for flexible geometric
Asian options in Theorem 7.2 becomes exactly the same as that for stan-
dard geometric Asian options in Theorem 5.2 when o = 0 or when the
weighting scheme is even, because T}, _;, T,{_j, B1(j), Afe(j), and d,fl'ij
become the same as T Ty, B*(j), A*%(j), and dy’; in Chapter 5,
respectively.

There is one interesting property about the pricing formula in Theorem
7.2. If we choose the weight function given in (7.2), nearly all weights will be
allocated to the most current observation if the weight parameter o goes ex-
tremely large, given the number of observations and observation frequency.
Specifically, W(n,a,n) — 1 and W(n,a,i) = 0 for i = 1,2,3,...,n — 1,2
given the observation frequency h and number of observations n. Substi-
tuting W(n,a,n) = 1 and W(n,a,i) — 0 for s = 1,2,3,...,n — 1 into
the expressions of the two effective time functions yields T;{, n—j — T and
T,{_]- — 7. As the two effective time functions approach the time to matu-
rity of the option, the pricing formula for flexible geometric Asian options in
Theorem 7.2 approaches the extended Black-Scholes formula given in (3.2).

Example 7.4. What are the prices of the call and put options with strike
price 3400 to expire in one year and based on the flexible geometric average
of monthly gold prices with the weight parameter a = 0.5, given that the
spot gold price is $390 per ounce, the interest rate 7%, yield on the gold is
zero, and volatility of gold return is 20%?

Since the time to maturity, observation frequency, and the number of
observations are the same as in Example 7.3, we can use the two effective
time values in Example 7.3. Substituting S = $390, K = $400, r = 0.07,

- _ — f — f ; ;
9=0,0=020,w=1, T, n—; = 0.629, and T;,_; = 0.476 into (7.9) yields

(0 () (=0-3) s 0 (T

_ 390 _o-1 2
= [In (400> + (0.07 0- 5 x020 ) x 0.629+ln(1)] /

(0.20 x \/0.476) = 0.0444,

ZThe last term in the denominator of the weight function given in (7.2) n® dominates all other
terms i® for i = 1,2,3,...,n — 1. Dividing both numerator and denominator of (7.2) yields
W(n,a,n) —» 1 and W(n,a,i) - 0 as a — +o0.
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the call option price:

C = SAG)N (d,f,‘i S+ a\/T,{_]) — KeTTN(@®)
_ 390 x ~0-07(1-0.629)-0.20% x (0.629-0.476)/2 (0. 1824)

— 400 x e~%97 N (0.0444)
= $23.746,

and the corresponding geometric put option price can be found by substi-
tuting w = —1 and other parameters into (7.9)

P=—SA*(G)N (—d,f;’_ ;- a,/T,{_i) + Ke ™ N(-df® )

— 300 x e—0-07(1-0.629)—0.20% x (0.629-0.476)/2 N(=0.1824)

+ 400 x e~ %97 N (-0.0444)
= $17.867.

7.6. APPROXIMATING FLEXIBLE ARITHMETIC AVERAGES
WITH FLEXIBLE GEOMETRIC AVERAGES

Using a general mean measure, we found an efficient approximation
for a standard equal-weighting arithmetic average using its corresponding
geometric average and following Taylor’s series expansion in Chapter 6. We
will now approximate a flexible arithmetic average given in (7.5) so that
we will be able to find a reasonably approximated closed-form solution to
flexible arithmetic Asian options. We mainly follow Zhang (1995b) in the
following sections.

When we extend the standard Asian options with equal weights to flex-
ible arithmetic Asian options based on the flexible arithmetic average given
in (7.5), we simply need to find the corresponding expressions for the mean
and variance functions which are necessary to calculate the approximation
coefficient in Theorem 6.1. We can obtain the mean function for a flexible
arithmetic average:

E(f) = v*h?Var(ilw;) + a2h[zn:iw,-(1 —wj) — 2Xn:iw,~ z": w,] (7.10)

i=1 i=1 l=i+1
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where

Var(ijw;) - Z('z — M?)w;,

i=1

n
M= Ziwi, v=(r—g-0%/2),
i=1
and E(uvf) stands for the mean function with flexible weights w;, 1 =
1,2,...,n given in (7.1) or (7.2).

The mean function given in (7.10) cannot, in general, be expressed in
compact form for arbitrary weight distributions. However, it is easy to obtain
the weighted summation to calculate the mean function. It can be readily
shown that the mean function with flexible weights E(v/) given in (7.10)
degenerates to the mean function with equal weights E(v) given in (6.8a)
when w; = 1/n for all observations i = 1,2, ... , M.

Example 7.5. Find the mean function in (7.10) given 7 = 1 year, the
weight parameter a = 0.5, interest rate 7%, yield on the gold zero, volatility
of gold return 20%, the number of observation 12, and observation frequency
1/12.

Substituting 7 = 1, @ = 0.5, 7 = 0.07, g=00=020n =12,
h =1/12, and the weight distribution in Example 7.2 into (7.10) yields

v =0.07 - 0-0.202/2 = 0.05,

n 12
M=) iw =) iw = 75464,
i=1

i=1
n 12
Var(ilw) = Y (i — MP)w; = Y (i ~ 7.5464)%w; = 10.3486,

i=1 i=1

12 12 12
E(v) = v RV ar (ijw;) + o*h Ziw,-(l —wji) — 2Ziwi Z wy
i=1 i=1 l=i+1
= 0.0063.

The variance function, however, cannot be extended to the flexible arith-
metic average so easily as the mean function. The difficulty is that expected
values of products of observations in the third and the fourth powers? have
3A product of four variables Z1, Z3, Z3, and Z; of the form Z;‘ZngZf is of power a+b+c+d.

The numbers of the tri-variate and quad-normal distribution function values which have to be
estimated are n(n — 1)(n — 2)/6 and n(n — 1)(n — 2)(n — 3)/24, respectively.
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to be derived, and these expected values are generally expressed in terms of
tri-variate and quad-variate cumulative normal distribution functions. It is
not convenient to estimate these distribution function values. To make the
matter worse, the number of tri-variate and quad-variate normal distribu-
tion function values which have to be estimated increases dramatically with
the number of observation n.*

We could avoid these tri-variate and quad-variate normal distribution
function values by using some appropriate approximations which do not sig-
nificantly affect the accuracy of the final results. The coefficients of the
tri-variate and quad-variate normal cumulative function values are products
of weights in the third and fourth powers, respectively. As all weights are
between 0 and 1, weight products in the third and the fourth powers are
generally much smaller than 1, and values of all cumulative functions are
always smaller than or equal to 1. Therefore, products of weights and cu-
mulative functions are generally much smaller than 1 and can be neglected
without seriously affecting the accuracy levels. Neglecting weight products
in the third and fourth powers, we can obtain the approximated variance
function as follows:

Var(v') = 2021 Var(ijw;) [E(vf) - % V2h2Var(i|wi)] + 40%hQ - [E(vf)] 2,
(7.11)
where
Q=i - MW +23 i(i — M)w; »_ (I~ M)w,
i=1 i=1 I=i+1

and E(vf) is given in (7.10) and all other parameters are the same as in
(7.10).

The value of the variance function given in (7.11) can be easily estimated
given a weight distribution because the summations involved can be obtained
readily with any computer for any number of observations n, volatility of
the underlying asset return o, time to maturity 7, interest rate r, and yield
on the underlying asset.

Example 7.6. Find the approximated variance function in (7.11) given
7 = 1 year, the weight parameter a = 0.5, interest rate 7%, yield on the gold

41f all the observations are of the same, then both the flexible geometric and arithmetic averages are
the same as the equal value; when a — +00, both the flexible geometric and arithmetic averages
degenerate to one same current observation. However, these are two trivial cases as they do not
exist in general.
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zero, volatility of gold return 20%, number of observation 12, and observation
frequency is 1/12.

Substituting 7 = 1, @ = 0.5, 7 = 0.07, g = 0, 0 = 0.20, n = 12,
h=1/12, v =0.05, M = 7.5464, Var(i|w;) = 10.3486, and E(v') = 0.0063
in Example 7.5, and the weight distribution in Example 7.2 into (7.11) yields

Q=) i(i—-MPAf+2Y) ili - Mw; Y (1- M)w,
i=1 =1

I=it+1

n 12 12
=D i(i — M)Pw? + 23 i — M)w; Y (I — M)w; = 11.2791
i=1 i=1 l=i+1

and

Var(v') = 20°h*Var(i|w;) [E(Uf) - %uzthar(ilwi)} +40%hQ — [E(v]))?

2 2
= 2x0.05° (%) x 10.3486 [0.0063—-% x 0.052 (%) x 10.3486]

1
+4 x 0.20% x Th 11.2791 — 0.00632
=0.1504.

With the mean and variance functions in (7.10) and (7.11) and following
the similar procedures to obtain Theorem 6.1, we could approximate the
flexible arithmetic average given in (7.5) with its corresponding geometric
average given in (7.4).

Theorem 7.3. The flexible arithmetic average (FAA) given in (7.5) can be
approximated with its corresponding flexible geometric average (FGA) given
in (7.4) as follows:
FAA(T) = k' FGA(r), (7.12)
where
1 AT 12 s
k= 1+—2-E(v )+Z{[E(v Ne+ Var(v )} ,

and E(v’) and Var(v/) are given in (7.10) and (7.11), respectively.

As the lognormalization factor s/ is greater than 1 in general, (7.12)
indicates that a flexible arithmetic average is greater than its corresponding
geometric average. This can be understood as an extension of the fact that
an equally weighted standard arithmetic average is always greater than its
corresponding geometric average for nontrivial unequal observations. Thus,
(7.12) also indicates that a flexible geometric average is a lower bound for
its corresponding arithmetic average.
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Example 7.7. Find the lognormalization factor k! in Theorem 7.3 given
T = 1 year, the weight parameter a = 0.5, interest rate 7%, yield on the
gold zero, volatility of gold return 20%, the number of observation is 12, and
observation frequency is 1/12.

Substituting E(v/) = 0.0063 in Example 7.5 and Var(v/) = 0.1504 in
Example 7.6 into (7.12) yields

=1+ % E@f) + i{[E(vf)]2 + Var(vh)}

1 1
=1+ 5 x 0.0063 + 7 x (+0.0063% + 0.1504) = 1.04076.

7.7. FLEXIBLE ARITHMETIC ASIAN OPTIONS

Using the flexible arithmetic average in (7.5), we can express the payoff
of a European-style Asian option based on the flexible arithmetic average of
the underlying asset prices as

FAAOPPOF = max[wFAA(7) — wK, 0], (7.13)

where w is the same binary indicator (1 for a call option and —1 for a put
option).

Using the approximation formula given in Theorem 7.3, we can obtain
the price of a flexible arithmetic Asian option in the following theorem.

Theorem 7.4. The price of a flexible arithmetic Asian option can be ap-
proximated as follows

ija = wS’nfe_gT;{,n—J'Af(j)N (wd{;'ij + wa\/T,{_j) - wKe""(wd,f,‘_‘_j) ,
(7.14)
where

a 'S 1 . T
dfl_j = [ln <-H—K—> + ('r —g- 502) T’{,n_j +in Bf(J)} / (a T,{_j> )

all other parameters involved are the same as in Theorems (6.1) and (6.2).

The parameter d® in (7.14) is for “fexible arithmetic” Asian options
compared to df which is the corresponding parameter for “flexible geometric”
Asian options in (7.7). If we compare (7.14) and (7.7), we can readily find
that the flexible arithmetic Asian option prices can be easily obtained by
multiplying the current asset price S by the approximation factor kf. As any
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flexible arithmetic average is always greater than its corresponding geometric
average, (7.14) indicates that a flexible arithmetic Asian call option is more
expensive than its corresponding geometric call option.

Example 7.8. What are the prices of the call and put options with strike
price $400 to expire in one year based on the flexible arithmetic average
of monthly gold prices with the weight parameter o = 0.5, given the spot
gold price is $390 per ounce, interest rate 7%, yield on the gold is zero, and
volatility of gold return is 20%?

Since the time to maturity, the observation frequency, the number of
observations and the weight parameter are the same as in Examples 7.5,
7.6, and 7.7, we can use the effective time values in Example 7.3 and the
lognormalization factor in Example 7.7. Substituting S = $390, K = $400,
r=007,9=0,0=020,0=1,T] . =062, T] = 0476, s/ = 1.04076
into (7.14) yields

= () (m0-3) hyrmt / (E)

= [ln (ﬂz‘%?ﬂ) + (0.07 -0- % x 0.202) x 0.629 + ln(l)] /

(0.20\/0.476)
=0.3119,

the call option price is

C = Skl e Tin-s A ()N (d,f;i i+ o\/T,{_j) ~ Ke""N(d )
= 390 x 1.04076 x e~0-07(1-0.629)—0.20% x (0.629-0.476)/2

+ N (0.3119 + 0.20\/0.476) — 400 x e~ %97*1N(0.3119)
= $32.634.

7.8. FLEXIBLE-AVERAGE-STRIKE ASIAN OPTIONS

Theorem 7.4 provides an approximated formula for a flexible arithmetic
Asian option with fixed strike price using the closed-form formula of a flexible
geometric Asian option. The payoff of an Asian option with strike prices
specified as the flexible geometric average of the underlying asset prices can
be given as follows:

PFCGA = max|wS(1) — wFGA(n),0], (7.15)
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where FGA(n) is given in (7.4), and w is the same binary operator as in
(7.14).

Following the same procedure, we can obtain closed-form and approxi-
mated closed-form formulas for Asian options with strike prices specified as
flexible geometric and flexible arithmetic averages. In order to price Asian
options with strike prices specified as the flexible averages of their under-
lying asset prices, we need to know the correlation coefficient between the
log-return of the underlying asset and that of the flexible geometric average
defined in (7.4).

Theorem 7.5. The correlation coefficient between the log-return of the
underlying asset and that of the flexible geometric average defined in (7.4)
is

B R Gl Tt T i) el ek Bl 0 S
0'2\/7'T,{_j , .

where T;{, n—j and T,{_]- are the effective mean time and variance time func-
tions given in (7.7) and (7.8), respectively.

o

Proof. Similar to the proof of Theorem 5.4. a

Example 7.9. What is the correlation coefficient between the log-return
of the underlying asset and that of the flexible geometric average with the
weight parameter a = 0.50, interest rate is 7%, yield on the underlying asset
zero, volatility of the underlying asset 20%, time to maturity one year, and
observation frequency monthly?

We can use the results in Example 7.3 T;{,n—j = 0.629, T,{j = 0.476
because the conditions of Example 7.3 are the same as in this example.
Substituting 7 = 1, T;{,’n*j = 0.629, T,{_J- = 0.476, r = 0.07, g = 0.03,

o = 0.20 into (7.16) yields pf = 0.7772 = 77.72%.

With the correlation coefficient defined in (7.16), we can obtain the pric-
ing formula for Asian options with payoffs specified in (7.15) in the following
theorem.

Theorem 7.6. The price of a European-style Asian option with strike price
specified as the geometric average of the underlying asset prices given in

(7.15) is

. —_ f .
AGESTK = wS [e—ng (wpfgl) — Al (e Tun-iN(wD] )|, (7.17)
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where
;- In[B/(j)] + (r — g - a?)(1 - Tlf,n_]-) +02(pf,/TT,{_j -1)
fg2 — 7 ’
o/ e

D;gl = ngz + oy Téf, Té‘ =7 2pf\/TT,{_j + T,{_j ,

A’ (j) and B/ (j) are the same as in (7.9), pf is given in (7.16), and Tl{’n_]-
and T,{_ ; are the same effective mean and variance functions given in (7.7)

and (7.8).
Proof. Similar to the proof of Theorem 5.5. O

Example 7.10. What are the Asian call and put option prices with strike
price specified as the flexible geometric average of the underlying asset prices,
given other information the same as in Example 7.97

Since the time to maturity, observation frequency, the number of ob-
servations, and the weight parameter a are the same as in Examples 7.7,
7.8, and 7.9, we can use the two effective time values T;{, n—j = 0.629,
T,{_ ; = 0.476 and the correlation coefficient p/ = 0.7772 = 77.72% in Exam-
ple 7.9. Substituting S = $390, K = $400, r =0.07, g =0, 0 = 0.20, w =1,
T‘{, n—j = 0.629, T,{_j = 0.476, and the correlation coefficient p/ = 0.7772
into (7.17) yields

Téf =T 2pf\/TT1{_j + T,{_j
=1-2x0.7772 x /1 x 0.476 + 0.476 = 0.4036,
I
Df92 -
—In(1) + (0.70 — 0 — § x 0.202)(1 — 0.629) + 0.202(0.7772y/T x 0.476 — 1)
0.201/0.4036

= —0.0000
D}, = —0.00001 + 0.20 x v/0.4036 = 0.1271,

the call average-strike option price

—q7 o —gT7!
C = $ [T N(DL,y) - A (et N (D))

=3

=390 x [N(0.1271) — 0.9741 x N(—0.00001)] = $25.299;
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and the corresponding put option price can be found by substituting w = —1
into (7.17)

P=5|e " N(-D} )+ A (j)e 9 Tin-s N(—D){gz)]
= —390 x [N(—0.1271) + 0.9714 x N(0.00001)] = $14.145.

Theorem 7.7. The price of an Asian option with strike price specified as
the flexible arithmetic average given in (7.5) of the underlying asset prices
specified in (5.3) can be approximated as:

AGESTK =wS [s/e™9"N(wD},,) — Af (epsliN (wDhyp)] (7.18)

where
—ln[x/ B/ ()] + (r— g~ Lo®)r — TS, )+ o (pf\JTTI_; - 1)

DfaZ =

I \/
Dfa1 = D§a2 +0o Téf,
and all parameters are the same as in Theorems (7.4) and (7.5).

Proof. Similar to the proof of Theorem 7.6. a

7.9. FLEXIBLE SENSITIVITIES

The flexible Asian options (FAOs) discussed in this chapter have very in-
teresting characteristics that neither plain vanilla nor standard Asian options
possess. These characteristics can be clearly expressed by various sensitiv-
ities such as deltas, gammas, vegas, thetas, and so on. We try to illustrate
the flexibility of FAOs by analyzing their deltas. The delta of a FAO can be
readily derived from (7.12):

Delta{l’ij = meelta,fl_j

= wrf [1 - iw(z)} AT (j))N (wd,fﬁj + wo\/T,{_j) )

where all parameters are the same as in (7.9).

The deltas of plain vanilla options in the Black-Scholes model are fixed
given the parameters S,r, K, o0, and 7, and they are also fixed in standard
Asian options once the number of observations and the observation frequency
are given. However, the deltas and other sensitivities of FAOs depend on

(7.19)
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the weight distribution function given in (7.1) or (7.2). In other words, the
deltas can change with various weight functions ¢(i) given in (7.1) or various
values for the weight control parameter « in (7.2). The second columns
of Tables 7.1 and 7.2 provide the values of the deltas of flexible arithmetic
Asian call (FAAC) options with the observation number n = 2, 4, 6, 8, 10,
and 12 and the weight parameter a = 0, 0.25, 0.5, 1, 2, 10, 50, and 100,
given the spot price S = $100, the strike price K = $100, the interest rate
T = 10%, the volatility of the underlying asset o = 10% and 15%, the time
to maturity of the option 7 = 1 year, and the observation frequency h = 1
month.

Tables 7.1 and 7.2 show that deltas of FAACs are different with dif-
ferent values for the weight control parameter a and they tend to be more
different with higher volatilities. Thus, desirable hedging ratios may be ob-
tained by adjusting and finding some appropriate weight functions. There-
fore, FAOs may have interesting applications for hedging and other trading
strategies.

7.10. “TREND” OPTIONS

The weighting scheme in (7.1) can be either ascending, descending,
U-shaped, V-shaped, W-shaped, inverse U-shaped, inverse V-shaped, in-
verse W-shaped, or even “Z”-shaped (“Zigzag” shaped), depending upon
the buyer’s trend expectation of the underlying market. If the buyer of the
option believes that the underlying market will follow a particular trend or
pattern, it would be perfect to have a weight design that best fits his/her
trend expectation, so that the flexible average would be greater with this
weight design than with any other weight allocations. Since these options
can take the best advantage of clients’ trend expectations, we may simply
call these options Z-shaped trend options, or simply trend options, because
Z-shaped patterns include all possible patterns.

Most existing path-dependent options depend on either one or a few
points on the path. For example, a barrier option is characterized by whether
the barrier is broken, while the pattern in which the underlying asset price
moves does not matter; the payoff of a lookback option is only affected by
the maximum or the minimum points on the path; the payoff of a standard
Asian option is affected by the prespecified equally weighted number of ob-
servations. We can call these path-dependent options point-path-dependent
as they depend only on one or a few points on the path. As a trend op-
tion depends on the shape or the curve of the path and can take the best
advantage of a participant’s trend expectation, we may say that they are
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Table 7.1. Comparisons between prices of approximated Flexible Asian Options
(FAASIAN) simulatex prices of FAOs, and prices of Flexible Geometric Asian Options
(FGASIAN) given spot price s = strike price = $100, interest rate = 10%, time to maturity
= 1 year, volatility of the underlying asset ¢ = 10%, observation frequency = 1 month.

Alpha Delta FAASIAN  Simulated PS FGASIAN  FAASIAN-Simulated PS

Number of Observations n = 2

0.00 0.852 10.21 10.25 10.21 -0.040
0.25 0.852 10.22 10.26 10.22 —0.040
0.50 0.852 10.22 10.26 10.22 —0.040
1.00 0.852 10.24 10.28 10.24 —0.040
2.00 0.853 10.27 10.30 10.27 —0.040
10.0 0.853 10.31 10.34 10.31 —0.034
50.0 0.853 10.31 10.34 10.31 —0.034
100 0.853 10.31 10.34 10.31 —0.034
Number of Observations n = 4

0.00 0.849 10.02 10.06 10.01 —-0.043
0.25 0.849 10.04 10.09 10.04 —0.043
0.50 0.850 10.07 10.11 10.06 —0.044
1.00 0.850 10.11 10.16 10.11 —0.044
2.00 0.851 10.17 10.22 10.17 —0.043
10.0 0.853 10.30 10.33 10.30 —0.035
50.0 0.853 10.31 10.34 10.31 -0.034
100 0.853 10.31 10.34 10.31 —0.034
Number of Observations n = 6

0.00 0.846 9.84 9.88 9.81 —0.033
0.25 0.847 9.89 9.92 9.86 —0.035
0.50 0.848 9.93 9.96 9.90 -0.036
1.00 0.849 9.99 10.03 9.97 —0.040
2.00 0.850 10.08 10.13 10.07 —0.043
10.0 0.853 10.27 10.31 10.27 -0.038
50.0 0.853 10.31 10.34 10.31 -0.034
100 0.853 10.31 10.34 10.31 -0.034
Number of Observations n = 8

0.00 0.844 9.69 9.69 9.62 —0.004
0.25 0.854 9.75 9.75 9.68 —0.008
0.50 0.846 9.80 9.81 9.74 —0.014
1.00 0.847 9.88 9.91 9.84 —0.024
2.00 0.850 10.00 10.03 9.97 —-0.037
10.0 0.852 - 10.24 10.28 10.24 —0.040
50.0 0.853 10.31 10.34 10.31 —-0.034

100 0.853 10.31 10.34 10.31 —0.034
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Table 7.1. (Continued)

Alpha  Delta FAASIAN  Simulated PS FGASIAN = FAASIAN-Simulated PS

Number of Observations n = 10

0.00 0.844 9.56 9.50 9.42 0.051
0.25 0.845 9.63 9.59 9.51 0.040
0.50 0.846 9.69 9.66 9.58 0.027
1.00 0.847 9.79 9.78 9.71 0.004
2.00 0.848 9.92 9.94 9.88 —0.024
10.0 0.852 10.22 10.26 10.21 —0.041
50.0 0.853 10.31 10.34 10.31 —0.034
100 0.853 10.31 10.34 10.31 —0.034
Number of Observations n = 12

0.00 0.844 9.46 9.32 9.22 0.138
0.25 0.845 9.54 9.42 9.33 0.117
0.50 0.846 9.61 9.51 9.42 0.093
1.00 0.847 9.71 9.66 9.58 0.050
2.00 0.848 9.85 9.85 9.78 —0.002
10.0 0.852 10.19 10.23 10.18 —0.043
50.0 0.853 10.31 10.34 10.31 —0.034
100 0.853 10.31 10.34 10.31 -0.034

curve-path-dependent or trend-dependent, and that they are certainly more
path-dependent than most other path-dependent options.

As timing is always the most crucial point in all financial decisions, it
is almost impossible to correctly forecast spot prices, indices, or exchange
rates upon which plain vanilla options are based. However, it is somehow
easier to foresee the trend of the underlying markets using both technical and
fundamental analyses. Thus, trend options are bound to rise in popularity
soon.

The purpose of this section is to illustrate the construction of a “trend”
option. If an investor believes that the underlying asset is bearish, he/she
would buy put and sell call options using common knowledge of vanilla op-
tions. However, as vanilla options are path-independent, he/she may still
lose money even if his/her trend expectation is correct most of the time
but the price jumps up shortly before or at maturity resulting from some
unexpected information. The standard Asian options cannot improve the
situation much because at most it may average out the high and the low due
to the equal weights. An upward trend option also cannot improve the situ-
ation because it allocates heavier (resp. less) weights on lower (resp. higher)
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Table 7.2. Comparisons between prices of approximated Flexible Asian Options
(FAASIAN), simulated prices of FAOs, and prices of Flexible Geometric Asian Options
(FGASIAN) given spot price 8 = strike price = $100, interest rate = 10%, time to maturity
= 1 year, volatility of the underlying asset ¢ = 15%, observation frequency = 1 month.

Alpha  Delta FAASIAN  Simulated PS FGASIAN  FAASIAN-Simulated PS

Number of Observations n = 4

0.00 0.753 10.32 10.45 10.25 -0.122
0.25 0.755 10.44 10.56 10.37 -0.122
0.50 0.757 10.55 10.67 10.48 -0.122
1.00 0.760 10.74 10.86 10.69 —-0.120
2.00 0.764 11.03 11.14 11.00 -0.110
10.0 0.770 11.61 11.65 11.61 —0.040
50.0 0.771 11.67 11.70 11.67 —0.028
100 0.771 11.67 11.70 11.67 —0.028
Number of Observations n = 8

0.00 0.749 8.94 8.77 8.36 0.176
0.25 0.752 9.20 9.06 8.66 0.145
0.50 0.753 9.42 9.32 8.94 0.104
1.00 0.755 9.77 9.75 9.41 0.023
2.00 0.757 10.25 10.32 10.05 ~0.073
10.0 0.768 11.36 11.44 11.35 —0.081
50.0 0.771 11.67 11.70 11.67 —0.028
100 0.771 11.67 11.70 11.67 —0.027
Number of Observations n = 12

0.00 0.800 8.37 7.00 6.37 1.372
0.25 0.794 8.70 7.49 6.90 1.207
0.50 0.787 8.93 7.92 7.36 1.010
1.00 0.775 9.25 8.60 8.11 0.648
2.00 0.763 9.70 9.48 9.09 0.218
10.0 0.765 11.08 11.19 11.05 —0.107
50.0 0.771 11.66 11.69 11.66 -0.030
100 0.771 11.67 11.70 11.67 —0.027

expected prices. Only a downward trend option can take the best advan-
tage because it allocates heavier (resp. less) weights on higher (resp. lower)
expected prices so that the flexible average can be rather high. Thus, one
can buy a downward trend call option when one believes the trend is to
be downward. This sounds somewhat contradictory to existing knowledge
to buy puts (resp. calls) on downward (resp. upward) trends, yet it is a
reasonable product according to our above construction.
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A symmetric U-shaped (resp. inverse U-shaped) trend option consists
of one downward (resp. upward) and one upward (resp. downward) trend
option with equal number of observations in each segment. A symmetric
V-shaped (resp. inverse V-shaped) trend option is a special case of the U-
shaped (resp. inverse U-shaped) trend option when the weight distribution
is a linear function in each segment. A W-shaped (resp. inverse W-shaped)
trend option includes two V-shaped (resp. inverse V-shaped) trend options.
With the weight allocation described above, the pricing formula remains the
same as it is the same for both upward and downward trend options.

The symmetric U-shaped and inverse U-shaped trend options can be
extended to have different number of observations in each trend pattern.
These asymmetric U-shaped and inverse-U-shaped trend options are the ac-
tual building blocks for all trend options. In general, a trend option may
have one asymmetric U-shaped or inverse-U-shaped trend in it or it may have
both, or several of them in permutation, depending upon how specific the
trend is expected. The order of the permutation is very important here as a
trend consisting of one asymmetric U-shaped trend followed by an asymmet-
ric inverse U-shaped one is obviously very different from a trend consisting of
one asymmetric inverse U-shaped trend followed by a symmetric U-shaped
one.

7.11. CONCLUSIONS

Asian options have been popular in the OTC markets for several years.
To date, most of these products have employed equally weighted averages,
but there is no sound reason why alternative weighting schemes cannot be
used. In this chapter we provided approximated closed-form solutions for
flexible arithmetic Asian options which are more attractive to most traders
than standard Asian options. These flexible Asian options permit flexible
schemes in weighting various observations and thus provide additional flexi-
bility for traders to build their specific expectations of the underlying market
movement into the model. These flexible Asian options are of particular in-
terest to traders who wish to assign greater (less) emphasis to the role played
by the more (less) recently observed prices in the average.

We have compared the results from the approximated formulas with
those from Monte Carlo simulations. Our comparisons indicate that the
approximated formulas provide very accurate results with given parameters.
They not only reduce the time to calculate prices but also provide convenient
ways to find expressions for the sensitivities of flexible arithmetic Asian
options with respect to various parameters.
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QUESTIONS AND EXERCISES
Questions

7.1.  What is meant by a flexible average?

7.2. What is a flexible geometric average?

7.3.  What is a flexible arithmetic average?

7.4.  Are flexible arithmetic averages always greater than their correspond-
ing geometric averages? Why?

7.5.  Are flexible arithmetic Asian options always more expensive than
their corresponding geometric Asian options? Why?

7.6.  Why is the measure of inequality introduced?

7.7.  Why do we need flexible Asian options?

7.8.  Does the closed-form pricing formula for Asian options based on flex-
ible geometric averages include the Black-Scholes pricing formula as
a special case? Why?

7.9. What is the most serious difficulty in approximating prices of Asian
options based on flexible arithmetic averages?

7.10. Isthe correlation coefficient between the log-returns of the underlying
asset and the flexible geometric average always constant?

7.11. Is the correlation coefficient between the log-returns of the under-
lying asset and the flexible geometric average always the same as
that between the log-returns of the underlying asset and the flexible
arithmetic average?

Exercises

7.1.  Find the weight distribution if the number of observation n = 10 and
the weight function g(i) is specified as g(i) = 277 in (7.1).

7.2.  Find the weight distribution if the number of observation n = 5 and
the weight parameter a =1 in (7.2).

7.3.  Find the weight distribution if the number of observation n =5 and
the weight parameter a = 1.5 in (7.2).

7.4. What are the effective mean and volatility time values if there are
8 observations in the geometric average, observation frequency is
weekly, the averaging period has not started, the time to maturity
of the option is 8 weeks, and the weight parameter a = 0.257

7.5.  What are the effective mean and volatility time values if a is changed
to 0.75 and other parameters remain unchanged?
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7.6.

7.7.

7.8.

7.9.

7.10.

7.11.

7.12.
7.14.

7.15.

Compare the differences between the results of Exercises 7.4 and 7.5
and try to find how the effective time values change with the weight
parameter.

Find the prices of the geometric Asian call and put options with
monthly observation to expire in half a year with strike price $460
if the current underlying index is $450, the interest rate is 8%, yield
on the underlying index is 4%, volatility of the index is 25%, and the
weight parameter o = 0.50.

Answer the same questions in Exercise 7.7 if the observation fre-
quency is bimonthly and other parameters are the same as in Exercise
7.7.

Show the correlation coefficient between the spot at maturity S(7)
and the flexible geometric average is bivariate log normally distri-
buted with the correlation coefficient given in (7.16).

Find the correlation coefficient between the log-returns of the under-
lying asset and the geometric average with weekly observations, time
to maturity 20 weeks, interest rate 7%, yield on the underlying asset
2%, spot price $100, and the weight parameter o = 1.2.

Find the prices of European Asian options with flexible geometric
strike prices with weekly observations, time to maturity 6 weeks,
interest rate 6.5%, yield on the underlying asset 2%, spot price $100,
and the weight parameter a = 0.20.

Find the deltas of the call and put options in Exercise 7.7.

Find the deltas of the call and put options in Exercise 7.8.

Show the identity: SA(5)f( dfa +0\/Tf i) =Ke T f( d —j)



Chapter 8
FORWARD-START OPTIONS

8.1. INTRODUCTION

Vanilla options become effective immdiately after they are bought or
sold. There are, however, some exotic options such as forward-start options
which are only effective some time after they are bought or sold. Forward-
start options are options which start at some prespecified time in the future
with the strike price set to be the underlying asset price at the time when it
starts. Alternatively, forward-start options are at-the-money options when
they actually start, yet the strike price is not known at present. Forward-
start. options and their variations are normally used in interest-rate deriva-
tives markets in the form of periodic caps and floors, because they provide a
cheaper way to hedge or speculate interest rate derivatives or any other assets
which are highly sensitive to interest rates. As standard caps (resp. floors)
are strings of standard calls (resp. puts) with prespecified strike prices, these
caps and floors can be very expensive when interest rate changes dramati-
cally. Yet risk managers could use periodic caps where the strike rate of each
individual call option is set at a certain spread above the previous interest
reference. The purpose of this chapter is to show how to price future-start
options and analyze their basic properties compared with vanilla options.

8.2. PRICING FORWARD-START OPTIONS

The payoff of a European-style forward-start option can be expressed

PFST = max{w[S(r) — S(n1)], 0}, (8.1)

where 7y = t; — t is the time in the future when the option becomes valid;
T = t* — t is the time to maturity of the option, t < ¢; < t*; max (. , .) is
a function that gives the larger of two numbers; and w is a binary operator
(1 to stand for a call and —1 for a put option).

187
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Obviously, the forward-start option is at-the-money at time ¢ = ¢;. This
is a very important characteristic of forward-start options.

It seems difficult to price forward-start options because the strike price
K = S(t1) is not known at present. The uncertainty of K = S(¢;) does
create some difficulties, yet they can be readily removed. Since any forward-
start options are at-the-money options at the time when the underlying asset
prices are observed, we know their values after the observation time. Suppose
for the time being that the underlying asset price at the observation time
S(t1) is known, the value of a forward-start option at the observation time
can be written by substituting K = S(¢;) into (3.2):

FST = wS(t1) [e 9™ N(wdifer) — e " N(wdser)| ,  (8:2)
where
14
dfst = ; VT —11,

dlfst = dfst +ovT—T11,

v=r—g—o0?/2,

w is a binary operator (1 for a call option and —1 for a put option) and other
parameters are the same as in (3.2).

Formula (8.2) is the same as the pricing formula for at-the-money vanilla
options with the only exception that the time to maturity is the effective time
7 — 71. Although we do not actually know the underlying asset price at the
observation time S(t), we know its distribution from (5.3). As S(t;) is
lognormally distributed with mean v7; and variance o7, we can readily
find the expected value of S(t;) using the moment-generating function of
the normal distribution:

E[S(t)] = Selr—9)m | (8.3)

where S is the spot price of the underlying asset.
Substituting (8.3) into (8.2) yields the expected value of the option

E(FST) = wSe=9™ [0 N (wdy o) — 7" N(wdgar)] ,  (8:9)

where all parameters are the same as in (8.3).

Arbitrage arguments permit us to use the risk-neutral evaluation ap-
proach by discounting the expected payoff of an option at expiration by the
risk-free interest rate. As the risk-neutral valuation relationship guarantees
that all assets are expected to appreciate at the same risk-free rate r, we



Forward-Start Options 189

can obtain the pricing formula of a forward-start option by discounting the
expected payoff in (8.4) by the risk-free rate r. Discounting E(FST) by the
continuous risk-free rate r yields the forward-start option price (FSTOPP):

FSTOPP = wS[e™9"N(wdifs) — e "™ 79" N(wdyy,)]
(8.5)

where
v

dfst = =T — 11,

ag
dlfst = dfst +oVT -7,

v=r—g-02/2,

all parameters are the same as in (8.2) and (8.4).

Formula (8.5) looks very much like the Black-Scholes formula as the
two arguments dys; and dfs in (8.5) become precisely the same as the
two corresponding arguments in the extended Black-Scholes formula in (3.2)
with § = K and n, = 0; however, there exist significant differences when
71 > 0. These differences can be better seen from their sensitivities to various
parameters. We leave the comparisons to the next section.

Example 8.1. Find the prices of the forward-start call and put options
if the time to maturity is one year, the spot underlying asset price is $50,
volatility is 15%, the interest rate is 10%, and the yield on the underlying
asset is 5%, and the options start half a year in future.

Substituting S = $50, r = 1, , = 0.50, r = 0.10, g = 0.05, ¢ = 0.15,
and w = 1 into (8.5) yields the call option price

(r—g~0%/2
ag

_ _ 2
_ (0.10 0.8515 0.15%/2) T 0350 = 0.1827,

difst =dgst +o/T— 11
= 0.1827 — 0.15 x /1 — 0.50 = 0.2887,

FSTOPP(w=1)=S [e—ng(Dfl) - e_T(T_Tl)_gT‘N(Dﬂ)]

dfst =

=50 x [e‘°'°5XIN(0.2887)

— ¢—0-10x(1-0.50)~0.05x0.50 N(0.1827)]
= $2.629,
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and the price of the corresponding put option is
FSTOPP(w = —1)= -8 [e-ng(—al1 fot) — e'T(T‘TI)_g"lN(—dfst)]
= —50 x [¢70%I N (-0.2887)

__e——O.le(1—0.50)—0.05x0.50N(_0.1827)}

= $1.454.

We have obtained a pricing formula for forward-start options before the
starting time. As soon as the starting time is reached, the price of the
underlying asset is observed. Then, a forward-start option degenerates into
a vanilla option once the starting time is passed. Therefore, the price of a
forward-start option can be given simply by substituting 7 = 0 into (8.2):

Cafst = wS(11)[e 9" N(wdys + wo/T) — e " N{(wdgst)), (8.6)
where

dise =[(r—g— 02/2)\/;/0'] .

Equation (8.6) is exactly the extended Black-Scholes formula for vanilla
options given in (3.2) with the strike price the same as the underlying asset
price at the time when the option starts S(¢;).

8.3. SENSITIVITIES OF FORWARD-START OPTIONS

The delta of a forward-start option before the starting time can be ob-
tained by differentiating (8.5) with respect to the current price S

Delta(FST) = wle™ 9" N(wdy f5) — e "~ 79" N(wd )], (8.7)

where all parameters are the same as in (8.5).

The gamma of a forward-start option is always zero because the delta
formula is not affected by the spot price S.

The vega of a forward-start option can be similarly obtained as follows!

Vega(FST) = Se™ /T — 11 f(difst), (8.8)
1The following identity is used to obtain the simplified vega expression:

f(Dg2)/f(Dyg1) = elr=9T=7) |
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where f(z) = e~/ /V2m is the density function of the standard normal
distribution and other parameters are the same as in (8.5).
The theta of a forward-start option can be similarly obtained

Theta(FST) = wS[—ge 9" N(wd fst) + re T(T—T1)—gm N(wdgst)]

+Se™ 7 (difst) (8.9)

ag
aien

where all parameters are the same as in (8.5).

The interesting thing about forward-start options is that their thetas
are zero any time before the starting time because the time difference 7 —
which affects the forward-start option price is not affected by the passing of
time before the options starts.

Example 8.2. Find the deltas, vegas, and thetas of the forward-start call
and put options in Example 8.1.

Substituting S = $50, 7 = 1, 1, = 0.50, r = 0.10, g = 0.05, ¢ = 0.15,
and w = 1 and —1 into (8.7) yields the deltas of the forward-start call and
put options

Delta(FST,w = 1) = e 9" N(dyf51) — e ") 79M N(djg)
= 7 0-05x1 v(0.2887)

_ e—O.le (1_0'50)—0'05)(O'SON(0.1827)

= 5.26%
and
Delta(FST,w = —1) = —e" 9" N(=dyfs1) + € "IN N(~djg)
= —e 095x1v(_0.2887)
+ e—O.lOX(1—0.50)—0.05)<0.50N(_0‘1827)
= —2.91%; .
Substituting S = $50, 7 =1, 71 = 0.50, r = 0.10, g = 0.05, and o = 0.15
into (8.8) yields the vega of the forward-start call and put options
Vega(FST) = Se™ 9 /7 — 11 f(difst)
=50 x e 005x1/T—0.50£(0.2887) = 12.869;
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Substituting S = $50, 7 = 1, 7, = 0.50, r = 0.10, g = 0.05, & = 0.15,
and w = 1 and —1 into (8.9) yields the thetas of the forward-start call and
put options '

Theta(FST,w = 1) = S[ge 9" N(dyjst) + e "IN N (d )]

+ Se™97 fldifst)

a
PN
=50 x |e~%05%1 N (0.2887)

N e—O.lOX (1—0.50)—0.05x0.50N(0. 1827)

0.15
2v/1-0.50

+ 50 x ¢~0-05x1 X f(digst)

= 3.1267,
and
Theta(FST,w = —1) = —Se[~ge 9" N(—dy s5t) + re T "I N (d ;)]
+Se7 7" 2‘\7;_—“‘—7_; f(digst)
= —50 x [—0.05 x e~ %95*1 N (~0.2887)
— =010x(1-0.50)-0.05x0.50 (0 1897)

0.152
—_— X f(d
oVl - 050 f( lfst)]

4 50 x e—0.0le
= 0.8667

Comparing the delta, vega, and theta of a forward-start option with
those of a vanilla option given in (3.32), (3.33), and (3.34), we can readily
find that all the sensitivities of a forward-start option exhibit discontinuity.
For example, the theta of a forward-start option jumps from zero to the
regular theta of the corresponding vanilla option in (3.34) at the option
starting time ¢ = ¢ or at ; = 0. The theta of any vanilla option is always
positive because the time value of the option is always positive.

8.4. SUMMARY AND CONCLUSIONS

Forward-start options are one special kind of path-dependent options,
which depend upon the price of the underlying asset at the observation
time. Actually, these options are path-independent both before and after
the observation time. Forward-start options are at-the-money options at
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the observation time. We have provided closed-form solutions for forward-
start options in this chapter. The pricing formula for forward-start options
is precisely the same as the extended Black-Scholes formula after the ob-
servation time, but it is rather different before that. The sensitivities of
forward-start options exhibit significant discontinuity around the observa-
tion time. Most noticably, the gammas of all forward-start options are zero
before the observation time.

QUESTIONS AND EXERCISES

Questions

8.1.  What are forward-start options?

8.2.  How is a forward-start option different from its corresponding vanilla
option?

8.3.  Where are forward-start options normally used?

8.4. Under what condition will a forward-start option become the same
as a vanilla option?

8.5. Why are the gammas of all forward-start options always zero?

8.6. What is the difficulty involved in pricing forward-start options?

8.7. What is the price of a forward-start option if the observation time is
the same as the option maturity?

8.8.  Show that the identity f(dss)/f(difst) = Ser=9(7—") is always
correct.

8.9.  Show the expectation in (8.3) is correct.

8.10. Find the prices of the forward-start call and put options if the time to
maturity is one year, the spot underlying asset price is $100, volatility
is 25%, interest rate is 8%, the yield on the underlying asset is 4%,
and the starting time of the options is half a year.

8.11. Find the deltas, vegas, and thetas of the call and put options in
Exercise 8.10.

; 8.12. Find the answer to Exercise 8.10 if the observation time is changed

to one month and other parameters remain unchanged.

8.13. Find the deltas, vegas, and thetas of the call and put options in
Exercise 8.12.

8.14. Find the answer to Exercise 8.10 if the volatility is changed to 10%
and other paramters remain unchanged. ~

8.15. Find the deltas, vegas, and thetas of the call and put options in

Exercise 8.14.






Chapter 9
ONE-CLIQUE OPTIONS

9.1. INTRODUCTION

Holders of vanilla options can only get payoffs as differences of the un-
derlying asset prices at maturity and their corresponding strike prices; and
holders of standard American options get payoffs as differences of the under-
lying asset prices at any time between the start and maturity of the options
and their corresponding strike prices. One-clique options are somewhat be-
tween European and American options in the sense that their holders get
payoffs as differences of the underlying asset prices at some prespecified time
before the option’s maturity and their strike prices. Thus one-clique options
are somewhat similar to forward-start options in Chapter 8 in that one quan-
tity, the strike price in the case of forward-start options and the underlying
asset price in one-clique options, is prespecified at some time in the future
before the option’s maturity.

Due to this similarity, the analysis of one-clique options is similar to
that of forward-start options. However, as we will show in this chapter, one-
clique options are very different from forward-start options. We will first
define one-clique options formally , then we try to price one-clique options
and apply them in practice.

9.2. ONE-CLIQUE OPTIONS
The payoff of a one-clique option (POCOP) can be formally expressed

POCOP = max{w[S(r) — K], w[S(n) — K],0}, (9.1)

where 7y = t; — t is the clique time in the future; 7 = t* — ¢ is the time to
maturity of the option, t < t; < t*; max (.,.) is a function that gives the
larger of two numbers; and w is a binary operator (1 for a call option and
—1 for a put option).

195
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It is obvious that in the extreme case the payoff given in (9.1) becomes
the same as that of vanilla call and put options given in (2.1) and (2.2) when
the clique time is the same as the maturity time. The payoff expression given
in (9.1) indicates that the payoff of a one-clique option is at least as large
as that of the corresponding European option because the payoff gives the
larger of the payoff of a European option and that of an American option
exercised at the clique time. As a result, the price of a one-clique option
should be higher than that of the corresponding European option, yet not
higher than the corresponding American option because the clique time may
not be the optimal exercising time of the American option.

9.3. PRICING ONE-CLIQUE OPTIONS

It seems difficult to price one-clique options because both the underlying
asset prices at maturity and at the clique time are unknown at present. Yet
this difficulty can be readily removed. Although both the underlying asset
prices at maturity and at the clique time ¢; are uncertain, they are uncertain
not independently in a Black-Scholes environment. Proposition 5.1 in Chap-
ter 5 indicates that the covariance of any two overlapping observations of the
standard Wiener process equals the smaller of the two corresponding time
intervals. Thus, these two prices are correlated with a correlation coefficient
p = +/71/7. With this in mind, we can price all forward-start options within
a Black-Scholes environment.

Assume that the underlying asset price follows the stochastic process
given in (3.1). Let z = In[S(7)/S] and y = In[S(71)/S). It can be easily
proven using the results in (5.3) that both z and y are normally distributed
with means pu; = (r — g — 0%/2)7 and p, = (r — g — 6%/2)7; and variances
02 = 027 and 0'5 = o027, respectively. It can also be shown that z and Y

are jointly normally distributed with the correlation coefficient p = /7 /7.
The joint density function can be expressed as follows:

fzy) = f(y)f(zly), (9.2)

where

fly) = ayxl/ﬁ exp ( - U—;) )

_ 1 (u — pv)?
f(xly) - Uz\/ﬂ /—_1 — p2 €Xp [2(1 _ p2) )
u=z—”z and vzy_“y.

Oz oy
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% > S(r)

Fig. 9.1. Integration domain for a one-clique option.

Figure 9.1 depicts the integration domain of a one-clique call option. In
the area below the forty-five degree line and greater than the strike price
K, the underlying asset price at maturity is greater than that at the clique
time. In the area above the forty-five degree line and greater than the strike
price K, the underlying asset price at maturity is smaller than that at the
clique time.

Using the bivariate normal distribution density function given in (9.2)
and the integration domain in Figure 9.1, we can obtain the expected payoff
of a European-style one-clique option (EXPOCOP) given in (9.1) through
double integration:

EXPOCOP = e™=97" Ny(dy, bi1, p1) + "9 Ny (dys, br2, p2)
- K[NZ(d) b’ Pl) + N2(dy,‘“b,P2)], (93)

d= [In(%)-k(r—g—%ﬁ)r] /(a\/?), dy =d+ poz,

dy = [ln (—;—) + (r—g— %2)7'1] /(m/ﬁ), dy1 = dy + pay,

2 2
T, — Oz0 g" — OO0
by =b+ 222 %2% g = p4 BT T2

Oa Oq

where

b__.&__“y,
Oa
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po2 — o1 po1 — 02
pPr = ’ p=——,
Oq Oa

Og = \/ag ~ 2poz0y + 07,

and Na(a,b,0) is the standard bivariate normal cumulative function with
two upper boundaries a and b and the correlation coefficient 8.

Substituting p = /71/7, pe = (r — g — 0*/2)7, py = (r — g — o%/2)1,
02 = o%r, and 0'3 = o?r into (9.3) yields 0, = ov/7 — 71, p2 = 0, and

= —V1-p* = —\/1—(m/7). Simplifying (9.3) using the identity
Nz(a,b,0) = N(a)N(b) and discounting it at the risk-free rate of return
yields the one-clique call option price (ONCQCP):
ONCQCP = S[e™9" Ny(dy,b, p1) + € """ 79" N (dy )N (b12)]

— Ke™""[Na(d, b, p1) + N(dy)N(-b)], (9.4)

where

=[e(§) (-s-30)) fonamannim.
4= [o(3) (oo 1) fem =g enis

—a—02 -
b=T=9=9/2 e e po gy /T
g

p=—1-p=—i—(m/n).

We can check one extreme case when the clique time 7, is the same as
the maturity time 7. Substituting 7 = 7 into (9.4) yields p; = b = bj3 = 0,
dy =d+ 0/T = dy, and d = dy. Substituting p; = b = b = 0 into (9.4)
yields!

Na(dy,b, p1) = N(d1)N(b) = N(d1)N(0) = N(d1)/2,
N(dy1)N(b12) = N(dy1)N(0) = N(dy1)/2 = N(d1)/2,
Na(d,b,p1) = N(dN(b) = N@)N(0) = N(d)/2,

and

N(dy)N(~b) = N(d)/2.

Substituting the above expressions into (9.4) yields the extended Black-
Scholes formula in (3.2).

It can be readily shown using the bivariate density function given in (9.2) Na(e, b,0) = N(a)N(b)
if the correlation coefficient is zero.
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Similarly, a one-clique put option price (ONCQPP) can be derived as
follows:
ONCQPP = Ke " [Ny(—d, b, —p1) + N(—dy)N(-b)]
- S[e‘gTN(—dy — oy/T)N(=b)

+ TNy (~d — o VT, —p1)]  (9.5)

where all parameters are the same as in (9.4).

It is straightforward to check that (9.5) degenerate to the extended
Black-Scholes pricing formula for put options when the clique time is equal
to the maturity time.

9.4. EXAMPLES

We priced one-clique options in the previous section. We will now illus-
trate how to use the one-clique option pricing formula in this section with a
few examples.

Example 9.1. The Standard & Poor 500 Index is $535, the strike price $540,
the volatility of the underlying asset o = 15%, the interest rate ¢ = 7%, the
payout rate of the S&P Index 3.5%, what is the price of the one-clique call
option if the clique time is four months and the time to maturity is half a
year?

Substituting S = $535, K = $540, 0 = 0.15, r = 0.07, g = 0.035,
71 = 1/12 = 0.0833, and 7 = 0.24 into (9.4) yields

pr = —/1 - (11/7) = —/1 ~ (0.083333/0.25) = —0.5774,
bt o

535 1 ..
= 220 07 —0.035 — = 0. . 15v0.25) = 0.02
[ln(540)+(007 0.035 — 5 0.15 )025]/(015 025) 0.0243,

dy =d+ o/ =0.0243 4+ 0.154/4/12 = 0.1109,

dy = [ln (SK) + <r -9- %02>7’1] /(o\/‘r—l) = —0.0160,
dy = dy + ot /T = 0.1547,
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_T—g—03/2 _ 0.07-0.035—0.15% /2 _
b= —— —VT-mn= 015 v/ 1-(4/12) = 0.0646,

big = —b— a,/Q;T“)l = —0.1000,

and thus the call option price is

ONCQCP = 5 [e™" Ny(dy, b, p1) + €™~ N(dy )N (byy)|

— Ke "7 [N2(d, b, p1) + N(dy)N(-b)]

=535 [e-"-°35><°-~"’N2 (0.1109, 0.0646, —0.5774)
+ ¢~0:07x(0.5-4/12)~-0.035x4/12 N(O.1547)N(—0.10)]
— 540 x ¢70-07x0.5 [N2(0.0243,0.0646, —0.5774)

+ N(—0.0160)N(—0.0646)]

= $14.149.

Example 9.2. What is the price of the one-clique call options with the
clique time five months and six months, respectively, and other parameters
remain unchanged as in Example 9.17

Following the same procedure as in Example 9.1, we can obtain the one-
clique call option price to be $18.058 when the clique time is five months,
and the price is $24.356 when the clique time is six months. We can readily
find the price of the corresponding vanilla call option using the extended
Black-Scholes formula given in (3.2) to be $24.356. These results confirm
our belief stated earlier in this chapter that the pricing formula for one-clique
options becomes the same as the extended Black-Scholes formula when the
clique time is the same as the option maturity time.

9.5. SUMMARY AND CONCLUSIONS

One-clique options are special path-dependent options. The important
contribution of this chapter is that it has provided closed-form solutions for
pricing these options by converting a bivariate problem into a univariate one
within a Black-Scholes environment. The simplicity of these pricing formulas
should enhance those options already in the market such as spread options
and basket options, and facilitate further development of other options we
have discussed in this chapter that do not yet exist.
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QUESTIONS AND EXERCISES

9.1.
9.2.
9.3.
94.
9.5.

9.6.

9.7.

9.8.

9.9.

9.10.

What are one-clique options?

How are one-clique options different from vanilla options?

Under what conditions are they the same as vanilla options?

Why are one-clique options similar to forward-start options?

What is the most important difference between a forward-start op-
tion and a one-clique option?

Find the one-clique call option price with the clique time half a year
and the time to maturity one year, give the spot underlying asset
price is $100, the strike price $95, the volatility of the underlying
asset ¢ = 25%, the interest rate r = 8%, the payout rate of the
underlying asset 3%. '

Find the price of the corresponding one-clique put option in Exer-
cise 9.6.

What is the price of the one-clique call option in Exercise

9.6 if the clique time is changed to 8 months and other parameters
remain unchanged?

Find the price of the corresponding one-clique put option in Exercise
9.8.

Show that the pricing formulas for one-clique options given in 9.4
and 9.5 include the extended Black-Scholes formula as a special case
when the clique time is the same as the time to maturity.






Chapter 10
VANILLA BARRIER OPTIONS

10.1. INTRODUCTION

Barrier options are probably the oldest of all exotic options. It may be
surprising to some people that barrier options have been traded sporadically
in the US market since 1967, six years before the Chicago Board of Options
Exchange (CBOE) came into being in 1973. Snyder (1969) described “down-
and-out” options as “limited risk special options”. Donaldson, Lufkin, and
Jenrette started to use “down-and-out” options in the early 1970s (see For-
tune November 1971, page 213). Hudson (1991) discussed how to use barrier
options, especially up-and-out calls and puts. Benson and Daniel (1991) ex-
plained barrier options in general. These options were geared to the needs
of sophisticated investors such as managers of hedge funds. They provided
them with two things they could not obtain otherwise. One is that most
“down-and-out” options were written on more volatile stocks and these op-
tions are significantly cheaper than the corresponding vanilla calls. The
other is the increased convenience during a time when the trading volume of
stock options was rather low. In other words, barrier options were created to
provide risk managers with cheaper means to hedge their exposures without
paying for the price ranges that they believed unlikely to occur.

Market for barrier options has continued to grow. It is estimated that
it doubled in size every year since 1992. According to one source (RISK,
April 1997, page 29), the estimated size of barrier options was over 2 trillion
US dollars. Barrier options are becoming more and more popular simply
because they give end-users greater flexibility to express a precise view.

Barrier options are actually conditional options, dependent on whether
some barriers or triggers are breached within the lives of the options. They
are therefore path-dependent. They are also called trigger options. There
are two types of barrier options: knock-in and knockout barrier options,
or simply knock-ins and knockouts. A knock-in is an option whose holder

203
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is entitled to receive a European option if the barrier is hit, and a rebate
at expiration if otherwise. A knockout option is an option whose holder is
entitled to receive a rebate as soon as the barrier is hit, and a European
option if otherwise. As it makes a difference whether the settlement price is
breached from above or below, there are down knock-ins and down knock-
outs, as well as up knock-ins and up knockouts, depending on whether the
barrier is below or above the current underlying asset price. Therefore, it
is easy to figure out that there are in total eight kinds of barrier options:
down-in calls, up-in calls, down-out calls, up-out calls, down-in puts, up-in
puts, down-out puts, and up-out puts. All these options are called standard
or vanilla barrier options. The attractiveness of barrier options is that they
are cheaper than their corresponding vanilla options, as the sum of the pre-
miums of a knock-in and its corresponding knockout is always the same as
the premium of their corresponding vanilla option if there are no rebates.
Thus, we can say that both the payoff and the survival to the maturity date
of a barrier option depend not only on the underlying asset price at ma-
turity but also on whether the underlying asset sells at or goes through a
predetermined barrier at any time during the life of the option.

Besides vanilla barrier options, there are many other kinds of barrier
options: time-dependent barrier options, Asian barrier options or barrier
options on the average of underlying asset prices, dual-barrier or double-
barrier options, forward-start barrier options, window or limited-time barrier
options, and so on. Although different kinds of barrier options possess differ-
ent characteristics, they share one thing in common: their payoffs depend on
whether one or more than one barriers are breached within the lives of the
options. As the analysis of vanilla barrier options provides a foundation for
other types of barrier options, we will concentrate on vanilla barrier options
in this chapter, and explore other kinds of barrier options in the following
one. :

10.2. VANILLA BARRIER OPTIONS

A barrier option is also called a trigger option. It is thus named because
its payoff depends critically on whether a prespecified barrier or trigger is
touched during the life of the option. If the prespecified trigger is touched
during the life of the option, the holder is entitled to receive a European
option. Otherwise, he/she gets a rebate at the maturity of the option. This
kind of barrier option is called a knock-in barrier option, or simply a knock-
in. Figure 10.1 shows the situation when the barrier is reached within the life
of the option. As soon as the barrier is touched, the option holder is entitled
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Fig. 10.1. A touched up barrier with the barrier h = 50.
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Fig. 10.2. An un-touched up barrier with the barrier H = 56.
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to receive a European-style option. Figure 10.2 shows the situation when
the barrier is not reached within the life of the option. Since the barrier is
not hit, the holder can only receive a rebate at the maturity of the option.

Given the spot underlying asset price, the barrier can be placed either
above or below it. If the barrier is below (resp. above) the spot price, the
knock-in option is called a down (resp. up) knock-in option. The payoff of
a down knock-in (PDI) option can be formally given as

PDI = max{[wS(t") — wK,0]|S(t) > H and S(T)
< H, forsomet < T < t*}, (10.1a)
or
PDI=Rm(r)if S(t) > H and S(T) > H, forallt < T < t* ,(10.1b)

where t and t* stand for the current and expiration time of the option,
respectively; H is the constant barrier or knock-in boundary of the option;
K is the strike price of the option; w is a binary operator (1 for a call option
and —1 for a put option); the symbol “A|B” stands for A given B; and
Rm(r) stands for the rebate of the barrier option paid at maturity if the
barrier is not touched.

The barrier option in (10.1) is called a down option simply because the
current underlying asset price S(t) is greater than the trigger H. Similarly,
the payoff of an up knock-in (PUI ) option can be given formally as

PUI = max{{wS(t*) — wK,0]|S(t) < H and S(T)
> H, for some t <T < t*}, (10.2a)
or
PUI = Rm(7)if S(t) < H and S(T) < Hforallt <T < ¢*, (10.2b)

where all parameters are the same as in (7.1).

Besides knock-in options, there are knockout options. Knockout bar-
rier options are somewhat opposite to knock-in options because their payoff
patterns are the direct opposite to those of knock-in options. Holders of
a knockout option are entitled to receive a rebate if the barrier is touched
within the life of the option (compared to a European option in the case of
a knock-in option), and a European option if the barrier is never touched
(compared to a rebate in the case of a knock-in option). The payoff of a
down knockout option (PDO) is

PDO = R(T) if S(t) > H and S(T) < H, for some t < T < t*, (10.3a)
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or

PDO = max{[wS(t") - wK,0]|S(t)
> H and S(T) > H, forallt <T < t*}, (10.3b)

where all parameters are the same as in (10.1) and (10.2) except the rebate
function R(T'). R(T) is most often an increasing function of time starting
from zero, or R'(T) > 0 and R(0) = 0. We will specify the functional form
of R(T) later in this section.

Down knockout options are also sometimes called down-and-outers. The
corresponding up knockout options can be called up-and-outers. The rebate
we define in (10.3a) is called a non-deferred rebate, implying that the rebate
is paid as soon as the barrier is reached. The rebate can also be deferred,
that is, the rebate payment can be postponed until maturity. For deferrable
rebates, we simply substitute R(T") with Rd(7) in (10.3a):

PDKO = Rd(r) if S(t) > H and S(T) < H, for somet < T < t*, (10.3a')

where Rd(7) is the rebate deferred to maturity and the other part of the
down-outer is the same as in (10.3b).

Rd(7) is often an increasing function of the time to maturity of the
option, or R'd(w) > 0 and Rd(0) = 0. The specification of the functional
form of Rd(r) is not necessary for the derivation of the pricing formulas of
barrier options.

An up knockout option is also called an up-and-out option or up-and-
away option. The payoff of an up knockout option (PUO) is

PUO = R(T) if S(t) < H and S(T) > H, for some t <T < t*,
(10.4a)

or
PUO = max{[wS(t*) — wK, 0]|S(t)
< Hand S(T)< H, forallt <T <t"}, (10.4b)

where all parameters are the same as in (10.3).
Similarly, the rebate of an up-outer can also be deferred and (10.4a) can
be changed to

PUKO = Rd(r) if S(t) < H and S(T) > H, for some t < T < t*, (10.42/)

where Rd(7) is the same deferred rebate as in (10.3a).
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The rebate function R(T') can be time-dependent. We may specify its
functional form as follows:

R(T) = (¢e"T -~ 1)R, (10.5)

where ( > 1,R > 0, and 1 > 0 are all constants, and 0 < T < .

The non-negative parameter 7 in (10.5) can be understood as the rate of
increase of the rebate. When the rate of increase 7 is zero and the parameter
¢ = 2, the rebate function given in (10.5) becomes a constant R. In general,
the rate of increase {( > 0, the parameter ¢ = 1, and the rebate function
given in (10.5) obviously satisfies the conditions of a general rebate function
as R(0) = 0 and R'(T) = n{Re" > 0, implying that the rebate starts at
T =0 and increases strictly with time.

10.3. ABSORBING AND REFLECTING BARRIERS

Absorbing and reflecting barriers are popular in the study of stochastic
processes and in physics as well. These two kinds of barriers are closely
related to pricing barrier options we study in this chapter. They are al-
most always involved in solving partial differential equations (PDE), but
we try not go into details of solving the related PDEs. However, it is neces-
sary to introduce them briefly here because they are useful for us to better
understand the necessary density functions for pricing barrier options.

10.3.1. Absorbing Barriers

An absorbing barrier is a barrier which upon touching, all particles van-
ish. Thus, absorbing barriers can also be called vanishing barriers. In other
words, absorbing barriers function like a “Black hole” which can nullify any-
thing attracted to them. Goldman, Sosin, and Shepp (1979) analyzed the
optimal market timing using both absorbing and reflecting barriers. Using
the method of images widely used in solving problems of heat conduction
and diffusion, Cox and Miller (1965, p. 221) obtained the density function
for the Brownian process with an absorbing barrier. Imaging the barrier as
a mirror and placing an “image source” at = 2a, the image of the origin
in the mirror, Cox and Miller obtained the following density function

p@,t) = —={ew| - @_2;%)2}

_ _ 2
_ gav/a? exp [,_ (z_za—vt)._ } forz < a, (10.6)
202t
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and p(z,t) = 0 for z = a and all ¢, where v = 7 — g — ¢%/2 and a is the
barrier.

The first term in (10.6) is the density function of a normal distribution
with mean v7 and variance o%t, and the second term is the density function of
another normal distribution with mean 2a + vt and variance g%t multiplied
by e%av/ o We can regard (10.6) as a superposition of a source of unit
strength at the origin and a source of strength —e2av/9% gt 25, We can also
regard (10.6) as a superposition of a source of unit heat at the origin and a
source of coldness e22/7” at 2a.

10.3.2. Reflecting Barriers

A Brownian motion with a reflecting barrier is also called a Brownian
motion reflected about some particular point. A Brownian motion X(t)
reflected about the line x = b is given as follows

X(t) = X(t) fort < Ty,
=2b— X(t)fort > T. (10.7)

The well-known result about the reflecting barrier is the reflection prin-
ciple which states that for every sample path with X(T') > b there are two

2.8
2.6 [
2.4 |
22
Z =
18
1.6 |
1.4
12+
1B
0.8 -
0.6 -
0.4 I
o2}
0
—0.2 |-
-0.4 |-
0.6

0.8 ! ! | 1 1 { | 1 I
0005 033 06555 098 1305 1.63 1.955 2.28 2605

time t

Fig. 10.3. Reflection principle with the reflection parameter b = 1.05.
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sample paths X(T) and X(T) with the same probability of occurrence. Be-
cause of the symmetry with respect to b of a Brownian motion X (t) starting
at b, the “probability” of doing this is the same as the “probability” of trav-
eling from b to the point 2b — X(¢). The rationale behind this is that, for
every path which crosses level b and is found at time t at a point below b,
there is a “shadow path” X(t) obtained from the reflection about the level
b which exceeds this level at time ¢, and these two paths have the same
“probability”. The actual probability for the occurrence of any particular
path is of course zero because the probability on one curve is always zero, so
the above argument is only heuristic. Nevertheless, this argument leads us
to the correct understanding of the reflection principle. Figure 10.3 depicts
the reflection principle with a reflecting barrier b.

With the argument of the reflection principle shown in Figure 10.3, we
can write the equation of the reflection principle as follows:

P[T; <t, X(t) <b=P[T, <t, X(t) >bl=P[X(t)>b], (10.8)

where T} stands for the time when the reflecting barrier b is first touched
and P stands for probability.

We can use the reflection principle to find the first passage time conve-
niently. The solution of the density functions for the Brownian motion with
a reflecting barrier can be found in Cox and Miller (1965, p. 224) and many
other books on stochastic processes.

10.4. UNRESTRICTED AND RESTRICTED DENSITY
FUNCTIONS

10.4.1. Unrestricted Distribution

Following the procedures in Appendix of Chapter 3, we can solve the
partial differential equation given in (3.1) with the current underlying asset
price §(t) = S and the payout rate of the underlying asset g:

S(t) = S explvr + ow(1)], (10.9)

where 7 = t* — t, t and ¢* stand for the current time and the expiration
time of the option, respectively, v = r — g — 6%/2, and w(7) is a standard
Gauss-Weiner process.

Let X, = In[S(7)/S] be the log-return of the underlying asset. We can
immediately find that the log-return X, is normally distributed with mean
vT and variance o2r. The density function of X, is readily obtained

f(z) = exp[ - (x—“’l)_z] . (10.10)

2021
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The distribution in (10.10) is called the unrestricted distribution of the
underlying asset return because no other conditions besides the initial con-
dition S have been used. Actually, it is the density function that we have
used so far to price vanilla options and all other exotic options in this book.

10.4.2. Restricted Distributions

From the specifications of the payoff of a barrier option, we know that
in order to price it, we certainly need another density function conditioned
on whether the barrier is reached during the life of the option. This density
function is not often used in pricing exotic options, except in pricing bar-
rier options. Before we can describe how this conditional density function
can be derived, we need to introduce two variables often used in stochastic
mathematics:

M} =max {S(s)|s € [t, t*]}, (10.11)
and
mi" = min {S(s)|s € [t, t]}, (10.12)

where z € X stands for that = belongs to X;[t,t*] stands for the set of real
numbers starting from ¢ and ending at t* including ¢ and t*; max and min
represent the functions giving the maximum and the minimum of a set of
numbers, respectively. ,

The two variables given in (10.11) and (10.12) are actually the maximum
and the minimum of all underlying asset prices within the life of the option.
We need to transfer them in terms of log-returns:

Y, =In(M}"/S), (10.13)
and
Yr = ln(mf /S). (10.14)

Let T, stand for the time the underlying asset price first reaches an up
barrier U. The following always hold:

P (T, >7)=P.(M}! <U)=P(YT <a), (10.15)
and
P(T, <7)=P (M} >U)=P.(YT > a), (10.16)

where P,(.) stands for the probability when the condition “.” is satisfied.
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Equation (10.15) states that the barrier is never hit within the life of
the option 7 (because the first time the barrier is hit is after the expiration
time of the option) and is equivalent to the fact that the maximum value
of the underlying asset price within the life of the option is always below
the barrier in a probabilistic sense. Equation (10.16) is the complement of
(10.15), which states that the barrier is touched within the life of the option 7
(because the first time the barrier is hit is within the maturity of the option)
and is probabilistically equivalent to the fact that the maximum value of the
underlying asset price within the life of the option is at least the barrier.

With (10.15) and (10.16) and some well-known stochastic results of the
Brownian motion, we can find the conditional density function immediately.
The log-return of the underlying asset is certainly related to the maximum
of the underlying asset. The joint-cumulative distribution between the log-
return of the underlying asset and the transferred maximum given in (10.13)
is given as follows [see Harrison (1985), p. 13 for a proof] for z : y and y > 0:

_ T —vT 2yv/o? .7:——2y—v7')
< <y)= — W e .
F(X, <z, Y, <y) N( e ) e N( =), o)

where N(.) is the cumulative function of a standard normal distribution.
The joint-cumulative function in (10.17) is equivalent to the following

F(X,<gz,Y,<y) = N(“’U‘\/’;) - e2uv/a2»N($_—?‘2i//;;W) . (10.18)
because the probability of one variable on the line of Y, = y is zero.l

Equations (10.15) and (10.18) together imply that (10.18) is the cumu-
lative function of the log-return of the underlying asset conditional on the
fact that the barrier is never touched within the life of the option. Since
y = a = In(U/S) is known in our particular application to find the condi-
tional density, there is only one variable — the log-return of the underlying
asset given in (10.18). Differentiating (10.18) with respect to z yields the
density function of the log-return of the underlying asset conditional on the
fact that the barrier U is never touched within the life of the option:

o(z|Yy < a) = f(z) — 27/ f(z — 2a), (10.19)

For any continuous distribution of an univaritate random variable, the probability at one point is
always zero. A nonzero probability is always obtained for a specified interval in which the variable
is confined. Similarly, the probability on one line is always zero for any bivariate continuous
distribution. A nonzero probability is always obtained for a specified area in which the two
variables are confined.
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or

U 2v/0?
$(a|Y; < a) = f(z) - (E) fz—2a)forz <a, (10.20a)
and
d(z|Yr <a)=0forz >a, (10.20b)

where f(z) is the unrestricted density function of the log-return of the un-
derlying asset given in (10.10).

The restricted density function given in (10.19) or (10.20) is exactly the
same as the solution to the Brownian motion with an absorbing barrier a > 0
given in (10.6). The coefficient e23?/ o* can be interpreted as the amount of
coldness at £ = 2a compared to the unit heat at the origin £ = 0. The second
part given in (10.20b) is zero because it is outside the range in consideration.

The complement of being always below the barrier is not always being
above or at the barrier, because it is possible that the barrier is reached and
the price ends up below. The density function that the barrier is touched
can be obtained from the following identity

#(zlY; > a) + ¢(alY; < a) = f(2), (10.21)

which expresses that the summation of the probability when the barrier is
touched and the probability when the barrier is never touched within the
life of the option is the same as the unrestricted density given in (10.10).
Thus, the density function of the final asset price conditioned on the barrier
being reached ¢(z|Y; > a) can be readily found by subtracting the density
function of the final asset price which is always below the barrier ¢(z|Yr < a)
from the unrestricted density function f(z) given in (10.10) or from (10.21)
directly

2 U 2vu/o?
o(z|Y; > a) = e20v/0 flz—2a) = (E) f(z — 2a) for <(a, 22a)
10.22a

d(z|Yr > a) = f(z) for z > a, (10.22b)

where all parameters are the same as in (10.19) and (10.20).

The restricted density function in (10.20) has two parts because the
conditional density function given in (10.20) has two parts, one is zero when
T > a and one is a positive term when z < a. The two parts of the restricted
density function in (10.22) obviously exhibit discontinuity in the density
function of the return of the underlying asset given the condition that the
barrier is touched.
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Similar to the joint-cumulative distribution function given in (10.17),
the joint-cumulative distribution function between the log-return of the un-
derlying asset and the log-return of the minimum value y; is given as follows
[see Harrison (1985), p. 13] for a down-barrier with y < z and y < 0:

F(X, >z, yr >y) = N(—%—%’-’I) - e%“/"’N(—‘-”-—J;f}’_T“ﬂ) , (10.23)
where all parameters and functions are the same as in (10.17) and (10.18).
Using the joint-cumulative function in (10.23), we can obtain the density
function of the log-return of the underlying asset given that the down-barrier
is never touched within the life of the option (see Appendix at the end of
the book for the proof):

L 2u/a?
$(alys > b) = f(z) — (5) fl@—2b) forz > b, (10.242)
and
d(z|lyr >b)=0forz <b, (10.24b)

where b = In(L/S) < 0 and L stands for a down-barrier L < S. The
density function of the log-return of the underlying asset conditioned on the
fact that the down-barrier is never touched in (10.24) is exactly the same in
functional form as the corresponding conditional density function for the up-
barrier in (10.20). We can obtain one from the other simply by substituting
the up-barrier U > S with the down-barrier L < §, or vice-versa.

Using a similar identity as given in (10.21)

¢(z|¥r > b) + ¢(z|Yr < b) = f(), (10.25)

we can obtain the restricted density function of the underlying asset log-
return under the condition that the down-barrier is touched within the time
span 7 or the option lifetime:

2 L 2u/o? :
$(alYs < b) = &P/ f(z — 2b) = (5) fle—2b) forz >b, (10.26a)
and
¢(z|Yr > b) = f(z) for z < b, (10.26b)

where all parameters are the same as in (10.24) and (10.25).

Careful observation of the restricted density function in (10.22) for an
up-barrier and the corresponding density function in (10.26) for a down-
barrier reveals that they are exactly the same in functional form if we sub-
stitute the up-barrier U and the down-barrier L with a barrier parameter



Vanilla Barrier Options 215

H. The identity of the functional form reflects the “symmetry” between an
up-barrier and its corresponding down-barrier. More careful observation of
the two restricted density functions shows that the ranges in which the den-
sity functions are effective are different for an up-barrier and a down-barrier.
This results directly from the difference between an up-barrier and a down-
barrier. The difference in the effective ranges determines the integration
domains of an up-barrier and a down-barrier options. We will examine this
in the following section.

Although the conditional density functions obtained so far in this section
are the same as the results of solving a relevant partial differential equation
given in (10.6), the intuition behind the results is better revealed in this
section.

10.4.3. Distribution of the First Passage Time

The first passage time to a particular barrier level is of critical impor-
tance in pricing “out” barrier options as it is used to determine the discount-
ing time. The first passage time to a particular point is the first time that this
particular point is first reached. The joint probability that z =y =a > 0
for an up-barrier can be obtained using (10.15) and (10.17)

PX,<a,Y,<a)=P(X:<a,T,>7)

- N(‘L‘\é’) -~ ez“”/"zN(:%) . (10.27)

If the drift term v = 7 — g — ¢2/2 > 0, the density function of the first
passage time from zero to the transferred barrier point a = In(U/S) > 0 can
be obtained by differentiating (10.27) with respect to the time to maturity

h(Tla > 0) = [— O px, <a, Y, < a)]
or =T
_ a (a —vT)?
o | (10:28)

The distribution of the first passage time in (10.28) is also called the
inverse Gaussian distribution. If the drift v is negative, then the first passage
time has an improper distribution, so we only consider non-negative v in all
our analysis. v

Similarly, the density function of the first passage time from zero to
the transferred barrier point b = In(L/S) < 0 for a down-barrier can be
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obtained by differentiating (10.23) with respect to the time to maturity given
z=y="b

MIB<0)= |- 2 F(X, 2 b, 3, 2 B)

=T
b (b - vT)?
i 10:29

The first passage time distribution given in (10.29) for a down-barrier
is almost the same as that for an up-barrier with the only difference in sign.
We can write the two density functions compactly in one expression:

n - uT)?
h(T) = 001(+\/7{_Tl?exp{ - [ln(HéizT Tl } , (10.30)

where 0 is a binary operator (1 for an up-barrier H =U > S, and —1 for a
down-barrier H = L < S).

The mean and variance of the first passage time can be found using the
density function given in (10.30):

m(rim) = 226
and 80?In(S/H
Var(T|H) = —L;l;—/—) :

The density function in (10.30) looks somewhat similar to that of the
normal distribution given in (10.10), yet it is rather different from the normal
density function because the time cannot be negative in (10.30). In order to
familiarize ourselves with this distribution function, we depict the density
functions for various sets of parameters in Figure 10.4, given the spot price
S = $100, v = 0.03, the volatility o = 20%, and the barrier H = $93, $95,
and $104, respectively. From Figure 10.4, we can observe that the density
function is skewed more to the left for a down-barrier, because In(H/S) < 0
the density function reaches the peak more quickly for a down-barrier than
for an up-barrier. We can also observe from Figure 10.4 that for a down-
(resp. up-) barrier, the deeper the barrier is below (resp. above) the spot
price, the more (resp. less) the density function is skewed to the left. These
observations will help us when we price out-barrier options in the following
section.

The first passage time can also be obtained using the reflection principle
given in (10.8). For simplicity, we only consider a Brownian motion with
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time

Fig. 10.4. First passage time distribution given S = $100, H = 93, 95, and 104.

zero drift and unit volatility. The probability that the first passage time is
not greater than T can be obtained readily by using the reflection principle
given in (10.8):

P(Ty < T) = 2P[X(t) > a] = 2 / L g,

oNT V2

a —-a
[ vT vT
and the density function of the first passage time T can be readily obtained

by taking the partial derivative of the above probability P(T, < T) with
respect to T and the result is exactly the same as that given in (10.30).

10.5. PRICING STANDARD BARRIER OPTIONS

To the author’s best knowledge, Merton (1973) was the first researcher
who studied the pricing of barrier options. He priced “down-and-outers” by
solving a transferred stochastic differential equation with boundary condi-
tions. The study of barrier options was then absent from financial literature
for about a decade. Bergman (1983) developed a framework for pricing path-
contingent claims such as barrier options, and Cox and Rubinstein (1985)
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provided a pricing formula for down-and-out barrier options and used the
result to evaluate bonds with embedded characters. A series of papers pub-
lished in RISK in 1991 significantly helped to popularize barrier options in
the professional world. Besides the two short articles by Hudson (1991),
and Benson and Daniel (1991) mentioned at the beginning of this chapter,
Rubinstein and Reiner (1991) provided detailed results for all eight types of
standard barrier options, assuming that the underlying asset follows a log-
normal process as given in (3.1). Boyle and Lau (1994) priced barrier options
with the binomial method. We will try to price all eight types of standard
barrier options within a Black-Scholes environment in a more general setting
and express them in a more compact forms.

Expected payoffs of “in” and “out” barrier options can be calculated in
the same way as in vanilla options with the only exception that the unre-
stricted density function given in (10.10) is replaced by the restricted density
functions given in (10.22) and (10.26). Using the risk-neutral evaluation re-
lationship discussed in Chapter 2, we can obtain barrier option prices by
discounting their expected payoffs at the risk-free rate of return.

For convenience in pricing all standard barrier options, we repeat the
extended Black-Scholes pricing formula given in (3.2):

Chs(S, K) = wSe™ " N(wdips(S, K)]
— wKe ™ Nlwdss (S, K)], (10.31)

where

dbs(S, K) = In(S/K) + ((71"\/—;9 —-0%/2)r _ ln(S{IIf/);_ uT ,

dlbs(S7 K) = dbs(sv K) + U\/;a

w is the binary operator (1 for a call option and —1 for a put option), and
other parameters are the same as in (3.2).

10.5.1. The Relative Magnitudes of Strike Price and Barrier

Because of the discontinuity in the restricted density functions given in
(10.22) and (10.26) at the barrier and the discontinuity at the kinked point
K in both the call and put option payoffs shown in Figures 2.1 and 2.2, we
need to distinguish the two relative magnitudes of the strike price K and
the barrier level H in all vanilla barrier options. For instance, if the strike
price is greater than the barrier in a down-in call barrier option without
any rebate, the payoff of down-in call is simply the integration of the payoff
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function of a vanilla call option given in (2.1) with the restricted density
function given in (10.26a) for all possible underlying asset prices starting
from the strike price K to infinity. However, if the strike price is smaller
than the barrier, the payoff of the down-in call barrier option includes two
parts: the integration of the payoff function of a vanilla call option with
the restricted density function given in (10.26a) for all possible underlying
asset prices starting from the barrier H = L to infinity, and the integration
of the same payoff function with the density function given in (10.26b) for
all possible underlying asset prices starting from the strike price K to the
barrier H = L, because the density function given in (10.26) divides at the
barrier H = L.

The relative magnitude of strike and barrier is often represented by
stealth. Stealth is defined as the difference between the strike price and
barrier expressed as a percentage of the spot rate.

Figure 10.5 depicts the above argument clearly with the spot price S =
$95, the down barrier L = $90, and the strike price K = $87. The stealth
in this example is —3/95 = —3.15%. The restricted density function is
f(z) below the barrier, and ¢(z) = (L/S)%"/ ? f(z — 2b) above the barrier.
For simplicity, we will not repeat the comparative magnitudes between the
strike price and the barrier for all eight types of vanilla barrier options in the
remaining part of this section and will concentrate instead on a few types of
vanilla barrier options only.

94 |
93 |- L 2v/o?

o2l ¢(z) = (—§) f(:l: - 2b)
91|

Barrier g}

=T f(=)

Strike &7 e—e—0 -~ - -

s L—L 1

Fig. 10.5. Intergration ranges for a down knock-in call option.
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10.5.2. Knock-In Options
Down-In Barrier Call Options

We will first price down knock-in options in this section and then extend
the results to up knock-in options. Equation (10.2) indicates that there are
two parts in the payoff of a down-in barrier option, one including the payoff
of the corresponding vanilla option if the barrier is reached any time within
the life of the option, and the other the rebate if the barrier is never reached
within the life of the option. As argued earlier in this section, the expected
payoff of a down-in barrier call option may include two parts because the
integration may have to be divided into two parts as shown in Figure 10.5
when the strike price is lower than the down barrier. For simplicity, we
first consider the simple case of K > H. The expected payoff of the vanilla
option can be obtained following the same steps as in Section 3.4 using the
restricted density function in (10.26a) rather than the unrestricted density
function in (10.10):

E[PUKI|S(t) < H and S(T) > H, for some t <T < t*]

H 2v/0? H\?2 , H?
= | — p— (r—9) -
(5) {S<S>e N, K]

— KN [dbs(%z, K)] } , (10.32)

where dp, is the same as in (10.31).

The value of the down-in call option (V DIC) without any rebate if the
barrier is reached and K > H is readily obtained by discounting its expected
payoff given in (10.32) at the risk-free rate of return:

voro= (2" ()errn o (£, ]
e (2.6)] )

H 2u/a? H?2
=(= i 10.
VDIC (S) C’bs<S,K), (10.33)
where Cps is the extended Black-Scholes formula given in (10.31).

The pricing formula given in (10.33) looks new to us. This kind of for-
mula will appear in the pricing formulas for all eight kinds of vanilla barrier

or



Vanilla Barrier Options 221

options in this chapter and the exotic barrier options in the following chap-
ter. As a matter of fact, the log-return of the first term in Cy(H?/S, K),
In(H?/S8?) = 2a is actually the “image source” of the origin in the bar-
rier mirror, and the term In[H2/(SK)] is actually the reflection of the term
In(K/S) because

o (22) =2t (5) () =20 (5)

The coefficient (H/S)?¥/°" represents the degree of coldness at the image 2a
compared to the unit of heat at the origin or a source of negative strength at
the image 2a compared to a source of unit strength at the origin as explained
in (10.6). Since the standard Black-Scholes call option pricing formula
Cis(S, K) actually starts from S above K or from the origin to In(K/S), the
pricing formula Cps(H?/S, K) starts from the “image source” 2a of the ori-
gin above the reflection of the strike K or starts from In(H?2/5%) = 2a above
In[H?/(SK)] = 2a — In(K/S). Therefore, the pricing formula in (10.33)
can be understood as a pricing formula starting from the “image source”
discounted with the strength factor of the “image source”.

Formula (10.33) gives the value of a down-in call option without any
rebate when the strike price is greater than the barrier. When the strike price
K is lower than the barrier H = L, we have to divide the whole integration
range (K,o00) into (K, H) and (H,00) because the corresponding density
functions are different in the two subranges (K, H) and (H,o0), as shown
in Figure 10.5. For the range (H,c0), we can obtain the value of the option
in this up portion (VDNU P) following the same procedure as in deriving
(10.33) using the density function given in (10.26a)

VDNUP = (%)WU? { (%)e—gr N [dlbs(%z, H)]
- Ke"’N[dbs(%z, H)]}

_ (%)%/az{cbs(g;, H) + (H — K)e™" N|dys(H, S)]},

(10.34)

where Cp; is the extended Black-Scholes formula given in (10.31) and other
parameters are the same as in (10.33).
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Since the range (K, H) is equivalent to the difference of the two ranges
(—o0, H) and (—o0, K), we can obtain the value of the down-in call option
(VDNIC) for the range (K, H) following a similar procedure as in deriv-
ing the Black-Scholes formula in Chapter 2 using the unrestricted density
function given in (10.26b):

VDNIC = Py(S, K) — Pys(S,H) + (H — K)e " N[—dy(S, H)], (10.35)

where Py, (S, K) is the vanilla put option price given in (10.31) when w = —1
and dys(S, K) is the same as in (10.31).

The value of the down-in call option (DNIC) without any rebate is
therefore the sum of the values of the options given in (10.34) and (10.35).
From our above analysis, the pricing formula of a down-in option depends
on whether K > H or K < H. In order to obtain a general formula to cover
both situations, we need to adopt one digital number By x which equals
one when H > K, and zero if otherwise. With the digital number, we can
express the price of a down-in barrier call option (DINC) without rebate:

2v/o? 2
DINC = (%) (Cbs [% max(H, K )]

+ [max(H, K) ~ Kle™""N {d"s [%2 max(H, K)] }>

+{Pos(S, K) = Pou(S, H)

+ (H = K)e™""N[~dys(S, H)|} B>k, (10.36)

where max(H, K) is the function which gives the larger of the two numbers
H and K, and other parameters are the same as in (10.34) and (10.35).

It is straightforward to check that when K > H, the pricing formula
given in (10.36) becomes the same as (10.33) because max(H, K) = K,
By =0, the second term in the first brace and the second brace both be-
come zero. We can also check that when K < H,max(H, K) = H, B>k =
1, the pricing formula (10.36) is exactly the sum of the two pricing formulas
given in (10.34) and (10.35) and the sum represents the value of the down-in
call option when there is no rebate.

Before we start to find the present value of the rebate when the down
barrier is never touched, let’s take some examples to find down-in call option
prices without any rebate.
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Example 10.1. Find the prices of the down-in barrier call options with
strike prices K = $98 and $92 to mature in half a year, given the spot
price S = $100, the down barrier L = H = $95, interest rate r = 8%, the
yield of the underlying asset g = 3%, the volatility of the underlying asset
20%.

Substituting S = $100, K = $98, H = $95, w = 0.20, r = 0.08,
g = 0.03, and 7 = 0.50 into (10.36) yields

v=r—g—02/2=0.08—0.03 —0.20%/2 = 0.03,
H?/S = 95%/100 = 90.25,

max(H, K) = max(95, 98) = 98,

H? _ In[(H?*/8)/K]+vr _

dps <—ST’ K) = P = —0.4765,
H? H?

dlbs(?a K) —dbs(—s—’ K) +U\/;

= —0.4765 + 0.20v/50 = —0.3351 .

Since K = $98 > $95 = H, the call option price is By>g = 0. We can
find the down-in call price from (10.36) as follows:

DINC(K = 98)

H 2ur/o? H?2
(5) (5 x)

H 2vu/o? H? H? H2
— (2L o —gr 4 _ -rr a
(5) {se Voo (g, X)) - KN [ (g K )]

= (.952%0-03/0.20° [90.25e‘0'°3x°'5N(—0.3351) - 98e_°'°8"°'5N(—-0.4765)]

= $2.731.

When the strike K = $92, max(H, K) = max(95, 92) = $95, Bpa>k
= 1, all terms in (10.36) are nonzero. Substituting S = $100, K = $92,
H = $95,max(H,K) = $95, By>kx =1, 0 = 0.20, r = 0.08, g = 0.03, and
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7 = 0.50 into (10.36) yields

H? W[(H/S)/H]+vr
dps [—S—-, max(H, K)] = Py = -0.2566,
2 2
ot g max(H, K)| = dun( -, K) +0v7 = 01152,

Ps(S, K) = =S[e™9" N[—dys(S, K)} + Ke™ "™ N[~dps(S, K)] = 1.5801,
Pys(S, H) = —Se 9" N[~dys(S, H)] + He ™" N[—dps(S, H)] = 2.4896,

H? 95%\ 0.03x0.5 95°
Chs [?, max(H, K)] = (ﬁﬁ)e N[dlbs(m, 95)]

- 95e‘°'°8x°'5N[db (E 95)] = 3.9816.
*\100’

Thus the down-in call price is

95 )2><o.03/0.202

DINC = { —
© (100

[3.9816 + (95 — 92)e™008x05 N|—0.2566]

+ [1.5801 — 2.4896 + (95 — 92)e‘°'°8"°'5N(-0.4689)] = $4.863.

The value of the rebate at the option maturity can be obtained by in-
tegrating the restricted density function in (10.24a) from the down barrier
H = L to infinity:

E{PUKI|S(t) < H and S(T) < HY t < T < t'}

2

H

2ut/o
- Rm(T){N[dbs(s, m-(5) N, S)l} , (10.37)

where dp, is the same as in (10.31).
The present value of the rebate (RBDI) is readily obtained by discount-
ing (10.37) at the risk-free rate r:

RBDI = e_"Rm(T){N[dbs(S, H) - (%)zv/a2 Ndys(H, 5)]}. (10.38)

The price of a down-in call option (PDIC) can now be expressed using
(10.36) and (10.38):

PDIC = DINC + RBDI, (10.39)
where DINC and RBDI are given in (10.36) and (10.38), respectively.
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Example 10.2. Find the present value of the rebate when the rebate is
paid $1.5 at maturity if the barrier is not touched within the lives of the call
options in Example 10.1.

Substituting Rm(0.5) = 1.5, S = 8100, H = $95, ¢ = 0.20, r = 0.08,
g = 0.03, and 7 = 0.50 into (10.38) yields

In(S/H)+vr  In(100/95) + 0.03 x 0.5

dps(S, H) = —— Y i 02005 = 0.4688,
dyo(H, 5) = In(H/S) +vr _ In(95/100) +0.03 x 0.5 _ _ooco

o\T 0.20+/0.50

RBDI = 1.5¢0:08%05 [N(0.4688) - ( N(—0.2566)

g5 \ 2x0.03/0.22
ﬁ)

= $0.449.

Example 10.3. Find the prices of the down-in barrier call options when
the rebate is paid $1.5 at maturity if the barrier is not touched within the
lives of the options in Examples 10.1 and 10.27

We can simply use the results from Examples 10.1 and 10.2. As the
present value of the rebate given in (10.38) is the same for down-in call
options with different strike prices, the down in call option prices can be
readily found by adding up the call values in Example 10.1 and the present
value of the rebate in Example 10.2:

The down in call option price with strike price K = $98

= DINC(K =98) + RBDI = 2.731 + 0.449 = $3.18,
and the down-in call option price with strike price K= $92

= DINC(K = 92) + RBDI = 4.862 + 0.449 = $5.312.

Up-In Barrier Call Options

So far we have priced down-in call barrier options in this section. Using
the restricted density function in (10.22) for an up-barrier instead of that
given in (10.26) for a down-barrier, we can obtain the pricing formula of
an up-in barrier call option (UINC) without rebate following the similar
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procedure as in deriving (10.36):

2u/0? 2 2
e~ (8" [ (. 5) (5.1

+(H - K)e™™ N[—du(H, S)l}BH>K

+ Cps[S, max(H, K)]

+ [max(H, K) — Kle " N{dps(S, max(H, K)|}, (10.40)

where all parameters and intermediate functions are the same as in
(10.36).

Comparing (10.36) with (10.40), we can readily find some “symmetries”
between the two formulas. The first observation is that the binary number
B>k is multiplied to the first brace in (10.40) rather than to the second
brace as in (10.36). The second is that whereas the first brace in (10.40)
includes the difference between two call option prices and the difference
between the barrier and the strike price, these differences are included in the
second brace in (10.36). We will use such symmetries to simplify the pricing
formulas of the other kinds of vanilla barrier options.

Example 10.4. Find the prices of the up-in barrier call options with
strike prices K = $102 and $108 to mature in half a year, given the spot
price S = $100, the up barrier U = H = $105, interest rate r = 8%,
the yield of the underlying asset g = 3%, the volatility of the underlying
asset 20%.

Substituting S = $100, K = $108, H = $105, 0 = 0.20, r = 0.08,
g = 0.03, and 7 = 0.50 into (10.40) yields

v=r—-g—02/2=003, By>x =0,
UINC = Cps(100, 108) = 100e™*%*%5N[d,,,(100, 108)]

— 108e~%-08x05 \[dy (100, 108)) = $3.454;

and substituting S = $100, K = $102, H = $105, ¢ = 0.20, r = 0.08,
g =0.03, and 7 = 0.50 into (10.40) yields By~>x =1,
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1052/S = 110.25, max(H, K) = max(105, 102) = 105,

5dbs<—H—2, K) _ I[(H/S)/ K] +vT _ 0368

S o1
H? H?
dlbs(?, K) = dbs('?, K) + 07 =0.1046,

Chs(100, 105) = 100e~%93%0-5 N[d},. (100, 105)]
— 105¢~0-98%05 74, (100, 105))
= $4.513,
Pbs(110.25, 102) = —110.25¢~%93%0-5 N[—d},,(100, 102)]
—102e798x05 N[ g, (100, 102)] = $1.989,
P,5(110.25, 105) = —110.25¢~%93%03 N[—d};,(100, 105))
— 105e~0:98%05 N[—d,, (100, 105))
= $2.826,
UINC = {C4(100, 105) + (105 — 102)e™"" N [dys (100, 105)]}
+1.05¢% x 0.03/0.202{Pbs(110.25, 102)
— P3,(110.25, 105) + (105 — 102)e™"" N|[—dj(105, 100)]}
= 4.513 + 3¢ 0-98%0-5 ;7(_0.2389) + 1.0759[1.989 — 2.826

+ 3e7008X05 N (_0.4511)] = $5.792.

The present value of the rebate of an up-in barrier call option (RBUI)
can be similarly obtained as in deriving (10.38) using the restricted density
function given in (10.20a):

RBUI = e‘"Rm(r){N[—dbs(s, )| - (g)z"/" N{-dbs(H, s)l} .

(10.41)
The price of an up-in call option (PUIC) can now be expressed readily
using (10.40) and (10.41):

PUIC = PUINC + RBUI, (10.42)
where PUIC and RBUI are given in (10.40) and (10.41), respectively.
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Example 10.5. Find the present value of the rebate when the rebate is
paid $1.5 at maturity if the barrier is not touched within the lives of the call
options in Example 10.4. ‘

Substituting Rm(0.5) = 1.5, S = $100, H = $105, 7= 0.20, » = 0.08,
g = 0.03, and 7= 0.50 into (10.41) yields

In(S/H) +vr _ In(100/105) + 0.03 x 0.5 _

dys(S, H) = = = —0.2389,
ba(5, H) ov/T 0.201/0.50
In(H/S) +vr  In(105/100) + 0.03 x 0.5
dys(H, S) = = = 0.4511,
(. 5) 0T 0.20v/0.50
1 52)(0.03/0.22
RBUT = 1.5¢~0:08x05 [N(0.2389) - 1—80 N(—0.4511)]

= $0.351.

Example 10.6. Find the prices of the up-in barrier call options when the
rebate is paid $1.5 at maturity if the barrier is not touched within the lives
of the options in Examples 10.4 and 10.57

We can simply use the results from Examples 10.4 and 10.5. The up-
in call option prices can be readily found by adding up the call values in
Example 10.4 and the present value of the rebate in Example 10.5:

The down-in call option price with strike price K = $102

=UINC(K =102) + RBUI = 5.792 + 0.351 = $6.143,
and the down-in call option price with strike price K = $108

=UINC(K =108) + RBUI = 3.454 + 0.351 = $3.805.

Down-In Barrier Put Options

We have thus far priced knock-in call barrier options only. Using the
restricted density function in (10.26) for a down-barrier as in pricing down-
in call options, we can readily obtain the pricing formula of a down-in put
option by integrating the payoff function of a vanilla put option given in
(2.2). However, we do not have to go through these steps, for we can obtain
the pricing formula of a down-in put option more conveniently using the
“symmetry” between a down-in put option and an up-in call option. Since
the open integration domain for a down-in put option is always from —oo
to min (H, K), and that for an up-in call option is always from max(H, K)
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to 400, we can obtain the pricing formula of a down-in barrier put option
(DINP) without rebate by substituting (i) the prices of all the call options
with those of the corresponding put options in (10.40), (ii) max (H, K) in
(10.40) with min (H, K), (iii) the digital number Bysk in (10.40) with
the digital number Bgspg, (iv) the argument dps with —dps as in (10.31)
to find the vanilla put option pricing formula using the call option pricing
formula, and (v) a positive sign in (10.40) with a negative sign, and a negative
sign in (10.40) with a positive sign for terms other than the vanilla option
expressions:

H 2v/0? H? H?
DINP = (g) {Cbs<?a K) “Cbs(?, H)

— (H — K)e™"" Nldys(H, 5)]}BK>H

+ (Pbs[S, min(H, K)] — [min(H, K) — K]e™™"
x N{ — dys[S, min(H, K]}) , (10.43)

where Pys(A, B) stands for the vanilla put option price with spot price A
and strike price B, and Pys(A, B) is given in (10.31) with w = —1, and all
parameters and intermediate functions are the same as in (10.40).

Example 10.7. Find the prices of the corresponding down-in barrier put
options in Example 10.1.

Substituting § = $100, K = $92, H = $95, sigma = 0.20, r = 0.08,
g = 0.03, and 7 = 0.50 into (10.43) yields,
Bgsg =0, min(H, K) = min(95, 92) =92,
DINP = Py, (100, 92) — (92 — 92)e~"" N|—d,(100, 92)]
= P,{100, 92]
= —100e203%05 N{—d},,(100, 92)]
—_ 92¢0-08timesO5 N T_ g, (100, 92)]
= $1.68;
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and substituting S = $100, K = $98, H = 895, 0 = 0.20, r = 0.08,
g = 0.03, and 7 = 0.50 into (10.43) yields,

Bks>y =1, min(H, K) = min(95, 98) = 95,

95?
Cbs(ﬂﬁ’ 98) = 90.25e 9305 N[—d;,,,(90.25, 98)

~ 98~ 098x05 N[, (100, 98)]
= $2.953,

52
C”S(?To’ 95) = 90.25¢~*03*05 N [—d;,,,(90.25, 95)]

— 95 x e 0-08x05 g, (100, 95)]
= $3.982,
Pys(100, 95) = —100e~%93*05 N'[~d},. (100, 95)]
— 95e 008205 1[4, (100, 95)]

= $2.490,
95 2x0.03/0.202 952 952
DINP = (m) Cbs](m, 98) - Cbs("l‘aa, 95)

— (95 — 98)e~98x05 N (g, (95, 100)]}

+ { P5s(100, 95) ~ (95 — 98)e™O%*3 N[ dy, (100, 95)]}
=$3.522.

Example 10.8. Find the prices of the down-in barrier put options when
the rebate is paid $1.5 at maturity if the barrier is not touched within the
lives of the options in Example 10.7.

Since the present value of the rebate at the option maturity if the barrier
is not touched is the same for both down-in call and put options, the prices
of the down-in put options are the sums of the values of the put options
without rebates given in Example 10.7 and the present value of the rebate
given in Example 10.2:

The price of the down-in put option with strike price K = $92

= DINP(K = 92) + RBIN = 1.680 + 0.449 = $2.129,



Vanilla Barrier Options 231
and the price of the down-in put option with strike price K = $98

= DINP(K = 98) + RBIN = 3.522 4+ 0.449 = $3.971.

Up-In Barrier Put Options

Our last task in this section is to price up-in barrier put options. As in
obtaining the pricing formula of a down-in put option using that of an up-in
call option, we can readily obtain the pricing formula of an up-in barrier put
option without rebate (UINP) using the pricing formula given in (10.36) for
a down-in call option by making the same five substitutions:

H 2u/0? H?
UINP = <-§) {Pbs [—S—,min(H, K)] — [min(H, K) — Kle™™"

x N[—dbs<%i,min(H, K))]}

+{Cus(S, K) = Cuo(S, H) = (H — K)e ™" Nldss(S, H)|} Brc>nr,
(10.44)

where all parameters and intermediate functions are the same as in (10.43).

Example 10.9. Find the prices of the corresponding up-in barrier put
options in Exercise 10.4.

Substituting § = $100, K = $102, H = $95, ¢ = 0.20, r = 0.08, g =
0.03, and 7= 0.50 into (10.40) yields

v=r—g—02/2=0.03, Bg>kx =0,
min(H, K) =K =102, H?/S =110.25,

105 2x0.03/0.202
) {Pb3(110.25, 102) — (102 — 102)e™""

UINP = (W
x N[~dys(110.25, 102)]}

= 1.05'°[—110.25e 793705 N'[—d},,4(110.25, 102)]
+ 102e7908%0-5 N[ dy, (110.25, 102))

= $2.140,



232 Ezotic Options

and substituting S = $100, K = $108, H = $105, ¢ = 0.20, r = 0.08,
g = 0.03, and 7 = 0.50 into (10.44) yields

Bysk =1, min(H, K) = min(105, 108) = 105,

H? In[(H?/8)/K] + vt
d —_— K = = U.
bs( R ) = 0.4511,
H? H?
dlbs("s—‘a K) =dbs<—s—, K) +ov/T =0.5925,

Cs(100, 105) = 100e=2-03%05 \[4,, (100, 105)
— 105e~%98x9-5 \7[4, (100, 105)]
= $4.513,
Cps(100, 108) = 100e~%93*%5 N'[d;, (100, 108)
— 108e~098x05 g, (100, 108)]
= $3.454,
Py5(110.25, 105) = —110.25e~%-93%0:5 n7(_0.5925)
+ 105e7098%0-5 7 (_0.4511)
= $2.826,

105 2%0.03/0.202

{ Pus(110.25, 105)

— (105 - 108)e ™% *05 N [—d;,(110.25, 105)]}

Chs(100, 108) — Cps(100, 105) — (105 — 108)e~ 0080
X N [dps(100, 105)])

= $4.162.

Example 10.10. Find the prices of the up-in barrier put options when the
rebate is paid $1.5 at maturity if the barrier is not touched within the lives
of the options in Example 10.9.

Using the prices of the up-in barrier put options without rebates in
Example 10.9 and the present value of the rebate in Example 10.5, we can
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obtain the prices of the down-in barrier put options with a $1.5 rebate paid
at maturity:

the price of the up-in put option with strike price K = $102
=UINP(K =102) + RBIN = 2.140 + 0.351 = $2.491,

and the price of the up-in put option with strike price K = $108
=UINP(K =108) + RBIN = 4.162 + 0.351 = $4.513.

10.5.3. Knockout Options

Knockout options are the complements of knock-in options as we de-
scribed earlier in this chapter. The most important difference between an in
option and its corresponding out option is that whereas the payoff of an in
option is the corresponding vanilla option as soon as the barrier is touched
or a rebate if the barrier is never touched, the payoff of an out option is a
rebate as soon as the barrier is touched or its corresponding vanilla option
if the barrier is never touched. The uncertain first hitting time creates some
difficulties for us to price out-barrier options because we have to use the first
passage time to discount the rebate. We will follow similar steps as in the
earlier parts of this section in pricing in-barrier options to price out-barrier
options. We will first find the values of vanilla options if the barriers are
never touched and then find the present values of both nondeferrable and
deferrable rebates if the barriers are touched.

Values of Out Options Without Rebates

There are two parts of the payoff of a “down-outer” in (7.3), one in-
cluding the nondeferrable rebate if the barrier is reached some time within
the life of the option, and the other the payoff of the corresponding vanilla
option if the barrier is never reached within the life of the option. Using the
restricted density function in (10.24) for a down barrier, we can readily find
the value of a down-out barrier call option without a rebate (DOTC):

H H?

2v/a?
DOTC = Cy,[S, max(H, K)] - (—) Chs [——

5 5 max(H, K)]

+ [max(H, K) — Kle™™ (N{dbs [S, max(H, K)]}

) (%)zu/ﬁN{dbS [%2 max(H, K)]}>, (10.45)
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where Cp, is the extended Bla,ck-Scholés formula given in (10.31) and other
parameters are the same as in (10.33)—(10.44).

Example 10.11. Find the values of the down-out barrier call options with-
out rebates with strike prices K = $92 and $98 to expire in half a year,
given the spot price S = $100, the down barrier L = H = $95, interest
rate 7 = 8%, the yield of the underlying asset g = 3%, the volatility of the
underlying asset 20%.

When K = $98, max(H, K) = max(95,98) = $98 = K, the second
term in (10.44) is zero. Substituting max(H, K) = 98, S = $100, K = $98,
H=L= $5r=0089g=0030=020,7=05v=r—g—0%/2
= 0.03 into (10.44) yields

95 2x0.03/0.20% 952
DOTC = Cps(100, 98) — (ﬁ)ﬁ) Chs (W’ 98)

= 100e~ %9305 N[d),,, (100, 98)] — 98e~0-08%0-5 N'[d, (100, 98))

— 0.9259{90.25N [d15, (90.25, 98)]

— 98e~00X05 N [d, (90.25, 98)]}
= $5.148.

When K = $92, max(H, K) = max(95, 92) = $95. Substituting
K = $92, max(H, K) = $95, and other parameters into (10.44) yields

95 \ 2x0.03/0.207 952
DOTC = Cbs(loo, 95) - (m) Chs (166’ 95)

2x0.03/0.202
+ (95 — 92)e'°~°8><°-5{ N[ds(100,95)] — (3‘3)

100
952
X N[dbs(m, 95)]}
= $6.936.

Using the restricted density function given in (10.20) for an up-barrier,
we can readily find the value of an up-out call option without a rebate

(UOTC):
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Uorc = BH>K{Cbs(Sv K) — Cy(S, H) — (H - K)e_TTN[db;(S, H)]

-5 e (5 %) -5 )
— (H = K)e~"" Nldyo (H, S)]] } , (10.46)

where all parameters are the same as in (10.31)—(10.44).

It is obvious that the value of the up-out call option without any rebate is
zero when the strike price K is greater than or equal to the up barrier, which
is consistent with the intuition that the call option has no payoff because
the density function above K is zero above the up-barrier. Only when the
strike price is lower than the barrier does the up-out call option without a

rebate has a value because its expected payoff equals the integration from
K to H.

Example 10.12. Find the prices of the up-out barrier call options without
rebates with strike prices K = $108 and $102 to expire in half a year, given
the up-barrier U = H = $105, and other parameters are the same as in
Example 10.11.

When K= $108, Byskx = 0, therefore UOTC = 0. Substituting
K = $102, H = $105, H?/S = 110.25 into (10.45) yields

Cis(S, K) = 1006~ %9305 N[dy,,(100, 102)]
— 102¢~%-98%05 N[, (100, 102)]
= $5.798,
Chs(S, H) = 100e™%93%5Nd},(100, 105)]
— 105e~%-08%05 N[d, (100, 105)]
= $4.513,

2
Cbs(%’a K) — 110.25¢~993%05 N[d;,.(110.25, 102)]

— 102e~%-08%05 \[d, (100, 102)]
= $12.597,
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\ :
Cbs(%—, H) = 110.25¢~*%3*05 N [d;,,,(110.25, 105)]

~ 105e~0-98x05 N[, (110.25, 105)]
= $10.552,
UOTC(K =102) = [Cys(100, 102) — Cps(100, 105)
— (105 — 102)e~%98x05 N7(_ 0, 2389)]
— 1.052X003/0.20% (¢, (110,25, 102)
— Cps(110.25, 105) — 3e~%08%05 5v(0 4511))
= $0.006 .

Using the symmetry between an up-out put option and a down-out call
option, and the pricing formula of a down-out call option given in (10.45),

we can readily find the price of an up-out barrier put option without a rebate
(uorp):

UOTP = Py[S, min(H, K)] - ( %)ZU/o'szs [ %2 . K)J
= [min(H, K) - Kle™™" (N{ ~ dps[S, min(H, K)]} - (%)21)/62

x N{ — dyy [H?z,min(H, K)] }) , (10.47)

where Cj; is the extended Black-Scholes formula given in (10.31) and other
parameters are the same as in (10.33)-(10.44).

It is obvious that the pricing formula (10.46) can be readily obtained
from (10.45) using the five substitutions in obtaining (10.43) from (10.40).
This is because there is a symmetry between the open integration domain
from —oo to the min(H, K) for an up-out put option and that from max(H,
K) to oo for a down-out call option.

Example 10.13. Find the values of the up-out barrier put options without
rebates with strike prices K = $102 and $108 to expire in half a year, given
the spot price S = $100, the up-barrier U = H = $105, interest rate r = 8%,
the yield of the underlying asset g = 3%, the volatility of the underlying asset
20%.
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When K = $102, min(H, K) = min(105,102) = $102, the second term
in (10.47) disappears. Substituting K = min(H, K) = $102, S = §100,
H=U=8$105r=0.08, g =0.03,0 =020, 7 =05v=r—g—02/2=0.03
into (10.46) yields

105 2x0.03/0.202 1052
UOTP = Py(100, 102) — (1—00-) Py, (W’ 102)

= $3.147.

When K = $108, min(H, K) = min(105, 108) = $105. Substituting
K = $108,min(H, K) = $105, and other parameters into (10.47) yields

105 2x0.03/0.202 1052
UOTP = Pyy(100, 105) — (m—o) Pbs(—lw, 105)

— (105 — 108)e_°‘°8"°'5{N[—dbs(IOO, 105)]

105 2%0.03/0.202 1052
- (i) V| - (g 105)|
= $4.547.

Similar to (10.46), the pricing formula of a down-out put option without
a rebate can be obtained using the symmetry between a down-out put option
_ and an up-out call option and using the pricing formula given in (10.46)

DOTP = BK>H{Pbs(Sv K) - Pbs(Sv H)
+ (H — K)e™""N[—dps(S, H))
H 2v/0? H? H?
~-(5)" (5 x) -2 1)
+ (H — K)e™™ N[—dps(H, S)]} , (10.48)

where P,s stands for the Black-Scholes pricing formula for a put option and
all parameters are the same as in (10.45).

Eample 10.14. Find the values of the corresponding down-out barrier put
options without rebates in Example 10.11.
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When K = $92 < $95 = H, Bx>pg = 0, the down-out put option price

is zero from (10.47). When K = $98 > $95 = H, Bg~y = 1. Substituting

= §100, K = $98, H = L = $95, r = 0.08, g=20.03, c =0.20, 7 = 0.5,
v=r—g-0%/2=0.03, and H%/S = 90.25 into (10.47) yields

Pys(S, K) = —100e™%53*05N[—d;,,(100, 98)]
+ 98e0-08x05 714, (100, 98)]
= $3.528,
Pys(S, H) = —100e™%93%05 5[4, (100, 95)]
+ 95¢~0-98x05 Nr[g, (100, 95)]
= $2.490,

H2
pbs(?, K) = —90.25¢~003X05 N [_g,. (90.25, 98)]
+ 98e0-08x05 N[ g, (90.25, 98)]

= $8.204,
H2
P,,s(—- H) = —90.25e%03%05 N[~ d;,,,(90.25, 95)]

+ 95e 00805 N7 g, (90.25, 95)]
= $6.350.
Thus,
DOTP(K = 98) = P;,(100, 98) — P;,(100, 95)

+ (95 — 98)e™08x05 N 1_g, (100, 95)]

— 0.95%20.03/020° ( (90 95 98) — P;,(90.25, 95)

~ 3e7008x05 N (g, (95, 100)]}

= $0.005.

Present Values of Rebates of Out Options

Rebater of barrier options are popular in the market because they can
mitigate the all-or-nothing components of barrier risk. Large rebates would
de-leverage the transactions, making it more expensive than a variable
barrier.
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The expected nondeferrable rebate can be obtained by integrating R(T)
in (10.5) using the density function of the first passage time given in (10.30).
The derivation of the expected rebate is rather long because the time at
which the rebate is paid is uncertain. Many steps are involved and we will
skip these steps here. Interested readers may check them in Appendix of
this Chapter. The present value of the time-dependent part of the rebate
for an out option (RBTOT) given in (10.5) is

RBTOT(n, 0, 7) = R{e""|S(t) < H and S(T) > H for somet < T < t*}
H\n(r—n)
=r{(5)" M@ -m)

; (%)q"’(rﬁ")zv[e@_m -}, (10.492)

if the rebate growth rate v < r + v?/(20?), where

P(s) = Vv? + 2s02,

Qu(s) = ln(H/S'U) +Tu'r1/)(s), y=lor —1,
+ vy
a(s) = v_a_____Z(s) )
and
ir—n
RBTOT(n, 0, 7) = RRe{(%) = N19Q, (r — )]

+ (Y moaLyr -},

if the rebate growth rate n > r + v?/(20?), where

Y (s) = iV —v? — 2502,

(10.49b)

Q.(s) = ln(H/Sg\-'/-;VTeW(S), v=1lor—1,
g (s) = L2213 Z;/J,(s) :

i = v/—1 is the standard unit of an imaginary number, Re(a + fi) = a is
the function to choose the real part of an imaginary number a + 8i (both a
and (3 are real numbers).
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When the rebate growth rate 7 is smaller than r +v2/(202), the present
value of the time-dependent rebate can be calculated directly using the
closed-form solution given in (10.49a). When the rebate growth rate is larger
than r+v2/(202), there is one more step involved because the formula given
in (10.49b) involves imaginary numbers. The present value of the time-
dependent rebate is actually the real part of the imaginary number given
in (10.49b). The function to choose the real part of an imaginary number
can be readily found in most computer systems. We can easily find the triv-
ial case of constant rebate R(T) = R as a special case of (10.49a) for zero
growth rate = 0. Substituting n = 0 into (10.48a) yields the present value
of the time-independent rebate or constant rebate (CRBOT):

H @l H

CRBOT(9) = R{ (g) " N QU] + (—ST)q_l(r)N[eQ_l(r)]}, (10.50)

where all parameters are the same as in (10.49a).

With the present value of the time-dependent rebate in (10.49) and the
constant rebate in (10.50) for an out barrier option, we can express the
present value of the rebate of an out option (RBOT) given in (10.5) for
€ =1 as follows

RBOT(n, 6) = RBTOT(n, ) — RBTOT(0, 6), (10.51)

where RBTOT stands for the present value of the time-dependent rebate
with the growth rate n given in (10.49).

Example 10.15. Find the present value of the rebate if a constant rebate $1
is paid any time the options are knocked-out within the lives of the down-out
barrier options in Example 10.1.

Substituting S = $100, H = $95, ¢ = 0.20, 7 = 0.08, g = 0.03,
7=050,0=1,and v=r—g—02/2=0.03 into (10.50) yields

P(r) = Vv? + 2ro? = 0.08544 .
The present value of the constant rebate of the down-out options is
(0.03+-0.0854])/0.202 . . 08544
CRBOT(1) = 1 (E) N (In(0.95) + 0.50 x 0.085
0.20v/0.50

100
( 95 )(0.03—0.0854)/0.202N (In(0.95) — 0.50 x 0.08544
100 0.20v0.50

= $0.682.
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Example 10.16. Find the present value of the rebate if a constant rebate
$1 is paid any time the option is knocked-out within the life of an up-out
barrier option with the up barrier = $105 to mature in half a year, and other
parameters are the same as in Example 10.15.

Substituting S = $100, H = $105, ¢ = 0.20, » = 0.08, g = 0.03,
7=050,0=—-1and v=r—g—0c2/2=0.03 into (10.50) yields the present
value of the constant rebate for the up-out option

CRBOT(L) = 1 [ ( 105 )(0.03+0.0854)/0.202N( In(1.05) + 0.50 x 0.08544)

100 0.201/0.50
( 105 ><°-°3—°-°854>/°-2°" w( _ (n1.05 — 0.50 x 0.08544
100 0.201/0.50
= $0.749 .

Example 10.17. Find the present values of the rebates of the down- and
up-out barrier options in Examples 10.15 and 10.16 if the rebates increase
exponentially at a constant rate of 5%, and other parameters remain the
same as in Examples 10.15 and 10.16.

As 7 = 0.05 < r+v?%/(20?), we use (10.49a) for the present values of the
time-dependent rebates. Substitutingn = 0.05, R =1, S = $100, H = $95,
o = 0.20, r = 0.08, g = 0.03, and 7 = 0.50 into (10.49a) yields

P(r —n) = y/v? +2(r —n)o?

=0.0574.

The present value of the rebate of the down-out barrier option is

RBTOT(0.05, 1) = 1 [(15_)(0'03”05“)/ 0202 <ln0.95 +0.50 0.0574)

100 0.201/0.50
N ( 95 )(0-03—0-0755)/0-2°2N (In0.95 — 0.50 x 0.0574
100 0.20+/0.50

= $0.690,
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and the present value of the rebate of the up-out barrier option is

105 (0-03+0.0574)/0.20% In1.05 + 0.50 x 0.0574
RBTOT(0.05,—1)=1|{ — N|-
T ) [( ) 0.201/0.50

100
( 105 ) (0.03-0.0755)/0.20% (- 121.05-0.50x0.0574
100 0.20+/0.50

=$0.758.

Comparing the results in Exampleé 10.15, 10.16, and 10.17, we find that
the present values of the rebates for the down- and up-out options increase
from $0.682 and $0.749 in Examples 10.15 and 10.16 to $0.690 and $0.758
in Example 10.17, respectively, resulting from the 5% growth in the time-
dependent rebates.

" The rebate can sometimes be deferrable, i.e., it can be paid at the
maturity of the option if the barrier is touched within the life of the op-
tion. If the rebate for an out option is deferrable to the maturity of the
option and it is also dependent on the time to maturity Rd(r) given in
(10.3a") and (10.4a’), the present value of the deferrable rebate (DRB) can be
obtained:?

DRB = E(PUKO)

- Rd(T){ (g)waz N [0 (“at/’;)]

+N [9 ("U_\/’;)] } , (10.52)

where Rd(7) is the deferred rebate to be paid at the maturity of the option.

Example 10.18. Find the present value of the deferrable rebates of both
the down- and up-out barrier options in Examples 10.15 and 10.16 if the
rebates are deferred to be paid $1 at maturity.

Substituting S = $100, H = $95, ¢ = 0.20, r = 0.08, g = 0.03,
7=0.50,0=1and v=r—g—0?/2=0.03 into (10.52) yields the present

2The rebate paid at maturity Rd(7) must first be discounted to the time T when the option is
knocked out with the discounting factor exp[—r(r — T)] = e~ ""exp(rT). Consider e~""exp(rT)
as a rebate with a constant growth rate 7 = r. Substituting n = r into (10.49a), we can find
%(r — 1) = v and the result given in (10.52) is immediately from (10.49a).



Vanilla Barrier Options 243

value of the deferrable rebate of the down-out option

2 K
DRB = o-0.08%05 [(ﬂ)"’x"wm N <1n0.95 +0.03 x 0.50)

100 0.201/0.50
N 1n0.95 — 0.03 x 0.50
0.201/0.50

= $0.662,

and substituting § = $100, H = $105, ¢ = 0.20, r = 0.08, g = 0.03,
r=050,0=-1and v=r—g—0%/2 = 0.03 into (10.52) yields the present
value of the deferrable rebate of the up-out option

2
DREB — o~0.08x05 [(1@)2”03/"'2" N ( _ Inl.05 +0.03 x 0.50)

100 0.201/0.50
N ( _ In1.05 - 0.03 x 0.50)
0.201/0.50
= $0.727.

Comparing the results in Examples 10.15, 10.16, and 10.18, we find that
the present values of the deferred rebates of the down- and up-out options,
$0.662 and $0.727, are slightly lower than the corresponding values $0.682
and $0.749 in Examples 10.15 and 10.16. This is because the one-dollar
rebates can be obtained before maturity for nondeferrable rebates in Exam-
ples 10.15 and 10.16, and rebates received earlier have smaller discounting
factors and therefore higher present values.

We can now express the price of a down-out barrier call option
(PDOTC) and the price of an up-out barrier call (PUOTC) by summing up
the values of the out-barrier options without rebates and the present values
of the rebates

PDOTC = DOTC + RBTOT (6 = 1), (10.53)

and
PUOTC = UOTC + RBTOT(0 = -1), (10.54)

where DOTC stands for the value of the down-out call option without re-
bates given in (10.45), UOTC stands for the value of the up-out call option
without barrier given in (10.46), and RBTOT is value of the rebate given
in (10.49).

Example 10.19. Find the prices of the down-out barrier options in Example
10.11 with $1 nondeferrable rebates.
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Using the pricing formula in (10.53), we can obtain the prices of the
down-out calls by adding up the values of the down-out barrier options
without rebates in Example 10.11 and the present value of the $1 nonde-
ferrable rebate in Example 10.15. Thus, the prices of the down-out barrier
call options are 6.936 + 0.682 = $7.618 with strike price K = $92 and 5.148
+ 0.682 = $5.830 with strike price K = $98.

The price of an up-out barrier put option (PUOTP) and that of a down-
out barrier put option (PDOT P) can be similarly expressed using (10.47),
(10.48), and the present value of the rebate given in (10.49):

PUOTP = UOTP + RBTOT(§ = -1), (10.55)

and
PDOTP = DOTP + RBTOT(6 = 1), (10.56)

where UOT P stands for the value of the up-out put option without rebates
given in (10.47), and DOU P stands for the value of the down-out put option
without rebates given in (10.48), and RBT'OT is the value of the rebate given
in (10.49).

Example 10.20. Find the prices of the up-out barrier put options in Ex-
ample 10.13 with $1 nondeferrable rebates.

Using the pricing formula in (10.54), we can obtain the prices of the
up-out puts by adding up the values of the up-out barrier options without
rebates in Example 10.13 and the present value of the $1 nondeferrable
rebate in Example 10.16. Thus, the prices of the up-out barrier put options
are 3.147 + 0.749 = $3.896 with strike price K = $102 and 4.547 + 0.749 =
$5.296 with strike price K = $108.

10.5.4. Relationship Between the Prices of An In Option and Its
Corresponding Out Option

Consider a portfolio consisting of an in option and its corresponding out
option without any rebate. If the barrier is never reached, the in option
will end up worthless, yet the out option will have its corresponding vanilla
option as its payoff. On the other hand if the barrier is reached any time
during the life of the option, the in option will have the corresponding vanilla
option as its payoff whereas the out option will end up worthless. Thus, the
portfolio including an out and its corresponding in options will have the same
payoff as that of their corresponding vanilla option regardless of whether the
barrier is reached. Since the portfolio and the corresponding vanilla option
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have exactly the same payoff at the option maturity, arbitrage argument
guarantees that the price of the portfolio and the vanilla option must be the
same. Put it algebraically, our above argument states

PI + POT = Cy,(S, K), (10.57)

where PI and POT stand for the prices of an in option and its corresponding .
out option, respectively, and Cys(S, K) is the price of their corresponding
vanilla option.

Since the identity in (10.57) holds for any pair of an in and its corre-
sponding out options, we can also check the validity of the pricing formulas
of the four pairs of vanilla barrier options obtained earlier in this section.
We leave some of the checking as exercises of this chapter.

The identity in (10.57) can also be used to find the price of either an
in option or an out option conveniently given the price of one of them and
their corresponding vanilla option.

Example 10.21. Find the prices of the corresponding in call options using
the results of the prices of the out call options in Example 10.11.

Substituting S = $100, ¢ = 0.20, r = 0.08, g = 0.03, 7 = 0.50, and
K = $92 and $98 into (10.31) yields the prices of the two vanilla call options
$11.799 and $7.882, respectively. From Example 10.11, we know that the
prices of the down-out call options with the two strike prices are $5.418 and
$6.936, respectively. Using the identity given in (10.57), we can readily find
the prices of the two corresponding in call options as

11.799 — 5.418 = $6.381 and 7.882 — 6.936 = $0.946,

respectively.

Figure 10.6 depicts the prices of the knock-in and knockout at-the-money
call options for various barriers from $60 to $200, given the time to maturity
1 year, volatility of the underlying asset 20%, interest rate 10%, spot price
$100, yield on the underlying asset zero, and all the rebates zero. The dotted
and undotted curves represent the prices of the knockout and knock-in call
options, respectively, and the line above stands for the sums of the prices of
the complementary knock-ins and knockouts. The line above is obviously a
straight line parallel to the horizontal axis. The sum of the prices is indeed
the price of the corresponding vanilla option $13.27. Figure 10.6 clearly
demonstrates that the knock-in call option prices are about the same as
the vanilla option price for barriers not significantly larger than the spot
price, and the corresponding knockout call options are almost worthless. It
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Fig. 10.6. Prices of knock-ins and outs for various barriers.

is worth noticing that the knock-in (resp. -out) call options appreciate (resp.
depreciate) in value dramatically for barriers moderately smaller than the
spot price. We will analyze these changes in more details in the following
section.

Although this is by far the longest section of this book, there are some
related materials we have not included in this section. We have provided
formulas for all eight types of barrier options, and these formulas are clearly
expressed in Black-Scholes type for illustrative purposes. In order to have a
convenient source of the pricing formulas for all eight types of vanilla options,
we will provide a table in Appendix of this chapter and interested readers
may find it very useful.

10.6. GREEKS OF VANILLA BARRIER OPTIONS

The Greeks of barrier options are very different from those of vanilla
options in many aspects because of their unique characteristics. We will
analyze them in this section. We will emphasize the deltas, gammas, and
vegas of standard barrier options and other sensitivities can be obtained ac-
cordingly. In order to express the Greeks of vanilla barrier options concisely,
we need to obtain the deita, gamma, and vega of the call option pricing
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formula Cs(H?/S, K) given in (10.33). Let dp2/5, Yh2/s, and vpz/s stand for
the delta, gamma, and vega of Cy(H?2/S, K) in (10.33) respectively. After
simplifying, we can obtain3

2
Op2ys = —w%e‘fﬂN[wdbsl(H2 /S, K)], (10.58)
2 2 2
s = %e-gr{w [ (5, 1)+ Ll 5 KO } (10.59)
H2
Up2/s = VTKe " f [dbs (—ST’ K)] >0, (10.60)
where

dbs(%z, K) _ In[H?/(SK)] :\g— q-a%/9r

H? H?
dlbs(?’ K) =dbs<‘S—) K) +oV/T.

The delta in (10.58) has an opposite sign to that of a vanilla option

in (2.43). The opposite sign results from the fact that the spot is in the
denominator of the expression. We can obtain the delta, gamma, and vega

of a down-in barrier option using (10.33) and the results in (10.58)~(10.60):

H\2/7 v ., (H?

dpr = (E) [6h2/s - Sa_2cbs<_s—a K) ) (1061)
H\2/?* [ 20(2v + o2 H? 4v

YpI = (E) {—(—5’2}4_)0"3(—&—’ K) +Yn2ys — ‘§U—25h2/s » (10.62)
H\ 2/ Ar —g) ., (H? /H

vpI = (?) {’th/s - —0_-3—‘Cb9(?, K) In <—§) } y (1063)

where 8y2/5, Th2/s and vp2/, are given in (10.58), (10.59), and (10.60),

respectively.

Example 10.22. Find the delta, gamma, and vega of the down-in call
option without rebate with strike price K = $98 in Example 10.1.
3Using the function dp,(H2/S K) in (10.31), we can readily show the identity
fldos(H?/S, K)}/fldss(H?/S, K)+ av/T]
= (H?/SK)e™=9) = (H?/S)e™97/Ke™"",
with which the Greeks can be simplified significantly.
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Substituting S = $100, K = $98, H = $95, 0 = 0.20, r = 0.08,
g =003, and T = 0.50, v = r — g — 02/2 = 0.08 — 0.03 — 0.202/2 = 0.03,
H?/S = 952/100 = 90.25 into (10.58)-(10.60) yields

H? _ ln[(Hz/S)/K] +ur
dbs<?, K) = o = —0.4765,
. H2 HZ
dlbs(‘s—a K) =dbs(-§—, K) +ovT

= —0.4765 + 0.20 x v0.50 = —0.3351,

2
95 e—0.03X0.50N(_0‘3351)

Oh/s = ~ o2
= —0.9025 x 0.9851 x 0.3688 = —0.3279,
952 ) 0sw050 £(~0.3351)
= 2 _o~0.03x050 Lo nr( 0 3351) 4 L0000 L g 997,
/s = 1003 ° ( )+ 0.201/0.50 00

vpz/s = V0.50 x 98 x e~008%050 £(_0.4765) = 23.711.
Substituting the above values into (10.61)—(10.63) yields

95 \ 2x0.03/0.20 2 % 0.03

x 2.953

2
(95 \ 4% 940,08 x (2 x 0.03 +0.202)
DI = | 100 1002 x 0.204

4% 0.03
~0.017 — m(—0.3279)} = —0.0056,

100 0.203
= 25.4614.

2x0.03/0.20%
vpr = ( % ) {23.711 _4x(008-003) 453 ln(0.95)}

Assuming that all rebates are zero, the delta, gamma, and vega of an
out barrier option can be readily obtained using the identity given in (10.57)
and the results given in (10.61)-(10.63):

dvouT = dvanilla — 001, (10.64)
YUOUT = Yvanilla — VDI » (10.65)

VUOUT = Vyanilla — VDI (10.66)
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where 6ygnilla, Yvanilla, 30d Vyanile are the delta, gamma, and vega of a
vanilla option given in (3.32), (3.37), and (3.33), respectively; and épr, DI,
and vp; are the delta, gamma, and vega of an in barrier option given in
(10.61), (10.62), and (10.63), respectively.

Example 10.23. Find the delta, gamma, and vega of the corresponding
down-out call option in Example 10.1.

Substituting § = $100, K = $98, ¢ = 0.20, r = 0.08, g = 0.03, and
7 = 0.50 into (3.32), (3.37), and (3.33) yields the delta, gamma, and vega of
the corresponding vanilla option:

Svanilla = €~ 20300 N[d; (100, 98)] = 0.9851 x 0.6519 = 0.6422,
Svanilla = € 203%050 £d; (100, 98)]/(100 x 0.20v/0.50) = 0.0258, and
Svanilla = 100 x v/0.50 x e~003%0-50 ¢[4, (100, 98)] = 25.7510.

Substituting the above Greeks of the vanilla option and the Greeks of the
down-in call option in Example 10.22 into (10.64)—(10.66) yields the Greeks
of the corresponding down-out call option:

SuouT = Ovanilla — YD1 = 0.6422 — (—0.3446) = 0.9868,
YUOUT = Ywanilla — YDI = 0.0258 — (—0.0056) = 0.0314,

and
VUOUT = Vyanilla — VDI = 25.75610 — 22.4614 = 3.2896 .

The results in Examples 10.22 and 10.23 indicate that (i) the delta
of call option can be negative and that it can be greater than 1, (ii) the
gamma of an up-out barrier can be negative and it can be many times
greater than the gamma of its corresponding vanilla option (the gammas
of the down-in and down-out call options are 110 and 109 times greater
than that of their corresponding vanilla option, respectively); and (iii) the
vegas of both the down-in and down-out call options are smaller than that
of their corresponding vanilla option. The delta of a vanilla call option is
always between 0 and 100% and its gamma is always much smaller than
its delta value. The extraordinarily different values of both the deltas and
gammas of barrier options result from the fact that the barriers change the
characteristics of the options significantly, especially the underlying asset
prices around the barriers. Simulation results show that the gammas of
barrier options can be extremely large for barriers close to the underlying
spot prices.
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Examples 10.22 and 10.23 show that whereas the deltas and gammas of
barrier options exhibit properties significantly different from those of their
corresponding vanilla options, the vegas of the two down barrier options
are smaller than that of their corresponding vanilla option. We have some
general results for the vegas of down-in and -out barrier options.

Corollary 10.1. The vegas of a down in barrier option and its corresponding
down out option are given as follows if K > H

Vain = (vegafactor)Vega, (10.67a)

and
Viout = (1 — vegafactor)Vega, (10.67b)

where

,¢,52a2/(027'n.) <1,

S ) 2In(S/K)

tor = | —
0 < vegafactor (H

Viin, Vdout, and Vega stand for the vegas of the down-in barrier, down-out
barrier, and the corresponding vanilla call options, respectively.

Proof. Substituting dys(H?/S, K) = dps(S, K) + 2In(H/S) into (10.60)
and using the vega of a vanilla call option given in (3.37) yields the results
given in (10.67) after simplifications. The proof of this corollary is given as
an exercise of this chapter. O

The results in Corollary 10.1 indicate that the vegas of down barrier op-
tions are always smaller than, and sum up to, the vega of their corresponding
vanilla option. The reason behind this is that vegas of any options cannot
be negative, thus they cannot surpass the vega value of their corresponding
vanilla option.

The rho of an up-in option can be obtained as follows using the identity
given in footnote 3 in this chapter:

H 2vu/o?

Rhopy = Twe""K(g) Nlwdys(H?/S, K)], (10.68)

which indicates that an up-in call (put) option becomes more expensive
(resp. cheaper) as the interest rate goes higher (resp. lower).

We have analyzed the Greeks of down barrier options in this section.

Those of the other types of vanilla barrier options can be analyzed accord-

ingly. It would take a lot of space to list the formulas of the major Greeks
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of all eight types of vanilla barrier options. We will not list them here for
the sake of simplicity.

10.7. SUMMARY AND CONCLUSIONS

We introduced all eight types of standard barrier options and discussed
how to obtain conditional density functions to price them. These eight types
of standard barrier options are also called vanilla barrier options. They are
very different from vanilla options because an additional barrier condition is
imposed on the distribution of the underlying asset price. These differences
can be clearly seen from the Greeks of these options.

Our pricing formulas for the standard barrier options have a few addi-
tional generalizations and more flexibility over existing results. We provided
closed-form solutions for the time-dependent rebate of out options — a more
realistic and reasonable rebate payment; secondly, we provided closed-form
solutions for both nondeferrable and deferrable rebates for out options; and
lastly, our analysis allows the three kinds of rebates to be different: the
rebate at maturity Rm(7) if the out option is not knocked out during the
life of the option, the nondeferrable rebate if the out option is knocked-out
R(T), and the deferrable rebate paid at maturity Ra().

Barrier options are among the few most popular exotic options in the
OTC marketplace because they are cheaper than vanilla options in general.
Besides the vanilla barrier options, other barrier options have been designed
to increase the flexibility of vanilla exotic options or to capture some more
general features. We call the other barrier options exotic barrier options.
The analysis of vanilla barrier options provides the foundation for the anal-
ysis of exotic barrier options, as the study of vanilla options provides the
basis for exotic options. We will study these exotic options in the following
chapter.

QUESTIONS AND EXERCISES

Questions

10.1.  What are knock-in options?

10.2. What are knockout options?

10.3. Why are barrier options path-dependent?

10.4. What are trig options?

10.5. What are vanilla barrier options?

10.6. How many types of basic vanilla barrier options are there? What
are they?
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10.7.
10.8.

10.9.

10.10.

10.11.

10.12.

10.13.
10.14.

10.15.

10.16.

10.17.

10.18.

10.19.
10.20.

10.21.

10.22.

10.23.

10.24.

10.25.

10.26.

10.27.

Why do investors use barrier options?

Are barrier options generally more expensive or cheaper than their
corresponding vanilla options? ‘

Is there any relationship between a knock-in and its corresponding
knockout?

Is there any relationship between the deltas of a knock-in barrier
option, its corresponding knockout option, and their corresponding
vanilla option?

Can the deltas of barrier call options be negative? Why?

Are the deltas of barrier options generally similar to or different
from those of their corresponding vanilla options?

Can the deltas of barrier options be greater than 100%? Why?
Are the gammas of barrier options generally similar to or different
from those of their corresponding vanilla options?

Is there any relationship between the gammas of a knock-in barrier
option, its corresponding knockout. option, and their corresponding
vanilla option?

What is the “image source” of the origin for a barrier option?
What are deferrable and nondeferrable rebates?

Why should the nondeferrable rebates for knockout options be
time-dependent?

How many types of rebates are there for vanilla barrier options?
What is an absorbing barrier and what is its use in pricing barrier
options?

What is a reflecting barrier? What is the reflection principle?

What is the unrestricted distribution of the underlying asset log-
return in a Black-Scholes environment? And what is its use in
option pricing?

What is the first passage time? Why is it necessary in pricing
vanilla barrier options? v

What are the general characteristics of the curvature of the distri-
bution of the first passage time for down and up barriers?

Why are the functional forms of the pricing formulas of a down-in
call and an up-in put options the same?

Why do we have to distinguish the relative magnitudes of the
strike price and the barrier in pricing all kinds of vanilla barrier
options? '

Is there any symmetry between a down-in call and an up-in call
options? Why?
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10.29.
10.30.
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What is the relationship between the vegas of an in option and its
corresponding out option?

Can the vegas of barrier options be negative? Why?

Can the vegas of barrier options be greater than those of their
corresponding vanilla options?

Exercises

10.1.

10.2.

10.3.

10.4.

10.5.

10.6.

10.6.

10.7.

10.8.

10.9.

10.10.

Find the prices of the down-in barrier call options without rebates
with strike prices K = $100 and $90 to mature in four months,
given the spot price S = $100, the down barrier L = $95, inter-
est rate r = 10%, the yield of the underlying asset g = 3%, the
volatility of the underlying asset 15%.

Find the prices of the down-in barrier call options to mature in
one year in Exercise 10.1.

Find the present value of the rebate if the rebate is paid $2 at
maturity when the barrier is not touched within the lives of the
call options in Example 10.1.

Find the prices of the down-in call options with the rebate $2 and
other parameters are the same as in Examples 10.1 and 10.3.
Find the deltas, vegas, gammas, and lamdas of the down-in call
options in Exercise 10.1. '

Find the deltas, vegas, gammas, and lamdas of the down-in call
options in Exercise 10.2.

Find the prices of the up-in barrier call options without rebates
with strike prices K = $100 and $110 to mature in half a year,
given the spot price S = $100, the up barrier U = $105, interest
rate r = 7%, the yield of the underlying asset g = 3%, the volatility
of the underlying asset 15%.

Find the present value of the rebate if the rebate is paid $2 at
maturity when the barrier is not touched within the lives of the
call options in Example 10.6.

Find the prices of the up-in call options with the rebate $2 and
other parameters are the same as in Examples 10.6 and 10.7.
Find the prices of the corresponding down-in barrier put options
in Exercise 10.1.

Find the prices of the corresponding down-in barrier put options
in Exercise 10.3.
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10.11.

10.12.

10.13.

10.14.*

10.15.*

10.16.

10.17.

10.17.*

10.18.

10.19.*

10.20.

10.21.

10.22.*

10.23.

10.24.

10.25.

Find the prices of the corresponding up-in barrier put options in
Exercise 10.6.

Find the present value of the down-out barrier option if the rebate
is paid $3 as soon as the barrier is touched with the rebate growth
rate 7 = 10%, given the same information as in Exercise 10.1.
Find the present value of the up-out barrier option if the rebate is
paid $3 as soon as the barrier is touched with the rebate growth
rate 6%, given the same information as in Exercise 10.6.

Show the identity

Ke ™ f [dbs(%z, K)] = (H?/S)e 9" f [db,(%z, K)]

Show that the sum of the price of the down-in call option without
rebate given in (10.36) and the price of the down-out call option
without rebate given in (10.45) is the same as the corresponding
vanilla option price for both K > H and K < H.

Find the prices of the corresponding down-out call options in Ex-
ercise 10.1. .

Find the deltas, vegas, gammas, and lamdas of the down-in call
options in Exercise 10.2.

Show that the identity (10.57) holds for an up-in call option and
its corresponding out option.

Find the prices of the corresponding up-out call options in Exercise
10.6.

Show that the vega factor of Corollary 10.1 in (10.67) is between
0 and 1.

Find the vega factor in Corollary 10.1.

Find the vegas of the down-in and down-out call options using
the vega factor obtained in Exercise 10.20 and compare them with
those obtained in Examples 10.22 and 10.23.

Show that the identity (10.57) holds for an up-in put option and
its corresponding out-put option.

Find the prices of the corresponding down-out barrier put options
in Exercise 10.10.

Find the corresponding up-out barrier put options in Exercise
10.11.

Find the present value of the rebate $2 if it is paid at maturity,
given other information the same as in Exercise 10.1.
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10.26.  Find the prices of the up-out barrier put options without rebates
with strike prices K = $103 and $107 to expire in half a year, given
the spot price § = $100, the up-barrier U = $105, interest rate r
= 10%, the yield of the underlying asset g = 2%, the volatility of
the underlying asset 10%.

10.27. Find the prices of the corresponding up-in barrier put options in
Exercise 10.26.

10.28.  Find the prices of the up-out put options in Exercise 10.26 if the
rebate is paid $3 as soon as the barrier is touched and the growth
of the rebate is 10%.

10.29. Find the prices of the up-out put options if the rebate is time-
dependent with a growth rate 10% starting from zero.

10.30.  Find the prices of the corresponding down-out put options in Ex-
ercise 10.26 if the down barrier is $98 and other parameters are
the same as in Exercise 10.26.

APPENDIX

A10.1. The Derivation of the Density Function If the Down-
Barrier is Never Hit

If y < 0, the cumulative function of the log-return of the minimum value
yr is given [see Harrison (1985), p. 13]

-y +vT 2yv/0? (y+v'r>
> - S | — ¥ . A10.
Py > y) N( Uﬁ) el N (L (A10.1)

The probability that y, is no-smaller than a = In(H/S) can be obtained
directly from (A10.1)

Py, > a) = N(%%) _ (2va/a? N(“_;:_F';—T) . (A10.2)

The following identity is always true for any z and a:
P(X, <z, yr >a)+ P(X; >z, y- 2 a) = P(y, > a). (A10.3)

Since the right-hand side of (A10.3) is given in (A10.2) which is inde-
pendent of z, the conditional density function of the log-return of underlying
asset conditioned on that the down-barrier is not hit within the life of the
option is the first-order derivative of P(X; < z,y, > a) with respect to z,
or the negative of the first-order derivative of P(X; > z,y. > a) given in
(10.25) with respect to z.
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A10.2. The Expected Rebate For An Out-Barrier Option
(EROB)

We may simply concentrate on the following inﬁegration
EROB = / ¢~ T T h(T|a)dT = / e ITHT|)T.  (Al0.4)
0 0

Making the substitution z = 1/T, the integration becomes

© 1 (az —v)? + 20%(n —n)
=@ — . 10.
EROB = 6a /1 T [ o dz.  (A10.5)

Making the substitution y = /z, we can obtain the following from (A10.5)
for n < 7+ v?/(20?)

oo 2,2 _ 27,2
EROB =20ae®/*" / ! xexp{ oy + Wl — o)l fy }dy

1/v7 oV 2r 2022
o0 1
—20 av/az/
O hsavan
ay — P(r — 2 4 2a9(r —
Xexp{_ [ay — ¥( n)ég]2 W n)}dy
N\ =vm)/e? roo 1
=20a<—) /
S 1/v7 oV 21
_ _ 2
expd — =Y —ml/y' |, (A10.6)
202

Making the substitution £ = ay —(r —7)/y, we can solve for y in terms
z (the negative root is not reasonable because y is always positive)

1 1 T
y=§;[x+ z2+4a¢(r—77)] anddy=§[1+ \/x2+4a¢(r—n)]'

(A10.7)
Substituting (A10.7) into (A10.6) yields the following, for a > 0

snon=(5) (- a(=2=0

1 o0 z z?
* oV /Iow Vz? + day)(r — n) P ( B F)dw} » (ALDE)
where low = [—aty(r — 7)]//7.
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Making the last substitution s = v/z% + 4ay)(r — 1), the second term of
(A10.8) can be simplified to

(H/S)W=D/7 N{—[a+ m9(r — n)]/(ovT)},

thus completes the integration and the result given in (A10.8) is precisely the
same as that given in the first brace in (10.49a). If a < 0, z is always negative,
the integration domain in (A10.8) is from —oo to low = [a — T¢(r — n)]/v/7
instead of being from low to +o0o. Thus, the directional binary operator @
appears in the formula because the integration domains are different.

When 7 > 7 +v%/(20?), the rebate growth rate is significantly high, we
cannot find any perfect square in real numbers to represent

a2y? = [fa(r — MP/9%, di(r —n) = /=02 = 2(r — 7)o,

because the two terms are always opposite in signs. Yet, we can use the

imaginary number i2 = —1 to find a perfect square for
a*y? — [ (r — P /y* = Y + ¢ (r — ) /y* -
With i%2 = —1, we can follow exactly the same procedure as above to obtain

an expression for the present value of the rebate. Since the present value
is an imaginary number, we have to choose the real part to represent the
actual value.

A10.3. Pricing Formulas for Vanilla Barrier Options In Compact
Forms

Making use of the direction binary operator 6 (1 stands for a down
barrier and —1 for an up barrier) in (10.30), the option binary operator w (1
stands for a call option and —1 for a put option) in (10.31), and the symmetry
between the two functions max(H, K) and min( H, K) [min(H, K) =
—max(—H,—K)], we can simplify the pricing formulas of a down-in call
option and an up in put option (DCUP), those of an up-in call option and
a down-in put option (UICDNP), and those of a down-out call option and
an up-out put option (DCUPOT) into one formula

DCUP(w, 8) = (%)fté (Cbs [%2, max(w), w]

+ f[max(w) — K]e_"N{wd [H?Z, ma.x(w)] })
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+ {Chs(S, K, —6) = {Css(S, H, —6)

+6(H — K)e™""N|[0dys(s, H)|}Bor>ok (A10.9)
2v 2 2
UCDP(w, 0) = (%)z{cb,(%, K, 9) -—Cbs<-I§,—, H, 0)

+w(H — K)e™""N|0dys(H, S’)]}BwK>w

+ (Chs[S, max(w), —0] + wmax(w)
— Ke™"" N{wdps[S, max(w)]}), (A10.10)

DCUPOT|w, 0, max(w)] = Cjs[S, max(w), 6] »
— (g-)%Cbs [%2, max(w), 0]

+ Ofmax(w) — K]e™™ (N{odbs [s, max(w)]}

2y 2

- (5) w{oa 5w}

(A10.11)
UCDPOT|w, 0] = B({c,,s(s, K, w) — Cps(S, H, w)
+0(H — K)e™"" Nlwdss (S, H)]}
H%((H? H?
5 (s o) (T 8w
+ 0(H — K)e™"" Nlwdys(H, S)}) : (A10.12)

where max(w) = w(max)(wH,wK), Cps(X,Y,w) is the same as the formula
in (10.31), standing for the extended Black-Scholes pricing formula with w
as the binary operator (1 for a call and —1 for a put option).

The present value of the rebate of a down-in and an up-in barrier options
(RBIN), and that of an out option (RBOT) can be similarly expressed in
one expression using (10.38), (10.41), and (10.49)
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RBIN(6) = e_"Rm(T){N[()dbs(S, H)] - (%) “ N[0dys(H, S)]} ,
(A10.13)

and

H\alr-n) H\nl-m)
rror@, 0=k ()" No@r-ni+ (%) No@e-ml},
(A10.14)
when 7 < r +v?/(20?).
With the six pricing formulas in (A10.9)-(A10.14), we can obtain the
pricing formulas for all eight types of vanilla barrier options as follows:

Down-In Call = DCUP(1,1) + RBIN(1),
Up-In Call = UCDP(1,-1) + RBIN(-1),
Down-In Put = UCDP(-1,1) + RBIN(1),
Up-In Put = DCUP(~1,-1) + RBIN(-1),
Down-Out Call = DCUPOT|1,1,max(1)] + RBTOT(n,1),
Up-Out Call = UCDPOT|1,-1] + RBTOT(n,1),
Down-Out Put = UCDPOT[-1,1] + RBTOT(n, 1),
Up-Out Put = DCUPOT[~1, —1, max(—1)] + RBTOT(n,-1).

The above pricing formulas essentially state that there are only four in-
dependent formulas for the prices of the eight types of vanilla barrier options
without rebates because there are four pairs of them, each pair sharing one
pricing formula resulting from symmetry. With the independent formulas
of the rebates for both in and out options, there are altogether six pricing
formulas. If the nondeferrable rebate of an out option starts from zero, then
we simply subtract the present value of the constant nondeferrable rebate
from the present value of the time dependent rebate and other parameters
remain unchanged.

Although these six formulas are convenient to use, there are still quite a
few number of formulas. In the following chapter for earlier-ending barrier
and outside barrier options, we will find unified formulas which include the
four formulas for all eight types of vanilla barrier options as special cases.






Chapter 11
EXOTIC BARRIER OPTIONS

11.1. INTRODUCTION

Besides the vanilla barrier options studied in Chapter 10, there are many
other kinds of barrier options: time-dependent barrier options, Asian barrier
options or barrier options on the average of underlying asset prices, forward-
start barrier options, window or limited-time barrier options, dual-barrier
or corridor options, and so on. We may call them exotic barrier options
compared to the vanilla barrier options studied before. These exotic barrier
options expand the functions of the vanilla barrier options significantly and
increase their flexibility. Although they are different from one another, they
share one thing in common: low premiums. The premiums of exotic barrier
options are, in general, even lower than those of vanilla barrier options. The
low premiums of barrier options make them particularly attractive to hedgers
and speculators. We will illustrate and price all these exotic barrier options
in this chapter.

11.2. FLOATING BARRIER OPTIONS

In pricing a vanilla barrier option in Chapter 10, the barrier is assumed
to be constant throughout the life of the option. However, it may change
with time in many applications. In general, the barrier may either increase or
decrease with time, or follow some other deterministic paths. For simplicity,
we assume that the barrier changes exponentially:

H(T) = He'T, H > 0, (11.1)

where H a constant coefficient of the floating barrier or the constant barrier,
~ is the rate of change or the floating rate of the barrier, and 0 < T < 7 is
any time within the life of the option.

Figure 11.1 shows the change of the floating barrier for v >,=, and < 0.
We can observe from the figure that it is more difficult (resp. easier) for the

261
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Fig. 11.1. Floating barriers with f = 0.05 and ~0.05.

underlying asset price to reach an up-floating barrier from below if it in-
creases (resp. decreases) with time, and that it is more difficult (resp. easier)
for the underlying asset price to reach a down-floating barrier from above if
it decreases (resp. increases) with the barrier. Thus, up-in barrier options
without rebates should be cheaper (resp. more expensive) if their barriers
increase (resp. decrease) with time, and down-in options should be cheaper

(resp. more expensive) if their barriers decrease (resp. increase) with time.

The floating rate of the barrier given in (11.1) can be any real number.
If it is positive (resp. negative), the barrier increases (resp. decreases) with
time, and if it is zero, (11.1) degenerates to the constant barrier H as covered
in Chapter 10. To price floating barrier options, we may first consider the
following equivalence for any 0 < T < 7:

the probability of {S(T) = Sexp [(r-—g— -;—02) T+az(T)] hits H(T) = He”T}

= the probability of [S(T)e™"7T hits H].

From above we may consider the underlying asset price S(T') hitting
the floating barrier H(T') the same as S(T)e~ "7 hitting the constant barrier
H. Thus, we can simply use the formulas developed in Chapter 10 to price
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vanilla barrier options because the barrier is the same constant H for the
new process S(T)e™"T. Let S,(T) = S(T)e™"T stands for the new process
with the constant barrier H. The new process S,(T) can be expressed
conveniently as

S(T) = S(T)e™T = Sexp { [r g+ f)- %o’z] T+ az(T)} . )

Comparing the expression of the new process in (11.2) with that of
S(T) in (5.3), we can find that the new process S,(T) cna be obtained
from the expression of S(T') easily be changing the payout rate from g to
gy = g+7. Therefore, barrier options with floating barriers specified in (11.1)
can be priced using the same formulas for vanilla barrier options developed
in Chapter 10 by substituting » and v with

gy=9+f (11.3)
and
Uy =T —g,—0%/2. (11.4)

Example 11.1. Find the down-in call option price with strike price K = $98
in Example 10.1 if the barrier increases exponentially by 4%

Substituting v = 0.04 into (11.3) and (11.4) yields

gy =g+v=0.03+0.04 = 0.07,
Uy =T —gy—0/2=0.08—-0.07— 0.202/2 = —0.01.

Substituting S = $100, K = $98, H = $95, ¢ = 0.20,r = 0.08,g, = 0.07,
and 7 = 0.50 into (10.36) and replacing gy = 0.07 and v, = —0.01 with g
and v in (10.36) yields

H?/S = 90.25, max(H, K) = max(95,98) = 98,

2 2 2
dps (%,K) = —0.4765, dibs (%—-,K) = dps <£S-,K) +o/7 = —0.331.

00 C}s(90.25, 98)

= $3.108

95 —-2.03/0.202
The down-in call price (y = 0.04) = ( )

Example 11.2. Find the down-in call option price with strike price K = $98
in Example 10.1 if the barrier decreases exponentially by 4%.
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Substituting -y = —0.04 into (11.3) and (11.4) yields
Ty =71 —v=0.08—(-0.04) =0.12,

Uy =Ty —g—02/2=0.12 — (0.03) — 0.20%2/2 = 0.07.

10 Css(90.25,98)

= $2.4673.

95 \ 2%0.07/0.20
The down-in call price (y = —0.04) = ( )

Comparing the results in Examples 11.1 and 11.2 with Example 10.1,
we can find that the down-in call option price with an increasing barrier is
greater than that of the corresponding vanilla down-in call option with a
constant barrier, and that the down-in call option price with a decreasing
barrier is smaller than that of the vanilla down-in call option with a constant
barrier. This is consistent with the intition that an increasing (resp. decreas-
ing) down barrier is easier (resp. more difficult) to touch as discussed earlier
in this section.

11.3. ASIAN BARRIER OPTIONS

Most barrier options are written on one underlying asset directly. The
underlying asset price can be manipulated and fluctuates dramatically at any
time before maturity. The payoffs of barrier options can in turn be manipu-
lated. To overcome this, many institutions have traded barrier options based
on averages of the underlying asset prices rather than on a single underlying
asset prices. The reason of doing this is to avoid underlying manipulation,
as in the case of Asian options. We may call these options Asian barrier
options. We will price them in this section.

The averages in Asian barrier options can be either arithmetic or geo-
metric as in Asian options in Chapters 5 and 6. Since the geometric average
is lognormally distributed and the corresponding arithmetic average is not,
we will start with geometric Asian barrier options and using their results, ap-
proximate arithmetic Asian barrier options using the approximation method
developed in Chapter 6.

11.3.1. Flexible Geometric Asian Barrier Options

Flexible geometric Asian barrier options are barrier options written on
flexible geometric averages of the underlying asset prices, rather than on the
underlying asset prices directly as vanilla barrier options. As shown in Chap-
ter 7, standard geometric averages with equal weights to all observations are
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special cases of flexible geometric averages. Thus, the flexible geometric
Asian barrier options also include standard geometric Asian barrier options
as special cases.

Suppose that the flexible geometric average is defined as in (7.4) and the
underlying asset price is specified as in (5.3). Theorem 7.1 indicates that
the natural logarithm of FGA(n)/S or In[FGA(n)/S] is normally distributed
with mean (r — g — 02/2)T‘£n_]~ + InBf(j) and variance 02T,{_j, where

B(0) =1, B/() = [[ {Str(n - )RY/SY*® , for 1> j >,

i=1
T, ;= Y wi)lr—(n—ihl,
i=j+1
n n—1 n
T! ;= Y w?@lr—@m-dhl+2 > > w@wk)lr - (n-k)h],
i=j+1 i=j+1 k=i+1

and B/(j) is the weighted geometric average of the gross returns of those
observations that have already passed; 7 is the time to maturity of the option;
n is the number of observations specified in the contract; h is the observation
frequency or the time interval between two consecutive observations; j is the
number of observations already passed; w(i) is the weight assigned to the
ith observation, and other parameters are the same as in Chapter 7.

We can rearrange the results indicated in Theorem 5.1 for later use.

Proposition 11.1. The flexible geometric average FGA(T) can be ex-
pressed with the current underlying asset price S(t) = S, the effective payout
rate of the flexible geometric average gsqq, and the effective volatility of the
flexible geometric average ogq:

1
FGA(t) = Sexp [(r — 9fga - Ea?ga) T+ O’fgaw(T)] , (11.5)
where
T/ _.
Tfga = o\ — A

1 1 .
9fga =T — ;azT,{_j - = [UTl{’n__j + lan(])] ,

and all other parameters are the same as in Chapters 5 and 10.

Proof. Taking logarithm to (11.5) and comparing it with Theorem 7.1, we
can solve for gy, and o4, immediately.
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If we compare (11.5) with (5.3), we can find that (11.5) can be readily
obtained from (5.3) by substituting g and o with gs4, and Ofga, TESpEC-
tively. Because of this similarity, we can price flexible geometric Asian
barrier options using the same pricing formula for vanilla barrier options
obtained in Chapter 10 by substituting g, ¢, and v with 9fga> O fga, and
Vjga =T — gga — a}ga /2, respectively.

Example 11.3. Find the effective yield and volatility of the flexible ge-
ometric average given the volatility of the underlying asset ¢ = 0.20, the
interest rate r = 0.08, the yield g = 0.03, and the time to maturity 7 = 1, if
there are 12 observations in the geometric average, observation frequency is
monthly, the averaging period has not started, the time to maturity of the
option is one year, and the weight parameter o = 0.50.

We can use the effective mean and variance time obtained in Example
7.3, T;{, n—j = 0.629 and T,{_j = (0.476. Substituting these two effective time
values, 7 = 0.08, g = 0.03, 0 = 0.20, 7 = 1, and v = r — g — 02/2 = 0.03 into

(11.5) yields

0fga = 01/ TI_;/7 = 0.20/0.476 = 0.138

and ] .
—r— —g2pf  _ Zpopf f(i)] =
9fga =T = 50 T;_; T[UTu,n—-j InB’ (5)] = 0.05161.

Example 11.4. Find the price of the flexible geometric Asian down-in
barrier call option given the spot price $100, the strike price $98, and other
information the same as in Examples 11.3 and 10.1.

Substituting S = $100, K = $98, H = $95, 054, = 0.138,r = 0.08,
9fga = 0.05161, and 7 = 1 into (10.36) yields

V=T — gfga — 0Fga/2 = 0.0189,
H?/S = 90.25, max(H, K) = max(95,98) = 98,

ds, (E K) _ In[(H?/8)/K] + vr — 0.4603,

S’ oJT
2 2
dips (H—,K> = dps (E— K) +oy/T = —0.3223.
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Since K = 98 > 95 = H, the call option price is By>k = 0, we can find the
down-in call price from (10.36) as follows:

H 2vu/o? H2
The down-in call price (K = 98) = (—S-> Chs (_S—’ K)

— (.952x0.0189/0.20% o 9 g338 — §9 5595 .

In general, it is not easy to obtain any simple comparative statics results
as to how the geometric Asian barrier option price changes with various pa-
rameters of the averaging process, such as the number of observations and
observation frequency. We can, however, analyze the limiting case with con-
tinuous observation for standard geometric Asian barrier options. Assume
that averaging is just to start and the averaging period is the same as the
time to maturity of the option. As Chapter 7 showed that the two effective
time functions T;%,_; and T2 ; (the effective time functions for standard
geometric averages with equal weights to all observations) approach 7 /2 and
/3, respectively, the standard deviation and the payout rate of the geomet-
ric average given in (11.5) approach:

a

Ogac = % s
9gac =T — %02 - %v = —;— (1‘ +g+ -(1;0'2> , (11.6)
respectively, where ogqc and ggec represent the standard deviation and the
payout rate of the standard geometric average when observation is continous.
It can be shown that the continuous geometric payout rate ggqc is greater
than or equal to the underlying payout rate g if r > g — 02 /6. If we assume
v =r—g—02%/2 > 0 as in pricing knockout options, r—g+0%/6—20%/3>0
implies r—g+02/6 > 20%/3 > O or r > g—0?/6. Thus, the difference between
the interest rate and the continuous geometric payout rate is smaller than or
equal to the same difference for the underlying asset 7 — g. Since the rho of
a down-in barrier call option is always positive as indicated in (10.67), the
smaller difference between the interest rate and the continuous geometric
payout rate implies that the continuous geometric Asian down-in barrier
call options are cheaper than their corresponding up-in barrier call options.

Example 11.5. Find the effective yield and volatility of the continuous
standard geometric average given the volatility of the underlying asset o =
0.20, the interest rate 7 = 0.08, the yield g = 0.03, and the time to maturity
T=1.
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Substituting r = 0.08, g = 0.03, 7 = 1, and o = 0.20 into (11.6) yields
Ogac = 0/V3 = 0.1155 = 11.55%,

and
9gac = (T + g+ 0% /6)/2 = 0.0583 = 5.83% .

Example 11.6. Find the price of the continuous standard geometric Asian
down-in call option with other information the same as in (11.4).

Substituting S = $100, K = $98, H = $95, g4e. = 0.1155,7 = 0.08,
9gac = 0.0583, and 7 = 1 into (10.36) yields

U =T = Ggac — 0oge/2 = 0.08 — 0.0583 — 0.11552 /2 = 0.0084,
H?/S = 95%/100 = 90.25,
max(H, K) = max(95,98) = 98.

Since K = 898 > $95 = H, the call option price is Bysx = 0, we can
find the down-in call price from (10.36) as follows

v/0? 2
The down-in call price (K = 98) = (g) Chs <H?, K)

= (.952%0.0084/0.20% \ 1 go5 __ ¢ 559

The call option price in Example 11.6 is much lower than that given in
Example 11.4. The lower price of the down-in call option results from the
lower volatility in the continuous average in Example 11.5 than that with
monthly observation given in Example 11.4. In general, Asian barrier op-
tions have lower premiums because the effective volatilities of averages are
lower than those of the underlying assets. The effective continuous geomet-
ric volatility is only about 57.7% = 1 /V/3 of the underlying volatility shown
in (11.7), the volatility effect is significant here. Since the volatility of the
continuous geometric average Ogac is always much smaller than the underly-
ing asset volatility o, and the vega for both down-in and down-out barrier
call options are positive as indicated in (10.66), the continuous geometric
Asian up-in barrier call options are cheaper than their corresponding vanilla
down-in barrier call options. These two effects together indicate that Asian
up-in barrier call options are cheaper than their corresponding vanilla up-in
barrier call options. These analyses also hold for up-in arithmetic Asian
barrier call options, as we can see in the following section.
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11.3.2. Flexible Arithmetic Asian Barrier Options

Standard arithmetic averages with equal weights to all observations are
special cases of flexible arithmetic averages. Thus, flexible arithmetic Asian
barrier options also include standard arithmetic Asian barrier options as
special cases. Chapters 6 and 7 show that a flexible arithmetic average
is not lognormally distributed in a Black-Scholes environment even when
all the observations are lognormally distributed. Thus, exact closed-form
solutions for flexible arithmetic Asian options are not possible in a Black-
Scholes environment. The same is also true for arithmetic Asian barrier
options. However, we can approximate their prices from their corresponding
geometric options using the method developed in Chapter 7.

Suppose that the flexible arithmetic average is defined as in (7.1) and
the underlying asset price is specified as in (5.3). Theorem 7.3 of Chapter
7 shows that a flexible arithmetic average (FAA) of the underlying asset
prices defined in (7.5) can be approximated with its corresponding geometric
average as follows:

FAA(T) = k' FGA(T), (11.7)
where
=1+ %E(vf) + Zli {[E(vf)]2 + Var(vf)} , (11.8)

E(vf) and Var(v?) are given in (7.10) and (7.11), respectively.
Using (11.7) and following the same procedure as in Proposition 11.1,
we can obtain

FAA(T) = Sexp [(r — Yfaa — %U%aa) T+ Ufaas(r)] , (11.9)

where
Ofaa = O fga» (11.98.)
Gfaa = 9fga — (ln;{,f)/'r, (llgb)

and other parameters are the same as in (11.6).

If we compare (11.9) with (5.3), we can find that (11.9) can be obtained
from (5.3) by substituting g and o with gsaa and o f4q respectively. Because
of this similarity, we can price arithmetic Asian barrier options using the
same pricing formulas for vanilla barrier options obtained in Chapter 10
by substituting g,0, abd v with gfaa,fga; and Vfaa = T — 9faa — a}aa/2,
respectively.
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Example 11.7. Find the effective yield and volatility of the arithmetic
average, given the time to maturity = 1, the weight parameter a = 0.5,
interest rate 7%, yield on the gold is zero, volatility of gold return is 20%,
the number of observation is 12, and observation frequency is 1 /12.

Following the same steps as in Example 7.7, we can find the log-
normalization factor x/ = 1.0376. Substituting x/ = 1.0376 into (11.9)
using the results given in Example 11.3 yields

Ofaa = Ofga = 0/V/3 = 0.1380 = 13.80%,

and
9faa = Gfga — (nkF)/7 = 0.0147 = 1.47%.

Example 11.8. Find the price of the flexible arithmetic Asian down-in call
option with information the same as in Examples 11.6 and 11.7.

Substituting § = $100, K = $98, H = $95, 04, = 0.138,7 = 0.08,
9faa = 0.0147, and 7 =1 into (10.36) yields

V=T = gfag — 040/2 = 0.08 — 0.0147 — 0.1382/2 = 0.04626,
H?/S =952 /100 = 90.25,
max(H, K) = max(95,98) = 98.

Since K = $98 > $95 = H, the call option price is Bys>x = 0, we can
find the down-in call price from (10.36) as follows

H 2vu/0? H?
The down-in call price (K = 98) = (?) Chs (;, K ) )

= (.952%0.04626/0.20* | 1 go5 _ §4 156 .

We have considered Asian barrier options written on flexible geometric
and arithmetic averages. In practice, there are many barrier options written
on moving averages of some underlying asset prices. Yet, these topics are
beyond the scope of this book.

11.4. FORWARD-START BARRIER OPTIONS

Barriers are immediately effective after the contracts are signed for most
barrier options. Some users of barrier options however, may not want the
barriers to be effective immediately but some time in the future within the
life of the option. Forward-start barrier options can meet their needs. Since
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the barriers are not effective immediately as in vanilla barrier options studied
in Chapter 10, the pricing formulas for vanilla barrier options in Chapter 10
are not appropriate for forward-start barrier options. In this section, we try
to price forward-start barrier options within a Black-Scholes environment.

Assume that the barrier becomes effective at ¢1,t < t; < t*, where t and
t* represent current and maturity time, respectively. Figure 11.2 depicts the
effective time of the barrier for a forward-start barrier option.

ﬂ\
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t t t*

Fig. 11.2. Effective time for a forward-start barrier.

11.4.1. Pricing Forward-Start Barrier Options

For convenience, we repeat the price solution of the standard geometric
Brownian motion with yield g:

S(t,) = Sexplun + ow(m)], (11.10)

where v =1 — g — 02/2,71 = t; —t,S = S(t) is the spot price, and w(n) is
a Gauss-Wiener process with time 7.

As the barrier starts to be effective at time ¢;, the forward-start option
can be either an “up” barrier option or a “down” option depending whether
S(t1) is greater or smaller than the barrier H. If the underlying asset price at
S(t1) is greater (resp. smaller) than the barrier H, the barrier option will be
a “down” (resp. an “up”) barrier option. Although we are not certain that
S(t;) will be greater or smaller than H, we do know the distribution of S(t1).
Let z = In[S(t1)/S], S(t1) = Se*, we know from (10.9) that z is normally
distributed with mean v7r; and variance o*r. Using the distribution of
z = In[S(t1)/8], we can find the expected value of the “up” and “down”
portion of the forward-start barrier option.
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Using the condensed pricing formula for vanilla barrier options given in
Appendix of Chapter 10, we can express the expected value of an forward-
start-in (FWIN) barrier option:

In(H/$)
E(FWIN) = / UCDPIS(t1),7 — 71,1, 1] (2)d=
—00
+ / DCUP[S(t1),7 — 7,1, 1]f(2)dz,
In(H/S)
In(H/S)
- / UCDP(Se*,7 — 7,1, ~1)f(2)dz

o0
+ / DCUP(Se*,7 — m,1,1)f(z)dz, (1L11)
n(H/S)

where UCDP(S, 73,w,0) is the price of an up-in call (§ = —1 and w = 1)
or down-in put (f = 1 and w = —1) and DCUP(S, 72,w,0) is the price of a
down-in call (§ =1 and w = 1) or an up-in put (§ = —1 and w = —1) with
the spot price S and the time to maturity 72 given in Appendix of Chapter
10.

Making the substitution u = (z — v'rl) /(o4/T1), we can express (11.11)
alternatively

~db.s
E(FWIN) = / UCDP(Se"™ VT 1 _ 1 1, —1)f(u)du
—0Q

o0
DCUP(Sev™ VT + _ 1 1,1)f(u)du, (11.12)
"dbs
_ In(S/H)+vny 9
where dbs—-dbs(S,H,Tl)—a_\/T_l—,U—T—g—U /2,

and dps(S, H, 1) is the same argument as in the Black-Scholes formula with
the spot price S, the strike price H, and time 7, and f(u) is the density
function of a standard nowmal distribution.

Discounting the expected value of the forward-start-in option given in
(11.12) yields the price of the forward-start-in option (FWIN) without re-
bates:

—dys
FWIN =™ ™" [ / “UcpP (Se”ﬂ”"“’\/ﬁ =111, —1) f(u)du
o0
+ DCUP (S’e”"1+""\/_ T—1,1, 1) fluwdu}, (11.13)
—dps

where all parameters are the same as in (11.12).
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Similarly, the price of the forward-start-out option (PEWOT) can be
given

PEWOT = e~ ™7 [ / " UCDPOT (Sevntuavi r —m,1, ~1) f(u)du

—Cc0

o0
+ DCUPOT (Se””""“”‘/"_l, r—,1, 1) f(u)du} ,
_dbs

(11.14)

where UC DPOT(S, 73,w, ) stands for the price of an up-out call (§ = —1
and w = 1) or down-out put (6 = 1 and w = —1) and DCUP(S, T2, w,0)
stands for the price of a down-out call (§ = 1 and w = 1) or an up-out
put (8 = —1 and w = —1) with the spot price S and the time to maturity
5 given in Appendix of Chapter 10, and all parameters are the same as in
(11.12). The pricing formulas given in (11.13) and (11.14) are somewhat
complicated because integrations are involved. The analysis of some special
cases of these two formulas can help us understand them better. We can look
at some limiting cases of the two formulas. If 73 — 0, the underlying asset
price at t; will approach S, and both UCDP and DCUP are independent
with u, and the forward-start-in option price given in (11.13) can be shown
to be

PFWIN(r; — 0) = N(—dys)UCDP(S) + N(dys)DCUP(S).  (11.15)

If § > H,dps — +00, thus N(—dps) = 0 and N(dps) — 1, the forward-
start barrier option price becomes PFWIN(ry — 0) = DCU P(S) which is
consistent with our intuition; if S < H,dps — —00, thus N(—dps) — 1 and
N(dss) — 0, the forward-start barrier option price becomes F WDIN(m, —
0) = UCDP(S); if § = H,dps = 0, N(—dps) = N(dps) = 1/2, and the
forward price becomes PFWIN(r, — 0) = [UCDP(S) + DCUP(S)}/2 =
[Csp + +Csb)/2 = Cgp because both “up-in” and “down-in” options become
vanilla options when § = H. These three cases show that the forward-
start-in option pricing formula given in (11.13) includes the standard “in”
barrier option pricing formula as a special case. The same can be shown for
“out” options when S # H. If S = H,dps = 0, N(—dps) = N(dps) = 1/2,
and the forward-start-out barrier option price becomes PFWOT(r; — 0) =
[UCDPOT(S)+ DCUPOT(S)]/2 = [0+0]/2 = 0 = the price of a standard
“out” barrier option because all “up-out”, “down-out”, the vanilla “out”
barrier options become worthless when S = H.
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We can also show that as t; — t* or 71 — T, the pricing formula of
forward-start barrier options will become that of vanilla options. Ast; — t*
orT —T,

UIN (Sele +uoyT o n) — UIN (S’e”"+“"‘/’_', 0)

= max[Se" VT _ K (), (11.16)
and

DIN (se“”"”ﬁ, T — n) - DIN (sev”"”ﬁ, o)

= max[SeV" VT _ K, 0]. (11.17)
Substituting (11.16) and (11.17) into (11.13) yields

-0

PFWIN = e~ [ /

—00

max (Se"ﬂ'""‘ﬁ -K ) f (u)du]

= Chs(S, K), (11.18)
where Cj,(S, K) is the extended Black-Scholes pricing formula in (10.31).

11.4.2. Present Values of Rebates

So far in this section, we have covered the prices of forward-start barrier
options without rebates. The present value of the rebate of a forward-start
barrier option (FWINRBT) can be similarly obtained using the present-
value formula for the rebate of a vanilla in-barrier option given in (A10.12)
of Chapter 10:

" RBIN (~1,86"%V™, 7 — 1) f(u)du

—00

FWINRBT = e~"" [ /

o0

+ [ RBIN (1,86 4%V, — 1)) f(u)du] , (11.19)
‘dba

where RBIN(6, S, 2) stands for the present value of the rebate of an “in”
option given in (A10.12) with the binary operator 6 (1 for down and —1 for
up), the spot price S, the time to maturity 7o, and other parameters are the
same as in (11.12) and (11.13).

11.4.3. Pricing Forward-Start Barrier Options in Closed-Form

The pricing formulas for forward-start barrier options without rebates
given in (11.13) and (11.14) and the present value of the rebate for a forward-
start barrier option in (11.19) are all in integrals. They can actually be ex-
pressed in closed-form in terms of cumulative functions of standard bivariate



Exotic Barrier Options 275

normal distributions. In order to avoid the long mathematical derivations,
we will summarize the outline of the derivations in Appendix of this chapter.
We use the forward-start-in barrier call option pricing formula to illustrate
how the closed-form solution of a forward start barrier option pricing formula
looks like. The pricing formulas for the other three kinds of forward-start
barrier options (out-call, in-put, and out-put) can be similarly obtained. We
~ can obtain the pricing formulas for a down-in and an up-in call options using
(10.36) and (10.40):

2v/0? 2
DCUP(1,1) = [3%] Chs [3%1—),1(,7 - Tl] , (11.208)
and
UCDP(1,-1) = Cys[S(11), K, 7 — 71}, (11.20b)
for K > H.
2u/0? 2
DCUP(1,1) = [EZ%] (c,,s [E%H]
—rr H?
+ Pys[S(11), K] — Pys[S(71), H]
+ H(H - K)e " N|-dy[S(n), H],  (1121a)
and
2u/c? 2 2
UCDP(1,-1) = [—g%] (Pbs [%,K} — Py, [%,H]
+ (H — K)e™™™N {—dy[H, S(Tl)]}>
+ Cis[S(n), H] + (H — K)e™ " N{dps[S(m1), H]},
(11.21b)
for K < H.

Substituting (11.20) and (11.21) into (11.13) and using the results ob-
tained in Appendix yields the pricing formula of a forward-start-in call option
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(PFWIN):
PFWIN(K > H)

H 2vu/g? H? _
= (—S—) {—'S"e 91N2 [dlbs(SaH’TI)

2v + o2 H? a
+( - )\/T_l,—dlbs(—g—’K’T>" 7]

~ Ke "N, [dbs (S, H,m) + 202\/;1 ~s(S, K, 7).~y -Tfl} }

+ Se™9"N, [—d1b3(57 H, Tl)vdlb-"(s’ K, T)’ V %]

— Ke ™™ N, [_dbs(s, H:Tl)’dbS(S’ K’T)’ V 77"-—1] ’ (11.223')
and

PFWIN(K < H)

H 2vu/o? H?
- (E) {_S—e_gTN [—dies(H, S, 7)]

2 /
— Ke™ "N, l:dbs(S,H,Tl)'f-?v\/ﬁ, _dbS(HaS)T)’ %:I

2

B 2v + o2 v/
- e 97 N, [—dm(S,H’Tl)"'( vao >\/F1, —d1ps(S, K, T), — %]

2 /
+ Ke TN, [—dbs(S, H,n)+ ?U‘/T_‘ ~doa (S, Ko 7), = Irl—]

+ Se7" Nldins(S, H,7)] ~ Se~" Ny [dlbs(S, H,m), du (S, K, 7), %]
+ Ke " Ny |dps(S, H, 1), dbs(S, K, T), Ifl]

— Ke™ "N, —dbs(S’ H1Tl)’dbs(s’ K’T)’—V %:I

_ He_TTN2 dbs(Sa H, Tl),dbs(S’, H, T): V ITI‘] . (11.22b)
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Example 11.9. Find the price of the forward-start barrier call option to
start in three months, given the spot price $100, the strike price $102, the
barrier $98, the time to maturity of the option half a year, the interest rate
10%, the pay out rate of the underlying asset 5%, and the volatility of the
underlying asset 20%.

Substituting S = $100, K = $102,H = $98,7 = 0.5,71 = 0.25,7 =
0.10,g = 0.05,0 = 0.20,v = 0.10 — 0.05 — 0.20%/2 = 0.03, H*/S = 96.04,
/7 = 0.50, and /71(2v + 0?) /o = 025 into (11.22a) yields the price of the
forward start option

0.982%0-03/0.202 {96.04e“°'°3x°'5N2 (dyss (100, 98, 0.25)
+0.25, —d1p5(96.04, 102, 0.5), V0.5 ] — 102¢~0-10%05

+N, [dbs(mo, 98, 0.25)+?;+(‘)03\/0.25, —dys(100, 102, 0.50), —\/0.50]}

+ 100e%93%05 N, [ — dy,4(100, 98, 0.25), d1ps (1001020.50), v/0.50]
— 102e™010x05 v, [ g, (100,98, 0.25), dps (100, 102, 0.50), +/0.50]
= 0.9702{96.04 x 0.9851 x N[0.627,0.1785, —0.7071]
— 102 x 0.9512 x N,[0.427,0.034, —0.7071]}
+ 100 x 0.9851 x N,[—0.377,0.1075,0.7071]
— 102 x 0.9512 x N,[—0.277, -0.034,0.7071]
= $5.579.

We can readily find the prices of the corresponding vanilla barrier option
and vanilla option to be $3.747 and the $5.74, respectively. It is obvious that
the price of the forward start barrier option $5.579 is greater than that of
its corresponding vanilla barrier option $3.747 and smaller than that of its
corresponding vanilla option $5.740. The fact that the price of a forward-
start barrier option is between the prices of its corresponding vanilla barrier
option and its corresponding vanilla option is very intuitive because the
barrier is effective not as much as in the vanilla barrier option and more
than in the vanilla option. Thus, we can expect the prices of forward-start
barrier options more expensive with the forward-start time further in the
future or closer to the time to maturity. ‘
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11.4.4. Rebates of Forward-Start Barrier Options

Using/fhe same results given in Appendix of this chapter, we can obtain
the present value of the rebate of a forward-start-in barrier option in (11.19)
in closed-form:

FWINRBT

=e7" Rp(1) (Nz [—dbs(sa H,7),—dps(H, S, 7), \/—TTI]

XNZ [dbs(s, H7 Tl)rdbs(H; S, T)7 V gjl
2v

AT A vmn _vmn /2]
(S) {NZ[ dbS(S7H7T1)+ = \/F, dbs(H’S’T) = \/;;a =

2vmn 2v T
1

N [dbs(S, Hm) - 20 du(H,5,m) + 20 —\/?] }) . (11.23)

Example 11.10. Find the present value of the forward-start-in barrier
option if the rebate is paid $1 and other information is the same as in Ex-
ample 11.9.

Substituting S = $100,K = $102,H = $98,7 = 0.5,71 = 0.25,r =
0.10,g = 0.05,0 = 0.15,v = 0.10—0.05—0.20% /2 = 0.03, H2 /S = 96.04, 7, /7
= 0.50, and 2vn /{o+/T = 0.1061into (11.23) yields

FWINRBT
= e310%05 5 1(N,[ — djs (100,98, 0.25), —dys (98, 100, 0.50), 0.7071]
+ N3 [dps(100,98, 0.25), dy, (98, 100, 0.50), 0.7071]
— 0.982x0:03/0.20% { . (4, (100,98, 0.25) + 0.1061,
— dps(98,100,0.50) — 0.1061, —0.7071]
x Na[dps(100, 98, 0.25) — 0.1061, dp, (98, 100, 0.50 + 0.1061, —0.7071] }

= $0.457.
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With the present value of the forward-start-in call option given in (11.22)
and the present value of the rebate given in (11.23), we can express the price
of a forward-start-in call option (PFWINC) as follows:

PFWINC = FWIN + FWINRBT . (11.24)

Example 11.11. Find the price of the forward-start-in barrier option if the
rebate is paid $1 and other information is the same as in Example 11.9.

Substituting the price of the in forward-start-in barrier option in Exam-
ple 11.9 and the present value of the rebate in Example 11.10 into (11.24)
yields the price of forward-start-in barrier option with rebate:

PFWINC = FWIN + FWINRBT = 5.579 + 0.457 = $6.036.

Using the same method to obtain the present value of a forward-start-in
barrier option given in (11.23), we can obtain the present value of the rebate
of an out forward-start barrier option (OTFWRBT) in closed-form:

OTFWRBT = R{ <%>‘h e-(r+u‘11—a2q§/2)n

« [Nz <D1,Q1, @) + N (—Dl,—Ql, @)]
+N2(— D—l»‘Q—-h\/?):l}, (11.25)

Qv = dps(S, H,7) — oQVT,
Dll = dbs(S, H, Tl) - UqV\/‘le,

=20 o -,
g

where

dps(S, H, s) is the same argument in the extended Black-Scholes formula
given in (10.31) with the spot and strike prices S and H, and the time to
maturity s, respectively.

We can check that (11.25) degenerates to the present value of a vanilla
out-barrier option given in (10.48a) when the forward-start time approaches
zero. We leave this as an exercise.
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Example 11.12. Find the present value of the rebate for an out forward-
start barrier option if the rebate increases 8% from $1 and other information
is the same as in Example 11.9.

Substituting S = $100,H = $98,n = 0.08,7 = 0.50,7; = 0.25,7 =
0.10,g = 0.05,0 = 0.20,v = 0.10 — 0.05 — 0.202/2 = 0.03,1/7 = 0.50, and

¥ = /U2 F 20%(r — n) = 0.05 into (11.25) yields

= w =200,

q
g
v—Y(r—
41 = % = —0.50,

Dy = dp(S, H,71) — oq1/T1 = 0.2095 — 0.20 = 0.0095,
D_; = dys(S, H, 1) — 0gq1/71 = 0.2095 + 0.05 = 0.2595,
Q1 = dus(S, H,7) — oq1/T = 0.1482 — 0.2828 = —0.1347,
Q-1 = dps(S, H,7) — 0q_1/7 = 0.1482 + 0.0707 = 0.2189,
(r +vq — 023 /2)m = 0.02,
(r + vg_1 — 0%¢%/2)m1 = 0.02,
FWORBT = 0.98%e~%%2[N,(0.0095, —0.1347,0.7071)
+ Ny(—0.0095,0.1347,0.7071)]
+ 0.9879%¢0-92[ N, (0.2595, 0.2189, 0.7071)
+ Ny(—0.2595,0.2189,0.7071))
= $0.449.

11.5. FORCED FORWARD-START BARRIER OPTIONS

As we discussed in the previous section, a forward-start barrier option
can start either as a down-barrier or up-barrier option when the effective
starting time becomes valid, depending on whether the underlying asset
price at the starting time is below or above the prespecified barrier. In some
applications, however, the buyers of forward-start barrier options would like
to have a guaranteed down- or up-barrier option, depending on whether the
spot price is above or below the given barrier as in vanilla barrier options.
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For instance, if the spot price is below the given barrier and the barrier is
to become valid in three months, a forced forward-start down-barrier option
is a forward-start barrier option as studied in Section 11.4 if the underlying
asset price turns out to be below the barrier, and it is knocked out with
some rebates if the underlying asset price turns out to be above the barrier.
Thus, a forced forward-start barrier option possesses some properties of both
a vanilla barrier option and a forward-start barrier option.

A forced forward-start barrier option is also called a protected forward-
start barrier option. Actually, a forced forward-start barrier option is simpler
to price than a standard forward-start barrier option because we only need
to find the present value of the up (resp. down) portion of a forced down
(resp. up) forward-start barrier option for all possible prices of the under-
lying asset above (resp. below) the barrier. In other words, we only need
to find the value of a forced forward-start barrier option using an appro-
priate integration domain (the up part above the barrier for a forced down
forward-start barrier option, and the down part below the barrier for a forced
up forward-start barrier option), and the rebate at the forward-start time
can be obtained by integrating over the other part of the integration do-
main. If the underlying asset price at the forward-start time 7 is known,

the present value of the rebate at 7, for a forced forward-start barrier option
(FFWRBT) can be found:

FFWRBT = e~ "™ R(1))N[~0dys(S, H,71)], (11.26)

where 8 stands for the binary operator (1 for a down barrier and -1 for an
up barrier), and R(7;) is the rebate at the forward-start time.

We can modify the pricing expression given in (11.14) to incorporate the
“forced” characteristic:

FPFWOT(w,6,S,H,m,)

=e™ " {(1%9) * pcup [sevﬂmﬁ T —1,1, 1] f(u)du

—dps
-_— —d s
+ (1 2 9)/ b [Serntuovii, 7 — 7,1, -1] f(u)du}
—0oQ
+ R(n)e ™ N(~0dh,), (112

where FPFWOT stands for the price of a forced forward-start-out barrier
option, R(7;) is the rebate if the forward-start barrier is knocked out at the
forward-start time and IN(—68dps) is the probability that the forward-start
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barrier is knocked out at the forward-start time, and all other parameters
are the same as in (11.14).

Example 11.13. Find the price of the corresponding forced down forward-
start barrier option in Example 11.9.

Substituting 8 = 1,5 = $100,K = $102,H = $98,7 = 0.5,3 =
0.25,7 = 0.10,g = 0.05,0 = 0.15,v = 0.10 — 0.05 — 0.20/2 = 0.03,
H?/S = 96.04,71 /7 = 0.25/0.50 = 0.50, and /71(2v + 0%)/o = 0.25 into
(11.27) using the results given in (11.22a) yields

FPFWOT(1,1,100,98,0.25,0.50)
— 0.982"0'03/0'202 {96.04e"°'°3X°'5N2[dlbs(100, 98, 0.25)
+ 0.25, —d1p(96.04, 102, 0.5), —v/0.5]
— 102¢70-10%05 y, [dbs(IOO, 98,0.25)

2 x0.03
0.20

v0.25, —dp,(100, 102, 0.50), —v 0.50] } = §5.068

11.6. EARLY-ENDING BARRIER OPTIONS

We priced forward-start barrier options in the previous section. The
complements of forward-start barrier options are ‘early-ending barrier op-
tions. An early-ending barrier option is a barrier option with the barrier
stopping to be effective before the expiration of the option. Early-ending
barrier options provide users with more flexibility as they can capture the
need that barriers are not expected to be effective all the time during the
lives of the options. We will price early-ending barrier options in this section.

Suppose that the barrier stops to be effective at time t.,t < te < t*,
where t and t* represent the current time and the maturity time of the
option, respectively. Figure 11.3 depicts the effectiveness of the barrier of
an early-ending barrier option.

As in most other situations, we can price all kinds of options as long as
we know the distribution of the underlying asset prices at maturity. We will
first find a unified density function of the underlying asset price at maturity
using the density function of the underlying asset price at the early-ending
time. Using this unified density function, we can price all types of early-
ending barrier options and the present values of their rebates.
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Fig. 11.3. Effective time for an early-ending barrier.

11.6.1. The Density Function at Maturity

We need to define another binary operator to represent whether a barrier
option is an in-barrier option or an out-barrier option in order to price early-
ending barrier options in concise forms. Let ( = 1 and —1 stand for an
out- and in-barrier options, respectively, and let ENDN((, 7.) stand for the
density function of the underlying asset at the early-ending time. From our
analysis about the restricted and unrestricted density functions in Section
10.4, we know the density function of the underlying asset price at the early-
ending time for an out-barrier option is:

ENDN(z,1,7.) = f(z) — 2*¥/%" f(z — 2a), if 8z >6a, (11.28a)
=0, if 6z <¥fa, (11.28b)

where f(z) stands for the unrestricted density function of the underlying
asset price given in (10.10), 6 stands for the binary operator (1 for a down-
barrier and —1 for an up-barrier), and a = In(H/S) is the barrier.
Similarly, the density function of the underlying asset price at the early-
ending time for an in-barrier option is given:
ENDN(z,-1,7.) = 2% f(z — 2a), if 6z >0a,  (11.29a)
= f(z), if 6z < Oa, (11.29b)

where all parameters are the same as in (11.28).
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Given the underlying asset price at the time when the barrier becomes
ineffective at 7., ENDN(z,(, ) in (11.28) and (11.29), we can express the
underlying asset price at the maturity of the option 7. If we know the
underlying asset price at 7, the underlying asset price at maturity S(r) can
be expressed using the solution of the standard geometric Brownian motion
starting from S(7.):

S(1) = S(7e) explv(T — Te) + 021, (1)], (11.30)

where v =7 —g—0?/2 and o, () stands for Brownian motion starting from
Te-

Let z and z stand for the log-returns of the underlying asset at the early-
ending time and maturity, respectively, and let y = v(1 — 7¢) + o2(7 — 7).
Using (11.30), we can obtain the relationship between z,y, and z :

z=z4+y. (11.31)

The density function of z is known as ENDN(z,(, 7.) given in (11.28)
and (11.29), and the density function of y is a normal distribution starting
from Te:

— 1 _ ly —v(r - 7'8)]2
fly)= e s exp{ ) } . (11.32)

Since we know the density functions of both z and y, we can obtain the
density function of z. It is not simply the sum of the density functions of z
and y, but has to be found using the standard method of random-variable
transformation. We can obtain it as follows (see Appendix of this chapter
for an outline of the proof):

TeZ — TG ] —Cez‘w/"zf(z-2a)N [07?:2 —a(t— 27'8)]’

¥(z) = f(2)N {OC Y = o /rrelr —7)

(11.33)

where 6 and ¢ stand for the two binary operators (§ = 1 and —1 for down
and up barriers, respectively, and {( = 1 and —1 for out- and in-barrier
options, respectively) and N(.) is the cumulative function of a standard
normal distribution.

We can readily check that the density function of the log-return of the
underlying asset price at maturity includes all the four density functions
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given in (11.28) and (11.29) for vanilla barrier options. When 7 — 7, the
density function given in (11.33) becomes

acf\/'r——_?e
z

—a

#(2) = SN (8622 ) g fla2)N ( ) (1134

where all parameters are the same as in (11.28) and (11.29).

For a down-out barrier option, § = ( = 1, the arguments in both the
cumulative functions in (11.34) approach +oo as 7e — 7 if z > a, and they
approach —oo as z < a. Thus,

z—a

W (00225 ey (2

z—a .
)—)1, ifz> a,
oT —Te

and
z—a

z—a
N{0o 0and N {————} — 0, if .
(Ca\/"r——re)_) an (a ) 0,ifz<a
Therefore the density function given in (11.34) becomes exactly the same
as that of a down-out barrier option given in (11.28). Similarly, for a down-in
barrier option, # = 1 and ¢ = —1, the arguments in the cumulative functions

in (11.34) approach the following:

zZ—a z—a
_F-a _r-a if
N<0CU\/:1'_—TC)—)0 and N(ea\/ﬁr_—-_'r;)_)l’ if z>a,
and
zZ—a zZ—a .
N<0<0_\/—TT_—T—8>—)1 and N(OU—\-/——T_—_?;) —,0, if z2<a. ‘

Thus the density function given in (11.34) becomes exactly the same as the
density function of a down-in barrier option given in (11.29). We leave the
confirmation that the density function given in (11.33) includes the density
functions for up vanilla options given in (11.28) and (11.29) as exercises of
this chapter. '

As shown above, the density function given in (11.33) is a unified density
function for all four types of barrier options, up-in, up-out, down-in, and
down-out. We can find the density function for each of the four types of
vanilla barrier options very conveniently by specifying the binary operators
6 and (. Using this unified density function, we can find a unified pricing
formula for all eight types of earlier ending-barrier options.
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11.6.2. A Unified Pricing Formula for Early-Ending Barrier
Options

With the density function given in (11.34), we can find the price of an
option (END)

END(w,0,¢) = &' / maxlwSe* — wK, 0}y (z)dz,  (11.35)

where w a binary operator (1 for a call option and —1 for a put option),
the integration is taken from —oo to —dys(S, K) for a put option, and from
—dps(S, K) to oo for a call option.

Using the method to express forward-start barrier options in closed-form
in terms of cumulative functions of bivariate normal distributions illustrated
in Appendix of this chapter, we can find the closed-form solution for an
early-ending barrier option as follows:

END(w,8,¢) = wSe 9N, [wdlbs(S, K, 7),0Cd1s(S, H, 70),wb( 77 ]
— CUKe_TTN2 l:wdbs(s, K, T), OCdbs(S, H’ Te):“"egv %]
H 2v/0? H?2 B H? H?
- (TST) {w?e gTN2 [Wdlbs (?7 K7T ) odlbs _S—) Ha Te | »
Te —rr H?
wly[—| —wKe "Ny |wdps | —, K, T ,
T S '

2
Odps (E—,H,Te) ywb E” (11.36)
S T

where w, 8, ¢ are the option, direction, and in/out binary operators,
respectively.

The pricing formula given in (11.36) can be applied to all eight types of
early-ending barrier options because we can simply choose the appropriate
combination of the three binary operators. It should include vanilla options
as a special case when the earlier ending time is zero and all eight types of
vanilla barrier options as a special case when 7. — 7. To check its generality,
let’s examine a few special cases.
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11.6.2A. Vanilla Options

Substituting 7. = 0 into (11.36), we can show that (11.36) will be sim-
plified as follows!

wSe 9" N(wdips(S, K)] — wKe™ " Nlwdps(S, K)],

which is exactly the same as the pricing formula for a vanilla option given in
(10.31). Notice that the direction and the in/out binary operators are absent
in the above formula. This is because the barrier does not exist, therefore
the direction and the in/out binary operators are simply irrelevant.

11.6.2B. Down-Out Vanilla Barrier Call Options

For a down-out early-ending barrier call option, w = 8 = ( = 1.
Substituting (w,8,¢{) = (1,1,1) and 7. = 7 into (11.36) yields

END(]-a 17 1) = Se_gTN2 [dlbs(Sv K, T)adlbs (57 H’ T)a 1]
H)2U/62

— Ke™™ Ny [dye(S, K, 7), dys (S, K, 7), 1] — (§

H? _ H? H?
x{?e gTNZ |:d1bs ( ?71{,7') ,dlbs <—ST,H,T) ,I:I
2 2
- Ke_TTNZ [dbs(%,K7T>,dbs(H?,H,T),l]}-

(11.37)

The correlation coefficients are all one in (11.37). We can simplify
(11.37) using the mathematical identity (see Appendix for a proof)

N»(A, B,1) = N[min(A, B)], (11.38)
for any real numbers A and B.

!Making use of the following identity
N2(A, B,0) = N(A)N(B),

for any real numbers A and B, where Na(.,.,.) and N(.) are cumulative funtions of standard
bivariate and univariate normal distributions, respectively. The proof is left as an exercise.
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It can be shown that if K > H, then the following identities always hold

dlbs(‘g’ K7 T) < dlbs(s1 Ha T)r
dbs(S, K,T) < dbs(S, H, T) s

H? H?

dlbs (?var) < dlbs (?11:{17) ’
HZ ) H2

dbs <?,K,T) <dbs (?,H,T) .

Thus, (11.37) can be simplified using (11.38) and the above inequalities

and

END(1,1,1) = 8e™9" N [d145(S, K, 7)] — Ke™""N [dps(S, K, T)]

H\ 2v/o? H? H?2
-(3) {—s'e TN ["m (?’K’ )]
H2
— Ke™ N {dbs (-?,K,T>:| }

2u/o? 2
= Cys(5, K) — (%) Chs (%K) , for K > H,

(11.39)

which is exactly the same as the pricing formula for a down-out call option
given in (10.44) for K > H.

It can also be shown that if K < H, then the following identities always
hold

dlbs(S < K, T) < dlbs(S7 H,T),
dbs(S, K) T) < dbs(S; H; T) ’

H? H?
dlbs (?aKyT) Sdlbs <—S—',H’T) ’

H? H?
dbs (—S’_’K,T) Z dbs (?aHaT) .

and
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Thus, (11.37) can be simplified using (11.38) and the above inequalities

END(1,1,1) = Se 9" N(ds(S, H,7)] — Ke ""Nldps(S, H, 7))

H 2u/o? H2 H?
- = e 9T puinii
(S) {Se N |dips S,H,T
2
— Ke™™ N l:dbs (H?,H,T):i }

2v/o? 2
= Cbs(SaH) - (E) Chs <H_ H)

S S’
2v/o?
+ (H - K)e""{N[dbs(s, ml-(5)
H2
N I:dbs (-—ST,H>J ,for K < H, (11.40)

which is exactly the same as the pricing formula for a down-out call option
given in (10.44) for K < H.

11.6.2C. Down-In Vanilla Barrier Call Options

For a down-in early-ending barrier call option, w =8 =1 and ( = —1.
Substituting (w,0,{) = (1,1,—1) and 7. = 7 into (11.36) yields

END(1,1,-1) = Se™ 9" Ny[d1ss(S, K, 7), —d1ps (S, H, 7), —1]

2

H 2v/o
— Ke_TTNgldbs(S, K, 7'), —dbs(s, K, T), —1] + (‘S,“)
H? _ H? H?
x{?e gTN2 |:d1bs (TS,—H’T> dlbs (?H,T> ’ :|

2 2
- Ke_TTNZ [dbs (%7}(,7—) vdbs (%vHaT> ,1] }

(11.41)

[y

Similar to the identity given in (11.38) with perfect positive correlations,
we can use the following two identities for perfect negative correlations to
simplify (11.41) (see Appendix for a proof)

Ny(A,B,-1)=0,ifA+B<0 (11.42)
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and
Ny(A, B,-1) = N[max(4, B)] — N[min(4, B)}, if A+ B >0, (11.43)

for any real numbers A and B.
It can be shown that if K > H, then the followings always hold

dos(S,K,7) = (S, Hyr) =1n () /(ov) <0,

dys (S, K, 7) — dp(S, H,7) = In (%) J(oy/7) <0,

H? H? H? H?
dlbs(-S—aKaT) < dlbs(?aH,T), and dbs<?7K7T> < dbs(?aHyT) .

Thus, (11.41) can be simplified using (11.42) and (11.38) and the above
inequalities
2v/a? H?
END(1,1,-1) = (%) Che <?,H) (11.44)

which is exactly the pricing formula of a down-in call option given in (10.37)
when K > H.
It can be shown that if K < H, then the followings always hold

due(S, K, ) — dua(5, Hyr) =1 (2 ) /(0v7) >0,
H
dba(S, K, 7) — dya(S, H, ) = In (E) Jov/7) >0,
H? H? H? H?
s (g Kor) > duas (T B, and oo (T Ko7) > (g Hr)

Thus, (11.41) can be simplified using (11.38) and (11.43) and the above
inequalities

END(lvlv_l) = (%)21)/62 {Cbs (%Z,H) + (H - K)e_rTN[dbs(H, S)]}
+{Cbs(S, K) — Cys(S, H) — (H — K)e " N(S, H)]} ,
(11.45)

which is exactly the pricing formula for a down-in call option given in (10.37)
when K < H.
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11.6.2D. Up-In Vanilla Barrier Call Options

For an up-in early-ending barrier call option, w = 1 and § = ( = —1.
Substituting (w,8,¢) = (1,—1,—1) and 7. = 7 into (11.36) yields
END(1,-1,-1) = Se™ 9" Ny[dss(S, K, 7), dwss (S, H, 7), 1]

H 2vu/0?
— Ke_"Ng[dbs(S, K,71),dps (S, K, T), 1] + (—S-)

H? _ H? H?
x{-s,—e gTN? [dlbs(?aK,T>7—dlbs(?aH1T)7_1]
2 2
—_ Ke_TTN2 [dbs(%’aKaT),— dbs(gs_aH,T)y—l]}'

(11.46)

Using the identity given in (11.38) with perfect positive correlations and
the identities given in (11.42) and (11.43) with perfect negative correlations,
we can readily simplify (11.46) to®

END(1,-1,-1) = Cps(S, K),forK > H, (11.47a)
and

END(1,-1,-1) = Cps(S, K) — Cps(S, H)
+ (H - K)e_TTN[dbs(S, H)]

H 2vu/o? H? H?
+ (g) {Cbs (?,K> - Cbs (_S"H

— (H — K)e™""N[dps(H, S)]}, for K < H.
(11.47b)

The pricing formulas given in (11.47a) and (11.47b) are exactly the same
formulas for an up-in call option given in (10.41).

The other five special cases of (11.36) for other combinations of (w,8,()
with 7. — 7 can be checked similarly using the identities given in (11.38),
(11.42), and (11.43). We will leave them as exercises.

2When K < H, we can easily show that
dibs(H?/8, K) > —dyps (H?/S, H) and dps(H?/S, K) > —dys(H?/S, H),

Because H > S for any up-barrier options.
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Example 11.14. Find the prices of the early-ending down-in and -out bar-
rier call options with the early-ending time three months before the maturity
of the options and other parameters remain the same as in Examples 10.1
and 10.11.

Substituting w = 6 =1,( = -1, S = $100, K = $98, H = $95, 0 =
0.20, 7 = 0.08, g = 0.03, 7 = 0.50, 7. = 0.25,v = 7 — g — 02/2 = 0.03,
H?/S = 90.25 into (11.36) yields the price of the early-ending down-in call
option

END(,1,-1)
= 100e™0-03x05 [du,s(mo, 98, 0.50), —dy5s (100, 95, 0.25), —\/0_.5]
—98e0-08x0.5y, [d,,s(loo, 98, 0.50), —dps (100, 95, 0.25), —\/W]
+ 0_952><o.03/0.202 {90.25e—-0.03x0.5
x Ny [d14,(90.25,98,0.50), dyps (90.25, 95, 0.25), V050]
— 98¢ 003N, [y, (90.25, 98, 0.50), dys (90.25, 95, 0.25), ¢m]

= $2.547,

and substituting w =0 = =1, S = $100, K = $98, H = $95, 00.20, » =
0.08,9g=003,7=050,7=025,v=r—g— 0'2/2 = 0.03, H2/S = 90.25
into (11.36) yields the price of the down-out barrier call option

END(1,1,1) = 100e—003%0.5, [dlb,(100,98, 0.50), d1b5(100, 95, 0.25), \/0.5]

— 98e~0-08%0:5 , [d,,,(loo, 98,0.50), dp,(100, 95, 0.25), ¢0.50]
_ 0.952><0.03/0.202 {90_258—0.03x0.5

XN [90.25, 98, 0.50), d15,(90.25, 95, 0.25), Vo350 ]
—98e~0-08x0-5 v, [d,,(90.25, 98, 0.50),
+dps(90.25,95,0.25), \/ﬁ] }

= $5.320.

Comparing the price of the down-out barrier option in Example 11.14
and that in Example 10.11, we can find that the price of the down-out call
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option with early-ending features in Example 11.14 is higher than that with-
out early-ending features in Example 10.11. Similarly, we can find that the
price of the down-in barrier call option with early-ending features in Exam-
ple 11.14 is lower than that without early-ending features in Example 10.1.
These relative values of the barrier options result from the fact that the
probability that the barrier is touched is less with shorter early-ending time,
thus the down-in barrier options become less valuable and the corresponding
down-out barrier options become more valuable when the early-ending time
gets shorter.

Following similar procedures, we can find the prices of the down-in and
down-out barrier options with various earlier ending time from zero to the
time to maturity, given all other parameters the same as in Example 11.4.
Figure 11.4 depicts the values of the down-in and down-out barrier options
with various early-ending time. The straight line above represents the sums
of the prices of the down-in barrier call options and their corresponding
down-out call options. The curves in the middle and below represent the
prices of down-out and down-in barrier options. From Figure 11.4 we can
readily observe that whereas the down-in barrier option becomes worth-
less, the down-out barrier option price becomes the same as that of the

option prices

T

o ! L ] 1 ] ! L 1 1 ) 1
0 005 0.1 0.15 02 025 03 035 0.4 045 05

aarfier ending time

Fig. 11.4. Early-ending barrier options prices for down-in and down-out options.



294 FEzxotic Options

corresponding vanilla option when the earlier ending time is zero, and both
the down-in and down-out barrier options become vanilla barrier options
when the early-ending time is the same as the time to maturity of the option.

11.6.3. Present Values of Rebates for Early-Ending
Barrier Options

Following the same procedures to derive (10.48) using the density func-
tion of the first passage time given in (10.30), we can find the present
value of the time-dependent rebate for an early-ending out-barrier option

(EDRBTOT)

1{r—n)
EDRBTOT(n,0,7.) =R { (%)q ! N[0Q:1(r — )]

_1(r-n) '
+(§) nN[GQ-l(T—n)l}, (11.482)

if the rebate growth rate n < r +v?/(20?), where

P(s) = Vv? + 2502,

_ In(H/S) + vrep(s) .

Qy(s) U\/; lor — 1,
al(s) = v +:21/J(8) ,
and
i (r—)
RBTOT(n,6,7.) = RRe { (g)q ! N[Q\(r — )]
1(r—)
+(3)" NoQLe - n)]} , (11.48b)

if the rebate growth rate v > r + v2/(20?%), where

Y (s) =iV —v? ~ 2502,

Q. (s) = ln(H/Sg\_/'_;TeW(s) ,2w=1lor —1,
gu(s) = LE ),

ag
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i = v/—1 is the standard unit of an imaginary number, Re(a + 8i) = «a is
the function to choose the real part of an imaginary number a + §i (both «
and (3 are real numbers), 6 is the same binary operator as in (11.36) (1 to
represent a down and —1 to represent an up barrier, respectively).

We can show that the present-value formula given in (11.48) approaches
that of vanilla knockout options given in (10.48) when the early-ending time
approaches the time to maturity of the option.

Example 11.15. Find the present value of the rebate for the down-out
barrier option in Example 10.15 if the early-ending time is two months before
the maturity of the option and other parameters remain the same as in
Example 10.15.

Substituting § = K = $100,7 = 0.08,g = 0.03,0 = 0.20,7 = 0.50, 7, =
(6—-2)/12=1/3,and v =r — g — 02/2 = 0.03 into (11.48a) yields

P¥(r) = v/0.032 + 2 x 0.08 x 0.202 = 0.0854,
q1(r) = (0.03 + 0.0854)/0.20% = 2.886,
g-1(r) = (0.03 4 0.0854)/0.20* = —1.385,

Q1 = In(95/100) + (1/3)0.0854]/(0.204/1/3] = —0.1974,
Q-1 = In(95/100) — (1/3)0.0854]/(0.201/1/3] = —0.6907,
EDRBTOT(0,1,1/3) = 0.95%>%67,(—0.1974) + 0.95" 138 N (-0.6907)
= $0.6267.

Comparing the present values of the rebates of the down-out barrier
options in Examples 10.15 and 11.15, we can find that it is larger in Ex-
ample 10.15 than in Example 11.15. This is because the barrier is effective
throughout the life of the barrier option in Example 10.15 and it is effective
only for the first four months in Example 11.15, thus the probability the
barrier is touched is larger in Example 10.15 than in Example 11.15.

11.7. WINDOW BARRIER OPTIONS

Window barrier options are also called limited-time barrier options. As
the word window implies, a window-barrier option is a barrier option in which
the barrier is effective only within one or more than one prespecified periods
during the life of the option. Actually, the forward-start barrier options
studied in Section 11.4 are one kind of special window barrier options because
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the barrier is effective from the forward-start time to the expiration time of
the option, and the early-ending barrier options studied in Section 11.6 are
another kind of special window barrier options because the barrier is effective
from the beginning of the option to the ending time of the barrier. Whereas
the barrier of a forward-start barrier option is effective in the second part of
the life of the barrier option, it is effective in the first part of the life of an
early-ending barrier option.

A general window barrier option may include a few windows. A window
barrier option with one period within which the barrier is effective may
start some time in the future and have the effective ending time before the
expiration of the option. It is rather complicated to express the price of a
general window barrier option with more than one windows. To illustrate
how general window options can be priced, we simply consider the simplest
window barrier option with one window. As a matter of fact, a general
window barrier option with one window can be readily decomposed into a
forward-start barrier option and an early-ending barrier option. Figure 11.5
depicts the effectiveness of the barrier in a window barrier option with one
window.

|

e e

"'l

b
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t t te t*

Fig. 11.5. Effective time for a window barrier.

Using the method to price forward-start barrier options in Section 11.4,
we can find window barrier option prices readily using the unified pricing
formula for early-ending barrier options given in (11.36). Assume for the
moment that the underlying asset price at the forward-start time is known
as in pricing forward-start barrier options in Section 11.4. The assumed
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underlying asset price at the window starting time can be considered as the
current spot in the unified pricing formula for an early-ending barrier option
in (11.36). Let END(w,6,(, S, e, T) stand for the price of the early-ending
barrier option in (11.36) with the spot price S, the ending time 7, and the
time to maturity 7. Using the pricing formula of early-ending barrier options
given in (11.36), we can find the price of a window barrier option (PWD)
with one window in terms of integrations

FWD(w,(,S)
—dp,s
= e‘_“’{ / " END [w, ~1,(, SeVntueVT o Tl]f(u)du
o0
+ END [w, 1,¢, SevntuoVT o o ‘rl] f(u)du} ,  (11.49)
"‘dbs

where all parameters are the same as in (11.36).

The pricing formula given in (11.49) is for any window barrier options
with one window without any restriction on the ways the options are knocked
in or out at the window starting time 7,. There are forced window barrier
options similar to forced or protected forward-start barrier options discussed
in Section 11.5. If the barrier is a down (resp. up) barrier compared to the
current spot price of the underlying asset for a forced window barrier option
and the barrier option is expected to be down (resp. up) after the window
starting time, the window barrier option is knocked out and a rebate is paid
if the underlying asset price is actually below (resp. above) the barrier at
the window starting time. We can modify the pricing expression in (11.49)
to incorporate the “forced” characteristic:

FFWD(w,(, S, H,1,7e)

_ —ds
= e"""{ (l—iﬁ)/ " END [w, —1,¢, SeV1 UV o —n]f(u)du
- 00

1+6 o vT1+uo/T1

+ 5 J END\|w,1,(,Se yTe, T — 11| f(u)du
—0Gbs

+ R(m)e T N(—8dys), (11.50)

where FFWD stands for the price of a forced window barrier option with one

window, R(71) is the rebate if the forced window barrier option is knocked
out at the window starting time and N(—0dps) is the probability that the
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forced window barrier is knocked out at the window starting time, and all
other parameters are the same as in (11.49).

The term outside the brace in (11.50) represents the present value of the
rebate if the window barrier option is knocked out at the window starting
time given in (11.26). We can readily check that (11.50) includes both a
forced down (6 = 1) and up (6 = —1) window barrier options as special cases.
For a forced down (resp. up) window barrier option, 8 = 1 (resp. § = —1),
the first (resp. second) term in the brace in (11.50) disappears and only the
second (resp. first) term remains with the coefficient one.

11.7.1. Rebates for Window Barrier Options

Using the same method to obtain the present value of a window barrier
option in the previous section, we can obtain the present value of the rebate
of a window barrier option (WDRBT) in closed-form:

N g - 24 T
WDRBT=R{ (%) e (+ " 2) ‘[Nz(Dl,Ql(Te),—,/g)
e

+ N2 <'—D1,—Q1(Te), - ':l)]

e

q-1
+ (%) e~ (T+vg-1-a2,0%/2)m [Nz (D—1,+Q—1(7’e),— E‘)
Te

+ N, (—D_l, —Q1(m), —\/;-7)]} , (11.51)

In & 4+ vry
Dv = dbs(Sa H,T]) =~ 0QuV/T1, Qv(Te) = —3—;—78_'1
e

qv is the same as in (11.48), dps(S, H, s) is the same as in (10.31) with the
spot and strike prices § and H, and time to maturity s, respectively.

We can check that (11.51) degenerates to the present value of an early-
ending out-barrier option when the starting time is zero, and it degenerates

to that of a vanilla out-barrier option when the forward-start time is zero
and the early-ending time is the same as the time to maturity of the option.

where

Example 11.16. Find the present value of the rebate of the down-out
barrier option in Examples 10.15 and 11.15 if the forward-start time is three
months, and the ending time is two months before the maturity of the option.

Substituting S = K = $100, r = 0.08, g = 0.03, ¢ = 0.20, 7, =
0.25, 7 =0.50, 7. = 0.50 —2/12 = 0.3333, and v = r — g — 62/2 = 0.03 into
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(15.5) and using the values of ¥(r) = 0.0854, q1(r) = 2.886, g—1(r) = —1.385
in Example 11.15 yields

(r + vg_1 — 0°q*,/2)11 = 0.0208
dps(S, H, 1) = 0.5879,
dps (S, H, 11 + 7¢) = 0.4504,
D = 0.5879 — 0.20 x 2.886+/0.25 = 0.2993,
D_; = 0.5879 — 0.20 x (—1.385)v/0.25 = 0.7264,
Q; = 0.4504 — 0.20 x 2.886+/0.5833 = 0.0096,
Q-1 = 0.4504 — 0.20 x (—1.385)1/0.5833 = 0.6620,

p = —4/0.25/0.5833

= —0.6547,

and therefore the present value of the rebate is:

P1AD = 0.95%8860.0433 [N2(0.2993, —0.0096, —0.6547)
+ N3(—0.2993, 0.0096, —0.6547)]
+ 0.9571:385,-0.0208 [N2(0.7264, —0.6620, —0.6547)

+ N2(—0.7264, 0.6620, —0.6547)]

= $0.4567 .

Comparing the results in Examples 10.15, 11.15, and 11.16, we can find
that the present value of the down-out barrier option is the lowest with both
forward-start and early-ending features in Example 11.16, and the highest
with neither forward-start nor early-ending features in Example 10.15. This
is because the length of the effective time of the barrier is different in these
examples, a longer effective time makes it more likely for the barrier to be
touched and in turn the option will have a higher present value of the rebate.

With the pricing formula given in (11.49) for a window out-barrier option
and the present value of its rebate given in (11.51), we can express the price
of a window barrier option with one window and the time-dependent rebate
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(P1WD) as follows:
PIWD = FWD(w,¢,S,H,n,7,7) + WDRBT . (11.52)

Similarly, we can express the price of a forced window barrier option with one
window and the time-dependent rebate (FP1WD) using (11.50) and (11.51):

FPIWD = FFWD(w,(,S,H,71,7,7) + WDRBT.  (11.53)

11.8. OUTSIDE BARRIER OPTIONS

All the barrier options covered in this chapter so far are barrier options
with only one underlying instrument. For them, the asset involved in the
payoffs of the options, the payoff asset, is always the same as the measure-
ment asset or the measurement instrument. However, this is not necessarily
the case in many applications. If the payoff asset is different from the mea-
surement asset, there are two assets involved in such barrier options; and
these barrier options existed in the market. In late 1993, Bankers Trust struc-
tured a call option on a basket of Belgian stocks which would be knocked
out if the Belgian franc appreciated by more than 3.5%.

Heynen and Kat (1944a) extended vanilla barrier options which involve
only one single underlying asset to barrier options with two assets. Heynen
and Kat called barrier options with only one underlying asset inside barrier
options because whether the barrier are touched only concerns the single
asset. They called barrier options with two assets outside barrier options.
The idea of separating the measurement asset from the payoff asset was also
illustrated in the analysis of correlation digital options by Zhang (1995d).
As shown by Heynen and Kat, the correlation coefficient between the returns
of the two assets involved plays an important role in determining the prices
of outside barrier options. Because of this, we may call outside barrier
options correlation barrier options compared to correlation digital options
in Zhang (1995d) because in both kinds of options, one asset serves merely
as a measurement asset and the other is the payoff asset.

Whether an outside-barrier option is knocked in or out depends on
whether the price of the measurement asset touches a prespecified barrier
within the life of the option. As we need a conditional density function
for the log-return of the underlying asset in pricing vanilla barrier options,
we also need a conditional density function for the log-return of the payoff
asset conditioned on whether the price of the measurement asset touches
the barrier within the life of the option. Although Heynen and Kat (1944a)
illustrated the idea of outside barrier options clearly, they used two density
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functions for the underlying asset of the options, one for down and the other
for up. Following the method in expressing the prices of all eight types of
early-ending barrier options in one unified pricing formula in Section 11.6,
we will find an unified formula for all eight types of outside barrier options
in this section.

11.8.1. The Unified Marginal Density Function

Suppose that the measurement asset price follows a similar standard
geometric Brownian motion as given in (3.1) in a risk-neutral world:

dM = (r — g2)Mdt + oo Mdzn(t), (11.54)

where gy and o3 are the payout rate and volatility of the measurement asset,
respectively, and z,,(t) is a standard Gauss-Wiener process.

Using the standard method, we can solve the stochastic equation in
(11.54) given the spot price of the measurement asset M:

M(7) = M explvar + 022m(7)], (11.55)

where vy =7 — g2 — 03/2,7 =t* —t, and t and t* are the current time and
the time to maturity of the option, respectively.

Let y stand for the log-return of the measurement asset. ENDN (v,¢,
7) stands for the density function of the measurement asset at the maturity
time. The functional form of the density function ENDN(y,(,7) for y at 7
is exactly the same as the density functions given in (11.28) and (11.29) for
out- and in-barrier options, respectively:

ENDN(y,1,7) = f(y) — ez‘w/"zf(y —2a), if Oy >6a, (11.56a)
=0, if 8y < fa, (11.56b)

where f(y) stands for the unrestricted density function of the measurement
asset price given in (10.10) (we need to use the volatility and drift parameters
o2 and v for y), 8 stands for the binary operator (1 for a down-barrier and
—1 for an up-barrier), a = Iin(H/M) is the barrier; and

ENDN(y,-1,7) = e2“”/”2f(y - 2a), if 6y > fa, (11.57a)
= f(y), if 0y <0a, (11.57b)

where all parameters are the same as in (11.56).
Let x stand for the log-return of the payment asset or the underlying
asset as in previous sections of this chapter. The log-returns of the payment
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and measurement assets are assumed to be correlated with a constant cor-
relation coefficient p. Since both z and y are normally distributed and are
correlated with the correlation coefficient p, z and y are joint normally dis-
tributed with the correlation coefficient p. As we know the marginal density
function of y given in (11.56) and (11.57), we can find the density function
of z using the barrier condition given in (11.56) and (11.57) following a sim-
ilar procedure in obtaining (11.33) in Section 11.6 for early-ending barrier
options (see Appendix for an outline of the proof):

z) = flu [dbs(M,H,O’g)-f-p’u,] _ relavz/o u - 2pa
)= S {oc T L P i (o 20 )

dps(M, H,049) + 2a
xN(O{[b( \/% ”“]+U2ﬁ,/1—p2}), (11.58)

where u = (z — v;)/(0+/7) is the standardized normal variable for z, and

dps(A, B,03) = [In(A/B) + va7]/(02/T)

is the same argument as in the extended Black-Scholes formula with the
spot and strike prices A and B and volatility o9, respectively, and all other
parameters are the same as in (11.33).

We can check that the density function of the log-return of the payment
asset price at maturity given in (11.58) includes all the four density functions
given in (11.28) and (11.29) for vanilla barrier options. When p = 1, 03 — 0,
and g — g, the density function given in (11.58) becomes

[dbs(M, H, 0’2) + u] }

€@ = F@N {ec -

_ Ce2auz/a§(x _ 2a)N {e[dbs(M, H,o3) + u]

V1-p?

} . (11.59)

where all parameters are the same as in (11.58).

For a down-out barrier option, § = ¢ = 1, the arguments in both the
cumulative functions in (11.59) approach +oco as p = 1,62 — o, and g3 — g,
because u > —dps(M, H,02) or dps(M, H,02) + u > 0, and

V1-p?

N{[dbs(M,H,0'2) +u]} - N(OO) =1.
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Therefore, the density function given in (11.59) is simplified to

£(z) = f(z) — (*Y/°" f (z — 2a) ,

which is precisely the same for vanilla out-barrier options given in (11.28).
For a down-in barrier option, # = 1,{ = —1. Substituting § = 1 and
¢ = —1 into (11.59), we can find

[dbs(M,H,02)+u [dbs(M,H,02)+u]
N{— T2 } — 0 and N{ \/-ITp-f }

— 1, if u>~-d(M,H,o3)

and

vl M H o) +ull [dbs(M, H, 02) + u]
V1-p? 1-p?
=0, if u<—d(M, H,a2).

Thus the density function in (11.59) becomes exactly the same as that for
the down-in barrier option in (11.57). We leave the confirmation that the
density function given in (11.59) includes the density functions of the other
six types of vanilla barrier options as special cases as exercises at the end of
this chapter.

As shown above, the density function given in (11.58) is an unified den-
sity function including all four types (up-in, up-out, down-in, and down-out)
of outside barrier options. We can simply find the density function for each
of the four types very conveniently by specifying the binary operators § and
¢. Using this unified density function, we can find an unified pricing formula
for all eight types of outside barrier options.

11.8.2. The Unified Pricing Formula for Outside Barrier Options

With the unified density function given in (11.58), we can find the price
of an outside-barrier option (OTSD)

OTSD(w,6,¢,p) = e_"/ma.x[wS'ez — wK, 0]¢(z)dz, (11.60)
where w is a binary operator (1 for a call option and —1 for a put option),

the integration is taken from —oo to —dps(S, K, o) for a put option and from
—dps(S, K,0) to oo for a call option. Using the method to express the prices
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of forward start barrier options and eaﬂy-ending barrier options in closed-
form in terms of cumulative functions of bivariate normal distributions, we
can find the closed-form solution for an outside barrier option as follows:

OTSD(“J) 9) C? P) = w‘se_gTN2 [Wd]_bs(s, K’ 0’), 0Cd12’ wo(/’]
— wKe "N [wdys(S, K, 0),0(dps (M, H, 73),w8 p]

H 2vz /03 H 2p0 /o2
- C <M) wS <]—W—) e—gTNz [Wd2170d22aw9p]

— wKe "Ny [w(d2y — o/T,)0(da2 — po/T),wbp]} ,
(11.61)

where

d12 = dbs(Ma Hv 02) + pa\/;,

2ap
=d
d21 1bs(S7 K: T) + 0,2\/;,
2a
dyo=d _—,
22 12+ Py~

and w,0,( are the option, direction, and in/out binary operators, respec-
tively, as in (11.39).

The pricing formula in (11.61) can be applied to all eight types of bar-
rier options because we can simply choose the appropriate combination of
the three binary operators. It should include the pricing formula of vanilla
options and all eight types of vanilla barrier options as special cases. We
will illustrate a few special cases of the unified pricing formula.

11.8.3. Vanilla Options As Special Cases

Like the unified pricing formula for early-ending barrier options in
(11.36), the one given in (11.61) also includes the pricing formula of vanilla
options as a special case. However, the conditions under which the two
unified formulas degenerate to the pricing formula of vanilla options are dif-
ferent. Substituting p = 0,02 = 0,7 = ¢, into (11.61) using the identity
given in Footnote 1 of this chapter yields precisely the same pricing formula
of vanilla options in (10.31) after simplifications.

11.8.4. Vanilla Barrier Options As Special Cases

For a down-out vanilla call barrier option, we can simply set w = 6 =
¢ = 1. Substituting (w,8,{) = (1,1,1), p—> 1, 020 90, go > g, M = S
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into (11.61) yields exactly the same result as in (11.37) which is precisely
the pricing formula of a down-out vanilla barrier call option given in (10.44)
as shown in Section 11.6. For a down-in vanilla barrier call option, we can
set w =60 =1 and ¢ = —1. Substituting (v,6,¢) = (1,1,-1),p = 1,02 =
0,92 = g, M — S into (11.61) yields exactly the same result as in (11.41)
which is precisely the pricing formula of a down-in vanilla call option given
in (10.36) as shown in Section 11.6.

For an up-in vanilla barrier call option, wecan setw =1and 8 = ( = —1.
Substituting (w,6,¢) = (1,-1,-1),p = 1,09 =+ 0,92 > gand M = §
into (11.61) yields exactly the same result as in (11.46), which is precisely
the pricing formula of an up-in vanilla call option given in (10.40) as shown
Section 11.6. We can check that the other five types of vanilla barrier options
are also special cases of the unified pricing formula of outside barrier options
given in (11.61) using the identities given in (11.38), (11.42), and (11.43),
p— 1,000,990 —>g,and M — S

11.8.5. The Trivial Case of Zero Correlation

Vanilla options are shown as a special case of outside barrier options
when the correlation coefficient approaches perfect positive correlation. To
have a better understanding of the unified pricing formula in (11.61), let
us consider the special case when the payment and measurement assets are
perfectly independent. Substituting p = 0 into (11.61) yields

2u2/¢7§
OTSD(w,6,¢,0) = { N1¢odhu(M, H,02)] ~ ¢ (7)
« N[Bds(H, M, az)]}c,,s(s, Kw),  (1162)

where Cjs(S, K,w) stands for the vanilla option price given in (10.31) with
the spot and strike prices S and K and the option operator w, respectively.

The first term in the brace in (11.62) can be interpreted as the proba-
bility that the barrier is not touched for an out vanilla option and as that
the barrier is touched for an in vanilla option with the measurement asset.
Thus, the pricing formula in (11.62) can be understood as the product of the
probability that the barrier is touched (resp. not touched) for an in-barrier
(resp. out-barrier) option with the measurement asset and the vanilla option
price with the payment asset. This interpretation is very consistent with
our intuition that the price of an in- (resp. out-) barrier option without any
rebates should be the price of the corresponding vanilla option multiplied by
the probability that the option is knocked in (not knocked out).
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Example 11.17. Find the prices of the down-in and down-out outside
barrier call options to expire in half a year, given the spot prices of the
payment and the measurement assets $100, the strike price $98, the barrier
$95, the volatilities of the two assets 20% and 15%, respectively, the payout
rates of the two assets 3% and 5%, respectively, the interest rate 8%, and
the correlation coefficient between the two assets 75%.

Substitutingw =0 =¢ =1, =M = $100, K = $98, H = $95, ¢ =
0.20, o2 = 0.15, 7 = 0.08, g = 0.03, g2 = 0.05, p = 0.75 into (11.61) yields

dps(S, K, ) = 0.2489, 13 (S, K, o) = 0.3903, dys (M, H, 73) = 0.5720,
diz = 0.6781,dy = 0.3351,dyy = 0.2891 .

The price of the down-out outside call option is then

OTSD(1,1,1) = 100e~%93%03 N, [0.3903, 0.6781, 0.75]
— 98¢~0:08x0-5 v, 10,2489, 0.5720, 0.75]
_ 0_952x0.01875/0.152{100 x 0.952x0.75x0.2/0.15e—0.03x0.5
x N2[0.3351, 0.2891, 0.75] — 98¢ ~0-08x0-5%
x N2[0.3351 — 0.20v/0.50, 0.2891
- 0.75 x 0.20v/0.50, 0.75]}
= $5.299

and the price of the down-in outside call option is

OTSD(1,1, 1) = 100e~%93%05 N, [0.3903, —0.6781, —0.75]
— 98¢~ 0-98x0:5 N7, [0.2489, —0.5720, —0.75]
+ 0.952x0.01875/0.152{100 x 0-952x0.75x0.2/0.5
x N,[0.3351,0.2891,0.95] — 98¢ ~2-08%0-5 \y,(0.3351
~ 0.201/0.50,0.2891 — 0.75 x 0.20+/0.50, 0.75]}
= $2.583. ‘

11.9. OUTSIDE ASIAN BARRIER OPTIONS

We discussed and priced Asian barrier options in Section 11.3. They are
barrier options with the underlying spot price substituted by an average of
the underlying asset prices. As there are eight types of vanilla barrier options
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and two types of averages (flexible geometric averages including standard
equal-weighting geometric averages as special cases and flexible arithmetic
averages including standard equal-weighting arithmetic averages as special
cases), there are eight types of Asian barrier options with the strike prices
replaced by the spot prices for each type of average. As we explained in
Chapters 6 and 7, there are Asian options substituting an average for the
strike price. There are eight types of Asian average-strike barrier options for
each type of average. Thus, there are a total of thirty-two types of Asian
barrier options resulting directly from the combination of standard Asian
options with vanilla barrier options.

After studying outside barrier options in the previous section, we can
have many other types of Asian barrier options. Any outside barrier option
always involves two assets, one payment asset and one measurement asset.
Let (PM) stands for the combination of a payment asset and its correspond-
ing measurement asset for an outside barrier option. Table 11.1 lists all the
four possible combinations of the average and its corresponding underlying
asset for an outside barrier option.

Table 11.1. Possible combinations of the underlying asset and its average.

Spot-Spot Spot-Average

Average-Spot Average-Average

An outside barrier option with the combination spot-spot is obviously
a vanilla barrier option because the underlying asset price is both the pay-
ment asset and the measurement asset. An outside barrier option with the
combination average-average is clearly an Asian barrier option we studied
in Section 11.3 because the average price is both the payment asset and the
measurement asset. An outside barrier option with the combination spot-
average is an outside barrier option with the average as the measurement
instrument and the underlying asset as the payment asset. Such outside bar-
rier options possess more desirable properties than vanilla barrier options,
because the average can potentially reduce spot manipulation as standard
Asian options. An outside barrier option with an average of the underly-
ing asset prices as the measurement asset price combine Asian options with
outside barrier options. The outside barrier option with the combination
average-spot has the spot as the measurement instrument and an average of
the underlying asset prices as the payment asset.

To illustrate how Asian outside barrier options can be priced or approx-
imated in closed-form, we simply consider an Asian outside barrier option
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with the underlying asset as the payment asset and a flexible geometric aver-
age of the underlying asset prices as the measurement asset. In order to price
such an-Asian outside barrier option, we need to know the correlation coeffi-
cient between the log-return of the underlying asset and that of the flexible
geometric average defined in (7.4), the payout rate, and the volatility of the
flexible geometric average. Fortunately, the correlation relationship (4.7) is
given in Theorem 7.5 of Chapter 7:

(0 +v?) (7’ - H;—lh) - Uer,{,n_j

o2 \/TT,,{_]- ’

where T,{, n—j and T,{_j are the effective mean time and variance time func-
tions given in (7.7) and (7.8), respectively, and the payout rate and the
volatility of the flexible geometric average are given in (11.5). With the
above information, we can price an Asian outside barrier option with a flex-
ible geometric average as the measurement instrument by substituting these
parameters into the pricing formula in (11.61).

p=

Example 11.18. Find the prices of the down-out and down-in Asian outside
barrier options with the measurement instrument as a flexible geometric
average with 12 monthly observations as in Example 7.3, the interest rate is
7%, the yield on the underlying asset is zero, the volatility of the underlying
asset is 20%, the time to maturity is one year, the spot price, strike price,
and barrier are $100, $96, and $95, respectively.

We can use the effective time values in Examf)le 7.3, T‘{, n—j = 0.629,

T,{j = 0.476 because the conditions of Example 7.3 are the same as in this
example. Substituting 7 = 1, T/ _.0.629, TI_, = 0.476, r = 0.07, g =

n=)

0.03), o = 0.20 into (11.5) yields the effective volatility and payout rate of
the flexible average as follows

Ofga = 0.204/0.476/1 = 0.138,

fga = 0.07 — (0.202.476/2)0.692] = 0.02588 .

We can also use the correlation coefficient between the underlying asset
price and the flexible geometric average in Example 7.9, p = 0.7772.

Substituting w =80 =( =1,5§ = M = $100,K = $96, H = $95,0 =
0.20,02 = 09 = 0.138,7 = 0.07,9 = 0,92 = gfga = 0.02588, and p = 0.7772
into (11.61) and following the same procedure as in Example 11.17 yields the
price of the down-out Asian outside call option OT'SD(1,1,1) = $8.336, the
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price of the down-in Asian outside call option OTSD(1,1,—1) = $5.582, the
price of the down-out Asian outside put option OTSD(-1,1,1) = $0.212,
the price for the down-in Asian outside call option OTSD(-1,1,-1) =
$3.216.

Since flexible geometric averages include standard geometric averages
with equal weights as special cases, the above procedure can also price Asian
outside barrier options with standard geometric averages as measurement
instruments. To price Asian outside barrier options with flexible arithmetic
averages as measurement instruments, we can simply use the approximation
result in (7.12) to normalize the flexible arithmetic averages which include
standard arithmetic averages as special cases.

11.10. CORRIDOR OPTIONS

Corridor options are also called dual-barrier options or barrier options
with two barriers. They are more often called corridor options in practice.
Corridor options, whether knockouts or knock-ins, are cancelled or activated
if at any time within the life of the option the underlying asset price hits an
upper or lower barrier. Compared to vanilla barrier options with one barrier,
corridor options with double barriers have lower premiums, because they
impose an additional barrier which restricts the movement of the underlying
asset prices and in turn the payments of the options. If we say that the buyer
of a vanilla barrier option expresses the view of the underlying asset price,
the buyer of a corridor barrier option expresses the view of the underlying
asset price more specifically within the time to maturity of the option.

With the concept of range trading being most commonly related to the
currency market, corridor options are actively trading in it. They are also
popular in index options when buyers want to express their view of the stock
market as a whole.

A corridor option is similar to a knockout option in the sense that it
is canceled if either one of the two barriers is touched at any time within
the effective time of the option. As its name implies, there are two barriers
for each dual-barrier option, one above the spot price U > S and the other
below the spot price L < §. Compared to vanilla barrier options studied in
Chapter 10, we can easily find that the meaning of “knock-in” options and
“knock-out” options changes. It makes no difference whether the up-barrier
or the low-barrier is touched, or which is touched first, an “out” option is
knocked-out. Therefore, there are only four kinds of dual-barrier options:
out calls, out puts, in calls, and in puts because the direction of approaching
the barrier is no longer a factor affecting the option value.
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11.10.1. The Density Function with Dual-Barriers and Definition
of Corridor Options

Cox and Miller (1965, p. 222) provided a density function with two
barriers, one above and the other below the spot price of the underlying
asset. The density function is given as follows:

(o o]
Pyy(z,t) = Z pu(z,t), forb< z < a, (11.63a)
where
pn(z,t) = V7 f(z — al) — e™V/7 f(z — o), (11.63b)
z,, = 2n(a - b),
7 =2a -z, = 2(1 — n)a + 2nb,
U
=In(=
a=In (S) >0,
L
=In(=
b=1In (S) <0,

f(z) is the unrestricted density function in (10.10), U and L are the up- and
low-barriers, respectively; L < § < U, S is the spot price of the underlying
asset, v=r1— g —02/2, and p(z,t) = 0 for z < bor z > a and all t.

The density function in (11.63) can be interpreted as a superposition of
a source of unit strength at z = 0, ev=n/9 at the points zj, = 2n{a—b),n =
+1,2,3,..., and —e¥®*n/%® at the points ! = 2a —zl,= +1,2,3,.... The
reason that there are an infinite number of terms in (11.63) is that reflections
generate reflections.

We can show that the density function with double barriers in (11.63)
degenerates to that with single barrier in (10.20) and (10.24) when the lower
barrier L — 0 or when the upper barrier U — oco. This is consistent with
our intuition because when L — 0 (resp. U — 00), the down- (resp. up-)
barrier actually disappears and there is only one barrier left. We will use the
density function with dual-barriers given in (11.63) to price corrider options
in this section and double-digital options in Chapter 15.

Following a similar procedure as to obtain the density function given
in (11.58) to price outside barrier options, we can obtain, using the den-
sity function given in (11.63), a general conditional density function for the
payment asset price conditioned on whether the measurement asset price is
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within two pre-specified barriers or not within the life of the option:

— eﬁvz/ag u—pLg . |
oty (o= 2 i, (a9
where
o) = { AL 0= o2/ )
_ [ 4OLY) + (0= P/ 2V +
1-¢ » (11.64a)
NL(n)=N{d(M’L)+(1 ;f2z_y;.;/(azﬁ)+pu}
d(M,U 1 2 ,,,: N
LT R

vh = 2n(a —b),yh = 2a — y, = 2(1 — n)a + 2nb,
In(M/X) + vt g YT
o2\/T T eyt

and other parameters are the same as in (11.63) and (11.58).

We can show that the density function given in (11.64) degenerates to
that for “inside” double barrier options given in (11.63) when the two assets
become one, or o9 — 7, g2 = g, M — S, and p — 1. This is because the
following must be true when the two assets become one:

d(M, X) =

In(L/S) < ¢ < In(U/S), or —d(L) < u < —d(U). (11.65)

Substituting (11.65) and 02 - 0,92 =+ 9, M = S, p = 1, v = v; into
(11.64a) and (11.64b) yields

NU(n) = NL(n)=1. (11.66)

Substituting (11.66) and y,, = z/,, ¥ = =, into (11.64) yields (11.63).
Substituting n = 0 into (11.64), we can also readily find that (11.64)
degenerates exactly to the one for single barrier outside barrier options given

on (11.58).
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The payoff of an out-corridor optién (POTCRD) can be given formally
as follows:

POTCOP =R(T),if S(T) < Lor S(T) > U, forsomet < T < t*,
(11.67a)
or

POTCOP = max {[wS(t*) - wK,0]|L < S(T) < U,¥ < T < t*}, (11.67b)

where all parameters are the same as in Chapter 10 for vanilla barrier options.
And the payoff of an in-corridor option (INCRD) can be given formally
as follows:

PINCOP = max{wS(t*) - wK,0)|S(T) < L
or S(T)>U, forsome t<T <t} (11.68a)
or
PINCOP=Rd(r), f L<ST)<U, Vt<T<t}, (11.68b)
where all parameters are the same as in (11.5).

11.10.2. Pricing Corridor Options Without Rebates

Using the density function given in (11.64), we can obtain the price of
an outside knocked-out corridor option without rebate (OUT2DB):

OUT2DB = wSe™9"Probl(w) — wKe™""Prob2(w), (11.69)
where
+00 U 2nv2/a'§ , ,
Prob2w) = 3 (F) UGS, K)+pA), d(M,L) + Ay, wpl

n=—

— Na[w(d(S, K) + pAy), d(M,U) + Ay, wpl}

U\ 2v2 /o2 L\ 2nv2 /o2
“(w) ()
M U

x {Na[w(d(S, K) + pAy,), d(M, L) + Ay, wp]
— Nao[w(d(S, K) + pAy), d(M,U) + Ay, wpl},
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+ 2n( 22 4u, /o2
PI'Ob].((.U) — ZOO (%) ( 2+'U2 02)

x {Nz[w(d1(S, K) + pA}), d(M,L) + A;, + po+/T, wp]

— No[w(di (S, K) + pAL), d(M,U) + Al + po/T, wp|}

{5y E

M\U
x {Nalw(d1(S, K) + pAL), d(M, L)+ Al + pav/7, wp)
— Nolw(dy(S, K) + pAL), d(M,U) + Al + pav/7, wpl},
Wy=Uifw=1 and W, =L if w=-1,

A Yl A _Yn_

= oE T v
Y = (a—b)—2nl( )

=an () -n(§) () (5

In(S/K) + vt
o\T ’

di1(S,K) =d(S,K) + o7,
and N3(a, b, c) for the cumulative function for the standard bivariate normal
distribution with upper limits a and b and correlation coeficient c.

The pricing formula given in (11.69) is rather complicated compared to
those of all other options so far covered in this book. We can readily obtain
those for “inside” corridor options as special cases of {11.69). This is simply
because the density function we used to price outside out corridor options
given in (11.64) includes the corresponding “inside” double-barrier density
function as special cases when the two assets become one, or when o3 — o,
g2 —>g, M — S,and p— 1.

Substituting o2 — o, g2 = g, M — S, and p — 1 into (11.69) yield the
price of an out-corridor option (CRDOT) without a rebate:

CRDOT = wSe 9" PD(v + 0%,w) — wKe " PD(v,w), (11.70)

d(S,K) =
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where

o= 5 (5" s ()]

n=-—0o0

= N fodu(s W)+ (222)]}

@) (o (25)]

wzh
- fuints o+ (222 )]}
Wy=U, if w=1and W,=L, if w=-1,

z,, = 2n(a — b) = 2nln (%) ,

=i (2) ~2nta (2) 2w (2)" (2)]

and all other parameters are the same as in (11.69).

The pricing formula in (11.70) is much simplified from (11.69), but it is
still more complicated than the ones with only one barrier given in Chap-
ter 10. Actually, the process to obtain (11.70) is rather straightforward.
We can simply work with each component of the density function given in
(11.63) following the same steps as in Section 7.4 to price standard single-
barrier options, and then we obtain (11.70) through summing up all these
components.

The identity given in (10.56) also holds for corridor options. In other
words, the summation of the prices of an out-corridor option and its cor-
responding in-corridor option without any rebates equals the corresponding
vanilla option price, because the corridor option can be either “in” or “out”
during the life of the option and the total result of both an out-corridor and
its corresponding in-corridor options is the same as that of the corresponding
vanilla option regardless of whether the barriers are touched. We can hence
obtain the price of the corresponding in-corridor option (CRDIN) using the
identify and the out-corridor option pricing formula given in (11.70): where
all parameters are the same as in (11.70).

CRDIN = wSe™™ { Nlwds,(S, K, v +0*)] - PD(v + o?,w)}

— wKe ™™ {Nwds(S, K,v)] — PD(v,w)]} (11.71)
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We can also check that it degenerates to that for a single barrier outside
barrier option when either the up barrier does extremely large or the low
barrier becomes sufficiently small.

11.10.3. The Fourier Series Method to Price Corridor Options

The pricing formulas of corridor options in (11.70) and (11.71) are ex-
pressed in terms of a series of infinite terms of univariate cumulative normal
distributions. Although the univariate cumulative function values can be
calculated quickly, it may take significantly more time to calculate the cor-
ridor option prices because the number of cumulative function values (eight
values are needed to calculate an out-corridor option price and ten for an
in-corridor option price for each “n”) needed may increase significantly if the
converging process is very slow. We will explore an alternative approach to
price out-corridor options.

Using the method of separation of variables, Cox and Miller (1965,
p- 222) obtained a Fourier series to solve the dual-barrier problem:

oo
Padv(z,t) = Zpsn(:c,t),forb <z<a, (11.72)

n=1

where
Psn(z,t) =ane"\"te”/"2sin [n_7:1(_m_—_bb)] , (11.72a)
1[v?  n?r?0?
An =§ [; + (a———b)i} s (11.72b)
an =a__2bsin (:—fl’b) , (11.72¢)

and all other parameters are the same as in (11.63), and pags(z,t) = 0 for
z<borz<a.

Using the density function for the dual-absorbing barrier problem in
(11.72), we can provide an alternative pricing formula for an out-corridor
option (see Appendix for an outline of the derivation):

OUTC = wSe 9" Pa(v + 0%,w) — wKe™"" Pa(v,w), (11.73)
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where

) vfg? 00 —AnT
Pa(v,w) = c*(a - b) (L> Z In®

5) Znirieiroi(a-b)y
o (e  C e
o fno?con [BISLE) ]
o=y [2ED ]} (K)7)

and sin(.) and cos(.) are the sine and the cosine functions, and other
parameters are the same as in (11.63), (11.70), and (11.72), and w is the
option operator (1 for a call and —1 for a put).

The pricing formula in (11.73) appears as complicated as that given
in (11.70), yet the values of the two intermediate functions Pa(v,w) and
Pa(v+0?,w) are in general smaller than 1, therefore the converging process
can be faster than (11.70). Another obvious difference between them is
that the terms start from 1 to oo in (11.73) and from —oo to oo in (11.70).
Numerical testing shows that the first few terms in the sums of the Pa(v,w)
and Pa(v + 0?%,w) are sufficient for convergence because the density for all
other terms are nearly zero.

Numerical examples show that the convergence is very fast with both
methods in (11.70) and (11.73), and the standard image method in (11.70)
converges faster for short-term options and the method in (11.73) converges
faster for long-term options in general.

11.10.4. Rebates of Corridor Options

So far, we have priced corridor options without rebates. As studied
in Chapter 10 for vanilla barrier options, the present values of the rebates
for out-barrier options are more difficult to obtain than those for in-barrier
options because the time for the options to be knocked out is uncertain in
out-barrier options. In the remaining of this section, we will find the present
values of the rebates for both in- and out-corridor options.

11.104A

. As in the case to find the present value of the rebate for a vanilla out
barrier option, we need the distribution for the first passage time. Using
Anderson’s (1960) results of the density of one line touched earlier than the
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other, we can obtain the density function that the upper barrier is touched
first 7, (t) and the lower is touched first m(t):

U™ fay(n) - ot o (n) + vt)?
wyu(t) = (L"S) a;;ﬁw_t: )exp{— = 202tv }
1 & /9% 1a1(n) + vt [a1(n)vt]?
35 (7)) (At e { Lt

n=0
Un+l 2v/o? (a2 (n) + ‘Ut) . _ [(12('":) _ ’Ut]2
n+1 o /27rt3 Xp 202t

|
B | =
[~]8
— /-\
t~

n=0
1 & [ (L7 /a5(n) + vt [az(n) + vi]?
) (| )
(11.74a)
and
1 & [\ g (n) 4+ vt [as(n) + vt]?
n0=3 3 (Tos)  (FRE) e { -G
1 & U\ [—a3(n) - vt [az(n) — vt]?
T2 nX___;) (F) ( oV 2rtd ) &P {_ 202t }
1 & (I g (n) + vt [a1(n) — vt)?
A5 (Bn) " (M) {2
1 & | [furtt 2vfe? aq(u) — vt [as(n) + vt}?
_57;_0[( L"S’) ( oV 2ntd )exp{— 202t } ’
(11.74b)
where

ai(n) = 2nln< ) +In %)

1()’

><O and

az(n)=(2n+1)In (

W b +

az(n) = 2nln( ) In

(
5)
(
)

as(n) = (2n+1)ln(% +n ( )
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The present value of the rebate if the upper barrier is touched first V,,
is given by

V. = / T(Rue™)e~"tmy (t)dt | (11.75a)
0

and the present value of the rebate if the lower barrier is touched first
T
Vi= / (Rie™)™"m(t)dt, (11.75b)
0

where R, and R; stand for the rebates paid as soon as the upper barrier and
the lower barrier is touched, 7 > 0 for the growth rate of the rebate as in
Chapter 10.

Substituting (11.74) into (11.75) and carrying out the standard integra-
tion steps as in the Appendix of Chapter 10 for knockout barrier options
with single barriers, we can obtain

e S {(55)" 0 vinim
(B (14 )t - (Tog) ™" (1 2) Vit
~ (Il}y::;)zv/az (1 N %)V[—az(n)]} ’ (11.76a)
Vi= % R go { (I[}T:;l. )21)/02 (1 + %) V[-as(n)]

+ (%;)20/02 (1 - %)V[aa(n)] - (%)21}/"2 (1 + %)V[a:;(n)]
-(

[i:.;j)%/az <1 ~ E)v[—a4(n)]}, (11.76b)

Y

where

V(c) = e/ N { — sign(c) c:\;’—_w} 4 e/ N { — sign(c) C;\/T;w} ,

¥ =/v?+2(r —n)o?,

and N(.) is the cummulative function of the standard univariate normal
distribution and sign(c) is the sign function which gives 1 if ¢ is positive and
—1 if it is negative.
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The total present value of the rebate V is simply the sum of the two
terms given in (11.76)
V=V.+V.

11.10.4B

The present value of the rebate of an in-corridor option (CRDINRBT)
can be obtained by discounting the rebate to be paid at maturity of the
option and multiplying it by the probability that the option is not knocked
in within the life of the option:

CRDINRBT = R(1)e”"" Pa(v,w), (11.77)

where Pa(v,w) is the same as in (11.70).

Using the value of an out-corridor option without a rebate in (11.67)
or (11.71) and the present value of the rebate of an out-corridor option in
(11.76), we can obtain the price of an out-corridor option with a rebate

(PCRDOT):
PCRDOT = CRDOT + CRDOTRBT . (11.78)

The price of an in-corridor option with a rebate (PCRDIN) can be found by
adding up the value of an in-corridor option without a rebate in (11.71) and
the present value of the rebate of the in-corridor option in (11.77):

PCRDIN = CRDIN + CRDINRBT. (11.79)

We have studied standard corridor options in this section. Although out
corridor options are most common, there are other variants, one of which
has one of the barriers as a knock-in and the other a knockout. Another
variant is that the two barriers can be effective for different time periods, or
one barrier is effective within a certain time period and the other within a
different time period. Also, since the order of hitting the upper or the lower
barrier is irrelevant to standard corridor barrier options, the third variant
can be an up-out or down-in or a down-in or up-out. These variants can be
analyzed with existing methods, yet they are beyond the scope of this book.

11.11. BARRIER OPTIONS WITH TWO CURVED BARRIERS

We introduced and priced corridor options in the previous section. Al-
though corridor options are general and include vanilla barrier options as
special cases, the two barriers in our analysis were assumed to be constant.
In some applications, the barriers are time-dependent as in Section 11.2
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for single time-dependent barrier options. Corridor options with two time-
dependent barriers are more flexible than those with constant barriers we
studied in the previous section. Kunitomo and Ikeda (1992) first studied
such options and provided pricing formulas for them. They extended the
standard corridor options to include barriers that fluctuate with time expo-
nentially. As a matter of fact, the barrier options with two curved barriers
are combinations of corridor options studied in Section 11.10 and two floating
barriers discussed in Section 11.2.

Kunitomo and ITkeda introduced two floating barriers as the floating
barriers we discussed in Section 11.2, both floating barriers having constant
rates of change. Specifically, they used two rates §; and 4 for the low and up
barriers, respectively. The two floating barriers can be expressed as follows
in our notations:

L(T) = Le”T and U(T)=Ue"T, 0<T <7 (11.80)

where L < § < U, L and U represent constant up and low barriers, respec-
tively. _

Assuming that the underlying asset price follows the same geometric
Brownian motion given in (2.3), Kunitomo and Ikeda first generalized Levy’s
(1948) well-known formula [the same as the density function given in (11.63)]
and obtained the density function for the underlying asset price within the
two floating barriers [L(T),U(T)]. The density function can be written as
follows after a slight modification from Kunitomo and Ikeda’s original result
which does not consider the payout rate of the underlying asset:

Pat)= 3 kaly), (11.81)

n=—o0o0

where

kn(y) = (-[I{—:)Cl" (%)Cz"f{ log(y/S) — 2:\1/(;g(U/L) - w}

LvtiNea  (log(yS/L?) — 2nlog(L/U) — vt
B (SU") f oJT ’

=2[r—-g—62—n(61—-52)] 3
o2

Cin 1 ’

cn=2————n(51;62),
g
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and
_ r—g-+n@-8)]

1.
o2

The density function given in (11.81) is in terms of the underlying asset
price rather than the log-returns as in previous sections in this chapter and all
previous chapters. It can be shown that (11.81) includes the density function
given in (11.63) as a special case when §; = d; = 0 (see Exercise 11.44).

Using the density function given in (11.81), we can readily obtain the
pricing formulas for both knock-out call and put options with two-curved
barriers (TCB) in compacted form after making the modification to include
the payout rate of the underlying asset:

TCB = wSe 9" Pb(v + 0%,w,1) — Ke™"" Pb(v,w,0), (11.82)

where

Un\2¢+cin / [\ C2n w:L':,
Prw = (5)(5) " {w[oduts o) + 22 ]

_ . w),
N [wdss (S, WE, v) + Gﬁ]}

Ln+1 2g+c3n w.’l:;:
- (TJ"_S—) {N[wdbs(S,K,'U) + 0’\/;]

s 25
Nlwdps(S, WS, v) + P

we =Ue"T if w=1 and WS=Le"T if w=-1,

and w is the same option binary operator (1 for a call and —1 for a put) and
other parameters are the same as in (11.63) and (11.70).

The pricing formula given in (11.82) is expressed in terms of our algebra
for convenient comparisons. Comparing the pricing formulas given in (11.70)
and (11.82), we can readily find that the only differences between the two
are in the powers of their corresponding probability functions Pb(v,w,q)
and Pb(v,w,q), the latter being a function of the two curvature parameters
through the three intermediate functions cia, 2n, and czn, the former being
a constant because the two barriers are constant. We can readily show that
(11.82) degenerates to the pricing formula given in (11.70) when 6; = 62 =0
(see Exercise 11.45).

The corresponding pricing formulas for in corridor options, rebates for
both in and out corridor options with one or two floating barriers can be
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easily obtained accordingly following the same procedures as in the previous
sections of this chapter.

11.12. SUMMARY AND CONCLUSIONS

We have introduced, discussed, and priced all other popular exotic bar-
rier options besides vanilla barrier options in this chapter. After a brief in-
troduction to popular exotic barrier options, we introduced barrier options
with floating or time-dependent barriers and provided closed-form solutions
for them using the pricing formulas of vanilla barrier options given in Chap-
ter 10. We then introduced flexible geometric Asian barrier options and
obtained closed-form solutions using again the pricing formulas for vanilla
barrier options. Although closed-form solutions for arithmetic Asian barrier
options are difficult to find, for reasons similar to arithmetic Asian options,
we can approximate their prices using the approximation results developed
in Chapter 6 to lognormalize arithmetic averages with their corresponding
geometric averages.

We introduced and analyzed forward-start barrier options with barri-
ers to be effective some time after the initialization of the options to their
maturity. We found closed-form solutions for forward-start barrier options
in terms of the cumulative functions of bivariate normal distributions using
the pricing formulas of vanilla barrier options. Forced forward-start barrier
options are special forward-start barrier options. They can be knocked out if
the underlying asset price turns out to be on the opposite side of the barrier
to the spot price.

Early-ending barrier options are complements to forward-start barrier
options. We found a unified pricing formula for early-ending barrier options
in a Black-Scholes environment. This formula is applicable to all eight types
of early-ending barrier options. To find the value of a particular early-ending
barrier option, we need only to specify the binary operator set (w,8,() and
substitute these binary operator values into the unified formula. We have
shown that this unified formula includes all eight types of vanilla barrier
options as special cases when the early-ending time approaches the maturity
time of the option. With it, we obtained a unified formula for window bar-
rier options. We have also found closed-form solutions for the present values
of the time-dependent rebates of early-ending out-barrier options. The re-
bates of window barrier options were also obtained in closed-form in terms
of the cumulative functions of standard bivariate normal distributions. The
forward-start, early-ending, and window barrier options covered in this chat-
per are somewhat similar to the “partial barrier options” studied by Heynen
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and Kat (1994b), yet the analytical simplicity demonstrated in the unified
pricing formulas for these options in this chapter is significantly different
from their results.

An outside barrier option is a barrier option with the measurement in-
strument separated from the payment asset. Following the method to express
the prices of all eight types of early-ending barrier options in a unified for-
mula in Section 11.6, we found a unified pricing formula for all eight types
of outside barrier options. The unified pricing formula for outside barrier
options include all vanilla barrier options as special cases when the measure-
ment instrument and the payment asset are perfectly correlated. A corridor
option is also called a dual-barrier or a double-barrier option with two bar-
riers, normally one above and one below the spot price. We analyzed and
found solutions for both in- and out-corridor options and their rebates. As
these solutions are expressed in sums of an infinite number of terms, con-
vergence of these terms is important for practical use. In order to increase
the convergence speed, we analyzed corridor options using the method of
variable change which yields solutions normally faster in convergence speed.

The most important characteristic of this chapter is the two unified pric-
ing formulas for early-ending barrier options and outside barrier options.
These unified pricing formulas are very convenient not only for theoretical
understanding but also for computer implementation, risk-parameter calcu-
lation, and so on. Using the unified pricing formulas and the method to find
sensitivities involving the cumulative functions of bivariate normal distri-
butions developed in Zhang (1995d), we can obtain closed-form expressions
for the deltas, gammas, vegas, and other sensitivities of early-ending barrier
options and outside barrier options in a unified manner as the unified pricing
formulas.

We have extended vanilla barrier options to many types of exotic barrier
options in this chapter. This extension can be further developed to capture
how long the barrier is crossed, how far the barrier is crossed, and possibly
how many times the barrier is crossed within the life of the option. These
extensions are beyond the scope of this book although they can be interesting
and useful. To some degree, the feature how far the barrier is crossed is
captured by ladder options with appropriate ladders. In particular, the
number of crossings within the life of the option may be developed following
the mathematical results and the related literature in Slud (1991). Instead
of knocked-in-or-out as soon as the barrier is touched, a barrier option can be
knocked-in-or-out only when the barrier is broken for a pre-specified period
of time, say two days or a week. These kind of barrier options are called
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parisan options. No closed form solution has been found for parisan options
in a Black-Scholes world.

The underlying asset price is measured against the barrier continuously
in all barrier options covered in this chapter with the only exception of
Asian barrier options. Several institutions have traded barrier options which
knock in or out only in discrete time, such as daily, weekly, or monthly
intervals. These barrier options are combinations of barrier options and
Bermuda options, thus we may call them Bermuda barrier options. Since
standard Bermuda options cannot be priced in closed-form, Bermuda barrier
options cannot, in general, be priced in closed-form neither.

Another aspect that is worth exploring is local volatilities. We have
assumed a constant volatility to price essentially all exotic options so far in
this book. As we argued in Chapter 4, volatilities are generally rather volatile
in general. For forward-start, early-ending, and window barrier options,
barriers are generally effective in different subperiods within the lives of the
options, but the volatilities of the underlying assets are very often different
in different subperiods because these options are designed to capture some
particular events in these subperiods. Most of the analyses developed in this
chapter can somehow be extended to capture the local volatilities. This is
beyond the scope of this book and interested readers may pursue in these
directions according to the analyses in this chapter.

QUESTIONS AND EXERCISES
Questions

11.1.  What are exotic barrier options?

11.2. Why are exotic barrier options more flexible than vanilla barrier
options?

11.3. What are floating barrier options?

11.4. Why are down-in barrier options with declining (resp. increasing)
barriers cheaper (resp. more expensive) than their corresponding
vanilla barrier options?

11.5.  Is it true that the higher the growth rate of the barrier, the higher
the price of a down-in barrier option with an increasing barrier?
Why?

11.6.  Should the present value of an up-out barrier option with a decreas-
ing barrier be higher or lower than that of its corresponding vanilla
out barrier option? Why?

11.7.  What are Asian barrier options?



11.8.
11.9.

11.10.
11.11.
11.12.
11.13.
11.14.
11.15.
11.16.
11.17.
11.18.
11.19.
11.20.
11.21.
11.22.

11.23.

11.24.

11.25.

11.26.

11.27.
11.28.

11.29.
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How many types of Asian barrier options are there?

Are Asian barrier options always cheaper than their corresponding
vanilla barrier options? Why?

Are Asian barrier options with continuous averaging cheaper than
those with discrete averaging? Why?

Does a closed-form solution exist for arithmetic Asian barrier op-
tions in a Black-Scholes environment? Why?

What are forward-start barrier options?

How many types of basic forward-start barrier options are there?
What flexibility can forward-start barrier options provide?

What are forced forward-start barrier options? Why are they pop-
ular in the market?

How many types of basic forced forward-start barrier options are
there?

‘What is the most important difference between a forced forward-
start barrier option and its corresponding forward-start barrier
option?

What are early-ending barrier options?

How many types of early-ending barrier options are there?

What makes it possible to obtain the unified pricing formula for all
types of early-ending barriers?

When are vanilla barrier options special cases of early-ending barrier
options?

Why is the unified pricing formula for early-ending barrier options
attractive?

Are early-ending barrier options more expensive or cheaper with
more time left after the ending time of their barriers? Why?

What are window barrier options? Why does a window barrier
option include at least a forward-start barrier option and an early-
ending barrier option?

What are outside barrier options? Why may we call them correla-
tion barrier options?

Why do outside barrier options have the potential to be more widely
used in the future?

How many types of outside barrier options are there?

Under what conditions can outside barrier options become vanilla
barrier options?

What are Asian outside barrier options?
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11.30. Why may Asian outside barrier options be more attractive than
standard Asian barrier options?

11.31. Give one application of an Asian out-barrier option with the spot
price as the measurement price and an average as the payment asset. -

11.32. What are dual-barrier or corridor options?

11.33. Under what conditions are vanilla barrier options special cases of
corridor options?

11.34. What are barrier options with curved barriers?

11.35. 'What are the possible ways to extend existing exotic barrier options
covered in this chapter?

Exercises

11.1.  Find the down-in call and put option prices in Example 11.1 if the
barrier increases exponentially 5%.

11.2.  Find the down-in call and put option prices in Example 11.1 if the
barrier decreases exponentially 3%.

11.3.  Find the price of a down-in barrier call option to mature in one year
in Exercise 10.1.

11.4.  Find the up-in call and put option prices in Example 10.4 if the
barrier increases exponentially 5%

11.5.  Find the corresponding up-out call and put option prices in Example
10.4 if the barrier increases exponentially 5%

11.6.  Find the effective yield and volatility of a flexible geometric aver-
age with all information the same as in Example 11.3 for standard
geometric averages.

11.7.  Find the prices of up-out Asian barrier at-the-money options with
the strike $100 and the barrier $105 to expire in one year and the
effective yield and volatility are the same as in (11.6).

11.8.  Find the corresponding effective yield and volatility of the arithmetic
average in Example 11.6.

11.9.  Find the prices of down-out at-the-money arithmetic Asian barrier
options with strike $100 and the barrier $95 to expire in half a year.

11.10. Find the effective yield and volatility of a geometric average with
continuous averaging and other parameters are the same as in Ex-
ample 11.3.

11.11. Find the price of an up-out Asian barrier at-the-money option with

the strike $100 and the barrier $105 to expire in one year and the
effective yield and volatility are the same as in (11.10).



11.12.

11.13.

11.14.

11.15.

11.16.

11.17.

11.18.

11.19.

11.20.

11.21.

11.22.

11.23.

11.24.

11.25.*
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Find the price of a down-in forward-start barrier call option to start
in two months, given the spot price $100, the strike price $104,
the barrier $95, the time to maturity of the option half a year, the
interest rate 6%, the payout rate of the underlying asset 2%, and
the volatility of the underlying asset 25%.

Find the present value of a down-in forward-start barrier option
if the rebate is paid $1.5 and other information is the same as in
Exercise 11.12.

Find the present value of a down-in forward-start barrier option to

. start in four months if the rebate is paid $1.5 and other information

is the same as in Exercise 11.12.

Find the price of the down-in forward-start barrier option in Exercise
11.12 with the rebate as given in Exercise 11.13.

Find the price of the down-in forward-start barrier option in Exercise
11.12 with the rebate as given in Exercise 11.14.

Find the present value of the rebate of an out forward-start barrier
option if the rebate increases 4% from $1 and other information is
the same as in Example 11.12.

Find the prices of the corresponding forced forward-start down-in
options in Exercise 11.12.

Find the price of early-ending up-in barrier call option with the
early-ending time three months before the maturity of the option,
the strike price $103, the barrier $105, the spot price $100, and other
parameters remain the same as in Example 10.11.

Find the price of the corresponding early-ending up-out barrier call
option in Example 10.18 with the ending time one month earlier
than the option maturity, other parameters remain unchanged.
Find the price of the corresponding down-in put option in Exam-
ple 11.14.

Find the price of the corresponding down-out put option in Exer-
cise 11.15.

Find the price of the corresponding up-in barrier put option in Ex-
ercise 11.19.

Find the price of the corresponding up-out barrier put option in
Exercise 11.20.

Show that the unified pricing formula for early-ending barrier op-
tions degenerates to the pricing formula of vanilla options when the
early-ending time is zero.
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11.26.*

11.27.*

11.28.

11.29.

11.30.*

11.31.*

11.32.*

11.33.*

11.34.*

11.35.

11.36.

11.37.

11.38.

Find the present value of the rebate of a forward-start out option in
terms of cumulative functions of bivariate normal distributions using
the present-value formula for vanilla out options given in (A10.13)
and the expressions in Appendix of this chapter.

Show that the density function in (11.32) for the log-return of the
underlying asset price at maturity includes the density functions of
vanilla up-barrier options as special cases.

Find the present value of the rebate of the down-out barrier option
in Example 10.15 if the early-ending time is four months before the
maturity of the option, and other parameters remain the same as in
Example 10.15.

Find the present value of the rebate of the down-out barrier op-
tion in Examples 10.15 and 11.15 if the forward-start time is two
months, and the ending time is one month before the maturity of the
option.

Show that (11.25) degenerates to the present value of a vanilla out-
barrier option in (10.48a) when the forward-start time approaches
Zero.

Show that the unified pricing formula in (11.36) includes the pricing
formula of vanilla up-out call options as a special case.

Show that the unified pricing formula in (11.36) includes the pricing
formula of vanilla down-out put options as a special case.

Show that the unified pricing formula in (11.36) includes the pricing
formula of vanilla up-in put options as a special case.

Show that the unified pricing formula for outside barrier options de-
generates to the pricing formula of vanilla options when the volatility
of the measurement asset is zero and the yield of the measurement
is the same as the interest rate.

Find the prices of the corresponding down-in and down-out outside
barrier put options in Example 11.17.

Find the prices of the down-in and down-out outside barrier call
options with the correlation coefficient 50%, and other parameters
remain unchanged as in Example 11.17.

Find the prices of up-in and up-out outside barrier call options with
the barrier $105 and other parameters are the same as in Exam-
ple 11.17.

Find the prices of down-in Asian outside-barrier call options with
the barrier $98 and other parameters remain unchanged as in Ex-
ample 11.18.
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11.39. Find the prices of down-out Asian outside-barrier call options with
the barrier $98 and other parameters remain unchanged as in
Example 11.18.

11.40.* Show that W(a,0) = W(a,2a) = the present value of the rebate of
a vanilla up-out barrier option with the growth rate n < r + Y2/
(202).

11.41.* Derive the pricing formula of in-corridor options in (11.67) without
using the identity that the sum of the prices of an out-corridor option
and its corresponding in option equals the price of their correspond-
ing vanilla option [Hint: find the denSity function for an in-corridor
option using the density function given in (11.63) or (11.72).]

11.42.* Show that the following is always true for any real number a:
I f(w)f(a+ Pu)du = Na(-a, \/-—1‘17, —1\/_%) (Hint: use the re-
sults in All.4).

11.43.* Show the identity given in (A11.26) in Appendix of this chapter.

11.44. Show the density function given in (11.81) includes the density func-
tion given in 11.43 as a special case when §; = d; = 0.

11.45. Show that the pricing formula given in (11.82) includes the pricing
formula given 11.66 as a special case when §; = 62 = 0.

APPENDIX

Al1l1.1. DOUBLE INTEGRATION WITH BIVARIATE
NORMAL DENSITY FUNCTIONS

The cumulative function of a standard bivariate normal distribution can
be written as follows

Ns(a,b,p) = /_aoo /_boo f(u,v)dudv, (A11.1)

where a and b are the integration bounds for the two variables, f(.,.) is the
function of the standard bivariate normal distribution and is given as

1 u? — 2puv + v?
V) = . All1.2
f(u,v) 2wog0y\/1 — p? xp [ 2(1 - p?) ] ( )

In order to express the following double integration in terms of the stan-
dard cumulative function of a bivariate normal distribution given in (A11.1)

/ ; F@)N(a + fu)du,
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where a and f are real numbers, we need to find another upper bound b,
and a correlation coefficient p such that

/ f(u)N(a+ Bu) du—/ f(u)N (\/1__—> du. (A11.3)

Solving the following equation —i’\/-L—z =« and \/—l_"— = 3 for p and b,
-p

and substituting the values of p and b, into (A11.3) using the definition of
the standard bivariate normal distribution given in (A11.1) yields

a . _IB
u)N(a + fu)du = Ny | a, . All4
[ s+ pu 2( o \/1+ﬂ2> (A114)
Since the pricing formulas of all eight types of vanilla options in Chapter
10 contain the Black-Scholes formula Cs(S, K, 7), the pricing formulas of up
and in options in (11.13) and (11.14) contain

Cbs[S(Tl),K, 7‘] = Cbs[sevn-i-ua\/r-l’K,T _ Tl] .

We will show shortly how the integration of the above Black-Scholes
formula can be expressed in terms of the cumulative functions of a stan-
dard bivariate normal distribution as a simple example to illustrate how
the pricing formulas of forward-start barrier options given in (11.13) and
(11.14) can be expressed in terms of the cumulative functions of a standard
bivariate normal distribution. Substituting the Black-Scholes formula into
the integration yields the integration of the Black-Scholes formula starting
from 7

e_T”'/ Cps[Sev+uevn K 7 — 1] f (u)du
b.

—Ubs

oT—71
In(S/K) + vt + uo /11
oVt -1

The second term of (A11.5) can be expressed in terms of the cumula-

tive function of the bivariate normal distribution using the formula given in
(A11.4):

/ dos [IH(S/K;}L%W\/—]’C (u)du=N; [dbs(H,n),dbs(K,T)’\/? ]
(A11.6)

= Se™ ™7 /:o vT1+u0'\/‘r_‘r—N l:ln(S/K)+¢T+02(T 7-1)+u0'\/——:| f( )d'u,

— Ke~™niT /j e"‘(T‘TI)N[ } f(u)du. (A1L.5)
—CQbs
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where dps(X, s) is the same argument as in the Black-Scholes formula with
the strike price X and the time to maturity s, respectively.

The first term of (A11.5) can be expressed in terms of the cumula-
tive function of the bivariate normal distribution using the formula given in
(A11.4) after making the substituting v = u — o/

R VT In(S/K) + vt + 02(1 — 11) + uo/11
/-db,e \/_N[ Py ]f(u)du

- N, [dlbs(H, 1), diss (K, 7), \/§ ] , (A1LT)

where dyps (X, 5) = dps(X,s) + o+/s is the same argument as in the Black-
Scholes formula with the strike price X and the time to maturity s, respec-
tively.

Substituting (A11.6) and (A11.7) into (A11.5) yields

o0
e 17 / Cbs[Se”TH”“"‘/T_‘, K, — 7| f(uw)du
_dba
= Se—gTNZ [dlbs(H) Tl)a dlbs(Ka T)$ v '77:_'1—]
— Ke™™N, [dbs(H, 1), dbs (K, T), :_—1] . (A11.8)

Similarly, the integration of the Black-Scholes pricing formula from —o0
to —dps(S, X, s) can be obtained as follows

—dps
e_"'" / ’ Cbs[SeUT1+uaﬁ, K, T — Tl]f(u)du

—00

71

= Se_gTN2 [—dlbs(’s, H:Tl)vdlbs(s? Ka T)? _v 7]
— KC_TTNZ [—dbs(37 H,Tl)vdbs(sv KaT)a _v Z;:l'} . (Allg)

The integrations of the Black-Scholes pricing formula
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from —dy,(X, s) to oo and from —dps(X, s) can be obtained accordingly

00 211/02 2 .
e_T”/ [ H J Chs (%e‘”ﬁ_“"‘ﬁ;,K,T —7‘1> fu)du

—dbs S(Tl)
H 2v/a? H?
= (g) {?e_gTN2[_dbs(Ha 1)

2
+ 2(” :v)\/ﬁy _dlbs(K’ T)’ —V %]

— Ke_TTN2,:— dbs(S, H, Tl) + %qﬁ, —dbS(S, K, yT)’ - Y 7%:,
(All.ll)

All.2. THE DERIVATION OF THE UNIFIED DENSITY
FUNCTION FOR EARLIER-ENDING BARRIER
OPTIONS

Let g(z,y) be the joint density function of the two random variables x
and y. The two random variables z and y are independent because there is
no overlapping time for the two variables, the joint density function g9(z,y)
can be obtained as follows:

9(z,y) = [ENDN(z))f(y), (A11.12)

where ENDN (z) is the density function of the underlying asset price at the
early-ending time given in (11.27) and (11.28), and f(y) is given in (11.31).

Making the transformation z = z + yand 2’ =y, or z(z,2') = z — 2/
and y(z,2') = 2/; and since the Jacobian of the transformation is always 1,
we can find the joint density function for z and 2’

&(2,2) = gla(2,2'),y(2,2')] = [ENDN(z — 2)f(2). (A11.13)

For a down-out ending ending barrier option, 8 = £ = 1. The density
function of the underlying asset price at the option maturity z is the marginal
density function of £(z,2') for 2. The marginal density function of £(z, 2’)
for z can be obtained by integrating ¢ (2,2') for all 2. Because z > a implies
' <z—a,and z < a implies 2’ > » — a, we can find the density function of
the underlying asset price at the option maturity z by integrating

[ENDN(z ~ 2')|f(2') = [f(z = &) - 2o/ f(y — o 2a)|f(2') (All.14)
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from —oo to z — a. Carrying out the integration yields

/;z;a f(z - z’)f(z’)dz' - f(Z)N <d\/%> , (A1115a)

and

2Te — a{T — 27¢)
o)

Substituting (A11.15a) and (A11.15b) into the integration of (A11.14)
yields the density function of the underlying asset price at maturity for
6 = ¢ = 1 given in (11.33). The density function for the other three situations
can be similarly obtained using the corresponding functions given in (11.27)
and (11.28) and appropriate integration domains for 2'.

/_ ; flz =7 —2a)f(#)de = f()N { } . (AlL.15b)

A11.3. PROOF OF THE THREE IDENTITIES
A11.3.1. N3[A, B,1] = M[min(4, B)]

Using the definition of the cumulative function of the bivariate normal
distribution given in (A11.1), we can obtain

N2[Ava 1] = }71_)1’111{N2[A,B,p]}

min(A,B)
=% ) - f(s)N{[max(4, B) — ps]/y/1 - p}ds
min(A,
=/ o —oof(s) {})i_)nll[max(A,B)—ps]/\/l—pz}ds
min(A,B)
- /_ T F@N(oo)ds

min(A,B)
- /_ " f(s)ds = Nfmin(4, B))

11.3.2. N2(A,B,-1)=0,A+B <0

Similarly, we obtain the following:

Na(A, B, —1) = {/_aoo F(u)N [(B —pu)/\/1 - pZdu] du}

lim
p—1-1

= lim {/_; FWw)N [(B + eu)/\/l—-ﬁ] du} .

p—1-1
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Asu < AB+u< A+B=A+B < 0,(B+06u)/VI— = (A +
B)/V1 - 62 -5 —o0, thus, N{(B+ bu)/V1— Oz}du = 0. Therefore

Ny(A, B, ~1) = /_ F@)N [(B+6u)/v/T= 6 du = 0.

Al11.3.3. N2(A, B,—1) =N[max(A, B)| — N[-min(4, B)],forA+ B > 0

Nt 5,0 = [ s {4, 5) - 77
[ o {8 - T N
+ [ #en {Imin(a, B) - pi] /1= 2}
a1 = i, ([ HN [oin T
+ [ 1N [(min—pe)/y/1 = ] az)

= lim (/_r:n f(z)N [(min +02)/ﬂ]

61

+ [ 1) [(min +62)/VI= 62 ] )
= tim ([ 7N [(min +2)/ VI8 dz
+f "‘:; F(N [(min+2)/ VI~ @] dz)
= [ N ooz + [ N (roo)as

—0+ /_ m: f(z)dz = N(max) — N(— min),

where max = max(A, B) and min = min(4, B).
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The above results can be proven alternatively. Since p(X,Y) = -1, X =
—Y must be true. Thusif A+ B > 0,4 > —-B,

Na(A, B, ~1) =P[X < A&Y < B] = P[X < Ak — X < B]
=P[X < AXX < —B]
=P[-B < X < A] = N(A) — N(-B)
=N|max(4, B)] — N[~ min(A, B)] .

Al1.4. THE DERIVATION OF THE UNIFIED DENSITY
FUNCTION OUTSIDE BARRIER OPTIONS

Since z and y are correlated with the correlation coefficient p, we can-
not find the joint density function between z and y directly by multiply-
ing the density functions of the two parts as in early-ending barrier op-
tions in (A11.12). However, this difficulty can be overcome. Let v =
(y = va7)/(024/7) stand for the standardized variable for y. As z and y
are correlated with the correlation coefficient p, their corresponding stan-
dardized variables u and v are also correlated with the correlation coefficient
p. It can be shown that the variable z = u — pv is normally distributed and
independent of v, and its density function is given as:

(u = ””)2} . (A11.16)

(2) = ——t -
1@ = = P | "2 = )

Since we know the distribution function of z in (A11.16) and the density
function v in (11.56) and (11.57), we can find the joint density function
between z and v by multiplying (A11.16) by (11.56) or (11.57) because z
and v are independent:

J(z,v) = f(z)ENDN(y,(, 7). (A11.17)

where ENDN (y, ¢, T) is the density function of the measurement asset price
at maturity given in (11.56) if ¢ = 1, and in (11.57) if { = —1, and f(z) is
given in (A11.16).

The joint distribution between z and y, G(z,y), can be obtained imme-
diately from the joint distribution given in (A11.17):

G(z,y) = J[z(z,y),v] = fl2(z,y)]ENDN(y,(, 7). (A11.18)
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The marginal density function of z can be obtained by integrating the
joint density function G(z,y) with appropriate ranges for y. In the case of
a down-out barrier option, the integration domain for y is from a to +oo for
the marginal density function ENDN(y,(, ). Integrating G(z,y) given in
(A11.18), we can find the density function of the underlying asset price at
the option maturity z by integrating

flz(z,y) ENDN(z - 2') = flz(z,9)|f(y) — €%} fl2(z, 1) f (v — 2a),

(A11.19)
from —oo to z — a. Carrying out the integration yields
too dps(M, H,02) +

/ Fle(z, y)lf (y)dy = f(z)N{[ b 7 _:2 pu] } ,  (A11.20a)

and

| /a oof[Z(-'lc, ¥))f(y — 2a)dy

= _ 200 dys (M, H,02) + pu 20—
—f<u ”2\/;>N{ V1-=p? t oV pz},
(A11.20b)

Substituting (A11.20a) and (A11.20b) into the integration of (A11.19)
yields the density function of the underlying asset price at maturity for
6 = ¢ = 1 given in (11.59). The density functions for the other three
situations can be similarly obtained using the corresponding functions given
in (11.56) and (11.57) and the appropriate integration domains for y.

All.5. THE DERIVATION OF THE PRICING FORMULA
WITH FOURIER SERIES

Following the similar procedure in deriving (11.66), we can integrate
each component of (11.68). Integrating by part using some basic trigono-
metric function properties, we can obtain the following necessary indefinite
integration

/ ™ sin(y)dy = asm(lyl “a,_f"s(y) e (A11.21)
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where o is any given real number. Making the integration substitution
y = nun(z — b)/(a — b) and using the integration result given in (A11.21),
we can obtain the pricing formula given in (11.69) after simplifications.

A11.6. THE DERIVATION OF THE PRESENT VALUES
OF REBATES OF OUT-CORRIDOR OPTIONS

Making the same substitutions as to derive (10.48) shown in Appendix
of Chapter 10, we obtain the following integration

_ [ 11 (@ — zp)y —¥(r = n)/y)
SQ = l/ﬁm;‘;exp{ 552 } y. (Al11.22)

Making the substitution u = (a — z},)y — ¥(r — n)/y, we can solve for
y in terms of u (choose the positive root if z;, < a, and the negative root if
!
z, > a):

Y= % i o) {“ +y/u? £ 4(a — z,)p(r - n) } , (A11.23a)
therefore
I u

Substituting (A11.23) into (A11.22) yields

1 e ]

2a — ) r
u+ u+4(a—zp)Y(r —n)

5Q =

u

) [l MY 7.2 e 7 o

] Flu)du,
(A11.24)

where lowz' = [a — z!, — T¢(r — 1)]/(0+/7) and f(u) is the density function
of a standard normal distribution.

Making the substitution v = /u? + 4(a — 2}, )¥(r — 7), we can find the
lower bound for the integration given in (A11.24) lowz’ = lowvz’ = [a -
z! +7r(r —n)]/(o/7) and we can obtain the following integrations in order
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to carry out the integration in (A11.245:

/loo v f(u)dv = lowvz’ f (lowvz') + N(—lowm:') , (A11.25a)

owvzx’
0 U

lowvz’ \/u? + 4(a — z},)y(r — n)

Fuw)du = e22¥T=1/7* N(_jowua'),

(A11.25b)

/I:,W uyfu? +4(a — zp)$(r — n)f (u)du

= g20%(r—n)/o? [lowvz’ f (lowvz") + N(lowv')], (A11.25¢)

00 u3

lowvz! \/’U2 + 4(a — mn)'w(r - "7)

f(u)du

= W1/ (1ouua’ f (lowva')
+[1— 4(a — 2,)p(r = n)|N(~lowvz')} . (A11.25d)

Substituting (A11.25b), (A11.25¢), and (A11.25d) into (A11.24) completes
the integration given in (A11.24). Using the results given in (A11.24) and
the procedures to obtain (10.48) in Chapter 10, we can obtain (11.72) after
simplifications.

A11.7. APPROXIMATING THE BIVARIATE NORMAL
CUMULATIVE FUNCTION VALUES

In expressing prices of one-clique options in Chapter 9, forward-start
barrier options, early-ending barrier options, outside barrier options in Chap-
ter 11, and most correlation options in Part IV, we need to use the cum-
mulative function of the standard bivariate normal distribution N3(a, b, p).
Although these cumulative function values can be calculated using numerical
double integration, the double integration is not very convenient to carry out.
Following the idea to approximate the integration in the cumulative function
of a standard univariate normal distribution in Appendix of Chapter 2, we
try to introduce some ways to approximate the cuammulative function of the
standard bivariate normal distribution.
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'A11.7.1. To Express the Bivariate Function in Terms
of Univariate Functions

Using the bivariate density function given in (A1l1.2), we can readily
find the bivariate cumulative function (we leave this as an exercise):

Na(a,b,p) = /_ ‘; F@N{(® - pu)/ /1 p?}du, (A11.26)

where f(.) and N(.) stand for the density and accumulative functions of the
standard univariate normal distribution, respectively.

As N(.) can be approximated readily using the method described in
Appendix of Chapter 2, the expression given in (A11.26) can be obtained
easily using univariate numerical integration.

A11.7.2. Drezner’s Approximations

Hull (1993) corrected a typo in Drezner (1978) approximation. The
approximation can be expressed in our algebra if a < 0, b < 0, and -1 <
p<0:

4 4
N2(av b, p) = 2(1 - P2) Z Z AiA]'f(a" b)epBiBj-'—a(Bi —pB;)+b(B; —pB) ’
i=1j=1
(A11.27)
where
—(a®—2pab+b?)/[2(1-p?)]

1
f(a)-_—w—ﬁe

is the density function of a standard bivariate normal distribution,

Ay = 0.3253030, Ap = 0.4211071, Az = 0.1334425, A4 = 0.006374323,
B; = 0.1337764, B; = 0.6243247, Bs = 1.3425378, B4 = 2.2626645.

If the product of a,b, and p is negative or zero, one of the following
identities can be used (see Appendix of Chapter 21 for the proofs):

Na(a,b, p) = N(a) — Nz(a,—b,—p), (A11.28a)

Na(a,b, p) = N(b) — Na(—a,b,—p), (A11.28b)

and
Ny(a,b,p) = N(a) + N(b) — 1+ Na(—a,—b,p). (A11.28b)
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If the product of a,b, and p is pc;sitive, the following identity can be
used:

1— b
Ny(a, b, p) = Na(a,0,—p1) + Na(0,b, —p1) — Sgn(:)sg“( ) (A11.20)
where

_ _(pa-bsg(@) _ (pb—a)sga(h)

V@ a0 T —2pabr 2

and sgn(z) =1ifz>0and —1ifz < 0.

51




Chapter 12
LOOKBACK OPTIONS

12.1. INTRODUCTION

A lookback option is an option with payoff determined not only by the
settlement price but also by the maximum or minimum price of the under-
lying asset within the life of the option. Since a lookback option can yield
the best possible payoff of the underlying asset can be achieved with a look-
back option, it somehow minimizes the regret of investors. Lookback options
have become attractive because they keep track of past events and allow their
holders to take advantage of anticipated market movements without know-
ing the exact dates of their occurences. These options may also provide
psychological comforts to holders by minimizing regrets.

There are several kinds of lookback options — floating strike lookback
options, fixed strike lookback options, partial lookback options, American
lookback options, and so on. The payoff of a floating strike lookback call
option is the difference between the settlement price and the minimum price
of the underlying asset within the option lifetime, and the payoff of a floating
strike lookback put option is the difference between the maximum price of
the underlying asset within the option lifetime and the settlement price of
the underlying asset. Floating strike lookback options are true “no regret”
options because they provide the largest possible payoffs for each type of
options. Lookback options can somehow capture investors’ fantasy of buying
low, selling high, and minimize regrets, as Goldman, Sosin, and Gatto (1979)
argued. However, the “no-free-lunch” principle guarantees that these options
are expensive to buy. The high premiums of lookback options prevent them
from being widely used.

A fixed strike lookback option is similar to a vanilla option in which the
underlying price at maturity is replaced with the maximum or the minimum
of the underlying asset price within the life of the option. The payoff of
a fixed strike lookback call (resp. put) option is the difference between the

341



342 E=zotic Options

-

maximum price of the underlying asset within the life of the option and
the fixed strike price (resp. the difference between the fixed strike and the
minimum price). ‘

To overcome the limitation of high premiums of standard lookback op-
tions, partial lookback options came into existence. Partial lookback options
or fractional lookback options are similar to standard lookback options but
only a percentage of the extreme values are in effect, or the extremal values
are monitored during a subset of the lives of the options, thus keeping the
memory of the extreme values in standard lookback options whereas making
them less expansive. All the lookback options discussed above are European-
style, and most often lookback options are of the above two kinds. However,
these lookback options can also be American, or they can be exercised before
maturity.

Following the seminal work of Goldman, Sosin, and Gatto (1979) who
first studied European-style lookback options, there have been several studies
on lookback options. Garman (1989) extended lookback options to currency
options and discussed possible applications of currency lookback options.
Conze and Viswanathan (1991) analyzed European-style, American-style,
and both European and American partial lookback options. They also con-
nected their approach with Merton’s (1973) study of “down-and-out” op-
tions. More recently, Heynen and Kat (1994) discussed a new type of partial
lookback options in which the monitored period is only a subset of the lives
of the options. In this chapter, we will provide pricing formulas for float-
ing strike, fixed strike, and partial lookback options within a Black-Scholes
environment.

12.2. DISTRIBUTIONS OF EXTREME VALUES

Since all kinds of lookback options depend on the maximum or the min-
imum values of the underlying asset prices, we need to use the two variables
defined in (10.11) and (10.12). They are actually the maximum and mini-
mum of all underlying asset prices within the life of an option. Figures 12.1
and 12.2 depict how the maximum and minimum values change with time.
The maximum (resp. minimum) value is somewhat similar to the cumula-
tive function of a standard normal distribution because the maximum value
is also somewhat “cumulative” in the sense that the maximum (resp. mini-
mum) value remains unchanged even if the new observation of the underlying
asset price is smaller (resp. larger).

To price lookback options, we need the distributions of the maximum
and the minimum values. The density functions of these extreme values can
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be derived from the joint cumulative functions given in (10.17) and (10.23).
For y > 0, the cumulative function of the log-return of the maximum value
Y. can be obtained by sustituting x = y into the joint cumulative function
between the maximum value and the log-return of the underlying asset given
in (10.17)
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y—uT apvjo? n =Y VT
PY,<y)=N{—— ) — eV N| ———). 12.1
(¥r<v) (aﬁ) ° (aﬁ) (121
Similarly, the cumulative function of the log—i‘eturn of the minimum
value y, can be obtained by sustituting z = y into the joint cumulative
function between the minimum value and the log-return of the underlying

asset given in (10.23) for y <0,

Ply, >y) = N(:z—j;l> _ qw/a? N(f:/?) . (12.2)

The density functions of the maximum and the minimum can thus be ob-
tained by taking the first-order derivative to (12.1) and (12.2) with respect
to y, respectively:

gmax(y) = ;\%f(y = ”T> - Zzezw/azN( _ y+v7)

a\/T o? oT
1w (M)
+aﬁe f o7 )’ (12.3)
for y > 0 and
n(0) = = (L) + ey (L)
GminlY) = 0_\/; U\/F 0_2 0_\/—1—_
1 oo (y+v‘r) '
- LA 124
t o o) (12.4)
fory <0.

With these density functions, we can price lookback options in the fol-
lowing sections.

12.3. FLOATING STRIKE LOOKBACK OPTIONS

In their seminal work, Goldman, Sosin, and Gatto (1979) studied the
hedging and valuation of lookback options with floating strike prices prespec-
ified as either the maximum or the minimum of the underlying asset prices
depending on whether the options are calls or puts. They illustrated that a
put option on the maximum (Prayx) and a call option on the minimum (Crin)
can be perfectly hedged, and provided closed-form valuation expressions for
these options without considering the payout of the underlying asset. Conze
and Viswanathan (1991) did not consider the payout of the underlying asset
either. We will generalize the floating strike European lookback options in
this section.
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Assume that the underlying asset price is distributed as in the extended
Black-Scholes model with the payout rate of the underlying asset g given in
(3.1). The solution of the underlying asset price using the initial condition
S(t) = S is given in (5.3). As their name implies, floating strike lookback
options are options with floating strike prices. The payoff of a European call
option on the minimum (PCpn) of the underlying asset price within the life
of the option can be formally expressed as

PCrin = max[S(t") - m{’, 0] = S(t*) - m{", (12.5)

where t and t* are the current and maturity time of the option, respectively,
and m!" stands for the minimum value of the underlying asset price from ¢
to t* (both ¢ and t* are included) given in (10.12).

Similarly, the payoff of a European put option on the maximum (P Ppay)
of the underlying asset price within the life of the option can be formally

expressed as
PPray = max[M}" — §(t*), 0] = S(¢*) — M}, (12.6)

where Mt" stands for the maximum value of the underlying asset price from
t to t* (both t and t* are included) given in (10.11) and others are the same
as in (12.5).

In the payout expressions in (12.5) and (12.6), the minimum value m}"
and the maximum value Mtt' are in the same positions as the strike prices in
the payout of a standard European call option given in (2.1) and that of a
standard European put option given in (2.2), respectively. That is why the
European-style lookback options described in (12.5) and (12.6) are called
floating strike lookback options because these extreme values m¢ and M}’
are not fixed as the strike prices in (2.1) and (2.2). The payoffs of floating
strike lookback options given in (12.5) and (12.6) are the greatest possible
payoffs of a call option and a put option based on historical events within
the lives of the options. Thus, floating lookback options are true “no regret”
options.

Using the density function for the minimum value of the underlying asset
price within the life of the option given in (12.4), we can obtain the price of
a European floating strike lookback call option {Cpin) for r # g:!

!There are two terms in the expectation of the minimum of the underlying asset price because
E(m}!") = E[min(m2, mJ)] = mProb(m{” > m?2) + E(m! |m¢" < m9).
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Crmin = € " E[S(t") —m{’] = eT{E[S(")] — E(m{")}

S 2
=Cbs(S7m21)+2 7

W{ - e‘ng[ — dps1 (S, My )]

2(r—

+e7 "7 (m‘sof’l ) _J;’QN[dbs(mgl, S)] } , (12.7)

where Cjs(S,m?,) is the extended Black-Scholes pricing formula for a call
option (w = 1) in (10.31) with strike price K = m?;, and m?, is the current
minimum value of the underlying asset price or the minimum price of the
underlying asset from the initiation time of the option 71 to the present.

Formula (12.7) involves one factor that has not appeared earlier in this
book: the current minimum price of the underlying asset or the minimum
price of the underlying asset from time 71 to the present. The current
minimum price depends on how far back in the past or how long the option
has been valid. If 71 = 0, the current minimum price is the same as the
current spot price S. The further back in the past, the smaller the value
of the current minimum price. The pricing formula in (12.7) indicates that
the price of a European floating strike lookback call option Cpin is always
greater than the corresponding vanilla call option price.

Example 12.1. Find the price of a floating lookback call option to expire
in one year, given the spot price $100, volatility of the underlying stock 12%,
yield on the underlying stock 2%, interest rate 8%, and the minimum value
of the underlying asset $95.

Substituting § = $100, r = 1, 0 = 0.12, g = 0.02, r = 0.08, md; = $95
into (12.7) yields

In(S/m2y) + (r — g~ 0?/2)7

dbS(S7 mgl) =

oVT
_ _ 2
_ In(100/95) + (0.08 — 0.02 — 0.12%/2)1 _ 0.8674,
0.12v1

dps1(S, m%,) = dys(S,mYy) + o/7 = 0.8674 + 0.12 x 1 = 0.9874,
In(m?,/S) + (r — g — 0%/2)7

oVt
_ In(95/100) + (0.08 — 0.02 — 0.12%/2)1
- 0.12v1

dhar (2, 8) = dye (1, S) + o7 = 0.0126 4+ 0.12 x 1 = 0.1326,

dbS(mgh S) =

= 0.0126,
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Cmin = Se™ 9N [dbsl (Sa mgl)] - mgle“TTN [dbs (S’ mgl)]

Sg? { _TT( S )_gﬁﬂN[dbs(mgl’S)]

-9 l® \m
- e_gTN[ — dps1 (S’, m?.l)] }

Tl
= 100e~%92%! N[dy, (100, 95)] — 95¢~%%8%1 N[}, (100, 95)]

100 x 0.122 [ _.08x1 (100 -
* 2(0.08 - 0.02 [e ( % ) N(0.0126)

- e"°'°2"1N(—0.9874)]

= 100e~%92%1 N'(0.9874) — 95¢ =981 N'(0.8674)

0.12 19
= $13.120.

0.12
. 20\ " o137
+ 1—‘—15[e-°-°8><1<—0) %" N(0.0126) — e 92X1 N (—0.9874)

The pricing formula given in (12.7) is for r # g. When r = g, it can not
be used. For most applications in fixed-income derivatives, both r and g are
set to be zero. Fortunately, we can find the corresponding formula for r = g
using (12.7) (see Exercise 12.17):

Cmin(r = g) = Cbs(S,m%;) + —% Se™" Fldps1 (S, m2)], (12.8)

where f(.) is the density function for the standard normal distribution, and
all parameters are the same as in (12.7).

Similarly, we can obtain the price of a European floating strike lookback
put option Ppax using the density function for the maximum given in (12.3):

Prax = "E[M] - (") = e E(M]") - BIS(t")]

So? {e_yTN[dbsl (S, Mgl)]

2(r—g)

= Py (S, M‘r(')l) +

—e"T (_Af_ol)_i_aﬂ N [—d,,s (M, )]} , (12.9)

where Py,(S, M%) is the extended Black-Scholes pricing formula for a put
option (w = —1) in (10.31) with strike price K = MY, and MY, is the
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current maximum value of the underlying asset price or the maximum price
of the underlying asset from 71 to the present.

Example 12.2. Find the price of the corresponding floating lookback put
option with the maximum value of the underlying asset $110 and other
parameters the same as in Example 10.1.
Substituting § = $100, 7 = 1, ¢ = 0.12, g = 0.02, r = 0.08, MY, = $110
into (12.9) yields
_ In(100/110) + (0.08 — 0.02 — 0.12%/2)1

dps (S, MY = = 0.3543,
"s( “) 0.12v/1

S, MP1) = dys (S, M%) +0+/7 = —0.3543 + 012 x 1 = —0.2343,
MO

dbsl

S) __In(110/100) + (0.08 — 0.02 — 0.122/2)1
e 0.12v/1

MY, s) = dj, (Mfl, S) + 07 =0.2343 + 0.12 x 1 = 1.3543,

= 1.2343,

(
ds (
(

dbsl
Prnax = =S¢ N [~dper (8, M2)] = ME1e™ N [—dss (S, MD)]

L 59
2(r —9)
2(r—
(S )—47:12 . }
- = N |—dps (MY, S
(3 [=doe (M. 5)]
= —100e~%92%! N'[—dps; (100, 110)] + 1102983} N'[—d}, (100, 110)]

L 100 x 0122
2(0.08 — 0.02)

{7 N [dssr (5, M2)]

{7971 N [dys1 (100, 110)]

2(0.06
_ ¢—008x1 (E) i

i N [~dps (110, 100)] }

= $10.748.

The pricing formula floating strike lookback put options given in (12.9) is
valid for r #£ g. When r = g, we cannot use it directly. However, we can find
the corresponding pricing formula for 7 = g using (12.9) (see Exercise 12.9):

g _
Prax(r = g) = P(S,m%) + —= 577" fldpsr (S, m2)], (12.10)

7

where f(.) is the density function of the standard normal distribution and
other parameters are the same as in (12.9).
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12.4. FIXED STRIKE LOOKBACK OPTIONS

We studied floating strike lookback options in the previous section. Un-
like floating strike lookback options with strike prices specified as the extreme
values of the underlying asset prices within the lives of options, fixed strike
lookback options are options with fixed strike prices and the underlying as-
set prices at maturity are substituted with the maximum or minimum of the
underlying asset prices. More specifically, the payoff of a European lookback
call option with a fixed strike K (PLCK) is given as:

PLCK = max (M{ - K, 0), (12.11)

where Mf' is the maximum value of the underlying asset price from ¢ to t*
given in (10.11).

Similarly, the payoff of a European lookback put option with a fixed
strike K (PLPK) is given as

PLPK = max (K —m{, 0), (12.12)

where m{~ stands for the minimum value of the underlying asset price from
t to t* given in (10.12).

Using the density function for the maximum value of the underlying
asset price within the life of the option given in (12.3), we can obtain the

price of a European fixed strike lookback call option (LCK) for r # g:

LCK = e " E[max(M}{ - K, 0))

= (8, K) + oL N o (5,
- e‘"(%) N=dys (K, S)]} (12.13)

in the case of K > MY, where Cjs(S, K) is the extended Black-Scholes
pricing formula for a call option (w = 1) given in (10.31) with spot price S
and strike price K, and

LCK = e " Ejmax(M}" — K, 0)]

=e (MY — K) + Cus(S, M7y) + ( { e N [db‘ﬂ (S’ M‘?l)]

9)

s -4

—e-"(—o) Nl=dso (M, 5 } (12.14)
M‘rl
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when K < MY, where Cpy(S, M) is s the extended Black-Scholes pricing

formula for a call option (w = 1) given in (10. 31) with spot price S and
strike price K = M?,.

Example 12.3. Find the prices of the fixed strike call options to expire in
one year with strike prices $100 and $110, given the spot price $100, volatility
of the underlying stock 12%, yield on the underlying stock 2%, interest rate
8%, and the maximum of the underlying asset price $105.

Substituting S = K = $100, 7 = 1, 0—012 g = 0.02, » = 0.08, and

the maximum of the underlying asset M;; = $105 into (12.14) yields
i, ( s, M,‘?l) —d, ( K, Mi’l) _ In(100/105) + ((;.'(;z; \—/Io.oz —0.12%2/2)1
=0.0334,
dys1 (S, M2, ) = dyan (s, M?,) = dus (S, M) + 0T =0.0334+0.12 x 1
=0.1534,
In(105/100) + (0.08 — 0.02 — 0.122/2)1

dys (MP}, 5) = = 0.8466,

0.12v1
LCK(K < M%)
=e (M) — K) + Se”97 N dps:1 (S, M,)] — M21e77" Nldps (S, M)
So? s\
—gT 0 _ a—TT —
+——2(T _g) {e N[dbsl (Sa M‘rl):' € <M$1> N[ dbs( 7'175)]}
= e~ %%1(105 — 100) + 100e~*2*1 N'(0.1534) — 105e~*%8*1 N'(0.0334)

_ 2(0.06

100 x 0.12% [ _o.025 0.08x1 [ 100 N
2Tl 1 —0.02x1 0. 0. xl( ) o4 ]
200,08 = 0.02) [e (0.1534) e o N(~0.8466)
= 19.668 .

Substituting S = $100, K = $110, 7 = 1 o =0.12, g = 0.02, r = 0.08,
and the maximum of the underlying asset M2 = $105 into (12.14) yields

LCK(K > M%)
= Se 9" N{dys (S, K)] — Ke™ " Nldys(S, K))

s [t 0] e (2) T Mk, )

2(r—
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= 100e~%02*1 N(-0.3543) — 110e~%08*1 N (—0.2343)

+ 100 x 0.12 [e—o.oleN(_O 3543) — —0.08x1(@)_%%?]v(_1 2343)]
2(0.08 — 0.02) ‘ € 110 '

= $1.624.

The pricing formulas given in (12.13) and (12.14) are for r # g. We can
find the corresponding formulas for r = g as follows [see Exercise 12.7]:

LCK(r = g) = Cy(S, K) + % Se™"" fldys1(S, K)], (12.15)

in the case K > m?,, and

LCK(r = g) = ¢™""(m%,, —K) + Cys(S,m%) + % Se™™ fldpsa (S, m%y)],
(12.16)

when K < m?;, and all parameters are the same as in (12.13) and (12.14).
Similarly, we can obtain the price of a European fixed strike lookback
put option (LPK):

LPK = e " E[max(K —m} , 0)]

= (S, K) + ﬂ_fg%{ — 9" N[=dpe1 (S, K]
+eT (%) Nldss (K, S)]} , (12.17)

for K < m?;, where P,;(K) is the extended Black-Scholes pricing formula
for a put option (w = —1) given in (10.31) with strike price K, and

LPK = e ""E[max(K —m!, 0)]

So? —gr
=e (K —md;) + Pps(S,my) + —U—{ ~ e " N{~dye1 (S, m71)]
2(r —9)
—rf S -*3 0
+e ( ) > N[dbs(mrli S)]} ) (12'18)
mrl

for K > m{,, where all parameters are the same as in (12.17).

Example 12.4. Find the prices of the fixed strike put options to expire in
one year with strike prices $90 and $110, given the spot price $100, volatility
of the underlying stock 12%, yield on the underlying stock 2%, interest rate
8%, and the minimum of the underlying asset price $95.
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Substituting S = $100, K = $90, 7 = 1, ¢ = 0.12, g = 0.02, r = 0.08,
and the minimum of the underlying asset m%; = $95 into (10.17) yields

LPK(K <m?))
= —Se™ 9" N{[—dps1(S, K)] + Ke™ ™" N[—dps (S, K))]

+2(S—‘f"g){ — ¢ N[=dy1 (8, K)] + & (%) T Mk, S)J}

= —100e~%92X1 N(—1.438) + 90e~*-8*1 N (-1.318)
0.06

2
100 x 0.122 s
a [—e-°-°2><1N(—1.438)+e-°'°8><1(@) o N(—0.438)J

2(0.08 — 0.02)
= $16.093,

90

and substituting S = $100, K = $110, r = 1, ¢ = 0.12, g = 0.02, r = 0.08,
and the minimum of the underlying asset m?, = $95 into (12.18) yields

LPK(K >m?,
=e (K —m2,) — Se™I" N[—dps1(S,m2;)] + m21e™"" N[ ~dps (S, m?,)]

2(r—g)

{—e~gTN[—dbsl(5,m?—1)]+e-”(m6; )_ ’ N[d’”(mgl’s)]}

71

N So?
2(r-g)
=e7008x1(110 — 95) — 100e %021 N (—0.9874) + 95¢~* %1 N'(—0.8674)

100 x 0.12? 100\~ 2552
_.__x___'_ _ A—0.02x1 _ -0.08x1{ YV 0.12 3
+2(0.08_0.02)[ e N(-0.9874) +e (95) N( 0.0126)]

= $26.906 .

The pricing formulas given in (12.17) and (12.18) are for r # g (Readers

~may find the corresponding pricing formulas for r = g by comparing (12.8),

(12.10), (12.15), and (12.16) with their corresponding formulas (12.7), (12.9),
(12.13), and (12.14), respectively. We will leave this as an Exercise.

12.5. “PARTIAL LOOKBACK” OPTIONS

“Partial lookback” or “fractional lookback” options are designed to re-
duce the high premiums of standard lookback options. They are similar to
standard lookback options and yet remain cheaper than them. In this sec-
tion, we will explain how “partial lookback” options are possibly designed
and how they are priced in a Black-Scholes environment. We will first con-
sider partial floating strike lookback options and then discuss partial fixed
strike lookback options.
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Similar to the payoff of a European floating strike lookback call option
in (12.5), the payoff of a European partial floating strike lookback call option
(PPCrjin) can be expressed as

PPCrin = max[S(t*) — Amt , 0], (12.19)

where A > 1 is a constant representing the degree of partiality.

Similar to the payoff of a European floating strike lookback put option
in (12.6), the payoff of a European partial floating strike lookback put option
(PPPpax) can be expressed as

PPPpay = max[AM!™ — S(t*), 0], (12.20)

where 0 < A <1 is a constant representing the degree of partiality.

It is obvious that if the constant partiality parameter A = 1, the payoffs
in (12.19) and (12.20) become exactly the same as the payoffs of standard
floating strike lookback options given in (12.5) and (12.6), respectively. The
greater (resp. smaller) the value of the partiality parameter A in (12.19)
[resp. (12.20)], the smaller the payoffs of the partial lookback call (resp.
put) options in (12.19) [resp. (12.20)], and in turn the lower their expected
payoffs. Therefore, the smaller (greater) a partiality parameter A implies a
higher (lower) price of the partial lookback options.

Using the density function for the minimum value of the underlying
asset price within the life of the option given in (10.10), we can obtain the
price of a partial floating strike lookback call option PCrin (the derivation
israther long because many steps are involved in the integration process, so
we simply provide the results here. Interested readers may check the proof
in Appendix of this chapter) for r # g:

PCuin = ¢ ""E[S(t*) — Am}’]

= Gt ) + 5 T O N o 05,
-z
+ (msol) Nldas(, AS)1} (12.21)

where all other parameters are the same as in (10.14).

Substituting A = 1 into (12.21), we can readily find that the partial
lookback call option pricing formula becomes exactly the same as the pricing
formula for a standard floating lookback call option given in (12.7). Thus,
the pricing formula in (12.21) indicates that standard floating lookback call
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options are special cases of partial lookback options when the partiality
parameter A = 1.

Example 12.5. Find the price of the partial floating lookback call option
to expire in one year with the partial parameter A = 1.1, given the spot price
$100, volatility of the underlying stock 12%, yield on the underlying stock
2%, interest rate 8%, and the minimum of the underlying asset price $95.

Substituting § = §100, A =1.1, r =1, ¢ = 0.12, g = 0.02, r = 0.08,
and the minimum of the underlying asset m%; = $95 into (12.21) yields
PCrin = e ""E[S(t*) — Am}"]
= Se79" Ndps1 (S, Am?2,)] — Am2,e™™" N{dps (S, Am?, )]

2 2(r—
2(/:"Sj 9) { — () Nl door (A8, my)
tet (m—s'gl) Nldps(m;, ,\S)]}

= 100e~%92%1 N'(0.1932) — 1.10 x 95¢~%98*1 N (0.0732)
1.1 x 100 x 0.122

[ _ e_o.ole(l.l)%%?N(—IJBU)

2(0.08 — 0.02)
_2(0.08)
4 ¢-0.08x1 (@) N (0.7817)]
95
= $10.621,

which is obviously lower than the standard floating strike call option price
$13.120 in Example 12.1.

Similarly, we can obtaine the price of a partial floating strike lookback
put option PPy ax:

PPpax = e TTEAM! — S(t*))

= Po(S,AMY) + 2351’29) (e ) F Nidua (35, M)
—e" ( A’Z’l) N{—dps(MY, AS)]} , (12.22)

where all parameters are the same as in (12.8).
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Example 12.6. Find the price of the partial floating lookback put option
to expire in one year with the partial parameter A = 0.9, given the spot price
$100, volatility of the underlying stock 12%, yield on the underlying stock
2%, interest rate 8%, and the maximum of the underlying asset price $110.
Substituting § = $100, A = 0.9, 7 = 1, 0 = 0.12, g = 0.02, r = 0.08,
and the minimum of the underlying asset M2, = $110 into (12.22) yields

PPaax(A = 0.9) = —Se™9" N[dps1 (S, AMY)] — AM2, ™" Ndps (S, AMY,)]

ASo?
2(r —g)

+ {e—wu)i‘%ﬂzv[dbsl(xs, M%)

2(r—g

_(M%) 7 Nl-de(M%, 35}

= —100e~%92*1 N'(0.6438) — 0.9 x 110e~%-98%! N'(0.5238)

0.9 x 100 x 0.122

2(0.
[e—o.o2x1 (0'9)40%9 N(-1.1123)

2(0.08 — 0.02)
7100\ ~ a5
__—o0.08x1{ 100 _
e (110) N( 2.1123)]
—$8.886,

which is obviously lower than the standard floating strike call option price
$10.748 in Example 12.2.

The pricing formulas in (12.21) and (12.22) are for “partial lookback”
floating strike options. The corresponding results for “partial lookback”
fixed strike options are easier to obtain. For example, the payoff of a partial
fixed strike lookback call option can be given as

PLCK = max(A\M} — K, 0), (12.23)

where 0 < A < 1 is the same partiality parameter as in partial floating strike
lookback options studied above and other parameters are the same as in
(12.9).

Using the density function for the maximum value of the underlying
asset price within the life of the option given in (12.3), we can obtaine the
price of a European “partial lookback” fixed strike call option (PLCK) for



356 Exotic Options

r# g
' PLCK = e ""E[max(A\M}" - K, 0)]
= Ae " E[max(M}" — K/, 0)]

ASo?

= ACus (5, K/ + 37—

{e-ng[dbsl(S, K/))]

_2(r—

—rr [ AS o2
—e 7d N[—dps(K/A, S)] (12.24)
in the case of K > AMY,, where Cj,(S, K/)) is the extended Black-Scholes
pricing formula for a call option (w = 1) given in (10.31) with spot price S
and strike price K/, and

PLCK = e ""E[max(A\M}" — K, 0)]
=e " (AMY, — K) + AChs(S/A, MY))

ASo? S
—gr & 0
2(7__g) {e NI:dbSI<A7 M-rl)]

_2(.:_22
~e-"(,\J\S/I°1> N[—dbs<Mfl, %)]} (12.25)
for K < AMY,.

It is easy to check that the pricing formula of a fixed strike lookback
option is a special case of (12.25) when A = 1. The corresponding formula
for a partial lookback fixed strike put option is given as an exercise of this
chapter.

We can have only provided pricing formulas for partial lookback options
for r # g in this section. Their corresponding expression with r = g can be
obtained by taking limit as we did in previous sections of this chapter. We
will leave this as an exercise.

12.6. “PARTIAL” VS “FULL” LOOKBACK OPTIONS

The partial lookback options discussed in the previous section can also
be called “fractional” lookback options beause only part of the extreme val-
ues are in effect in the payoff functions of the options. Heynen and Kat
(1994b) discussed and analyzed partial lookback options which are “partial”
because the extreme values of the underlying asset prices are within a subset
of the lives of the options. More specifically, the partial lookback options
studied by Heynen and Kat are lookback options with payoffs determined
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by the extreme values of the underlying asset prices with the observation
period specified during the early part of the lives of the options. When
the observation period is the same as the time to maturity of the options,
these partial lookback options become the standard lookback options or full
lookback options. It is not difficult to price such partial lookback options
because we can use the correlation coefficients between the underlying asset
prices and the extreme values of the underlying asset within the observation
period, as given in Proposition 5.1. Although the idea is straightforward, it
takes a lot of space to cover such pricing formulas. We choose not to list
these results and interested readers may go to Heynen and Kat (1994b). We
will leave this issue to price partial lookback options as an Exercise by the
end of this chapter.

The partial lookback options studied by Heynen and Kat are similar to
early-ending barrier options because the extreme values are monitored from
the current time to some time before maturity. These partial lookback op-
tions can be extended to those with monitoring periods to start some time
in the future within the lives of the options as in forward-start barrier op-
tions. In the general case, we may borrow the idea of windows from window
barrier options to structure partial lookback options with monitoring peri-
ods as subperiods within the lives of the options. We may call these partial
lookback options window lookback options. Window lookback options can
be similarly priced with the techniques developed in Chapters 10 and 11 for
barrier options and in the previous sections in this chapter.

12.7. AMERICAN LOOKBACK OPTIONS

Holders of American options have the right to exercise their options
prior to their maturity. The American character can be implemented to
all European lookback options so far covered in this chapter. There are
floating strike American lookback options, fixed strike American lookback
options, and partial lookback American options. Holders of American look-
back options have the right to exercise their options prior to their maturity as
standard American options. They would exercise their floating lookback put
(resp. call) options earlier if they believe the recent high (resp. low) price of
the underlying asset is not to repeat, since there will be no incentive to wait
longer if the extrema value is believed not to repeat until the maturity of the
options. Therefore, American lookback options can better capture what in-
vestors desire to achieve, since they have the flexibility of being exercised at
the optimal time. American lookback options are more expensive than their
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corresponding European lookback options, just as vanilla American options
are more expensive than the corresponding European options.

As we discussed in Chapter 4, there is no closed-form solution for stan-
dard American options. It is thus generally impossible to obtain closed-form
solutions for American lookback options. The binomial tree method can be
used to price American lookback options. However, if we can find reason-
ably tight bounds for American options, it would be very useful.? Conze and
Viswanathan (1991) provided bounds for American-style standard lookback,
fixed strike lookback, and partial lookback options. We will not go too far
in this direction.

12.8. SUMMARY AND CONCLUSIONS

We have studied floating strike lookback options, fixed strike lookback
options, partial floating strike lookback options, and partial fixed strike look-
back options in this chapter. Floating strike lookback options are true “no
regret” options because they can provide the largest payoffs with either call
or put options. Yet, their obvious shortcoming is that they are generally
rather expensive. To reduce the high premiums of floating strike lookback
options, partial lookback options are designed to cut the payoffs of either
floating strike or fixed strike lookback options. Partial lookback options
remain attractive in the sense that their payoffs are still connected to the
extreme values of the underlying asset prices, yet their premiums can be
significantly lower than their corresponding standard lookback options with
approperiate partial parameters.

To some extent, lookback options are true path-dependent options be-
cause their values depend on the maximum or the minimum values of the
underlying assets within the lives of the options which in turn depend on
the whole paths of the underlying asset prices.

QUESTIONS AND EXERCISES
Questions

12.1. What are lookback options?
12.2.  How many types of popular lookback options are there?

2Zhang (1993) studied bounds for vanilla option prices. Zhang (1994b) provided bounds for vanilla
option prices by elminating some assumptions of the Black-Scholes model listed in Chapter 2.
Broadie and Detemple (1995) provided bounds for American options. Interested readers may find
useful literature in this area.
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12.3. What are the important differences between a floating lookback and
a fixed lookback options?

12.4. What are partial lookback options?

12.5. Why are lookback options generally expensive?

12.6. Why are floating strike lookback options “no regret” options?

12.7. What are “fractional” lookback options? Why are they popular in
the market?

12.8. What are window lookback options? Why are they atractive to
many buyers?

12.9.  In order to price lookback options in the case of r = g, can we simply
use the results of the corresponding formulas of r # ¢g? Why?

12.10. Is it possible to combine “fractional” lookback options and window
lookback options? How?

Exercises

12.1.  Find the floating strike lookback call option price if the minimum
value is changed to $90 and other parameters remain unchanged as
in Example 12.1.

12.2. Find the floating strike lookback call option price if the time to
maturity is changed to 9 months and other parameters remain un-
changed as in Example 10.1.

12.3. Find the floating strike lookback call option price if the time to
maturity is changed to 9 months and the minimum value is changed
to $90 and other parameters remain unchanged as in Example 12.1.

12.4.  Find the floating strike lookback put option price if the maximum
value is changed to $105 and other parameters remain unchanged
as in Example 12.2.

12.5.  Find the floating strike lookback put option price if the maximum
value is changed to $115 and other parameters remain unchanged
as in Example 12.2.

12.6.  Find the price of the fixed strike lookback call option on the S&P-
500 Index to expire in half a year with strike price $540, given the
volatility of the Index 15%, interest rate 8.5%, yield on the Index is
3%, the spot Index is $535, and the current minimum level of the
Index is $510.

12.7.  Find the price of the fixed strike lookback call option if the minimum

level of the S&P Index is changed to $500 and other parameters
remain unchanged as in Exercise 12.6.
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12.8.

12.9.

12.10.

12.11.

12.12.

12.13.

12.14.

12.15.

12.16.

12.17.*

Find the price of the fixed strike lookback put option on the S&P
500 Index to expire in half a year with strike price $540, given the
volatility of the Index 15%, interest rate 8.5%, yield on the Index is
3%, the spot Index is $535, and the current maximum level of the
index is $542.

Find the price of the fixed strike lookback put option if the maximum
level of the Index is changed to $545 and other parameters remain
unchanged as in Exercise 12.8.

Find the price of the partial floating lookback call option on the
US dollar/Japanese yen exchange rate to expire in three months
with the partial parameter A = 1.08, given the spot exchange rate
is ¥84.5 per dollar, the US interest rate 7.5%, the Japanese interest
rate 3%, the volatility of the dollar-yen exchange rate is 20%, and
the highest level of dollar-yen rate is ¥88 per dollar (remenber the
exchange rate has to be converted into US dollar per yen).

Find the price of the corresponding partial floating lookback put
option in Exercise 12.10 given the lowest level of the dollar-yen ex-
change rate ¥80.50 per dollar.

Show that the pricing formulas given in (12.13) and (12.14) for fixed
strike lookback options are special cases of the pricing formulas for
partial lookback fixed strike options given in (12.24) and (12.25)
when A = 1.

Find the price of the partial lookback fixed strike call option on IBM
stock with strike $85 to expire in nine months, given the partial
parameter A = 0.96, spot price $82, the maximum price of the stock
$87, interest rate 8.25%, yield on IBM stock 3.5%, and the volatility
of the stock 18%.

Answer the same question in Exercise 12.13 for A = 0.98 and 1,
respectively.

Find the corresponding pricing formulas for partial lookback fixed
strike put options.

Find the price of the corresponding partial lookback fixed strike
put option in Exercise 12.13 using the pricing formula obtained in
Exercise 10.15 if the partial parameter is A = 1.04 and the minimum
stock price is $78.

Show that (12.7) becomes (12.8) for r = g [Hint: taking limit to
Equation (12.7) for r — g = 0].
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12.18. Find the price of the corresponding floating lookback call option
with r = g = 8%, other parameters remain unchanged as in Exam-
ple 12.1

12.19.* Show that Equation (12.19) becomes (12.20) for r = g.

12.20. Find the price of the corresponding floating lookback put option
with 7 = g = 8%, other parameters remain unchanged as in Exam-
ple 12.2.

12.21. Find the prices of the corresponding fixed-strike lookback call op-
tions in Example 12.3 with r = g = 8%, and other parameters are
the same as in Example 12.3.

12.22. Find the corresponding pricing formulas for (12.17) and (12.18) with
T=g.

12.23.* Find the corresponding pricing formulas for (12.21), (12.22), (12.24),
and (12.25) with r = g.

12.24.* Find the corresponding pricing formulas for early-ending lookback
options with early-ending time 0 < 7. < 7.

APPENDIX

The partiality parameter A > 1 for partial lookback options makes the
derivation more difficult than A = 1 for floating strike lookback options
because in the latter case the payoff S(t*) — m!" is always positive so that
the expected payoff of a floating strike lookback call option can be obtained
simply by taking the expectation of the two terms using the density function.
However, S(t*)—Am! may be negative for some A > 1, therefore the payoff of
a partial lookback call option E[S(t*) — Am{", 0] cannot be obtained directly
following the procedure for floating lookback options. Double integration has
to be carried out because both the spot price at maturity and the minimum
value change over time.

The joint cumulative distribution function between the log-return of the
underlying asset and the log-return of the minimum value y, is given as
follows [see Harrison (1985), p. 13 for a proof]:

-z +uT 20 /62 —x+2y+v-r)
>y)= T ) —etw/e _ Al2.1
F(X; >z yr 2 y) N( P~ ) e N( s , ( )

where v = r — g — 02 /2. The joint density function between the log-return of
the underlying asset and the log-return of the minimum value v(z,y) can be
obtained by differentiating the cumulative function given in (A12.1) twice
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with respect to the two variables z and y, respectively

(o) = 28 ) g (2= 2 v
@) (ov/7)? e ( oyt ) (A12.2)

Using the joint density function in (A12.2), we can show the following
after simplifications:

L= [ v
y+In A

=2e2yv/d2[_2_N(y_ln’\+vT)+ 1 f(u—ln)\+v‘r)]
2 o

7 VT NG T
(A12.3)
and
L(y) = / :“ u(z,y)dz
= 2e2y“/‘72{<v :202>N[y ~In ,\:\/(;; + 02)7]
+ axl/?f [y — )\o-"_\/(;) * 02)7} } . (A12.4)

The expected payoff of the partial lookback call option PPCyyy, in (12.15)
can be alternatively expressed as:

E(PPCrjn) = E(PPCrin|m{ > m?,) + E(PPCuin|mt” < m?))
= E{maz[S(t*) — dm2,], Olm{ > m,}
+ E(PPCpinjmt” <m?)). (A12.5)
The first part on the right-hand side of (A12.5) is actually the expected
payoff of a down-out call option with the lower barrier H = m¢, < S, the

strike price K = Am2, > H = mY,, and the rebate zero. The price of this
down-out call (PDOUTC) option can be found immediately from (10.44):

0 \ 2v/0? 0 y2
PDOUTC = Cyy(S, A2,) — (%) Che [(m% K] . (A126)
where Cs(S, K') stands for the Black-Scholes call option pricing formula

given in (10.31) with w = 1.
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With the two integrations given in (A12.3) and (A12.4), we can obtain
the second part of (A12.5) when m{ < m?;:

E(PPCpin|m!” < m?;) = / [Se® — ASe¥]u(z, y)dzdy
—o0
= S/ [e® — ¥y (z,y)dxdy
—00

=S / Li(y)dy — \S / eVIr(y)dy,
—o0 —o0 (A12.7)

where a = In(m?,/S) and I (y) and I2(y) are given in (A12.3) and (A12.4),
respectively.

Substituting (A12.3) and (A12.4) into (A12.7) and carrying out the nec-
essary integrations in (A12.7), we obtain the expected payoff of the lookback
option when mt” < m?, after simplifications:

E(PPCminlmg' <m)

0 21r—g!+1 l A
= er—oyr (M1 0 gy =2
e ( 5 ) N[dbsl(mﬂ,S) 0_\/;]
o? M2, 43 0 In A
S| (6) 7 Nt - 22
2
o (r—a)7 ( 3y 2oz +1 [_ 0y _ ln)\]
2(r—g)e (A) N| — dps1(S,m7y) o7l
(A12.8)

Substituting (A12.8) into (A12.5) and discounting (A12.5) by the risk-
free rate of return 7 yields the partial lookback call option price given in
(12.17) after simplifications.

The corresponding formula for a partial lookback put option can be
obtained following a similar approach using the joint-cumulative function
between the log-return of the underlying asset and the log-return of the
maximum value X, given in (10.23).






PART IV:
CORRELATION/MULTIASSETS OPTIONS

INTRODUCTION AND ORGANIZATION

There are two trends in financial markets: cross-market integration and
globalization. The first trend has stimulated the growing development of
cross-market products and the other has accelerated investment across na-
tional boundaries around the globe. The New York Stock Exchange (NYSE)
has been considering trading foreign stocks in different currencies in an effort
to maintain its prestige in the global marketplace. These efforts are being
made to prevent the market from becoming a regional exchange in a global
marketplace. The National Association of Securities Dealers Automated
Quotations (NASDAQ), the largest stock market in the world measured by
dollar trading volume (it surpassed that of NYSE for the first time in history
in 1994), is also taking efforts in this direction. With further development of
cross-market integration and globalization, the need to hedge cross-market
and global positions will certainly increase. Various correlation options and
other kinds of cross-market products have been created to meet this need.

Correlation options are also called multiassets options. Generally speak-
ing, correlation options are options with payoffs affected by at least two un-
derlying instruments. These instruments can be assets such as stocks, bonds,
currencies, commodities, indices such as S&P-100, S&P-500, Nikkei 225, ex-
change rates, and so on. The instruments can be of the same or of different
asset classes. If the two underlying assets are from different asset classes, the
correlation option is often called a cross-asset option. Since there are two
or more underlying assets which determine the values of correlation options,
the correlation coefficients among these assets play an important role in pric-
ing these options besides all the underlying assets involved. Because of the
important role of the correlation coefficients, options with at least two under-
lying instruments are called correlation options. We will analyze most of the
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popular correlation options existing in the OTC marketplace and show how
to price and use them in this part.

Correlation options can be divided into first- and second-order, accord-
ing to the ways correlation affects option payoffs. Correlation has first-order
or primary effects if it directly influences option payoffs as in spread options
and out-performance options. Thus spread options and out-performance op-
tions are first-order correlation options. Quanto options are second-order
correlation options because correlation merely modifies the option payofls
here. An option can reflect both first- and second-order correlation effects.
Take, for example, an out-performance option on the DAX and CAC-40
denominated in Sterling. The first-order effect is on the covariance of the
indices. The second-order effect comes from the degree of relationship be-
tween movements in both of these indices (and their covariance) and changes
in the French franc/Sterling and German mark/Sterling exchange rates.

Part IV covers 14 chapters. The order of the chapters largely follows
the degree of the complexity of the products. Chapter 13 introduces and
prices exchange options and finds an alternative method to rate investment
choices using the exchange option pricing fromula. Chapter 14 discusses op-
tions paying the best/worst of two risky assets and cash. Chapter 15 reviews
standard digital options and introduces and prices correlation digital options
which include the standard digital options as special cases. Chapter 16 stud-
ies ratio options or quotient options. Chapter 17 covers product options and
prices foreign equity options with domestic strikes using the product option
pricing formula. Chapter 18 introduces options on the maximum or mini-
mum of two or more than two underlying assets. Chapter 19 studies quanto
options. Chapter 20 prices foreign equity options. Chapter 21 discusses
spread options. Chapter 22 covers options written on the spread between
two rainbows, i.e., the maximum and minimum of two asset prices. Chap-
ter 23 deals with out-performance options. Chapter 24 studies alternative
options. Chapter 25 prices dual-strike options. Chapter 26 points out the
limitations of using constant correlation coefficients in pricing all correlation
options and estimates the errors of constant correlation coefficients when
they are non-deterministic.

CORRELATION COEFFICIENTS

Before we start to introduce correlation options, it is necessary for us
to review some statistical concepts involved in all correlation options —
covariance and correlation coefficients. To have a better understanding of
covariance and correlation coefficients, we need to review the concepts of
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means and standard deviations. A mean or mathematical expectation for a
continuous random variable is defined as an integral of the product of the
variable and its corresponding density function over a given domain

Bx) = [

(e o]

zf(z)dz

and its corresponding variance is defined as the integral of the product of
the square of the difference between the variable and its mean and the cor-
responding density function

Var(X) = B{lz - EQOP} = [l — BQOP f(@)da.

Variance as defined above is always positive for any random variable.
It is always zero for any deterministic variable. The standard deviation
of a random variable is simply the square-root of its variance. It is most
often represented by the Greek letter 0. Thus, we can obtain the standard
deviation of any random variable: ¢ = y/Var(X), and we can obtain the
variance by squaring the standard deviation: Var(X) = o2.

The covariance between two random variables X and Y is defined as
follows:

Cov(X,Y)=E[X - EX)|[Y - EY)}}
= [ [ - BOOll - B lste s

where g(z,y) represents the joint density function of the two variables X
and Y.

Covariance as defined above is somewhat similar to variance. If the two
variables X and Y are the same, the above covariance becomes exactly the
variance of X or Y. Thus, we can consider variance as a special case of
covariance. The covariance defined above can be shown to be equivalent to

Cov(X, Y) = E[XY] - [E(X)][EY)],

which implies that the covariance between two random variables equals the
difference of the mean of the product of the two variables and the product
of the means of the two random variables.

Covariance between any two random variables can be either positive,
zero, or negative because the mean of the product of two variables can be
either greater than, equal to, or smaller than the product of the two means,
depending on the degree of dependence between the two variables.
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i

With the above definition of covariance between any two random vari-
ables, we can now define the correlation coefficient p between any two random
variables X and Y '

P = Var(X)/Var(Y) o0y

As defined above, the correlation coefficient between any two random
variables is the ratio of their covariance and the product of the two standard
deviations. It can be either positive, zero, or negative because covariance can
be either positive, zero, or negative. If it is zero, we say that the two random
variables are stochastically independent. If positive (resp. negative), we say
that the two random variables are positively (resp. negatively) stochastically
dependent. The correlation coefficient between any two random variables is
always between negative one and positive one, or —1 < p < 1. Ifit is positive
(resp. negative) one, we say that the two random variables are positively
(resp. negatively) perfectly correlated.

Cov(X,Y) _Cov(X,Y)

CORRELATION COEFFICIENTS AND COINTEGRATION

Francis Galton (1822-1911), an English anthropologist and eugenist, is
generally regarded as the founder of correlation analysis. The concept of
correlation was developed in late nineteenth century. -Alexander and John-
son (1994) argued that cointegration, a form of dynamic correlation, is likely
to have some advantages over the statistical correlation coefficient, or un-
conditional correlation coefficient. Whereas their argument is true because
cointegration captures the time factor for various observations and the stan-
dard statistical correlation coefficient does not, we will still focus on the
unconditional correlation coefficient because, to my best knowledge, all ex-
isting financial theories and all correlation option pricing models are based
on the unconditional correlation coefficient instead of cointegration.

BIVARIATE NORMAL DISTRIBUTION

With the above review on correlation coefficients between two random
variables, we can introduce the density function between two underlying
risky instruments. The density function is used to price all correlation op-
tions in Part IV and some options in Part V. There are two instruments in-
volved in most popular correlation options. In a Black-Scholes environment,
the two asset prices are assumed to be bivariate lognormally distributed.
Specifically, suppose that the two instruments are I) and I, both following
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the standard geometric Brownian motion as in (3.1):
dl; = (,u,' - gi)Iidt + O'iIidZi(t), i=1and 2, (IV].)

where z;(t), and ¢ = 1 and 2 are two standard Gauss-Wiener processes with
the correlation coefficient p, p; and o; stand for the instantaneous mean and
standard deviation of the two assets or indices, respectively, and g; is the
payout rate of the ¢th underlying asset.

In a risk-neutral world, the stochastic process in (IV1) will become

dl; = (r — gi)Iidt + O'iIidZi(t), i=1and 2.

Solving the two equations given in (IV1) using the standard method (see
Appendix at the end of Chapter 2) yields:

Ii(t) = I; exp|(pi — gi — %a?)f +0iz(7)], i =1and 2, (Iv2)

where 7 = t*—t, and t* are the current and the expiration time of the option,
respectively, and I; and I; represent the current prices of the two assets.
Let x = In[I1(7)/11] and y = In[I3(7)/I2]. It can be proven that both
z and y are normally distributed with means p; = (—g1 — 03/2)7 and ug —
g2 — 03 /2)7 and variances o2 = 027 and ag = o037, respectively. It can also
be shown that z and y are joint normally distributed with the correlation

coefficient p. The joint density function can be expressed as follows:

1 u? — 2puv + v?
)= —————=—¢exp| ————5—|» IV3
f( y) 211'0'1-0'y 1 — p2 P l: 2(1 _ p2) ] ( )
where o _
u= Hz and v = Y By .
Oz oy

The bivariate density function in (IV3) can be expressed alternatively:

f=,y) = F()f(zly), (Iv4)

where

) = e (=5,

_ 1
1w = i ™ | " i)

and u and v are the same as in (IV3).
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The bivariate density function f(:z:,(y) in (IV3) can also be expressed

f(z,y) = f(=)f(ylz), (IVS5)

where

flz) = %lﬁexp(—%z),

(v — pu)?

Fle) = — e exp | - 2
o VA T=2 % | 2|

and u and v are the same as in (IV3).

The bivariate density functions in (IV4) and (IV5) are used to derive
pricing formulas for nearly all popular correlation options in a Black-Scholes
environment in this book. The choice in using (IV4) or (IV5) depends on
the specific integration order involved in each kind of correlation options. If
u is integrated first, we use (IV4), otherwise (IV5) is used. We will refer to
these two expressions of the bivariate density function in every chapter in
Part IV.

Rubinstein (1994) described the difficulties in pricing American corre-
lation options and provided some general steps to approach the problems
using binomial trees. We will largely concentrate on European-style correla-
tion options because of the transparency of these products. The closed-form
solutions for European-style correlation options can be used as control vari-
ables for their corresponding American options.



Chapter 13
EXCHANGE OPTIONS

13.1. INTRODUCTION

Exchange options are options which give their holders the right to ex-
change one asset for another. The holder of an exchange option is entitled
to receive at maturity one underlying asset in return for paying for the other
underlying asset. Exchange options are the basic type of correlation options
because many other correlation options can be transferred into exchange op-
tions and therefore analyzed in terms of them. Although these options were
studied by William Margrabe (1978), their applications were not studied
until many years later. In general, there is no distinction between a call op-
tion and a put option for exchange options. However, a standard exchange
option can be interpreted as a call option on asset one with the strike price
the same as the future price of asset two at the option maturity, or as a put
option on asset two with the strike price the same as the future price of asset
one at maturity.

Since exchange options are the basic type of correlation options and they
are also the simplest one, we start Part IV with exchange options.

13.2. EXCHANGE OPTIONS

Assume that the two underlying asset prices I1(7) and Iy(7) follow the
stochastic process given in (IV1) and the returns of the assets are correlated
with the correlation coefficient p. The payoff of a European-style exchange
option to pay the second asset in exchange for the first can be expressed:

PFEX =max [I;(r) — I(r), 0], (13.1)

where max (. , .) is a function that gives the larger of two numbers.
The payoff in (13.1) is called the payoff of the exchange option to ex-
change the second asset for the first. It is the same as that of a vanilla
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call option in (2.1) if we substitute the strike price K with the second asset
price I5(7), therefore the exchange option can be considered as a call option
written on the first asset with the strike price the same as the future price
of the second asset. The payoff in (13.1) is also the same as that of a vanilla
put option in (2.2) if we consider the future price of the first asset as the
strike price, thus the exchange option can also be considered as a put option
with the strike price the same as the future price of the first asset.

The payoff of the exchange option given in (13.1) can be alternatively
expressed as follows:

ax [L(7) - L(r), 0] =max [h(r), Bo(7)] - Io(7),  (13.2)

max [II(T) — I (1), 0] = I1(7) — min [I;(7), I1(7)]. (13.3)

The two expressions in (13.2) and (13.3) will be used to price options
written on the better or worse of two underlying risky assets in Chapter 21.

13.3. PRICING EXCHANGE OPTIONS

As we will show in the following chapters, the complexity of correlation
options depends on that of their integration domains to calculate their ex-
pected payoffs in a Black-Scholes environment. Exchange options are the
simplest correlation option because their integration domain is the simplest
in shape. If the first and the second asset prices are the horizontal and verti-
cal axes in a two-dimensional plane, respectively, the integration domain, or
the area where an exchange option has a positive payoff, is simply the area
below the forty-five degree line starting from the origin. The integration
domain for exchange options to exchange the second asset for the first is
given in Figure 13.1. Using the density functions given in (IV4) and (IV5),
we can obtain the expected payoff of the exchange option in (13.1) by double
integration:

E(PFEX) = LeW=9)7 4, — Lel2=92)7 4, (13.4)

where

A = /o:o Flu— U,;)N{ln(Il/Iz) + (s — F':).]—/‘:; —lp- (Ua:/o'y)]u}du’

(13.4a)
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price of the second asset
~
¥

price of the first asset

F

—

g. 13.1. The integration domain of an exchange option.

and
Aa=[" fu-p)N
—00

% {ln(Il/I2) + (s — Ny)]/Uy -(1- p2)0,y —[p— (O'z/gy)]u }du
V1 - p? '

(13.4b)

The two coefficients A.; and A are in terms of univariate integrations.
They can be calculated easily with any numerical methods using a computer
because the density function f(.) and the cumulative function of the stan-
dard normal distribution N(.) can be calculated readily. However, these two
coefficients can be simplified in closed-form using some mathematical iden-
tities. We first change the integration variable z = u — 05 or u = z+ 03 into
(13.4a) and can simplify it to

A= [ f@N

y {lnul/b) + (pz = pa)l/oy = Ip = (0/y)oalp — (a,/aynz} i
V1-p? )

(13.5)
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As the argument in the cumulative functions in (13.5) is a linear function
of its corresponding integration variable z, we use the following mathematical
identity to simplify (13.5) further:

/_ °; f()N(A + B2)dz = N(\/l—i_é%), (13.6)

where A and B are constant real numbers.

The method shown above using (13.6) to simplify double integrations
in terms of the univariate cumulative function N(.) of the standard normal
distribution will be used very often throughout this book. As an univariate
cumulative function is much easier to calculate than the bivariate cumula-
tive normal distribution, and analytical expressions for sensitivities can be
obtained easily with the univariate cumulative function, we will employ this
method to simplify double integrations as often as possible.

Using (13.6), we can simplify (13.5) to Aey = N(de1) and following the
similar method we can simplify A,y = N (d.2). Therefore (13.5) becomes

E(PFEX) = ;€™ =907 N(dgy) — Le"2=92)" N(d,5,) (13.7)

where

de2 = {ln(%) + [(#1 = 91) — (p2 — g2)I7 — %Ugf}/(aa\/;’)’

de) = de2 +0'a\/;’ Oq = \/‘7% — 2p0o102 +U%a

and p is the correlation coefficient between the returns of the two underlying
assets.

Arbitrage arguments permit us to use the risk-neutral evaluation ap-
proach by discounting the expected payoff of an option at expiration by the
risk-free interest rate r. As the risk-neutral valuation relationship guaran-
tees that all assets are expected to appreciate at the same risk-free rate
#1 = p2 = r, we can obtain the price of an exchange option to exchange
the second asset for the first (PEXOP12) by discounting the expected payoff
given in (13.7) by the risk-free rate r,

PEXOPI12 = I;e 9" N(dg;) — Lre~%"N(d,s), (13.8)
where
dez = [10(22) + (g2 — g1 - 202)7] /(0av/7),
I 2

de1 = depy + Ua\/"_',

and o, is the same as in (13.7).
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The pricing formula in (13.8) is of the Black-Scholes type as the price is
expressed in cumulative functions of the standard univariate normal distri-
butions. The functions d.; and d.s are very similar to the arguments in the
cumulative functions in the Black-Scholes formula. The important difference
between (13.8) and the Black-Scholes formula is the volatility function o,.
We may call g, the aggregate volatility because it is the effective volatility
used in the pricing formula. The aggregate volatility function is determined
not only by the volatilities of the two underlying assets but also by the degree
these two assets are correlated. This aggregate volatility expression appears
in most other correlation option pricing formulas in the following chapters.

Example 13.1. Suppose that there are two stocks with the spot prices I)
= $100, I = $100, the volatilities o1 = 20% and o2 = 15%, the yields on
the two stocks are g1 = 5% and go = 4%, and the two stock returns are
correlated with the correlation coefficient p = 756%, what is the price of the
exchange option to exchange the second stock for the first stock in one year?

Substituting the given parameters into (13.8) yields:

O = \/of — 2po102 + 02

= /0.202 — 2 x 0.75 x 0.20 x 0.15 + 0.152
= 0.1323,

o= o) (-~ 3] o)

_{, (100 1 .
= {m(m)( 0.05 — 0.04 - 5 x 0.1323 ) x 1}/(0.1323 x V1)

= —0.1417,
de1 = deg + To/T = —0.4441 + 0.1323 = —0.0094 .

Thus, the price of the exchange option to exchange the second stock for the
first is obtained directly from (13.8)

PEXOP12 = Lie 9" N(de1) — I2e™92" N(d2)
= 100e~ %% N'(—0.0094) — 100e %% N (—0.1417)
= 100 x 0.9608 x 0.4962 — 100 x 0.9512 x 0.4436 = $4.578.

Formula (13.8) gives us the price of the exchange option to pay the
second asset in exchange for the first. We can readily obtain the price of the
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option to pay the first asset in exchange for the second using the following
identity: - -

max [I)(7) — [i(r)] = L(r) — Li(r) + max [I)(7) - Ix(7)].  (13.9)

The identity in (13.9) indicates that the payoff of the option to exchange
the first asset for the second can be expressed in terms of that of the exchange
option to exchange the second asset for the first, and the prices of the two
assets at the option maturity. Taking mathematical expectation to both sides
of (13.9) and discounting the expected payoff at the risk-free rate yields the
price of the option to exchange the first asset for the second (PEXOP21):

PEXOP21 = Lie %" — [;e=9'7
+ [116797 N(de1) — L™ 9" N(de2)] - (13.10)

The first term on the right-hand side of (13.10) is obtained by discount-
ing the expected price of the first asset I;e("=9)7 at the risk free r,! or mul-
tiplying the expected price by the continuous discounting factor e~"" using
(13.8).

Using the identity N(~z) = 1 — N(z) for any real number z, we can
immediately simplify (13.10) to

PEXOP21 = Le %" N(—de3) — e 9" N(—de1), (13.11)

where all the parameters are the same as in (13.8).

The pricing formula in (13.11) is consistent with the intuition that the
exchange option to exchange the first asset for the second can be considered
as a put option written on the first asset with the strike price as the future
price of the second asset. Thus, (13.11) looks very similar to the Black-
Scholes put option pricing formula in (3.24). It can be readily obtained by
changing the positions of the two spot prices and the signs of the arguments
in their corresponding cumulative functions.

Example 13.2. What is the price of the option to exchange the first stock
for the second in one year in Example 13.17

Substituting I; = I, = $100, the volatilities oy = 20% and oy = 15%,
the yields g; = 5% and g; = 4%, the correlation coefficient p = 0.75, and o,
= 0.1323, d.p; = —0.1417, do; = —0.0094 (from Example 13.1) into (13.11)

! Using the solution given in (IV2) and the moment-generating function of a normal distribution
N(p, 02), M(m) = exp|u+02m?/2)],we can obtain the expected value of I1 () = I1 exp|(m1 —g1)7}
in the risk-neutral world.
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yields the price of the exchange option to exchange the first asset for the
second

PEXOP21 = I2e_gQT+N(—dez) - Ile—ngN(_del)
= 100e~%%4 N (0.1417) — 100e~%% N (0.0094)
= $5.534.

The results of Examples 13.1 and 13.2 indicate that the option to pay
the first asset in exchange for the second is more expensive than that to pay
the second asset in exchange for the first, implying that the second asset is
more valuable than the first. These results are consistent with the fact that
the expected value of the second asset is indeed greater than that of the first
asset in a risk-neutral world because their expected returns should be the
same but the payout rate of the first is higher. The dominance of the second
asset over the first may also result from the higher volatility of the first asset
return.

13.4. SENSITIVITIES

Using the two arguments d.; and d.; in (13.8), we can obtain the fol-
lowing identity:

Ile_ngf(del) = Ize_ngf(dez) . (13.12)

One obvious difference between a vanilla option and a correlation option
is that there is only one underlying asset for the former but at least two for
the latter. When there are two underlying assets, there will be two deltas.
We may call these delta’s, partial delta’s, compared to deltas of vanilla
options because they are obtained by taking partial derivative of the pricing
formula in (13.8) with respect to the two spot prices and simplifying the
results using (13.12) yields the following two deltas for the exchange option
to exchange the second asset for the first:

OPEXOPI12
gAYl L et
6I1 € N(del) N
and (13.13)
OPEXOP2 _ gy g4
oI,

which indicate that the delta of the exchange option with respect to the first
asset price is the same functionally as that of a vanilla call option, and that
the delta of the exchange option to exchange the first asset for the second,
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with respect to the second asset price is also the same functionally as that of
a vanilla call option but the sign is opposite. As we will see in the following
chapters, the deltas of most other correlation options are very different from
those of their corresponding vanilla options.

Before we start to analyze the vegas of an exchange option, it is necessary
for us to analyze the sensitivity of the exchange option price with respect
to the aggregate volatility o,. The sensitivity of the exchange option price
with respect to the aggregate volatility o, can be obtamed using the identity
given in (13.12):

8PEXOP

o = VThe ™ f(da) >0, (13.14)
a

which is precisely the same as the vega of a vanilla options given in (3.33),
implying that the exchange option is more valuable when the aggregate
volatility o, is higher.

Since there are two underlying assets for exchange options, there are
two underlying volatilities, therefore, there are two vegas for any exchange
options. The two vegas can be obtained by taking partial derivatives of
(13.8) with respect to the two volatilities o) and o2 and simplifying the
partial derivatives using (13.12) and (13.14):

OPEXOP12 = JFhLe " £(d, ) paz
do 1
and _ (13.15)
BPE;ZOPIZ = JFLe N7 f(d, ) —po1
2

Although the two deltas of an exchange option are similar to that of a
vanilla option, the two vegas are rather different. They are always positive
like that of a vanilla option when the correlation coeflicient is negative or
zero, yet they become in general uncertain when the correlation coefficient
between the two assets are positive, depending on the relative volatilities
of the two assets and the degree the two asset returns are correlated. This
is because the exchange option price is always positively related to the ag-
gregate volatility o, which may decline as the individual volatility o; or o2
increases with certain positive correlation coefficients.

The sensitivities of vanilla options with respect to various option param-
eters have been given names in Greek letters and these names have become
very popular. Yet, there is no corresponding name for the sensitivity of a
correlation option value with respect to the correlation coefficient which is
so important in determining the values of all kinds of correlation options.
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As the Greek alphabet x is pronounced as “chi” in English which has the
same first letter ¢ as the phrase correlation coefficient, we may simply use
chi to stand for the sensitivity of the correlation option value with respect
to its correlation coefficient. Taking partial derivative of (13.8) with respect
to the correlation coefficient p yields the chi of the exchange option:

Qﬂ%@ - _ﬁfleww(";"? )E(de1) < O, (13.16)

which indicates that the exchange option price decreases monotonically with
the correlation coefficient. The reason for the inverse relationship is that a
higher correlation coefficient reduces the aggregate volatility o, which is
positively related to the exchange option value and thus leads to a lower
option premium.

From (13.14) and (13.16) we know that an exchange option has the
maximum value when the aggregate volatility reaches the maximum o, =
o1+ 02 with the correlation coefficient p = —1, and it has the minimum value
when the aggregate volatility reaches the minimum o, = |0y — 02| with the
correlation coefficient p = 1.

Example 13.3. What are the maximum and minimum prices of the option
to exchange the first stock for the second in one year in Example 13.1 for
various possible correlation coefficients?

Since the effective voaltility has the maximum (resp. minimum) value
when the correlation coefficient is —1 (resp. 1), the two extrema volatility
values are o1 + o2 and oy — o9, or 35% and 5%. Substituting p = —1 and
1 and other parameters into (13.8) and following the same procedure as in
Example 13.1 yields the two prices as $12.808 and $1.467, respectively. The
maximum price is nearly nine times as large as the minimum price.

There is another interesting property of exchange options. If I} = I,
01 = 032, g1 = g2, and the correlation coefficient between these two assets
is zero, then the prices of exchange options to exchange one asset for the
other are zero. These results can be proven by taking limits to the pricing
formulas in (13.8) and (13.11). These results confirm our intuition that
option to exchange its underlying asset with itself should have no value at all.

We can find other sensitivities for exchange options with respect to other
factors such as the time to maturity, the interest rate, the payout rates of
the two underlying assets, and so on. They can be similarly obtained by
taking partial derivatives to (13.8) and using (13.12) to simplify the results.
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13.5. AN APPLICATION

Exchange options can be used in many situations. Margrabe (1978)
discussed four applications using the exchange option pricing formula per-
formance incentive fees, margin accounts, an exchange offer, and the standby
commitment. We do not want to repeat these applications here. We will give
one example to show how we can use the pricing formula (13.8) and illustrate
how the pricing formula can be used to solve some practical problems.

In Margrabe’s first application, an adviser receives a performance in-
centive fee (R; — R;) multiplied by a fixed percentage of the total managed
portfolio, where R; and Ry stand for the returns of the managed portfolio
and a standard portfolio against which the performance is measured, respec-
tively. If the adviser has the protection of limited liability in case the fee
became negative, the portfolio management fee is exactly the value of the
exchange option to exchange the standard return for the managed return.
We will figure out the management fee if the current managed portfolio and
the standard portfolio returns are 10% and 5%, respectively, the volatilities
of the two returns are both 10%, the fee arrangement lasts for one year, the
two portfolios are correlated with a correlation coefficient 50%, and the fixed
percentage of the total managed portfolio 10 million dollars is 15%.

We can translate the above given conditions as: R; = 0.10, R; = 0.05,
o1 =02 =0.10, g1 = go = 0, p = 0.50, 7 =1 year. Substituting these values
into formula (13.8) yields

Oq = \/af — 2poyog + 022, =0.10,
des = |In A +(g2—g1 — 5% )T (0av/T) = 0.688,
2
de1 = dez + 04+/T = 0.788,
and the unit exchange option price

Rle—ngN(del) - Rze_ngN(deg)
= 0.10 x N(0.788) — 0.05 x N(0.688) = $0.1162.

Therefore, the management fee becomes 0.1162x0.15 = 0.01743 million
dollars or $17430.

13.6. SUMMARY AND CONCLUSIONS

Exchange options are the basic correlation options which can be used to
analyze and price many other correlation options in the following chapters.
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They are also the simplest correlation options because their payoff patterns
are the simpliest. Because of that, their prices can be expressed in terms
of univariate normal cumulative functions. We priced exchange options and
analyzed their major sensitivity measures. The prices of exchange options
to exchange one for another are negatively correlated with the correlation
coeflicient between the two assets.

QUESTIONS AND EXERCISES

Questions

13.1.

What are exchange options?

13.2.  Are there exchange call options or exchange put options?

13.3. Why can an exchange option to exchange the second asset for the
first be considered as a call option on the first asset with the price
of the second asset at the option maturity as the strike price?

13.4. Why can an exchange option to exchange the second asset for the
first be considered as a put option on the second asset with the price
of the first asset at the option maturity as the strike price?

13.5.  Is there any strike price in an exchange option?

13.6.  Why are exchange options considered as simple correlation options?

13.7. Why are exchange options regarded as a basic type of correlation
options?

13.8. How many deltas are there in an exchange option?

13.9.  Are vegas of exchange options always positive?

13.10. Does the price of an exchange option always increase with the volatil-
ities of the two assets? Why?

Exercises

13.1.  Show the identity in (13.12).

13.2.  If the spot prices of the assets are $50 and $65, the yields on the
two underlying assets are 2% and 3%, the volatilities of the two
assets are 12% and 18%, and the correlation coefficient between the
two assets is 65%, then what is the price of the exchange option to
exchange the first asset for the second?

13.3.  What is the price of the exchange option to exchange the second
asset for the first in Exercise 13.27

13.4.  Show that the prices of options to exchange one for the other are

the same if ) = I, 01 = 02, and g1 = go. Why?
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13.5.

13.6.
13.7.
13.8.
13.9.*

13.10.

13.11.

13.12.*

13.13.*
13.14.*

What are the prices of the two exchange options in Exercises 13.2
and 13.3 if the payout rates of the two underlying assets are zero,
other things being equal? '

Find the deltas of the exchange option in Exercise 13.2?

Find the vegas of the exchange option in Exercise 13.27

Find the performance ratio of the two assets using the results in
Exercises 13.2 and 13.3.

Show that A given in (13.4b) can be simplified to N(d.2) using
(13.6).

What is the price of the exchange option in Exercise 13.2 if the
volatility of the first asset is changed to 25% and other parameters
remain unchanged?

What is the price of the exchange option in Exercise 13.2 if the
volatility of the second asset is changed to 10% and other parameters
remain unchanged?

Show that the prices of exchange options to exchange one asset for
the other are zero if I) = I, 07 = 03, g1 = g2, and the correlation
coefficient between these two assets is zero.

Show the expected payoff of an exchange option in (13.4).

Show that the price of an exchange option to exchange one asset for
another is zero if the two assets are completely the same.



Chapter 14

OPTIONS PAYING THE
BEST/WORST AND CASH

14.1. INTRODUCTION

Options paying the best or worst and cash are also called options deliv-
ering the best or worst and cash. An option paying the best (resp. worst) of
two assets entitles its holder the right to receive the maximum (minimum)
of the two underlying assets at maturity. An option paying the best (resp.
worst) of two risky assets and cash entitles its holder the right to receive the
maximum (resp. minimum) of the two underlying assets and a fixed amount
of cash at maturity. Since the payoffs of these options depend on the max-
imum or minimum of two assets, there is no distinction between a call and
a put for these options. The purpose of this chapter is to show how to
price these options and analyze their basic properties within a Black-Scholes
environment.

The payoff of an option paying the best and cash and the worst and
cash are given as follows

maxc(7) = max[I, (1), I(7), K], (14.1)

and
minc¢(r) = min[l (1), Ix(7), K], (14.2)

where max (. ,.) and min (. , .) are functions that give the larger and smaller
of the two prices involved, respectively, and K is a prespecified amount of
cash.

14.2. PRICING OPTIONS PAYING THE BEST OR WORST
OF TWO ASSETS

An option paying the best (resp. worst) of two assets without any cash
payment is among the simplest correlation option. In order to illustrate the

383
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Fig. 14.1. The integration domain for an option paying the best of two assets.

procedures to price an option paying the best/worst and cash, we consider
the simple case without cash payment in this section and then extend the
results to K > 0 in Section 14.5.

Assume that the two underlying asset prices follow the stochastic process
in (IV1). Figure 14.1 depicts the integration domain or areas in which an
option paying the best or worst of two assets takes specific values. For any
point below the forty-five degree line and above the horizontal axis which
represents the first asset price, the first asset price at maturity is greater
than that of the second asset, and for any point above the forty-five degree
line and to the right of the vertical axis which represents the second asset
price, the first asset price at maturity is smaller than that of the second
asset. Using the bivariate normal density function given in (IV3) and (IV4),
we can obtain the expected payoff of an option paying the best (14.1) for K
= 0 by double integration:

E{max [I;(7), I(r)]} = L9074, + LeH2=92)7 4, (14.3)

where

(In(11/12) + pz — pyl/oy — (p — 0z/0y)u du

Ay = /_ } f(u—az)N{ J

(14.3a)



Options Paying the Best/Worst and Cash 385

and

Amz = /o:o flo- Uy)N{ Wt/ T) iy = pelio = (o= oyl dv.

V1-p?
(14.3b)

The two coefficients A1 and A, are in terms of univariate integra-
tions. They can be calculated easily with any numerical methods because
the density function f(.) and the cumulative function of the standard normal
distribution N(.) can be calculated easily. However, these two coefficients
can be expressed in closed-form using the mathematical identity given in
(13.6). We first change the integration variable z = u — oz or u = z + 0
into (14.3a) and

Amy = /_o:o f(Z)N{ (n(Z1/ 1) + pa/my]/ 0y :/(%z/ay)az —(p—0z/0y)z }dz .
(14.4a)

As the argument in the cumulative functions in (14.4a) is a linear func-
tion of its corresponding integration variable z, we can use the identity in
(13.6) to simplify (14.4a) to Am1 = N(dr), and following a similar method
we can simplify A2 = N(—dp + 044/7). Therefore, (14.3) becomes

E{max [I;(r), Io(r)]} = [1¥ =9V N(dy,) + L2907 N(—dm + 04v/7),
(14.5)

where

dm = {10 (2) + 16 = 02) = G2 = )l + 502} / (@),

Oa = \/af — 2poy102 + 03,

and p is the correlation coefficient between the returns of the two underlying
assets.

Similarly, we can obtain the expected payoff of the option paying the
worst of the two underlying assets in (14.2) for K = 0 with the same method:

E{min [I;(r), L(7)]} = Le¥ "9 N(—dp) + L2~ 9" N(dpy, — 0v/T),
(14.6)
where all parameters are the same as in (14.5).

Using the arbitrage-free argument or the risk-neutral valuation relation-
ship, we can obtain the option prices by discounting their expected payofis
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at the risk-free interest rate r. As the risk-neutral valuation relationship
guarantees that all assets are expected to appreciate at the same risk-free
rate, or u; = py = r, we can obtain the prices of the options paying the best
(BP) and worst (WP) of two assets by discounting the expected payoffs in
(14.5) and (14.6) by the risk-free rate r

BP = Le 9" N(dp,) + L™ 2" N(—dm + 0av/7), (14.7)
WP = Le 9" N(—dp) + Le™" N(dm — 0av/7), (14.8)

where
dm = {111 (%) + (92 —g1)7 + %UZT}/ (0aVT) (14.9)

0a = [0} — 2p0102 + 3. (14.10)

The pricing formulas in (14.7) and (14.8) are of the Black-Scholes type as
the prices are expressed in cumulative functions of the standard univariate
normal distribution. The function d,, is very similar to d in the Black-
Scholes formula. The important difference between (14.7) and the Black-
Scholes formula is the aggregate volatility function o, which is the same as
in Chapter 13 for exchange options. The aggregate volatility function is not
only determined by the volatilities of the two underlying assets but also by
the degree these two assets are correlated. This aggregate volatility appears
in most other correlation option pricing formulas.

Example 14.1. Find the prices of options paying the best and worst of two
assets to expire in three months with the spot prices I; = $20, I, = $15, the
volatilities o7 = 18% and o, = 15%, the yields on the two stocks are g, =
5% and g = 4%, and the two stock returns are correlated with correlation
coefficient p = 85%.

Substituting I; = $20, I; = $15, 03 = 0.18, 02 = 0.15, g3 = 0.05, g2 =
0.04, 7 = 0.25, and p = 0.85 into (14.7) yields:

Of = \/af — 2po102 + 0% = 0.0949,

= [1n () + @2 = 91 + 302)7] / (0av?)
= 6.0359.
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Thus, the price of the option paying the best of two assets is
BP =I1e 9" N(dp) + Le %" N(—dy + 04VT)
= 20e~0-05%0.25 \y(6,0359) + 15¢0-04%0-25 v (—-6.0359 + 0.0474)
= = $19.752,

and the price of the option paying the worst of two assets is

WP = Le 9" N(—dm) + Ie79" N(dy, — 0,V/T)
= 20e0-05%0-28 \7(_6.0359) + 15e~0-94%0-25 7 (6.0359 — 0.0474)
= $14.851.

Using the simple identity N(z) + N(—z) = 1 for any real number z,
(14.7) and (14.8), we can obtain the following identity:

BP + WP = e 9" 4 L,e %", (14.11)

which indicates that the sum of the prices of options paying the best and
the worst of two assets equals the sum of the two current prices of the two
underlying assets discounted at their corresponding payout rates.

14.3. OPTIONS PAYING THE BEST OR WORST OF TWO
ASSETS AND EXCHANGE OPTIONS

Now, let us show how the option prices in (14.7) and (14.8) can be
obtained by using the exchange option pricing formula in (13.8). The two
identities given in (13.2) and (13.3) can be alternatively expressed:

max [I1(7), I(7)] = Io(7) + max [I1(7) — I2(7),0], (14.10a)
and
min [I;(7), I3(7)] = L1(7) — max [I1(7) — I2(7),0]. (14.10b)

The two identities in (14.10a) and (14.10b) indicate that the future value
of an option paying the best or worst of two risky assets can be expressed in
terms of the payoff of an exchange option and the future prices of the two
assets at the option maturity. Following a similar procedure to derive (13.11),
taking mathematical expectation to both sides of (14.10a) and (14.10b) and
discounting the expected payoffs at the risk-free rate yield the prices of
options paying the best and the worst of two risky assets:

PPMX = Le %" + [[,e™ 9" N(dp) — Ize %" N(—dpm + 02v/7)], (14.11a)
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and
PPMN = Le 9" - [Le ™" N(-d,,) — Le ™" N(d,, — aa\/?)] , (14.11b)

where PPM X and PPMN are the prices of options paying the maximum
and the minimum of two risky assets, respectively.

Using the identity N(—z) = 1 — N(z) for any real number z, we can
immediately simplify (14.11a) and (14.11b) as follows:

PPMX = e 9" N(dg1) + I;e~%" N(~d,s), (14.12a)
PPMN = Lie 9" N(—de1) + Le " N(d,3), (14.12b)

which are exactly the same as BP and WP given in (14.7) and (14.8),
respectively, because dg1 = d,,, and dep = Ao, JF

The above method to derive PPMX and PPMN is obviously more
efficient than the integration method to derive BP and W P in Section 14.2.
Therefore, we will always price some new options using the pricing formulas
of known options. We will show how to price other correlation options using
the exchange option formula in the following chapters.

14.4. SENSITIVITY TO THE CORRELATION COEFFICIENT

The prices of the options paying the best and the worst of two assets
given in (14.7) and (14.8) are affected by the spot prices, the volatilities, the
yields of the two assets, and importantly, the correlation coefficient between
the two assets. We will find the chi of options paying the best or worst of
two assets, or the sensitivity of the prices of such options with respect to the
correlation coefficient between the two assets.

From the parameters of the pricing formulas in (14.7) and (14.8), we can
readily show

M - ﬁe(91—92)7 - _ILei

fGm) & Tyeair” (14.13)

where f(z) is the density function of a standard normal distribution.
Taking partial derivatives of BP and WP in (14.7) and (14.8) with
respect to p and simplifying the results using (14.3) yield

oBP = —\/Flze‘gfa—l@-f(dm —0aVT) <0, (14.14a)
Op Tq
and SWP
== \/;Ize—ngU:Tzf(dm — 0aV/7) > 0. (14.14b)
P a
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The derivatives in (14.14) indicate that the price of the option paying
the best (resp. worst) of two assets decreases (resp. increases) with the
correlation coefficient. This is because the maximum (resp. minimum) of
two assets given in (14.10) decreases (resp. increases) with the correlation
coefficient because the two prices tend to move more in the same direction
and the difference between the two becomes smaller.

Example 14.2. Given all other parameters the same as in Example 14.1,
find the maximum and minimum prices of the options paying the best and
the worst of two assets with all possible correlation coefficients.

Since the price of the option paying the best of two assets decreases
monotonically with the correlation coefficient, we can obtain the maximum
and the minimum prices with the correlation coefficient p = —1 and 1,
respectively. Substituting I; = $20, I = $15, 0y = 0.18, 02 = 0.15, g1 =
0.05, go = 0.04, 7 = 0.25, and p = —1 and 1 into (14.7) and following the
same procedure as in Example 14.1 yield:

oa(p=1)= \/0'% — 20109 + a% =01 — o = 0.03,

gulp=-1)= \/Uf + 20102 + 0% = 01 + 02 = 0.33,

wtp=t= fo(2) =10 ) ] o
= 19.0196,
dm(p=—1) = [ln G—:) + (gz -+ %aﬁ) r]/(aa\/?)
= 1.8109.

Thus, the prices of the option paying the best of two assets are

BP(p=1) = [ 9" N(dy) + Ie" 9" N(—dy + 04,V/T)
= 20e~095%0-25 7(19.0196)
+ 15e70-04%025 (19,0196 + 0.015) = $19.752

and
BP(p=—1) = [,e 9" N(dp) + Ie 92" N(—dp + 04/7)
= 20e~0-95%0-25 \y(1.8109)
+ 15e70-04x0:25 \(_1 8109 + 0.015) = $19.800.
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Following the similar procedure, we can obtain the maximum and mini-
mum prices of the option paying the worst of two assets with the correlation
coefficient p = 1 and —1, respectively: :

WP(p = 1) = 20e”%05%0-25 57(_19.0196)
+ 15¢~0-04x0-25 (19,0196 — 0.015) = $14.851,

and
WP(p = —1) = 20e%05%0-25 \y(_1.8109)
+ 15e~004x0-25 N7(1 8109 — 0.015) = $14.803.

14.5. OPTIONS PAYING THE BEST/WORST AND CASH

Now we can work with options delivering the best/worst of two assets
and nonzero cash. Assume that the two underlying asset prices follow the
same stochastic process in (IV1). Figure 14.2 depicts the integration domain
for such options. It shows that there are three regions in which I)(7), I (n),
and K are the largest of the three values. For any combination of the two
asset prices within or at the square from the origin, K is always the maximum
of the three variables. In the area below (resp. above) the forty-five degree
line, I1 () [resp. I(7)] is the largest of the three variables.

20
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13
14
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10

IZ(T) > Ix(T) > K
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Fig. 14.2. The integration domain for an option paying the best of two assets and nonzero
cash.
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Using the bivariate normal density function in (IV4) and (IV5) and
the integration domain shown in Figure 14.2, we can obtain the expected
payoffs of options paying the best or worst of two assets and cash K > 0 by
integrating (14.1) twice:

E{max [I;(r), Ia(r), K]} = L1907 A1 + Lel2=927 A
+K Na(~drt, —dk2, p), (14.15)

where

—dp1

A= [~ Flu—oo)N { [in(11/13) + pa — ;;yl_/zg ~ (o= 0z/oy)u } du,

(14.15a)

{ (In(Iz/11) + py = pal/0s — (p = 0y/0=)V }dv :

0o
Ame = f(’U - O'y)N \/1 = p2

—di2

i = [ (2) + s 3] fo

i = [(2) + (= 325)) v

and Na(a, 83, 0) is the standard bivariate cumulative function with two upper
bounds a and G and the correlation coefficient 6. The expression Na(a, 3,0)
is given in Appendix of Chapter 11.

The two coefficients Amg; and Apmke in (14.15a) and (14.15b) are also
in terms of univariate integrations. They can be calculated easily with any
numerical methods because the density function f(.) and the cumulative
function of a standard normal distribution N(.) can be calculated readily.
However, we can express these two integrations in terms of normal cumula-
tive functions. We need to change the integration variable z = —(u — 03) or
u = o, — z into (14.14a) and

(14.15b)

A = [ 1)

< N { [In(I1/I2)+pz — py)/oy—(p — 02/0y)os+ (p — 02/0y)2 } dz,

N7

(14.16)

where dig; = dg1 + 0.
Although the argument in the cumulative function in (14.16) is also a
linear function of its corresponding integration variable 2z, we cannot use the
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identity in (13.6) to simplify (14.16) because the upper bound of the inte-
gration of z is not infinity but dix; which is smaller than infinity in general.
Although we cannot express (14.16) in terms of univariate normal cumulative
function, we can express it in terms of bivariate normal cumulative function.
Using a similar method as the one explained in Appendix of Chapter 11, we

can simplify Amg1 = Na(dik1, dm, p1), and Apmie = Na(dikz, —dm+04/T, p2).
Thus, (14.14) becomes

E{max [I1(7), Io(7), K|} = ,e** Ny(dix1, dm, p1)
+ Ie"v* Ny (dik2, —dm + 0o VT, p2)
+ KNo(—dk1, —dgz, p), (14.17)

where

1 2
Hap = pz + 505 = (p1 — g1)m,

1 2
Hyp = by + 5voy = (42 = g2)7,

dik1 = dpy + 0%, digz = dga + 0y,

Og = \/af — 2poy02 + 02,

__ 02— po1 __ 01— po2
y P2 =

P1= ’
Oq Oa

and dp, is given in (14.5). Using the risk-neutral valuation relationship, we
can obtain the price of an option paying the best of two assets and cash
(PBC) by substituting p; = g2 = r and discounting the expected payoff in
(14.17) by the risk-free rate r: ’

PBC = Iie™ """ N(dik1, dm, p1) + L2792 Ny(dik2, —dm + 0aV/T, p2)
+Ke " No(—dg1, —dia, p), (14.18)
where
digr = dr + 01V,
dik2 = dr2 + 02V,

dry = [ln(%) + (r -9 - %df)T]/(Ulﬁ),
dio = [In(%) + (7‘ — 92— %U%)]/(Uz\/;),

and 0,4, p1, and p; are the same as in (14.17).
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We can find that the pricing formula of an option paying the best of
two assets given in (14.7) is a special case of that of an option paying the
best of two assets and cash in (14.18). Since the two bivariate normal cu-
mulative functions N(d1k1, dm, 1) and No(dik2, —dm + 04+/T, p2) approach
N(dm) and N(—dp + 04+/T), respectively,* (14.18) approaches (14.7) when
K approaches zero.

Example 14.3. Find the price of the option paying the best of two assets
in Example 14.1 and a cash payment of $18.00, given the interest rate r =

8%.

Substituting I = $20, I, = $15, o1 = 0.18, 02 = 0.15, g1 = 0.05, g2 =
0.04, 7 = 0.25, p = 0.85, 7 = 0.08, K = $18. 0, = 0.0949, d,,, = 6.0359 into
(14.18) yields:

o= 27P% _ _0.0316,
Oq

pp =" P72 _ 05532,
Oq

dyy = [m(%) + (r -q - -lz-afH / (o14/T) = 1.209,

dya = [m(%) + (7‘ —g2— %a%)]/(az\/;) = -2.335,

dig1 =dpy + 0’1\/; =1.299,
dik2 = dia + 02+/7 = —2.26,
PBC = Lie 9" Ny(dik1, dm, p1) + I2e"9" Na(dikz, —dm + 0aV/'T, p2)

+Ke—‘TTN2(-—dk1, —dga, p)

= 20e~0-05%025 )y, (1,299, 6.0359, —0.0316)
+ 15¢~0-04x025 y, (2 96, —5.9984, 0.5532)
+ 18e~0-08x0:25 v, (1,209, 2.335, 0.85)

= $19.8358.

*Using the definition of the standard cumulative function of the bivariate normal distribution given
in (A11.1), we can obtain:

Naoob,p) = [ boo SN [(oo - ,m)/m] do

- /_ :o ()N (o0)dv = /_ bw Flv)dv = N(b).
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Fig. 14.3. The integration domain for an option paying the worst of two assets and nonzero
cash.

The pricing formula in (14.18) is for options paying the best of two assets
and a prespecified amount of cash. Our last task in this section is to provide
a corresponding formula for options paying the worst of two assets and a
prespecified amount of cash. Figure 14.3 depicts the integration domain for
such an option. Following a similar procedure, we can obtain the price of an
option paying the worst of two assets and cash (PWC) using the integration
domain shown in Figure 14.3 and the joint density function given in (IV4)
and (IV5):

PWC = 79" Np(~dyk1, —dm — p201v/T, p2)
+ 126797 Np(—dyxa, dm — pro2v/T, p1)
+ Ke " Na(dg1, dia, p) (14.19)

where all parameters are the same as in (14.18).

Example 14.4. Find the prices of the corresponding options paying the
worst of the two assets and a cash payment in Example 14.3.

Substituting I = $20, I; = $15, 0y = 0.18, gy = 0.15, g; = 0.05,
92 =0.04, 7= 0.25, p = 0.85, r = 0.08, K = $18, 0, = 0.0949, d,,, = 6.0359,
and values of some related intermediate parameters into formula (14.19)
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yields:

PWC = L1ie 9" Ny(~dik1, —dm, p2) + T2e™92" Ny(—dik2, dm — 0aV/T, 1)
+ Ke™"" Na(dka, dk2, p)
= 20e~0-05%0:25 7, (1,299, —6.0359, 0.5532)
+ 15¢0-04x0:25 )\, (2,26, 5.9984, —0.0316)
+ 18 x e~ 0-08x0.25 v, (1,209, —2.335, 0.85)
= 20 x 0.9876 x 0.0000 + 15 x 0.9901 x 0.9881 + 18 x 0.982 x 0.0098
= 0.0000 + 14.6748 + 0.1729 = $14.8477.

We leave it as an exercise to check that the pricing formula given in
(14.19) degenerates to the pricing formula given in (14.8) when the cash
payment approaches infinity. This is consistent with the intuition that the
cash payment becomes irrelevant when it becomes extremely large. This
degenerated case is symmetric to the case that formula (14.18) degenerates
to 14.7 when the corresponding cash payment approaches zero.

14.6. SUMMARY AND CONCLUSIONS

We have analyzed options paying the best or worst of two risky assets
and cash in this chapter. We first examined options paying the best or worst
of two risky assets and provided closed-form solutions for their prices. As
no cash is involved, there is no distinction between a call and a put for these
options. As their integration domain is similar to that of exchange options,
options paying the best or worst of two risky assets are also simple corre-
lation options. Since the integration domain is simple, their corresponding
pricing formula can be expressed in terms of univariate normal cumulative
functions.

Options paying the best or worst of two risky assets and cash are more
complicated than the corresponding options without cash as the cash pay-
ment makes the payoff patterns of these options complicated. Their prices
can be expressed in terms of bivariate normal cumulative functions instead
of univariate normal cumulative functions. Options paying the best of two
risky assets are special cases of options paying the best of two risky assets
and cash when the cash payment is zero, and options paying the worst of
two risky assets are special cases of options paying the worst of two risky
assets and cash when the cash payment approaches infinity.
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QUESTION AND EXERCISES

Questions

14.1.

What is an option paying the best of two assets?

14.2.  What is an option paying the worst of two assets?

14.3. What is an option paying the best of two assets and cash?

14.4. What is an option paying the worst of two assets and cash?

14.5. How does the price of an option paying the best of two assets change

with the correlation coefficient between these two assets? Why?

14.6. How does the price of an option paying the worst of two assets

change with the correlation coefficient between these two assets?
Why?

14.7.  Why are options paying the best or worst of two assets considered

simple correlation options?

14.8.  Are there call or put options paying the best or worst of two assets

and cash?

Exercises

14.1.  Find the prices of the options paying the best and worst of two assets
to expire in one year with the spot prices I} = $25, I, = $20, the
volatilities o1 = 15% and o2 = 25%, the yields on the two stocks are
g1 = 3.5% and g2 = 2.5%, and the two stock returns are correlated
with the correlation coefficient p = 65%.

14.2.  Find the prices of the options in Exercise 14.1 if the correlation
coefficient is changed to 25% and other parameters remain the same.

14.3. Find the maximum and minimum prices of the options in Exer-
cise 14.1 for all possible correlation coefficients.

144.  Find the prices of the options paying the best of two assets and
cash $22 to expire in one year with other parameters the same as in
Exericise 14.1.

14.5.  Find the prices of the options paying the worst of two assets and
cash $22 to expire in one year with other parameters the same as in
Exericise 14.1.

14.6.* Show that the identity in (14.13) is correct.

14.7*  Derive the sensitivity in (14.14a).

14.8.*  Show that the pricing formula for options paying the worst of two

assets and cash in (14.19) includes the pricing formula for options
paying the worst of two assets in (14.8) as a special case.



14.9.

14.10.*

14.11.*

14.12.*

14.13.*
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Show that the thetas of the options paying the best and worst of
two assets are opposite in sign and the same in magnitude when the
yields on the two underlying assets are both zero.

Show the expected payoff of an option paying the best of two assets
in (14.3).

Show that the pricing formula in (14.18) for options paying the best
of two assets and cash degenerates to that in (14.7) for options
paying the best of two assets when K approaches zero.

Find the corresponding pricing formulas for options paying either
max(w; 1, (), w2 I2(7), K] or minfw 1 (1), wa I2(T), K], where w; and
w9 are nonnegative weights.

Show that the pricing formula given in (14.19) for options paying
the worst of two assets and cash degenerates to the pricing formula
given in (14.8) for options paying the best of two assets when K
approaches infinity.






Chapter 15

STANDARD DIGITAL OPTIONS
AND CORRELATION DIGITAL OPTIONS

15.1. INTRODUCTION

Digital options are also known as binary or bet options. Because of
their simple payoff patterns and other unique characteristics, they attract
many participants in the over-the-counter (OTC) marketplace. Generally
speaking, the payoff of a digital option can be either a fixed amount of
cash, an asset, or the difference between an asset price and a prespecified
level which is often different from the strike price. These digital options are
known as cash-or-nothing (CON), asset-or-nothing (AON), and gap options,
respectively. See Rubinstein (1991) for a good discussion of these options.
Digital options have been familiar most recently in accrual note structures,
which essentially include a series of digital options, and in mini-premium
foreign exchange trades.

As in outside barrier options analyzed in Chapter 11, we may call the
asset that is involved in the payoff of a digital option the payment asset,
which is almost always the same as the underlying asset or the measurement
instrument. However, it is not necessarily the case. If the payment asset
is different from the underlying asset, there will be two assets involved in
the digital option. We may call these digital options involving two assets
correlation digital options, and those involving only one asset ordinary digital
options. We will show in this chapter that correlation digital options have
more flexibility than ordinary digital options, and hence, may have greater
potential for practical use.

A correlation digital option is very similar in nature to an outside bar-
rier option discussed in Chapter 11 because both have the measurement asset
separated from the payment asset. As a matter of fact, correlation digital op-
tions can be regarded as European-style outside barrier options because their
payoffs are determined according to whether the measurement asset prices

399
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surpass a certain level at maturity. As a matter of fact, the so called “pure
vega” digital options are actually correlation digital options with the mea-
surement asset specified as the implied volume of another option. Actually,
many existing exotic products have similar properties to those of correlation
digital options. For example, most interest-rate swaps are based on either
one-month or three-month LIBOR. There are many exotic swaps in the mar-
ket which possess knock-in or knockout properties, depending on whether
LIBOR exceeds a certain prespecified trigger rate on some prespecified date.
LIBOR in these swaps is very similar to the measurement instrument in a
correlation digital option and the floating leg can be considered as its payoff
asset. In general, it is difficult to hedge swaps with knockout properties.
'To some extent, correlation digital options provide a good method to hedge
these swaps. They can also be used to hedge and/or speculate in financial
assets which are highly sensitive to inflation, using gold forward prices as the
measurement instrument. Or they can be used as managerial compensation
packages in which the measurement instrument can be sales or production
quantities and the payoff can be either cash, stocks, or a combination of the
two. Therefore, a systematic treatment of these correlation digital options
will prove to be very useful.

Some digital options such as CON or AON options are more simple
than vanilla options in their payoffs. Due to their simple payoff patterns,
some people argue that they should be considered as basic building blocks
of vanilla options. Most recently, Pecht]l (1995) showed that the payoff of
a vanilla option can be duplicated with the sum of an infinite number of
digital options. Whereas this argument is interesting theoretically, it may
not be of much practical use.

The purpose of this chapter is to introduce ordinary digital options, both
European- and American-style, and then extend these options to correlation
digital options. We will largely follow Zhang (1995d) in this Chapter. We
will study how to price correlation digital options and analyze their sensi-
tivities. We will show that correlation digital options include all three types
of ordinary digital options as special cases, and, as their name implies, the
correlation coefficient play an important role in determining the prices, sen-
sitivities, and other valuation aspects of correlation digital options. Again,
we confine our analysis to a Black-Scholes environment for the purpose of
transparency as well as easy comparisons.

15.2. STANDARD DIGITAL OPTIONS

The simplest digital option is a cash-or-nothing (CON) option. A CON
option is very much like a bet. If the underlying asset surpasses (resp. falls
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Fig. 15.1. The payoff of a CON option with strike price K = $30.

below) a prespecified level, then a prespecified amount of cash is paid to the
buyer of a CON call (resp. put) option. Otherwise the option expires worth-
less. Let us study the simplest CON option with a payment of $1.00 because
the prices of any other CON options with different prespecified payments are
simply the products of these payments and the price of the one-dollar CON
option. The payoff pattern of such a simple CON call option is given in
Figure 15.1, which indicates that the payoff jumps from zero to $1.00 at the
strike price. The simple CON option with one-dollar payoff is also called a
one-dollar CON option.

In a Black-Scholes environment, the underlying asset return is assumed
to follow a lognormal random walk given in (IV1) and the simple CON option
can be priced very conveniently because it is the present value of the possible
one-dollar future payoff. Since the probability that a CON option will be in-
the-money or the probability that wS(7) > wK is N(wd) in a Black-Scholes
environment,! the expected payoff of the one-dollar CON option is simply
N(wd) and its price (LDCON) is therefore

1DCON = e ""N(wd), (15.1)

!This can be readily shown using the change of variable: PlwS(r) > wK] = Plwz > win(K/S)] =
N{w[u > In(K/8)—pz)oz] = Plwu > ~wd] = N(wd), where z = In{S(r)/S] is the log-return of the
underlying asset which is lognormally distributed using the solution in (2.11) and u = (z — pz)/0=
is the standardized normal variable for z.
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which is the expected payoff N(wd) discounted at the risk-free rate r
continuously.

Using (15.1), we know that the price of a one-dollar CON call option is
e”""N(d) and that of a one-dollar CON put option is e ™" N(—d).

Example 15.1. Find the prices of the one-dollar CON call and put options
to expire in one year if the spot and strike prices are $100, interest rate
8%, the payout rate of the underlying asset 3%, and the volatility of the
underlying asset 20%.

Substituting S = K = $100, r = 0.08, ¢ = 0.03, 0 = 0.20, and 7 = 1
into (15.1) yields

d = [In($/K) + (r - g — 0°)7]/(0V/7)
=0.15,
and the prices of the CON call and put are
1DCONCall = ¢ %%8*1 N(0.15) = $0.5166
and

1DCON Put = e %> N(_0.15) = $0.4065 .

Another kind of digital options is called gap options. Gap options are
direct extensions of vanilla options. Figures 2.1 and 2.2 indicate that the
payoffs of vanilla call and put options are linear lines kinked at the strike price
K. Although their payoffs are kinked, the payoff functions are continuous
because the payoff of any vanilla call (put) option starts above (below) the
strike price K from zero. Compared to these continuous payoff patterns, the
payoff of a gap option starts at a prespecified level X which is often different
from the strike price of the vanilla option K. We may simply call X the gap
parameter. Figure 15.2 illustrates the possible payoffs of gap options with
various gap parameters. Figure 15.2 indicates that the payoff of a gap call
option is precisely the same as that of a vanilla call option when the gap
parameter X is the same as the strike price of the option and that the payoff
of a gap call option is above (resp. below) that of a vanilla call option when
the gap parameter X is smaller (resp. greater) than the strike price of the
option. This is easily understood because a gap option has a greater (resp.
smaller) payoff than the corresponding vanilla call option. Thus, the payoff
of a gap option either jumps up or falls down at the strike price K depending
whether the gap parameter X is smaller or greater than the strike price K.
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Fig. 15.2. Payoffs of Gap options strike price K = $30, X = $27, 30, & 33.

Using Figure 15.2, the payoff of a gap option (POFGAP) can be alter-
natively expressed:

POFGAP(7) =w[S(7) - X] f wS(7) > wK
= 0 if otherwise, (15.2)

where K is the strike price of the option; X is a prespecified gap parameter
which determines the level of gap around the payoff asset price; max(., .) is
a function that gives the larger of two numbers; and w is a binary operator
(1 for a call option and —1 for a put option).

Following a similar method as in Chapter 2 to derive the standard Black-
Scholes formula, we can obtain the price of a gap option (PGAP) with payoff

in (15.2):
PGAP = wS e 9" N(wd + wo/T) —wXe ""N(wd), (15.3)

where d = [ln(TS(— +(r—g- 02/2)7']/(0\/‘?) is the same argument as in
the extended Black-Scholes formula in (3.2) and g is the payout rate of the

underlying asset.
The pricing formula in (15.3) of gap options is almost the same as the

extended Black-Scholes formula in (10.31) with the only exception that the
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strike price K is replaced by the gap' parameter X in the second term.
Substituting X = K into (15.3) yields exactly the extended Black-Scholes
formula in (10.31). Therefore a vanilla options is a special case of gap options
when the gap parameter is the same as the strike price.

Example 15.2 Find the prices of the gap call options to expire in half a
year if the spot and strike prices are $100 and $105, respectively, interest
rate 7%, the payout rate of the underlying asset is 3%, the volatility of the
underlying asset 20%, and the gap parameter X = $102 and $107.

Substituting S = $100, K = $105, X = $102, r = 0.07, g = 0.03,
o = 0.20, and 7 = 0.50 into (15.3) yields

d = [In(100/105) + (0.07 — 0.03 — 0.20%/2) x 0.5]/(0.20v/0.50) = 0.071,
and
PGAP(w=1&X =102) = S e 9"N(d+ 0+/7) — Xe 7" N(d)
= 100e~%93%05 N (0.07 + 0.141) — 102¢~°07%03 N (0.071)
= $5.527;
and the price of the gap call option with X = $107 can be similarly obtained
PGAP(w = 1&X = 107) = 100e~%93%%5N(0.07 + 0.141) — 107¢~0-07x05
N(0.071)
= $2.977.

Asset-or-nothing (AON) options are also very popular. As their name
implies, AON options provide their holders the right to own the underlying
assets if the options expire in-the-money. Obviously, an AON option is a
special gap option when the gap parameter is zero. Therefore, the price of
an AON option (AON) can be obtained by substituting X = 0 into (15.3):

AON = Se 9" N(wd + wo/T), (15.4)

where all parameters are the same as in (15.3).
We will discuss the properties of CON, AON, and gap options in more
details when we study correlation digital options in the following sections.

Example 15.3. Find the prices of the AON call and put options to expire
in half a year with the gap parameter X = $102 and other parameters the
same as in Example 15.2.
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Substituting S = $100, K = $105, X = $102, 7 = 0.07, g = 0.0,
o = 0.20, and 7 = 0.50 into (15.2) yields

AON(w=1) =85 e 9" N(d + o/7) = 100~%93*05N(0.071 + 0.141)
= $57.53,
and
AON(w = ~1) = Se 9" N(—d — 0+/7)
= 100e~093*05 N (—0.071 — 0.141) = $40.98.

The AON options studied above are AON options with one strike price,
whether an asset is paid or not depending on whether the underlying asset
price is below or above this strike price. There is another kind of AON
options which are also very popular in practice. This kind of AON options
are called supershares which were first proposed by Hakansson (1976) and
priced by Garman (1978). Supershares can be considered as special AON
options. A supershare is an AON option because the asset is paid if the
underlying asset price at the option’s maturity ends up within a certain range
and nothing is paid otherwise. Suppose that the range for a supershare is
specified as from K; to K. A supershare can be considered as a portfolio
of two regular AON options: a long AON call at K; and short AON call at
K,. Using the pricing formula for regular AON options given in (15.4), we
can readily find the price of a supershare (PSPS) as follows

PSPS = Se"9{N[d(8, K;) + o/7] — N[d(S, K3) + o/7]}

where d(S, K) is the same argument as in the extended Black-Scholes formula
with spot and strike prices S and K, respectively.

15.3. AMERICAN DIGITAL OPTIONS

An American digital option pays off one dollar immediately if the strike
price is touched at any time during the life of the option. American digital
options can be considered as digital options with nondeferrable payment.
As in the analysis of rebates for “out” options in Chapter 10, the one-dollar
payment can also be deferred to maturity. Such digital options with the one-
dollar payment deferred to maturity are called one-touch digitals, implying
that one dollar is paid at maturity if the strike price or the breakpoint is
touched any time during the life of the option. In other words, one-touch
digitals are American digitals when the one dollar is deferred to maturity.
We try to provide closed-form solutions for these American digital options
in this section.
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15.3.1. Nondeferrable American Digitals

American digitals are not new products, they are special cases of the
knockout barrier options analyzed in Chapters 10 and 11. The payoff of
a nondeferred American digital is a special case of the nondeferred rebate
when the rebate is fixed at one dollar. Since the price of an American digital
option is the present value of one dollar without growth for a knockout
barrier option, we can readily obtain the pricing formula of an American
digital option by using the closed-form solution for the present value of the
rebate of a window out barrier options in Chapter 11. Substituting R = 1
and 17 = 0 into the formula of the present value of the rebate of a window

out barrier option given in (11.51) yields the price for a one-dollar American
digital option (P1AD):

q
P1AD = (%) e~ (rrvai—o?a}/2)m [Nz(Dh —DD;,c) + No(—Dy, DDl,C)]

+ (%)"“le—(rw«z_l—a2q31/2)n

x [Na(D-1,~DD_y,¢) + Ny(~D_,DD_4,0)] (15.5)
where

DV = dbs(S, H’ Tl) - O'QV\/T_’
DD, = dys(S,H, 71 + 7)) — 0q, /71 + Te,

71
c=— ,
1L+ Te
P(r) = V2 + 2ro?,
q,,(r):LV;/}(T—),V=1 or —1,
o

dps (S, H, s) is the same as in (10.31) with spot and strike prices S and H, and
time to maturity s, respectively; 71, 7., and 7 are the time when the barrier
starts to be effective, the time when the barrier ends to be effective, and
the time to maturity of the option, respectively; Nz(a, b, p) is the cumulative
function of a standard bivariate normal distribution with upper bounds a
and b and correlation coefficient p, and all other parameters are the same as
in (11.51).

The pricing formula for a one-dollar American digital option given in
(15.5) is a very general one because it permits the barrier to be effective
within a subset during the life of the option as in one-window barrier options.
It is obvious that the pricing formula given in (15.5) degenerates to the
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present value of a one-dollar American option when the barrier is effective
throughout the life of the option when the forward starting time 73 = 0 and
Te = T as in vanilla options. Substituting ;1 = 0 an 7. = 7 (15.5) yields the
price of a one-dollar American digital option when the barrier is effective
throughout the whole life of the option as in vanilla barrier options:

PIAD(m =0& 1e=7)= (-—g)ql(r)N[QQl(T)] + (E)q_l(r)N[eQ—l(T)] )

5
(15.6)

where

P(r) = Vv + 2ro?,

Qu(r) = ln(H/SU) +TVT¢(T),V —ler -1,
a(r) = +:;p 0,

where all parameters are the same as in (15.5).

Example 15.4. Find the price of the one-dollar American digital option
to expire in one year if the spot and strike prices are $100 and $95, interest
rate 8%, the payout rate of the underlying asset is 3%, the volatility of
the underlying asset 20%, the forward starting time is the present, and the
earlier ending time is also one year.

Substituting $ = K = $100, » = 0.08, g = 0.03, 0 = 0.20, 7 = 1 and
v=r—g—0%/2=0.03 into (15.6) yields

dps = [In(100/95) + 0.03 x 1}/(0.20v/1) = 0.4065,

¥(r) = /0.03% + 2 x 0.08 x 0.202 = 0.0854,

q1(r) = (0.03 + 0.0854)/0.20% = 2.886,

g-1(r) = (0.03 — 0.0854)/0.20° = —1.385,

Q1 = [In(95/100) + 1 x 0.0854]/(0.20 x v/1) = 0.1705,

Q-1 = [In(95/100) — 1 x 0.0854}/(0.20 x V1) = —0.6835,

P1AD(r, = Or, = 7) = 0.95>%% N (0.1705) + 0.95" 3% N(~0.6835)
= $0.7459.

Example 15.5. Find the price of the one-dollar American digital option in
Example 15.4 if the forward starting time is three months, and the ending
time is the same as the maturity time of the option.
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Substituting § = K = $100, r = 0.08, g = 0.03, ¢ = 0.20, ; = 0.25,
r=1 =1,and v=r—g—0%/2 = 0.03 into (15.5) and using some results
in Example 15.4 yields ‘

(r+vq — ¢20%/2)1, = —0.0433,
(r 4+ vg_1 — ¢%1/2)11 = 0.0208,
dps(S, H,71) = 0.5879
dps(S, H, 7 + 70) = 0.3971,
D, = 0.5879 — 0.20 x 2.886+/0.25 = 0.2993,
D_; =0.5879 — 0.20 x (—1.385)v/0.25 = 0.7264,
DD; =0.3971 — 0.20 x 2.886v/1.25 = 0.2482,
DD_; = 0.3971 — 0.20 x (—1.385)+/1.25 = 0.7068,

p=—4/0.25/1.25 = —0.4472,

and therefore the American digital option price is
P1AD = (.95886-0.0433 [N2(0.2993, 0.2468, —0.4472)
+ Ny(—0.2993, ~0.2482, —0.4472)
+0.95~1-385,—0.0208 [N2(0.7264, —0.7068, ~0.4472)

+ Np(~0.7264,0.7068, —0.4472)]

= $0.5998 .

Comparing the results in Examples 15.4 and 15.5, we can readily find
that the price of the American digital option with forward start feature
$0.5998 is much cheaper than the price of the corresponding option without
the forward start feature $0.7549. The cheaper price results from the fact
that the barrier is effective in a shorter period of time and the probability
that the barrier is touched is less.

15.3.2. One-Touch Digitals

A one-touch digital option is actually an American digital option with
payment deferred to the maturity of the optoin if the breakpoint is touched



Standard Digital Options and Correlation Digital Options 409

any time during the life of the option. Using the arguments made in Chap-
ter 10 for the present values of deferrable rebates for knockout options, we
can obtain the price of a deferrable American digital option corresponding
to (15.6)

) (3 )| (15.7)

where all parameters are the same as in (15.6).

With the above arguments, we can regard a knockout barrier option
with nondeferrable rebate as a portfolio of a vanilla barrier option without
any rebate and an American digital option, and a standard barrier option
with deferrable rebate as a portfolio of a vanilla barrier option without any
rebate and a one-touch digital option.

OTD = [N(v—a) N (H)zu/aZN(v_,_a)

15.4. DOUBLE-DIGITAL OPTIONS

Double-digital options are also called double digitals, or range binaries.
As in the case of double-barrier options with two barriers, there are two
boundaries for a double digital, one normally above and the other below
the spot price. A European double-digital option pays one dollar if the
underlying asset price at the option maturity ends within the range defined
by the two boundaries, and nothing if otherwise. Thus, the price of a double
digital is simply the probability that the underlying asset price ends up
within the two boundaries discounted by the risk-free interest rate. Using
the density function given in (11.63) with double barriers, we can obtain the
price of a double digital (PDD):

pone £ (9 {ofocsror (25)

n=—oo

- N[wdbs(s’ Wa,v) + (jjé)} }

B ol ()

- N[wdbs(S, W.,v) + (‘;’iﬁ)] }} , (15.8)

where W, = U if w=1and W, = L if w = —1, U and L are the upper
and lower bounds for the option, and all other parameters are the same as
in (11.66).
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Alternatively, we can obtain PDD if we use the density function given
in (11.72)r '

' 2
" FCRDP =e¢ "0%(a—b) Lyve i
- S

n=1

—AnT v/o?q (14w)/2
nane -1 (U
X{n2w2a4+v2(a—b)2 [( b (L) ] +“’}’

(15.9)

where all parameters are the same as in (11.73).

The above analysis is for a European double-digital option. Their cor-
responding American digital option pays off one dollar as soon as either
the upper bound or the lower bound is touched. As the prices of Ameri-
can digital options with one barrier are special cases of the present values
of rebates of the knockout options with one barrier, the prices of American
digital options with double barriers are special cases of the present values
of the rebates double-barrier knockout options. We can obtain the price of
an American double digital option (P1ADD) by substituting R = 1 and 7
= 0 into the present value of the rebate of a knockout option with double
barriers given in (11.72)

P1ADD =V, + 'V, (15.10)
where V,, and V] are the same as in (11.72).

15.5. CORRELATION DIGITAL OPTIONS

Suppose that there are two assets or indices, one of which is called the
measurement instrument or asset, and the other the payment asset. Let S(t)
and M(t) represent the prices of the payment asset and the measurement
asset, respectively, as in outside barrier options in Chapter 11. Suppose
further that both the underlying and the payoff asset prices S(t) and M(t)
follow the standard stochastic process given in (IV1), the returns of the two
assets are correlated with the correlation coefficient p, and ¢ and o2 are the
instantaneous standard deviations of the two prices, respectively.

The payoff of a European-style correlation digital option (POCD) can
now be expressed as follows:

POCD = w[S(r) — X] if wuM(7) 2 wK
= 0 if otherwise, (15.11)



Standard Digital Options and Correlation Digital Options 411

where K is the strike price of the option; X is a prespecified price to deter-
mine the level of gap around the payoff asset price; max (. , .) is a function
that gives the larger of two numbers, and w is a binary operator (1 for a call
option and —1 for a put option).

It is obvious that (15.11) becomes precisely the same as the payoff of an
ordinary gap option if the payoff asset is exactly the same as the underlying
asset, and it becomes the same as an ordinary asset-or-nothing binary option
if X is also set to zero.

15.6. PRICING CORRELATION DIGITAL OPTIONS

In order to price all kinds of options illustrated so far in this book, we
need the distribution of the underlying asset price. Let z and y represent
the log-returns of the payment and the measurement assets, respectively.
With the joint density function between z and y given in (IV4) and (IV5),
we can find the conditional density function of z under the condition of
wM(t) > wK, or wy > win(M/S), wv > wd(M, K,0?):

d(MaK70'2,g2) + pu
V1-p?

flulwv > wd(M, K,02,92)] = f(u)N[ , (15.12)

where
In(A/B)+ (r— D - C?/2)r
CJT ’
is the argument in the Black-Scholes formula with spot and strike prices A

and B, volatility C and payout rate D, respectively; M, o2, g2 are the spot
price, volatility, and payout rate of the measurement asset, respectively;

d(A, B,C,D) =

—(r — g — o Ay — 0o — 2
_z—(r—g 0/2)Tandv_y (r—g2—o3)T

oVT B o2/T ’

are the two standardized variables corresponding to the log-returns of the
payment and measurement assets, respectively; and w is the same option
operator in (15.11).

Using the conditional density function given in (15.9), we can obtain the
expected payoff of a European correlation digital call option given in (15.9):

u

E(POCD) = wSe 9" Ny|wd, (S, K, 0, 9),wd(M, K, 02, g2) + wpo /T, p)
— WXNyfwd(S, K,0,9), wd(M, K,00,02),6,  (15.13)
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where d)(S,K,0,9) = d(S,K,0,g9) + 0+/7, and Ny[a,b,p] is the value of
the cumulative function of the standard bivariate normal distribution with
upper limits a and b for the first and the second arguments and correlation
coeflicient p, and other parameters are the same as in (15.12).

The no-arbitrage argument permits us to use the risk-neutral valuation
approach by discounting the expected payoff of an option at expiration by the
risk-free rate of return. As the risk-neutral valuation relationship guarantees
that all assets are expected to appreciate at the same risk-free rate, we
can obtain the correlation digital option price (CDOP) by discounting the
expected payoff given in (15.13) the risk-free rate r:

CDOP = wSe™ 9" Nyjwdy (S, K, 0,9),0d(M, K, 02, g2) + 8paa\/T,wbp]
—wXe " Npwd(S, K, 0,9),0d(M, K,02,92),w8p], (15.14)

where CDOP is the correlation digital option price and all parameters are
the same as in (15.13).

The pricing formula in (15.14) has two interesting characteristics. One is
that it is similar to the plain vanilla option pricing formula as there are only
two terms and the univariate normal cumulative functions N(.) are replaced
by the bivariate normal cumulative functions N3(.,.,.). The other is that the
correlation coefficient plays an important role in the pricing formula.

Example 15.6. Find the prices of the correlation digital call and put op-
tions to expire in half a year, given the spot prices of the payment and
measurement assets $100 and $50, the payout rates of the two assets 3% and
5%, the volatilities of the two assets 20% and 10%, respectively, the interest
rate is 8%, the strike price is $45, the correlation coefficient between the two
assets 80%, and the gap parameter X = $105.

Substituting S = $100, M = $80, K = $85, X = $105, ¢ = 0.20, 03 =
0.15, 7 = 0.08, g = 0.03, go = 0.05, ¢ = 0.20, o3 = 0.15, and 7 = 0.50 into
(15.14) yields

_ 1n(100/85)(0.08 — 0.03 — 0.202/2)0.50

d(S,K,a,9) 0.30/050 = 1.2552,
- - /
d(M, K, 03, g2) = In(80/85) + (0.08 — 0.05 — 0.10/2)0.50 — —0.6806,

0.10+/0.50
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the call option price is

CDOP(w = 1) = 100e~%93%%-5 N, (1.25520.20v/0.50, —0.6806
+ 0.80 x 0.10v/0.50, 0.80)
— 105¢%-08%0:50 v, (1.2552, —0.6806, 0.80)
= $1.214,

and the corresponding put option price is

CDOP(w = —1) = —100e~%93%0-50 N, (_1.2552 — 0.20v/0.50, 0.6806
— 0.80 x 0.101/0.50, 0.80)
+ 105¢~0-08%0-50 v, (__1.2552, 0.6806, 0.80)
= $2.554.

Table 15.1 lists the correlation digital call option values for various cor-
relation coefficient p ranging from —0.9 to 0.90, given the underlying asset
spot price S = $100, the payment spot price S = $100, the strike price K
= $100, the gap parameter X = $100, time to maturity 7 = 1 year, the
volatility of the underlying asset & = 10%, the volatility of the payoff asset
o = 10%, the interest rate r = 10%, and other combinations of these given
parameters specified in Table 15.1. From Table 15.1 we can observe that
the correlation digital call option value increases strictly with the correla-
tion coefficient given other parameters the same and that the value varies
significantly with various correlation coefficients. For instance, the price of
the at-the-money option with the correlation coeffiwent p = 0.90 is $4.7976,
ten times as large as the price 0.9419 with p = —0.90. In fact, the correlation
option value increases nearly linearly with the correlation coeflicient given
other parameters the same.

Figure 15.3 depicts the prices of correlation digital options for various
correlation coefficients from —90 to 90%, given the spot prices of the un-
derlying asset and the measurement asset $100, strike price $90, time to
maturity half a year, interest rate 8%, the payouts of the two assets 3%,
the volatilities of the two assets 20%, and the gap parameters $95 and $98,
respectively. The dotted curve represents the prices of the correlation dig-
ital options with gap parameter $98 and the undotted curve the prices of
the corelation digital options with gap parameter $95. It is obvious from
Figure 15.3 that the option prices are lower with higher gap parameters.
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Table 15.1. Values of correlation digital call options and their sensitivities for various

correlation coefficients

S=S, K=X=9%100,7 =05, 0 = gp = 0.10, r = 0.10

p CDOP Delta Gamma Chi
-0.9 0.4914 0.2112 0.0562 16.0719
—-0.8 0.7793 0.2411 0.0588 8.3617
-0.7 1.0381 0.2657 0.0557 5.7691
-0.6 1.2828 0.2875 0.0566 4.4650
-0.5 1.5192 0.3076 0.0555 3.6805
—-0.4 1.7502 0.3265 0.0544 3.1583
-0.3 1.9776 0.3466 0.0544 2.7876
-0.2 2.2026 0.3622 0.0553 2.5131
-0.1 2.4261 0.3796 0.0553 2.3041

0.0 2.6489 0.3967 0.0553 2.1424

0.1 2.8714 0.4139 0.0552 2.0169

0.2 3.0946 0.4312 0.0552 1.9206

0.3 3.3191 0.4489 0.0552 1.8497

0.4 3.5459 0.4695 0.0552 1.8037

0.5 3.7761 0.4886 0.0552 1.7824

0.6 4.0115 0.5090 0.0551 1.7927

0.7 4.2550 0.5313 0.0551 1.8500

0.8 4.5121 0.5569 0.0551 1.9977

0.9 4.7976 0.5890 0.0550 2.4134

S=S,K=X=8$100,7=1,0 = gp = 0.10, r = 0.10

p CDOP Delta Gamma Chi
-0.9 0.8923 0.2612 0.0391 23.7379
—-0.8 1.3779 0.2919 0.0387 12.5052
-0.7 1.8070 0.3173 0.0386 8.7165
-0.6 2.2088 0.3398 0.0385 6.8069
-0.5 2.5943 0.3605 0.0384 5.6572
-0.4 2.9694 0.3801 0.0383 4.8922
-0.3 3.3375 0.3990 0.0383 4.3503
-0.2 3.7010 0.4173 0.0382 3.9508
-0.1 4.0616 0.4353 0.0382 3.6487

0.0 4.4207 0.4532 0.0382 3.4178

0.1 4.7795 0.4711 0.0382 3.2421

0.2 5.1395 0.4891 0.0382 3.1119

0.3 5.5021 0.5075 0.0381 3.0223

04 5.8689 0.5265 0.0381 2.9727

0.5 6.2424 0.5462 0.0381 2.9674

0.6 6.6258 0.5672 0.0380 3.0190

0.7 7.0249 0.5901 0.0380 3.1586

0.8 7.4504 0.6161 0.0380 34711

0.9 7.9312 0.6485 0.0379 4.3033
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Table 15.1 (Continued)

S=S, =K=X=8100,7=1,0 =020, 0p = 0.10, r = 0.10

P CDhOoP Delta Gamma Chi
-0.9 0.9092 0.2649 0.0396 23.9318
-0.8 1.3966 0.2950 0.0391 12.5699
-0.7 1.8269 0.3201 0.0389 8.7514
—-0.6 2.2295 0.3424 0.0387 6.8300
-0.5 2.6157 0.3631 0.0386 5.6746
—-04 2.9913 0.3826 0.0386 4.9065
-0.3 3.3598 0.4014 0.0385 4.3629
-0.2 3.7235 0.4197 0.0385 3.9623
-0.1 4.0843 0.4377 0.0384 3.6597

0.0 4.4435 0.4556 0.0384 3.4288

0.1 4.8022 0.4735 0.0384 3.2533

0.2 5.1621 0.4915 0.0383 3.1236

0.3 5.5244 0.5100 0.0383 3.0350

0.4 5.8909 0.5289 0.0383 2.9868

0.5 6.2638 0.5488 0.0383 2.9836

0.6 6.6448 0.5698 0.0383 3.0385

0.7 7.0430 0.5929 0.0383 3.1836

0.8 7.4373 0.6191 0.0383 3.5071

0.9 7.9461 0.6521 0.0384 4.3717

S=8,=X=%100,K=890,7=1,0 =0, =010, 1 = 0.10

P CDOP Delta Gamma Chi
-0.9 5.2707 0.7323 0.0751 21.8966
—-0.8 5.5420 0.7276 0.0729 11.5480
-0.7 5.8201 0.7256 0.0707 8.1772
—0.6 6.0932 0.7269 0.0689 6.5444
—-0.5 6.3570 0.7307 0.0675 5.6068
-04 6.6101 0.7364 0.0665 5.0209
-0.3 6.8521 0.7434 0.0658 4.6419
-0.2 7.0831 0.7514 0.0653 4.4000
~0.1 7.3032 0.7604 0.0650 4.2594

0.0 7.5125 0.7702 0.0649 4.2021

0.1 7.7105 0.7807 0.0649 4.2220

0.2 7.8985 0.7920 0.0652 4.3227

0.3 8.0746 0.8041 0.0657 4.5186

0.4 8.2384 0.8172 0.0664 4.8408

0.5 8.3886 0.8313 0.0674 5.3510

0.6 8.5229 0.8467 0.0687 6.1773

0.7 8.6372 0.8634 0.0705 7.6260

0.8 8.7239 0.8811 0.0727 10.6272

0.9 8.7699 0.8963 0.0750 19.8725
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Fig. 15.3. Correlation digital prices for various correlation coefficients.

We can also observe that the chis of the correlation digital options are all
positive with chosen paramters.

15.7. SPECIAL CASES OF CORRELATION DIGITAL
OPTIONS

The pricing formula of a correlation digital option in (15.14) is very
general as it includes all three ordinary digital options as special cases. We
show these cases in this section.

15.7.1. Ordinary Gap Options

If the payoff asset is exactly the same as the underlying asset, then
S=M,0,=0g; =gand p=1. Substituting go =g, 60 =0, and p = 1
into (15.14) yields

OGP = wSe™ 9" N, (wdl,wdl, 1) - wXe " Np(wd,wd,1). (15.15)

Formula (15.15) cannot be used directly because a bivariate normal cumu-
lative function with a perfect correlation coefficient p = 1 does not exist.
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However, this can be easily overcome by the following identity?
N3(z,2z,1) = N(2),

for and z € (—o0, 00).
Substituting (15.16) into (15.15) yields

OGP = we 9" SN(wd + wo/7) —wXe ""N(wd), (15.16)

which is precisely the pricing formula of an ordinary gap option given in
(10.31).

Vanilla options are a special case of ordinary gap options by substituting
X = K into (15.16).

15.7.2. Ordinary Asset-Or-Nothing Options

The pricing formula of an ordinary asset-or-nothing option (AON) given
in (15.3) can be obtained by substituting X = 0 into (15.17).

15.7.3. Ordinary Cash-Or-Nothing Options

Although an AON option is a special case of an ordinary gap option, the
ordinary cash-or-nothing (CON) option a not special case of the ordinary
gap option in a strict sense, as its price cannot be obtained from the pricing
formula of an ordinary gap options directly. However, the ordinary CON
option is a special case of the correlation digital option when M = Cash,
and X = go = 02 = p = 0. Substituting these values into (15.14) and
discounting it at the risk-free rate r yields®

CON = e ""Cash N(wd). (15.17)

15.7.4. “Another Asset-Or-Nothing Options”

The payoff of an ordinary asset-or-nothing option is the same as the
underlying asset. The payoff of a correlated AON, or “another asset-or-
nothing” (AAON) option is the other asset. The pricing formula of an AAON
can be obtained by substituting X = 0 into (15.14)

AAON = wSe™ 9" Ny[wd; (S, K, 0,9),wd(M, K,02,92) + wpoa\/T,p},
(15.18)

2This is a special case of the identity given in (11.38) and is proved in Appendix of Chapter 11,
thus Na(z, 2,1) = N[min(z, 2)] = N(z).

3d(M, K, 02) approaches infinity as M = Cash and X = u = 02 = p = 0. When the correla-
tion coefficient is zero, the two variables are stochastically independent, it can be readily shown
N32(61,02,0) = N(01)N(02). Therefore Na[dp + pop+/7,0] = N(oo)N(d) = N(d).
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where CDOP is the correlation digital option price and all parameters are
the same as in (15.14).

15.7.5. The Trivial Case of Independence

The trivial case of independence between the two payment and mea-
surement assets can help us understand the pricing formula given in (15.14)
better. Substituting p = 0 into (15.14) and after simplifications yields the
following

CDOP(p =0) = Njwd(M, K, 02, 92)|Cos(S, K, 0,9,w), (15.19)

where Cys(S, K, 0,9,w) is the vanilla option price with the spot price S,
strike price K, volatility ¢, payout rate g and option operator w as given in
(10.31).

Since the first factor in (15.19) is actually the probability that the mea-
surement asset price ends up above (resp. below) the strike price for a call
(resp. put) option, the pricing formula given in (15.19) can be interpreted
as the pricing formula of a vanilla option multiplied by the probability that
the dption is “knocked” in at maturity. This result is consistent with our
intuition because the two assets are stochastically independent and the pric-
ing formula of the option on the payment asset is actually the same as that
of the vanilla option with probability adjustment.

15.8. SENSITIVITIES

Due to their unique payoff patterns, digital options have sensitivities
very different from those of most other options. In this section we will
compare the sensitivities of the traditional and correlation digital options.

15.8.1. Deltas

The delta of an ordinary gap option can be obtained by taking the first-
order derivative of (15.3) with respect to S:

K-X
So\/T

8og = we 9" N(wd + wo/T) + e ""(d), (15.20)

where d is the same as in (15.3).
It is obvious that the delta of the ordinary gap call option in (15.20)

becomes precisely the same as the delta of a plain vanilla option when K =
X. Substituting X = 0 into (15.20) yields the delta of an ordinary AON
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option:

Soaon = we 9" N(wd + wo+/T) + e_g"i(—@ . (15.21)

o7
The delta of an ordinary CON call option can be obtained by taking the
first-order derivative of (15.14) with respect to S:

Cash
So\/T

From (15.21), we know that the delta of an ordinary AON call option
jumps from zero to

Boaon(S = K) = N[(r —9 +002/2)\/F} + M P vr ~9 +0U2/2)\/?] |

as the underlying asset price increases from § < K to S = K. The delta
of an ordinary asset-or-nothing call option at S = K, 8peon(S = K), is
clearly always greater than that of a plain vanilla option by an extra positive
amount. This implies that an ordinary AON option is more sensitive to the
underlying asset price change than its corresponding plain vanilla option.

From (15.22), we know that the delta of a CON call option jumps from
zero to

e f(d). (15.22)

Ocon = W

Seon(S = K) = g:\‘g/’;e‘"f [(T —9 -:2/2)#] ,

as the underlying asset price increases from S < K to S = K.

The delta of a correlation digital option with respect to the current
payoff asset price can be obtained as follows (see Appendix of this chapter
for the proof):

bcd = we 9" No[wd, (S, K, 0, 9),wd(M, K, 02, g2) + wpo /T, p

_pf[dl(SaKvaag)] {Nl:‘Udl(S’KaU’g)] _NI:Wd(S7K’Uag):|}
oVT vitp VvIi+p ’

(15.23)

where all parameters are the same as in (15.14) and f(.) is the density
function of a standard normal distribution.

We calculated the deltas of various correlation call options, the results
of which are listed in Table 15.1, for various correlation coefficients, given
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the same combination of other parameters. From Table 15.1 we can ob-
serve that the deltas vary significantly with various correlation coefficients.
This is consistent with the fact that correlation digital option values change
significantly with various correlation coefficients.

15.8.2. Gammas

The gamma of an ordinary gap option can be readily obtained by taking
the first-order derivative of (15.23) with respect to S:

Yog = ZI’;—”{X + ——(Xaz/;{)d} , (15.24)

where v, = f(d1)/[So+/7] > 0 is the gamma. of a vanilla option.

It is obvious that the gamma of an ordinary gap call option in (15.24)
becomes precisely the same as that of a vanilla option when K = X.
Substituting X = 0 into (15.24) yields the gamma of an ordinary AON
option,

=

Yoaon = /i (15.25)

~ The gamma of an ordinary CON call option can be obtained by taking
the first-order derivative of (15.22) with respect to S:

~w Cash _
Yeon = We "d1 f(d). (15.26)
From (15.25), we know that the gamma of an AON option jumps or drops
from zero to

2
Yoaon (S = K) = =22(r — g2 )v/7,

as the underlying asset price increases from S < K to S = K. The amount
of change at S = K depends on the volatility of the underlying asset, interest
rate, and time to maturity of the option. The gamma of an ordinary AON
option at § = K, Ypaon(S = K), is clearly very different from that of a
plain vanilla option. The gamma of an ordinary AON option can be of
the same (opposite) sign as the corresponding vanilla option if d is negative
(positive). As d is positive (negative) for a deep-in(out-of )-the-money vanilla
call option, the gamma of an ordinary AON option changes in the same
(opposite) direction with the corresponding vanilla option if it is deep-out-
of(in)-the-money.
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the same combination of other parameters. From Table 15.1 we can ob-
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where v,y = f(d1)/[So+/7] > 0 is the gamma of a vanilla option.

It is obvious that the gamma of an ordinary gap call option in (15.24)
becomes precisely the same as that of a vanilla option when K = X.
Substituting X = 0 into (15.24) yields the gamma of an ordinary AON
option,
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the first-order derivative of (15.22) with respect to S:
—wCash _
Yeon = We T‘rdlf(d) . (15.26)
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2
= v, O
Yoaon (8 = K) = il 92)\/?,

as the underlying asset price increases from § < K to § = K. The amount
of change at § = K depends on the volatility of the underlying asset, interest
rate, and time to maturity of the option. The gamma of an ordinary AON
option at S = K, Y500n(S = K), is clearly very different from that of a
plain vanilla option. The gamma of an ordinary AON option can be of
the same (opposite) sign as the corresponding vanilla option if d is negative
(positive). As d is positive (negative) for a deep-in(out-of)-the-money vanilla
call option, the gamma of an ordinary AON option changes in the same
(opposite) direction with the corresponding vanilla option if it is deep-out-
of(in)-the-money.
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Tpv
=——"=d. 15.2
70(10’" U\/‘I_'d ( 5)
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—wCash _
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Yoaon (S = K) = _“0—'(7' ‘9?)\/7_',
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rate, and time to maturity of the option. The gamma of an ordinary AON
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(opposite) direction with the corresponding vanilla option if it is deep-out-
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The gamma of a correlation digital option can be obtained as follows
(see Appendix of this chapter for an outline of the proof):

= LLCD i) + N (b)) + gy N ) = SN ()
' Xe ™" ’
- 520‘\/;(\;)/1——7)3 [G(dlad + pa\/;, P) - S G(d9d ,P)] 3
(15.27)

where
G(a,b,p) = —(1 - p*)f(a)f(a1) + by/1 — p2f(b)N(a2),
hi=dy/V/1+ ,h2=d/\/‘i—+__,
a1 = (b= pa)/y/1 - p? a2 = (a—pb)/\/1— 2,

dy = dl(Sa K, ‘7,9)7dl = d(M’ K, 0’2,92),

and all other parameters are the same as in (15.14).

The gamma expression is rather complicated as it involves six terms,
two of them being in terms of double integrations. Although the gamma
expression is in closed-form, we cannot see clearly how the gamma changes
with various parameters. We have calculated the gamma values for various
sets of given parameters and the results are listed in Table 15.1. From Table
15.1 we can observe that gammas vary moderately with various correlation
coefficients.

15.8.3. Chi

Sensitivities of vanilla option values with respect to various option pa-
rameters have been named in Greek letters and these names have become
very popular. As we argued in Chapter 13 that the Greek letter x is pro-
nounced as “chi” in English and has the same first letter “c” as correlation
coefficient, we may simply use chi to stand for the sensitivity of a correlation
option value with respect to its correlation coefficient. Taking the partial
derivative of (15.14) with respect to p yields the chi of a correlation digital

option:

Xcb = (_——ZW [p(pd' +ay/T)/1 = p2f(d1)N(h1) + G(d1,d + pov/T, p)]

+ Xe™ T [

A=y (WL~ P f@N () + Gld, d,p)|, (15.28)
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where G(a, b, p), F(a,b, p) are the same as in (15.27) and all parameters are
the same as in (15.14).

Expression (15.28) indicates that the sensitivity of a correlation digital
option value with respect to its correlation coefficient, the chi, is expressed
in similar functions as its delta and gamma. Table 15.1 lists the chis for
various correlation coeflicients given the same combination of other parame-
ters. It indicates that the chi changes tremendously with various correlation
coefficients, especially those closer to —1. Other calculations show that the
chi can become extremely large when p approaches —1.

15.9. SUMMARY AND CONCLUSIONS

We introduced and priced both European and American digital options
as well as double digital options in this chapter. We have introduced the con-
cept of correlation digital options with one measurement asset and one payoff
asset. We have provided closed-form solutions for correlation digital option
prices and showed that these options include all existing ordinary European
digital options as special cases. Our analysis shows that digital options have
sensitivities very different from those of vanilla options. Correlation digital
options should have great potential because of their unique characteristics
and simplicity in pricing. Indeed, many existing exotic products possess
properties similar to those of correlation digital options.

Digital options can be combined with many other kinds of exotic options
to form more complicated exotic options. For example, Rubinstein and
Reiner (1991) studied binary barrier options and provided a detailed “family
tree” of 28 possible binary barrier options. Since the objective of this book
is to introduce the basic kinds of exotic options, we do not want to include
these combination products because the number of combination can be too
large for a single book to cover.

QUESTIONS AND EXERCISES
Questions

15.1. What is a CON option?

15.2. What is an AON option?

15.3. What is a gap option?

15.4.  Why are digital options considered as the simplest options?

15.5.  Under what condition can a gap option become a vanilla option?

15.6.  Should an American digital option be cheaper or more expensive
than its corresponding European digital option? Why?



15.7.
15.8.
15.9.

15.10.
15.11.
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What is the most important characteristic of all digital options?
What is a correlation digital option? Why can it be very popular?
Are American digital options with forward start barriers cheaper
or more expensive than the corresponding American digital options
with barriers effective throughout the lives of the options?

What are double digital options?

What is the price of a correlation digital option if the payment asset
and the measurement asset are stochastically independent?

Exercises

15.1.

15.2.

15.3.

15.4.
15.5.
15.6.

15.7.

15.8.

15.9.

Find the prices of the one-dollar CON call and put options to expire
in half a year if the spot and strike prices are $90, interest rate 10%,
the payout rate of the underlying asset is 5%, and the volatility of
the underlying asset 15%.

Find the deltas, gammas, and vegas of the CON options in Exer-
cise 15.1. |
Find the prices of the gap call and put options to expire in eight
months if the spot and strike prices are $100 and $105, respectively,
interest rate 7%, the payout rate of the underlying asset is 5%, the
volatility of the underlying asset 10%, and the gap parameter X =
$105.

Find the deltas, gammas, and vegas of the gap options in Exer-
cise 15.3.

Find the prices of the corresponding AON call and put options in
Exercise 15.3 and other parameters are the same as in Exercise 15.3.
Find the deltas, gammas, and vegas of the AON options in Exer-
cise 15.5.

Find the price of the one-dollar American digital option to expire in
five months if the spot and strike prices are $80, $85, interest rate
6%, the payout rate of the underlying asset is 2%, the volatility of
the underlying asset 15%, the forward starting time is the present,
and the earlier ending time is five months.

Find the price of the one-dollar American digital option if the for-
ward starting time is two months and other parameters remain the
same as in Exercise 15.7.

Find the price of the one-dollar American digital option if the earlier
ending time is four months and other parameters remain the same
as in Exercise 15.7.
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15.10.

15.11.

15.12.

15.13.

15.14.

15.15.

15.16.

15.17.

15.18.

15.19.

15.20.

15.21.*

15.22.*

Find the price of the one-dollar American digital option if the for-
ward starting time is two months and the earlier ending time is four
months and other parameters remain thé same as in Exercise 15.7.
Find the price of the on~-*ouch option given all the information the
same as in Exercise 15.7.

Find the price of the European double-digital option if the uppe:
barrier is $90 and other parameters are the same as in Exercise 15.7.
Find the price of the corresponding American double-digital option
in Exercise 15.12.

Find the prices of the correlation digital call and put options tc
expire in eight months, given the spot prices of the payment and
measurement assets $80 and $90, the payout rate of the two as-
sets 2% and 4%, the volatilities of the two assets 25% and 15%.
respectively, interest rate is 9%, strike price is $85, the correla-
tion coefficient between the two assets 756%, and the gap parameter
X = §75.

Find the deltas, gammas, and chis of the two correlation options ir
Exercise 15.14.

Find the prices of the corresponding AAON options in Exer-
cise 15.14.

Find the deltas, gamma, and chi of the AAON options in Exer-
cise 15.16. '

Find the correlation option prices in Exercise 15.14 if the correlation
coefficient is 74% (hint: use the chis in Exercise 15.17).

Find the correlation option prices in Exercise 15.14 if the correlation
coefficient is —1 [hint: use the two identities given in (11.42) anc
(11.43) in Chapter 11).

Show that the price of an American digital option given in (15.6)
is a special case of the price of an American digital option given ir
(15.5) when the forward starting time is zero and the earlier ending
time is the same as the maturity of the option.

Find the following integration in terms of standard univariate nor-
mal density and cummulative functions: I, = [°_ f(u)f(A+Bu)du
[Hint: follow the procedure to derive (A15.5) in Appendix.]

Find the following integration in terms of standard univariate nor-
mal density and cummulative functions: Il = [%_uf(u)f(4 +
Bu)du. [Hint: follow the procedure and derive II in (A15.7) and se«
the results in Exercise 15.21.]
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15.23.* Find the following integration using Exercise 15.21: [;° f(u)f(A +
Bu)du.

APPENDIX

The partial derivative of Nx(a,b, p) with respect to the upper bound b
can be obtained using the two alternative forms of the joint density function
of a standard bivariate normal distribution given in (IV4) and (IV5) at the
beginning of Part IV:

aNaab) = [ f(u)f( = )\/‘1”“’“

—p a b—pu
= — u —_—— du.
V1-p? /—oof( )f<v1—P2) (A15.1)

We need to find an explicit expression for the univariate integration in
(A15.1). The univariate integration of the product of two standard den-
sity functions f(z) and fl(A + Bz)//1— p2] can be generally calculated
using the following method to find three unknown variables £, M, and, H

such that
A+ Bu 1 1+ B?2 — p*)u? + ABu + A?
ff| == ) = 5-ex - o) 2
1-p 2r 2(1 — p?)
1 u? ~2Mu+ H _
= 57—1- exp [-——-——————2 22 ] , (A152a)
1 1+B*-p* -2M _ 24B
2y 21-p%) " 2%? 20-p7)
and
2
H A (A15.2b)

T2y? T 2(1-4Y)°
Solving the three unknown variables £, M, and H from the three equations
in (A15.2b) yields

3=/ + B2 -p?),
M =—-AB/(1+ B - p?),
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and
H=A%/1+B*-p%. (A15.3)

Substituting the solutions of the three variables o, M, and H into (A15.1),
we can readily find

I / (A+Bu>exp[_(u—M)z"’ng—Mszu

=% exp ( - HZEﬁJz)N(a E:M> . (A15.4)

Substituting A = b and B = —p into (A15.3) and then substituting X,
M, and H into (A15.2a) yields the integration of the product of two standard
normal density functions:

A+ Bu
I= / fu )f(\/—p)du

/ 2 __ 52
= /1 - p2F(4;0,1+ B2 — pY)N avl+B®—p* i
V1-p? (A15.5)

The partial derivative in (A15.1) is thus known. This method can be
used to find closed-form expressions for first-order sensitivities such as deltas
and vegas for most correlation options in a Black-Scholes environment.

A related univariate integration most often used to find closed-form ex-
pressions for second-order sensitivities such as gammas is of the following

form:
= / (A+ B“)du (A15.6)

Using the method of integrating by parts, we can obtain the following

A+ Ba a A+ Bu\ A+ Bu B
== f(a )f(\/*pz)_/.oof<\/1—p2>\/1—p2\/1—p2du

A+ Ba AB B?
=-f(a )f<\/—,,z>‘1_,,2]“ 1_,;211’

which is an equation with only one unknown II because I is given in (A15.4).
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The solution of II is given as follows:

a A+ Bu
11=/_wuf(u)f<\/—l__——_p§>du

_ 1-p? f(@)f A+ Ba
e W\ T
_AB__I_—Lz_F(A.O 1+ B2 — p?)
1+ B2 p2 00
xN(a\/1+Bz—p2+AB/\/1+B2—p2)
V1i-p? (A15.7)

Using the result of I7in terms of I in (A15.4), we can express the gamma
and chi in closed-form in terms of the univariate cumulative functions.






Chapter 16
QUOTIENT OPTIONS

16.1. INTRODUCTION

Quotient options are also called ratio options. As the name implies, a
quotient option is an option written on the ratio of two underlying asset
prices, indices, or other quantities. Due to their unique nature, quotient
options can be used to take advantage of the relative performance of two
assets, markets, or portfolios. Although there are other options such as
spread options that can perform similar functions, quotient options possess
some advantages over spread options because their prices can be expressed
conveniently in closed-form in a Black-Scholes environment.

Quotient options have a characteristic which all other options so far
covered in this book do not have — notional value or face value. As quotient
options are normally written on the ratios of asset prices or market indices,
and these ratios, and hence the prices of the options written on them, may
be rather small, there may exist some prespecified notional amount or face
amount for some quotient options. The total value of such an option is simply
the product of the option price and the prespecified notional amount. Since
the notional amount is always prespecified, we can simply concentrate on
the option price. The purpose of this chapter is to price quotient options in
a Black-Scholes environment and to find applications for these options.

16.2. QUOTIENT OPTIONS

The payoff of a European-style option written on the ratio of two in-
struments can be expressed as follows:

PPQT/; = max [wggg —wK, 0] , (16.1)

L(7)
Ii(7)

or

PPQT,;, = max [w - wK, 0] , (16.2)
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where K is the strike price of the option and w is a binary operator (1 for a
call option and —1 for a put option.)

Assume that the two underlying asset prices follow the stochastic process
given in (IV1) as in previous chapters. As the individual asset price is
lognormally distributed in a Black-Scholes environment, the ratio of the
price of the first asset over that of the second asset, or vice versa, is also
lognormally distributed. Thus, the quotient option price can be expressed in
closed-form. Since there are two ratios for every two underlying instruments
and two types of options for each ratio, there are four kinds of quotient
options for every two underlying instruments.

16.3. PRICING QUOTIENT OPTIONS

Figure 16.1 depicts the integration domain or the area in which a quo-
tient call option written on the ratio of two asset prices will be in-the-money.
It is obvious that the integration domain is a little more complicated than
that of an exchange option because the strike price K is in general not equal
to 1. The integration domain is always the area below the straight line start-
ing from the origin with the slope K. It becomes the same as that of an
exchange option only when the strike price K = 1.

24

22

20

18 -

16

14 -

12 -

the second asset price ot maturity

i 1 ! ! 1 1 1 ! 1 f i 1 !
3 4 3 6 7 8 9 0 11 12 13 14 15

0 1
2
the first asset price ot mcturity

Fig. 16.1. Payoffs of quotient options with strike prices K = 0.50, 1.00, and 1.50.
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Using the bivariate normal density function given in (IV4) and (IV5),
we can obtain the expected payoff of a quotient option given in (16.1):

I
PPQTT1/2 =w [}le(#l —k2)T+oy (ay-poz)N(Wdlra,IZ) - KN(Wdral2)] 3
2
(16.3)

where

1 I 1, 1,
d - — — )+ _ ——oi4+ =
ral2 Oa\/; [ln (KIg) (’ul 2 201 202) T] !

and

dira12 = dra12 + 0aVT, 0z = \/af — 2po10y + 03

Arbitrage-free arguments permit us to use the risk-neutral valuation
approach by discounting the expected payoff of an option at expiration by
the risk-free interest rate. We can obtain the price of quotient option (PQT)
by substituting p; = r — g; (g1 and gz are the pay out rates of the two
underlying assets, respectively) and discounting the expected payoff in (16.3)
by the risk-free rate:

PO,z = w [ B sea=s N (o) — K™ (o)
2
(16.4)

where

dralZ"'o_a\/F [ln(KIz)'*"(.‘h g1 20'1+20'2 T »
and
dira12 = dra12 + 0aVT,

04 is the same as in (16.3).

Formula (16.4) is obviously of the Black-Scholes type as it is in terms of
the univariate cumulative function of the standard normal distribution and
the first argument dirq12 is always 04+/T greater than the second argument
d,q12 in the cumulative function as in the Black-Scholes formula. It can
be verified that the formula of the expected payoff in (16.3) degenerates
into that for a vanilla option when Iy = 1, pp =02 =g2 =0 because the
aggregate volatility o, becomes the same as the volatility of the first asset.
One obvious difference between the quotient option pricing formula in (16.4)
and the Black-Scholes formula is that the volatilities and the correlation
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coefficient parameters appear in the coefficient of the first term. We will
explain this term in the following section.

Example 16.1. Find the prices of the quotient call and put options to expire
in three months, given the two spot prices $100, the strike price $0.98, the
volatilities of the two assets 15%, the payout rates for the two assets 3%
and 6%, the interest rate 10%, and the correlation coefficient between the
returns of the two assets 90%.

Substituting I = I = $100, K = $0.98, 01 = 03 = 0.15, 7 = 3/12 =
0.25, g1 = 0.03, g2 = 0.06, r = 0.10, and p = 0.90 into (16.4) yields

0a = 10.152 — 2 x 0.90 x 0.15 x 0.15 + 0.152 = 0.0671,

L1 [m( 100 )
T2 T av0.25 | \0.98 x 100

1 1
+ (0.06 ~0.03 - 5 x 0.15% + 5 X 0.152) x 0.15] = 0.8089,

dira12 = 0.8089 + 0.067+/0.25 = 0.8425,
and the call option price
— e(().06—0.03—0.10)><0.25+0.15(0.15—0.9><0.15)x0.25]\7(0.8425)
— 0.98¢0-10%0:25 iy (0 8089)
= $0.0311,
and the put option price
— _e(0.06—0.03—0.10)><0.25+0.15(0.15—0.9x0.15)x0.25N(_0'8425)
+ 0.98¢~0-10x0-25 \r(_().8089)
= $0.0036 .

Options can also be written on the ratio of the second instrument over
the first. The payouts of such options are given in (16.2). The price of a
European option on the ratio of the second instrument over the first can be
obtained following a similar procedure as above or simply from (16.4) using
the symmetric property between I; and I,

PQTy; =w [%e@l-gz-ﬂ”ﬂ(”l =P N (wdirg21) — Ke ™ N(wdraz1)| ,
1
(16.5)
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where

d P p—— — — s - = — o
ra2l o7 [ln (Kh) + (91 g2+ 501 2927 dra12 o7

dire21 = drq21 + Ua\/;a

and

Oq = \/ai'Z — 2poy10g + U% R
where dyq)2 is the same as in (16.4).

Formula (16.5) is also of the Black-Scholes type as it is in terms of the
univariate cumulative function of the standard normal distribution and the
first argument d),q21 is always 0,+/7 greater than the second argument drq21
in the cumulative function.

Example 16.2. Find the prices of the call and put options written on the
ratio of the second asset price over the first in Example 16.1.

Substituting I; = I, = $100, K = $0.98, 01 = 02 = 0.15, 7 = 3/12 =
0.25, g1 = 0.30, g = 0.06, r = 0.10, and p = 0.90 into (16.4) and using the
results in Example 16.1 yields

. = V0.152 — 2 x 0.90 x 0.15 x 0.15 x +0.152 = 0.0671,

mf = 0.3954,

draZl = "dra12 -

dira21 = 0.4290,

a

and the call option price
— ¢(0-30-0.06-0.10)x0.25+0.15(0.15-0.9%0.15) x0.25 17 (0, 4290)

— 0.98¢0:10%0:25 v (0,3954)
= $0.0203,

and the put option price
— _0-03-0.06-0.10)x0.25+0.15(0.15-0.9%0.15)x0.25 \7(_().4290)

+ 0.98¢~0-10%0-25 \v(__0).3954)
= $0.0075.

16.4. SENSITIVITIES

Using the two arguments dirq12 and dre12 given in (16.4), we can obtain
the following identity:

Ile[g2_gl+U2(U2_P‘71]Tf(d1ra12) = Ksz(draIZ) s (16.6)
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which can be used to simplify most sensitivity expressions of quotient op-
tions. :

Like exchange options and options paying the maximum or the minimum
of two underlying assets, there are two deltas for a quotient option because
there are two underlying assets. Taking partial derivative of the pricing
formula in (16.4) with respect to the two spot prices and simplifying the
results using (16.6) yields the following two deltas:

0
Deltal = 'éTIPQTl/z

= ¥ o92~g1—r)r+02(02—po1)7 py (wdira12) > 0,
I (167&)

7]
Delta2 = —a—I;PQTl/Z

= _“_;g_l.e(yz—gl—T)T+tr2(Uz—ml)fN(wdlmu)
2

= ——?Deltal <0. (16.7b)
2

Formula (16.7b) indicates that the delta of the quotient option price with
respect to the second asset price is always of the opposite sign to that with
respect to the first asset price. The opposite sign is consistent with the
intuition that the two spot prices have opposite effects on the ratio which
affects the option price.

Example 16.3. Find the deltas of the quotient call option written on the
ratio of the first asset price over that of the second asset in Example 16.1.

Substituting I} = Iy = $100, K = $0.98, o1 = 02 = 0.15, 7 3/12 = 0.25,
g1 = 0.30, g, = 0.06, and r = 0.10 into (16.7a) yields

Deltal(w=1) = 1 ¢(0:06—0.03—0.10)x0.25+0.15(0.15-0.9x0.15) x0.25 s (0.8425)

100
= 0.0079 = 0.79%,

Deltal(w=—1) = i—o_:)e(o.oe—o.o;;—o.m)xo.25+o.15(0.15—0.9xo.15)xo.25N(_0_8425)
= —-0.002 = -0.20%,

Delta2(w=1) = —Deltal(w = 1) = —-0.79%,
Delta2(w=—1) = ~Delta2(w = —1) = 0.20%.
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Next, we will find the chi, or the sensitivity of the quotient option price
with respect to the correlation coefficient. Taking partial derivative of (16.4)
with respect to the correlation coefficient p and simplifying the result yields
the chi of the quotient option using (16.6):

g wo107
B_pP QT =-

= —(0102)Deltal < 0, (16.8)

el92—g1-T)T+02(02—-po1)T 7y (wdira12)

which indicates that the quotient option price decreases monotonically with
the correlation coefficient. The negative sign of the chi of a quotient option
is very intuitive because the more positively (resp. negatively) the two assets
are correlated, the more likely the two asset prices move together (resp. in
opposite directions) and thus the more likely the ratio is to be smaller (resp.
greater), and therefore, the less (resp. more) valuable the call option written
on the ratio will be.

Example 16.4. Find the chi of the quotient call and put options written on
the ratio of the first asset price over that of the second asset in Example 16.1.

Using the results in Example 16.3 and (16.8), we can find the chi of the
quotient options:

—(o102)Deltal(w = 1) = —0.15 x 0.15 x 0.0079 = —0.0002 = —-0.02%,
and

—(0102)Deltal(w = —1) = —0.15 x 0.15 x (—0.0020) = 0.00005 = 0.005% .

16.5. APPLICATIONS

Quotient options can be used to take advantage of the relative perfor-
mance of two underlying instruments or markets. We will take an example
to see how they can be used.

Example 16.5. Suppose that there are two stocks with the spot prices I =
$100, I, = $100, the volatilities o; = 18% and o2 = 15%, their dividend rates
g1 =4%, g2 = 3%, the two stock returns are correlated with the correlation
coefficient p = 75%, the interest rate r = 5%, and the strike price of the
option K = 1, then what are the prices of the quotient call and put options
on the ratio of the first asset price over that of the second asset to expire in
one year?
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Substituting the given parameters into (16.4) yields:

Oq = \/af - 2poy103 + a% =0.12,

drarz = [m( 100 ) + (0.03 -0.04 - % X 0.122) X 1} / (0.12v/1)

1x 100
= —0.2033,

dira1z = —0.2033 + 0.12/1 = —0.0833.

Therefore the call option price

— 1e(0.03—0.04-0.05) x14+0.15x(0.15—0.75x0.2) x 1 N(—00833)

— e 001Ny (_0.2033)
= $0.0453,

and the price of the put option
= —1¢(0-03-0.04-0.05)x1+0.15x (0.15—0.75x0.2) x 1 N(0.0833) + e~%95x1 N (0.2033)

= $0.0557 .

16.6. SUMMARY AND CONCLUSIONS

To some degree, quotient options can be used to achieve similar results
as spread options because they are both written on the relative price changes
of two underlying assets. As it is to be shown in Chapter 21, although there
exist closed-form solutions for spread options in the Black-Scholes environ-
ment, the parameters are more complicated than those in the formulas given
in (16.4) and (16.5). Due to the simplicity of their pricing formulas, it is
more convenient to use quotient options.

QUESTIONS AND EXERCISES

16.1. What are quotient options?

16.2. How many kinds of quotient options are there for each pair of un-
derlying instruments?

16.3. Why are ratio options similar to spread options?

16.4. Find the quotient option price in Example 16.1 if K = $1.1, p =
0.95, and other parameters remain unchanged.

16.5. Find the deltas of the two quotient options in Exercise 16.4.
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16.6. Find the chi of the two quotient options in Exercise 16.4.

16.7. Find the prices of quotient options written on the ratio of the second
asset price over the first asset price in Exercise 16.4.

16.8. Find the deltas of the two quotient options in Exercise 16.7.

16.9. Find the chi of the two quotient options in Exercise 16.7.

16.10. Find the prices of the quotient options in Exercise 16.4 if K = $0.95
and other parameters remain unchanged.






Chapter 17

PRODUCT OPTIONS AND
FOREIGN DOMESTIC OPTIONS

17.1. INTRODUCTION

A product option is an option written on the product of two underlying
asset prices or indices. A direct application of product options is foreign
domestic options or foreign equity options in domestic currency. A foreign
domestic option can be either a foreign equity or commodity option with
the strike price in domestic currency. Product options could also be used
to hedge the revenue of one company because the revenue is the product of
the commodity sales and the product price. The purpose of this chapter is
to price product options in a Black-Scholes environment and to apply the
theory to foreign domestic options and other situations.

17.2. PRODUCT OPTIONS

The payoff of a European option on the product of two underlying in-
struments can be expressed as follows:

PDUCT = max [wli(7)2(7) — wK, 0], (17.1)

where K is the strike price of the option and w is a binary operator (1 for a
call option and —1 for a put option).

In a Black-Scholes environment, the two underlying instruments are as-
sumed to follow the stochastic process given in (IV1). The two instruments
do not both have to be asset prices. If one underlying instrument is a foreign
asset price and the other is the foreign exchange rate measured in domestic
currency per unit of foreign currency, the payoff in (17.1) becomes the same
as that of a domestic option with the strike price K in domestic currency.
If one underlying instrument is a domestic commodity asset price and the
other is the commodity sales of a company, the payoff in (17.1) becomes

439
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that of an option written on the revenue of that company. Since the product
of two lognormally distributed variables are also lognormally distributed,
closed-form pricing formulas of product options can be readily obtained.

17.3. PRICING PRODUCT OPTIONS

Figure 17.1 depicts the integration domain or the area in which a product
call option can be in-the-money. The curve is obviously a hyperbolic curve
rather than a straight line, which is the case all the option payoff patterns
so far covered in this book. For any point above (resp. below) the curve
in Figure 17.1, the product of the two prices is above (resp. below) the
strike price. Thus, the area above (resp. below) the curve is the integration
domain for a product call (resp. put) option.

20 ,
18
16 4
14 1
12

10 4

P
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 17.1. Integration domain for a product option with K = 20.

Using the bivariate normal density function given in (IV3) and (IV4) and
the integration domain shown in Figure 17.1, we can obtain the expected
payoff of a product option in (17.1) as follows:

E(PDUCT) = wl Le#+#2+p7192)" N () ) ~ wK N(wdpy), (17.2)
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where

= l _——
dw p \/?{n<K)+[ﬂl+'u2 2(al+02)r ,
dipy = dpy + Tpu /T,

and

Opu = \/af + 2po102 + 03

We can obtain the price of a product option (PPDC) by substituting
i =7 —g; (g1 and g, are the payout rates of the two underlying assets) into
(17.2) and discounting the expected payoff in (17.2) by the risk-free rate r:

PPDC = wl I,eT 91792491007 N (g ) — wKe™™ N(wdpy) ,
(17.3)

where

__1 (. (hb Loty o
d,m—-apu\/;{ln( 7 )+[2r a1 — g2 2(0'1+0’2)T]},

and

Opu = \/a% + 2p0i09 + 03 .

We can observe that (17.3) is clearly of the Black-Scholes type as it is
in terms of the univarite cumulative function of the standard normal dis-
tribution and the first argument dyp, is always dy, greater than the second
argument in the cumulative functions as in the Black-Scholes formula. The
volatility function op, can be understood as an aggregate volatility of the
two assets as it is the effective volatility used in the pricing formula. Ob-
viously it is similar to the aggregate volatility o, in the pricing formulas of
exchange options, options paying the maximum or minimum of two assets,
and ratio options in previous chapters. However, the aggregate volatility o,
is different from the aggregate volatility o, because it is always greater than
the latter for positive correlation coefficients resulting from the positive sign
in the product term of the expression. It can be verified that the pricing
formula in (17.3) degenerates into the Black-Scholes formula when I, = 1,
p2 = o= go = 0 because the aggregate volatility oy, becomes the same as
the volatility of the first asset.

Example 17.1. Find the prices of product options to expire in one year if
the spot prices of the two stocks are I, = $4, I» = $15, the volatilities of the



442 Ezotic Options

two stock returns o7 = 10% and o2 = 15%, the dividend rates of the two
stocks g1 = g2 = 0, the two stock returns are correlated with the correlation
coefficient p = 50%, the interest rate » = 5%, and the strike price of the
product option K = $60.

Substituting the given parameters into (17.3), we obtain:

opu = /0% + 200102 + 03 = 02179,

I 1 1
dpy = [ln (72-> + (27‘ -—g1—-92— 50% - 50%) ‘r] /(apu\/;)
— 3.8435,
dipu = dpy + Opuy/T = 4.0614.

Therefore, using (17.3), the price of the product call option becomes

PPDC(w = 1) = [} [,e{"=91-92+p0192)T N (g ) — Ke ™™™ N (dpy,)
=4 % 15e(0.05-0—0+0.50)(0.1X0.15)XlN(4'0614)
— 60e095%1 N (3.8435)
= $6.4804;

and the price of the corresponding put option becomes

PPDC(w = —1) = —I11;el=91792+P70)" N(_dy Y 4 Ke™™ N(—dpy,)
= —4 X 158(0'05_0,—04-0'50)(0'1xo'ls)XIN(—4.0614)
+ 60e70-05%1 N (—3.8435)
= $0.0019.

17.4. FOREIGN DOMESTIC OPTIONS

An immediate application of the product option pricing formula is for
foreign domestic options or foreign equity options with domestic strike prices
because the product of a foreign equity price and the exchange rate per unit
of foreign currency at the option maturity is the foreign equity price in terms
of domestic currency. The foreign exchange rate per unit of foreign currency
can be modeled as a stochastic process given in (IV1) with the underlying
payout rate the same as the foreign interest rate. Assume that the first
asset is the foreign equity and the second asset the foreign exchange rate,
the payout rate of the second asset gy is simply the foreign interest rate ry.
Substituting g = r¢ into (17.3) yields the price of a foreign domestic option
(PFD):

PFD = whLe~1=914r2192)7 N(udy ) — wKe ™ N(wdpy), (17.4)
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where

1 IlIz 1 .
dpuy = U_p'u—\/—F {ln (—K—) + [21' —Tf—g1— —2-(0%7 +a§)] T} ,
dlp'u = dpu + Upu\/’;,

and oy is the same as in (17.3).

Example 17.2. Find the prices of the call and put options written on a
Sony stock with the strike price K = $60 to expire in one year, given that the
spot price of the Sony stock I; = ¥5350, the volatility of this stock o1 = 10%,
the Japanese interest rate ry = 4%, the US interest rate r = 5%, the current
US dollar/Japanese yen exchange rate I, = $0.0111/yen, the volatility of
the exchange rate oo = 15%, and the stock return and the US dollar/yen
exchange rate are correlated with the correlation coefficient p = —25%.

Since the options in this example are foreign domestic options, we can
use (17.4) directly. Substituting the given parameters into (17.4), we get:

O = /07 + 20010 + 0§ = 0.1581

dpu = P— {ln( % ) + [21" a—Tf 2(01 +02)] T
=0.2178,
dypu = 0.3759 .

Therefore, using (17.4), the price of the Japanese stock call option becomes
L1 Ie(r=91771+p9192" N(dy ) — Ke™™ N (dpu)
— 5350 x 0.0111¢(0-05-0-0.04-0.25x0.1x0.15)x1 A () 3750)
— 60e~%05*1 N (0.2178)
= $5.212;

and the Japanese stock put option becomes
— [ L= 91=7r+p0102)T N(_dy ) + Ke " N(—dpu)
— 5350 x 0.111e(0:05-0-004-0.25x0.1x0.15)x1 pr(_ 3750)
+ 60e0-95%1 N(—0.2178)
=$2472.

17.5. REVENUE OPTIONS

As the revenue of any company is the product of their production sold
and the selling price of their product, options can be written on the product
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to hedge the risks on the revenue. Assume the price of a company’s product
to be the first asset price I; which follows the stochastic process in (IV1)
and the company production sold I also follows the same stochastic process.
The only difference between the stochastic process of the asset price and that
of the production sold is that the drift of the asset price process has to be
T — g1 in the risk-neutral world and the drift of the quantity process does
not need to be constrained by this condition.

We can obtain the price of a revenue option (PREVU) by substituting
p1 =1 — g; into (17.2) and discounting the expected payoff given in (17.2)
by the risk-free rate r:

PREVU = wl Le#2=91%,01907 N(d ) — wKe ™ N(wdpy,), (17.5)

where

d”“_apuﬁ[l“(K)+<r 91*“2‘5"1‘2”2)4’

dlpu =dpu +0'pu\/‘l_’,

Opu = \/af + 2poi0o2 + 03,
and ps is the instantaneous mean of the quantity of product is sold.

Example 17.3. Suppose the current price of the product of XYZ company
I = $20, the volatility of the product price o; = 12%, the current sales I,
= 1 million, the volatility of sales is 20%, the product price and the sales are
correlated with the negative correlation coefficient 20%, the instantaneous
drift of the sales is 15%, the payout rate of the first asset g; = 0, the interest
rate r = 6%. Then what are the revenue option prices with the strike price
K = $20 million?

Substituting the given parameters into (17.5) yields

Opu = \/0} + 2p0102 + 73 = 1/0.102 + 2 x (=0.20) x 0.10 x 0.15 + 0.152
=0.1628,

(o) oot ]

— 1 20x1 1 9 ) }
= 0.1628\/;{111( 50 )+ [0.06 0+0.15 — (0.10° +0.15 )} x 1

=1.1901,
dpu = dpy + Opuy/T = 1.1901 + 0.1628 = 1.3529
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and the revenue call option price

I Le(#2=91%79192)T N (dy ) — wKe ™™ N(wdpy)
p— 20 X 1e(0.15—0-—0.2>(0.1)(0.15)XlN(1.3529) - 208—0.06X1N(1-1901)
= $4.4959 million ;

and the revenue put option price

— [ Iel#2—91 +palaz)TN(_dlpu) + Ke " N(—dpy)
= —920 x 1e(0.15—0—0.2x0.1x0.15)xIN(_1.3529) + 206_0'06X1N(—1.1901)
= $0.1641 million .

17.6. SENSITIVITIES

Using the two arguments djpy and dpy in (17.3), we can obtain the
following identity:

[ ,e(r=92-924p0102)7 £y ) = K f(dpu) , (17.6)

which can be used to simplify most sensitivity expressions for product
options. v

Product options have two deltas as ratio options because there are two
underlying assets. Taking partial derivative of the pricing formula in (17.3)
with respect to the two spot prices and simplifying the results using (17.6)
yields the following two deltas:

Delta; = aiIPPDC
i

= ije('_-""91+p”‘°2)TN(wd1pu), i, j=1lor2, andi # j,
(17.7)

which indicates that the delta of a product option with respect to any one
of the two asset prices equals the other asset spot price multiplied by the
product of a normal cumulative function value and a positive coefficient.
This symmetric results from the symmetric property of the product because
the order of the two asset prices does not affect the product value.

The sensitivity of the product option price with respect to the correlation
coefficient is obtained by taking partial derivative of (17.3) with respect to
the correlation coefficient p and simplifying the result using (17.6):

0

9 pppc = YYTN2 r-g-gitpnionl f(dy,,), (17.8)
Op Opu
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which indicates that the product call (resp. put) option price increases (resp.
decreases) monotonically with the correlation coefficient. The positive sign
of the chi of a product option is intuitive because the more closely the two
assets are correlated, the larger the product, and the greater the call option
price will be.

Example 17.4. Find the deltas of the product call option in Exam-
ple 17.1.

Substituting the given parameters into (17.7) using the results in
Example 17.1 yields:

Deltal — Ize(0.05—0—0+0.50>(0.1X0.15)X1N(4.0614) — 15888,

Deltaz — Ile(0.05-—0—0+0.50X0.1><0.15)XlN(4.0614) = 4.937.

17.7. SUMMARY AND CONCLUSIONS

We have found closed-form solutions for product options or options writ-
ten on the product of two underlying instruments. An immediate application
of the product option pricing formula is to price foreign domestic options —
foreign equity or commodity options with strike prices in domestic currency.
The pricing formula of product options can also be used to price options writ-
ten on the revenue of a company when one underlying asset is the selling
price of a product and the other is the quantity of that product sold. The
compact closed-form solution for product option prices in a Black-Scholes
environment is very convenient to use and can be applied to many other
problems.

QUESTIONS AND EXERCISES

17.1.  What are product options?

17.2. What are foreign domestic options?

17.3.  What is the connection between product options and foreign domestic
options?

17.4.  Give two examples to show how product options could be used.

17.5. How are the integration domains of product options different from
those of other options?



17.6.

17.7.
17.8.
17.9.

17.10.
17.11.

17.12.

17.13.
17.14.

17.15.
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Find the prices of product options to expire in half a year if the spot
prices of the two stocks are I} = 85, I = $20, the volatilities of
these two stock returns o3 = 20% and o3 = 25%, the dividend rates
g1 = g2 = 4%, the two stock returns are correlated with the correlation
coefficient p = 75%, the interest rate r = 8%, and the strike price of
the product option K = $100.

Find the deltas of the product options in Exercise 17.6.

Find the chi of the product options in Exercise 17.6.

Find the prices of Sony domestic options in Example 17.2 if the corre-
lation coefficient between the Sony stock and the dollar/yen exchange
rate is —40% and other parameters remain unchanged as in Exam-
ple 17.2.

Find the deltas of the two options in Exercise 17.9.

Find the prices of the call and put options written on a Toyota Motor
stock with the strike price K = $20 to expire in one year, given that
the spot price of the Toyota Motor stock I; = ¥183, the volatility of
this stock is 13%, the Japanese interest rate 5 = 4%, the US interest
rate 7 = 6%, the current US dollar/Japanese yen exchange rate I =
$0.0111/yen, the volatility of the exchange rate o2 = 16%, and the
stock return and the dollar/yen exchange rate are correlated with the
correlation coefficient —35%.

Find the deltas of the two Toyota Motor stock options in Exer-
cise 17.11.

Find the chi of the two Toyota Motor options in Exercise 17.11.
Find the prices of the two Toyota Motor options in Exercise 17.11 if
the correlation coefficient between the Toyota Motor stock return and
the dollar/yen exchange rate is —50% and other parameters are the
same as in Exercise 17.11.

Find the prices of the call and put options written on a Volkswagen
stock with the strike price K = $325 to expire in half a year, given
that the spot price of the Volkswagen stock I = 454 German marks,
the volatility of this stock is 10%, the German interest rate 6%, the
US interest rate r = 8%, the current US dollar/mark exchange rate is
I, = $0.70/mark, the volatility of the exchange rate o2 = 15%, and
the stock return and the US dollar/mark exchange rate are correlated
with the correlation coefficient —15%.

17.16.* Show the identity given in (17.6).






Chapter 18
FOREIGN EQUITY OPTIONS

18.1. INTRODUCTION

Foreign equity options, as their name implies, are options written on
foreign equity with strike prices in foreign currency. These options could
be priced for foreign investors using the Black-Scholes formula directly in
foreign currency. However, domestic investors may also be interested in for-
eign equity options. For instance, American investors may be interested in
Japanese stock or German stock options to either speculate in the Japanese
or German equity markets or hedge their exposure in these markets. It is
obvious that exchange risks are involved for domestic investors because the
payoffs of foreign equity options are in foreign currency and they have to
be converted into domestic currency. In other words, foreign equity returns
are correlated with exchange rates. With increasing development in finan-
cial market globalization, the demand for foreign equity options has grown
significantly in the past decade and will grow at an even higher speed in the
coming years.

This is the second chapter which involves foreign currency. We stud-
ied foreign domestic options as an application of product options in Chap-
ter 17. Reiner (1992) analyzed four basic types of currency-related options
and called them currency-translated options. The purpose of this chapter is
to analyze foreign equity options in a Black-Scholes environment and intro-
duce some of their applications.

18.2. FOREIGN EQUITY OPTIONS

The payoff of a foreign equity option in foreign currency can be given
the same as in (2.1):

PFE = max [wh(r) - wKj, 0], (18.1)

449
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where I1(7) and K stand for the foreign equity price at the option maturity
and the strike price in foreign currency, respectively; w is the same binary
operator (1 for a call option and —1 for a put option).

In a Black-Scholes environment the underlying instrument is assumed to
follow a standard geometric Brownian process. We assume that the foreign
equity price follows the stochastic process given in (IV1). Since the payoff in
(18.1) is in foreign currency, it has to be converted into domestic currency
for domestic investors. Assume that the exchange rate I2(7) is in domestic
currency per unit of foreign currency and it follows the stochastic process
given in (IV1) with the payout rate g, = ry, the foreign interest rate as
in Chapter 17. The payoff of a foreign equity option in domestic currency
(PFEDC) is simply the product of the payoff given in (18.1) and the exchange
rate I(T):

PFEDC = I(t) max [wl) (1) — wKjy, 0], (18.2)
which can be expressed alternatively as:
PFEDC = max [wh(r)I2(7) — wKI(7)], (18.3)

resulting from multiplying the exchange rate I;(7) into both terms of the
max (. , .) function in (18.2).

The payoff in (18.3) indicates that a foreign equity option can be un-
derstood as a product option with a floating strike price K¢I;(7). This is
somewhat similar to the Asian options with floating strike prices in Chap-
ters 5 to 7 and to the foreign domestic options in Chapter 16.

18.3. PRICING FOREIGN EQUITY OPTIONS

The price of a foreign equity option in foreign currency can be given
directly using the extended Black-Scholes formula in (10.31) because the
payoff in (18.1) is the same as that of a call option in (2.1) when w =1
and as that of a put option in (2.2) when w = —1, with the exception that
the payoff in (18.1) is in foreign currency and those in (2.1) and (2.2) are in
domestic currency. In order to compare the difference between the price of a
foreign equity option in foreign currency with that in domestic currency, we
first express the foreign equity option price in foreign currency (FEOPFC)
by using the extended Black-Scholes formula given in (10.31):

FEOPFC = whe ™" N(wdyf) — wKse /" N(wdy), (18.4)
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where -

g = B/Kp) + (s — g1 = o}/2)7
f o7 )

dif =ds +o1V/7,

w is the binary operator (1 for a call option and —1 for a put option), ry is
the foreign interest rate, and other parameters are the same as in (18.2).

The pricing formula of a foreign equity option in foreign currency is
exactly the same as the Black-Scholes formula in (10.31) if we substitute the
domestic interest rate and the domestic strike price with the foreign interest
rate and the foreign strike price, respectively.

Since the exchange rate is normally correlated to the stock price, we
cannot price foreign equity options in domestic currency directly using the
extended Black-Scholes formula given in (18.4). However, the problem can
be solved using the joint distribution function between the stock return and
the exchange rate given in (IV4) and (IV5). As illustrated in (18.2), the
exchange rate merely converts or modifies the payoff of a foreign equity
option, and the integration domain for a foreign equity option in domestic
currency is the same as that in foreign currency, or the payoff in (18.2) is
nonzero for foreign equity prices above the strike price for a call option and
below it for a put option. Using the joint density function given in (IV4)
and (IV5) and the integration domain discussed above, we can obtain the
expected payoff of a foreign equity option in domestic currency in (18.2):

E(PFEDC) = wl LeW+#2+p9192)7 N{uy(dy s + poay/T)]
- wK;Ie"" Nw(ds + po2v/7)], (18.5)

where dy and dyy are the same as in (18.4), 02 and p represent the volatility
of the exchange rate and the correlation coefficient between the exchange
rate and the foreign equity return, respectively, and p) and p; represent the
drifts of the foreign equity return and the exchange rate, respectively.

The foreign equity option price in domestic currency (FEPDC) is ob-
tained by substituting g3 = r; — g1 and pp = r — 75 into (18.5) and dis-
counting (18.5) at the risk-free domestic interest rate r:

FEPDC = L{wl;%172=9" N{w(dy s + poay/7)]
—wKe " Niw(ds + poav7)]}, (18.6)
where all parameters are the same as in (18.5).

The pricing formula of a foreign equity option in (18.6) is obviously of
the Black-Scholes type because it is expressed in terms of the cumulative
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functions of the standard normal distribution and the argument in the first
cumulative normal function is always o14/7 greater than that in the second
cumulative function. It is different from all other correlation option pricing
formulas in the sense that the arguments in both the cumulative functions
have a common term poy/7 resulting from the exchange rate which is mul-
tiplied in front of the regular foreign equity option payoff given in (18.2).

We can check that the term in the brace of the pricing formula in (18.6)
becomes precisely the same as the pricing formula of a foreign equity option
in foreign currency given in (18.4) when the correlation coefficient is zero.
This is intuitive because the foreign equity option is priced independently
of the correlation coefficient when the correlation coefficient is zero and the
value of the foreign equity option in domestic currency is simply obtained
by multiplying the foreign equity option price in foreign currency by the
exchange rate. When the correlation coefficient is not zero, we can obtain
(18.6) by substituting the spot price I; with I;eP1°2 in (18.4) and convert
it into domestic currency with the spot exchange rate I.

Example 18.1. Find the prices of the BMW stock options to expire in
one year with the strike price 800 marks in both German marks and US
dollars, given the spot BMW stock price 810 marks, the German interest
rate 7%, the US interest rate 8%, the payout rate of the stock g,= 4%, the
volatility of the stock o1= 12%, the spot German mark/US dollar exchange
rate 1.39 marks/dollar, the exchange rate volatility 15%, and the correlation
coefficient between the BMW stock return and the exchange rate is 25%.

The prices of the BMW options in German marks can be obtained by
substituting I; = 810 marks, K; = 800 marks, ry = 7%, 7= 1, 03 = 0.12,
and g; = 0.04 into (18.4):

ds = [In(810/800) + (0.07 — 0.04 — 0.122/2)]/(0.12v/1)
= 0.2935,
diy =dys + oVT
= 0.2935 + 0.12 x v/1 = 0.4135,
FEOPFC(w = 1) = 810e™%%**1N(0.4135) ~ 800e~%°7>1 N'(0.2935)
= 54.875 marks,

and

FEOPFC(w = —1) = —810e~%%*1 N (~4135) 4 800e~%97*1 N(—0.2935)
' = 22.551 marks.
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The prices of the BMW options in US dollars can be obtained by sub-
stituting I; = 810 marks, Iy = 1/1.39, Ky = 800 marks, ry = 7%, 7 = 1,
o1 =0.12, g3 = 0.04, p = 0.25, and o2 = 0.15 into (18.5):

df + poay/T = 0.2935 + 0.25 x V1 = 0.5435,
dif + po2y/T = 0.4135 + 0.25 x V1 = 0.6635,

FEPDC(UJ — 1) = 1_.‘;_5 [810e(°'25’<°~12"°~15‘°-°4)’<1N(0.6635)
— 80060971 N(0.5435)|
= $40.644,
and
FEPDC(w=~1) = %39 [ _ 8108(0.25)(0.12x0.15—0.04)xIN(_0.6635)

+ 8000071 N (~0.5435)]

= $14.881.

Comparing the results in Example 18.1, we can find that the BMW stock
option prices in US dollars cannot be obtained directly from converting the
corresponding prices in German marks using the current exchange rate. If we
convert the BMW stock call and put option prices 54.875 and 22.551 marks
into US dollars at the current exchange rate 1.39 marks/dollar, we would
obtain $39.478 and $16.224, respectively. Yet the prices of these options
are $40.644 and $14.881 from Example 18.1. Thus, the direct conversion
method used above undervalues the call option by $1.166 and overvalues the
put option by $1.343, respectively.

Example 18.2. Find the prices of the Honda Motor stock options to expire
in nine months with the strike price ¥1600 in both Japanese yen and US
dollars, given the spot Honda Motor stock price ¥1540, the Japanese interest
rate 3%, the US interest rate 8%, the payout rate of the stock g1 = 2%, the
volatility of the Honda Motor stock o1 = 14%, the spot Japanese yen/US
dollar exchange rate ¥90/dollar, the exchange rate volatility 18%, and the
correlation coefficient between the BMW stock return and the exchange rate
is —30%.

The prices of the Honda Motor options in Japanese yen can be obtained
by substituting I; = ¥1540, K; = ¥1600, ry = 3%, 7 = 9/12, o1 = 0.14,
and g; = 0.02 into (18.4):
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ds = [In(1540/1600) + (0.03 — 0.02 — 0.14%/2) x 1)/(0.14v/1)
= —0.3140,
dyy =djs + o1V
= —0.3140 + 0.14,/9/12 = —0.1923,
FEOPFC(w = 1) = 1540e~%92%1 N'(-0.1923) — 1600e~%%3*1 N (—0.3140)
= ¥53189,
FEOPFC(w = —1) = —1540e~%%2X1 N'(0.1923) + 1600e~%%*1 N(0.3140)

= ¥100.518.

The prices of the Honda Motor options in US dollars can be obtained
by substituting I = ¥1540, I, = 1/90, Ky = ¥1600, ry = 3%, 7 = 9/12,
o1 = 0.14, g1 = 0.02, p = —0.30, and o, = 0.18 into (18.5):

df + po2y/T = ~0.3140 — 0.30 x 1/9/12 = —0.5738,
dig + poay/T = —0.1923 — 0.30 x 1/9/12 = —0.4521,
FEPDC(w=1) = 516[1540e(—o.3o><o.14xo.18-o.02)x1N(_0_4521)
- 800e“°'°3N(—0.5738)] = $0.536,
FEPDC(w = —1) = 516 [ _ 15406(—0.30x0.14x0.18—0.02)xlN(O.4521)

+ 800e %3N (0.5738) = $1.142.

Comparing the results prices in Example 18.2, we can find that the
Honda Motor stock option prices in US dollars cannot be obtained directly
from converting the corresponding prices in Japanese yens using the current
exchange rate. We can convert the Honda Motor stock call and put option
prices ¥53.189 and ¥100.518 into US dollars at the current exchange rate
90 yen/dollar and obtain $0.591 and $1.117, respectively. Thus, the direct
conversion method overvalues the call option by $0.055 and undervalues
the put option by $0.025, respectively. The reason that the call option is
undervalued in Example 18.1 and overvalued in Example 18.2 is that the

correlation coefficient is negative in Example 18.2 while it is positive in
Example 18.1.

18.4. SENSITIVITIES

Using the expressions of dy and d;y in (18.4) and (18.6), we can have
the following identity:

Ile(Pdwz—yl)Tf(dlf + poa\/T) = e TKsf(ds + poa\/T). (18.7)



Foreign Equity Options 455

The delta of a foreign equity option with respect to the spot price of
the foreign equity can be obtained by taking partial derivative of (18.6) and
simplifying the result using (18.7):

Delta; = @fiiﬂ = wlelP? 1927907 N(w(dy s + poay/T)}.  (18.8)

It is obvious that the delta formula in (18.8) degenerates to that of a
vanilla option multiplied by the spot exchange rate when the correlation
coefficient is zero.

The delta of a foreign equity option with respect to the spot exchange
rate I can be obtained directly by taking partial derivative of (18.6) with
respect to Is:

OFEPDC

Deltag = oI
2

= wIle(mez—yl)‘rN[w(dlf + pUz\/;)]
—wK e " Nw(ds + po2v/7)], (18.9)

which is very similar to the foreign equity option pricing formula in foreign
currency given in (18.4). It is interesting to observe that the sensitivity given
in (18.9) becomes exactly the foreign equity option pricing formula in foreign
currency given in (18.4) when p = 0, implying that the pricing formula (18.4)
is a special case of the sensitivity in (18.9).

Example 18.3. Find the deltas of the options in Example 18.1.

Substituting I; = 810 DM, I, = 1/1.39, K; = 800 DM, r; = 7%, 7 = 1,
o1 = 0.12, g1 = 0.04, p = 0.25, and o2 = 0.15 into (18.8) yields

Deltal(w = 1) — 1 6(0'25)(0'12)(0'15—0'04))(1N(0.6635)

1.39
= $0.518 = 51.8%,
Delta;(w = —1) = l_;ge(ozsxo.lzxo.ls—o.o‘;)x1N(_0.6635)

= —$0.176 = 17.6%,
Deltay(w = 1) = 810e(°'25"°‘12>‘°'15_°'°4)XlN(O.