0 FRANCESCO LAGONA & FABIO PADOVANO* Center for Economics of Institutions and Dipartimento di Istituzioni Politiche e Scienze Sociali, Università Roma Tre A NONLINEAR OPTIMAL SCORING ESTIMATE OF THE RELATIONSHIP BETWEEN BUDGET RULES AND FISCAL PERFORMANCE IN THE EUROPEAN UNION ABSTRACT Tests of the budget rules/fiscal performance relationship are metric-sensitive and arbitrary in the evaluation of the stringency of the rules, aggregation of these evaluations in an index and imposition of a linearly specified model. In this paper we propose a nonlinear principal component analysis to solve these problems and evaluate the relative disciplinary power of each rule. A battery of regressions on 1980-1999 optimally transformed data relative to 12 EU countries confirms that more stringent rules reduce fiscal imbalances, but not budget size, while increases in the degree of stringency of the rules are negatively correlated with public expenditures growth. JEL CLASSIFICATION CODES: H61, H62, C49 KEYWORDS: budget rules, fiscal performance, nonlinear principal components. 1 1. Introduction and literature review Recent contributions to the literature on the determinants of public deficits focus on budget procedures to explain the considerable cross country differences in fiscal performances within highly interconnected and similarly developed economies, such as the OECD countries, the Latin American countries and the U.S. States (Alesina and Perotti, 1994, 1996). These contributions rest on the idea that democratic institutions allow policymakers to partially internalize the political costs of their spending decisions, with consequent deficit bias in financial choices (Buchanan and Wagner, 1977; Alesina and Perotti, 1994). Different budget procedures, however, put similarly deficit-biased policymakers under different sets of constraints. Budget outcomes should thus vary with the degree of stringency of these constraints (von Hagen, 1991; von Hagen and Harden, 1995, 1996). This literature has initially emphasized the effects of imposing numerical targets on fiscal variables, such as budget deficit, public expenditures and debt. The provisions of the Maastricht Treaty and the balanced budget rules adopted by almost all the U.S. states are expression of this line of reasoning. Empirical tests of these theories have yielded mixed results. Some studies find no significant correlation between measures of fiscal discipline and single budget rules, such as veto power and balanced budget laws (Holtz-Eakin, 1988; Bunch, 1991). Others find that these rules “work”, provided that they are coordinated with other constraints on fiscal discretion at other stages of the budgetary process (Poterba, 1994 and 1996; Alt and Lowry, 1994; Bayoumi and Eichengreen, 1995; Bohn and Inman, 1996; Padovano, 1998). Otherwise, these rules prove not only ineffective, but generate incentives for “creative accounting” and for a reduction of the transparency of the budget process (Milesi-Ferretti, 1997). These results led scholars to shift their attention from numerical to procedural budget rules. These are the regulations that govern each stage of the budget process, from the 2 formulation of the budget proposal by the executive, to its discussion and approbation by the legislature and to its final implementation (von Hagen, 1992; von Hagen and Harden, 1996; Alesina and Perotti, 1996). These models generally predict that budget procedures lead to greater fiscal discipline inasmuch as they strengthen the prerogative to the prime minister or the finance minister over the spending ministers, limit universalism, reciprocity and amendments in parliamentary budget sessions and constrain bureaucratic discretion in the execution of the budget law (Baron, 1989, 1991; Baron and Ferejohn, 1989; von Hagen, 1992). Empirical analyses seem to lend support to these predictions: von Hagen (1992), de Haan and Sturm (1994) and de Haan, Moessen and Volkerkink (1999) find indexes of centralization of the budget process negatively correlated with budget deficits, government debt and government expenditures in the EU countries. Alesina, Hausmann, Hommes and Stein (1996) find similar results using a comprehensive sample of Latin American countries. Though encouraging, these empirical studies suffer of several methodological shortcomings that cast doubts on whatever finding they get. A first shortcoming arises from the approximation of the degree of stringency of each rule. All studies capture this qualitative dimension by assigning numerical evaluations to each rule (von Hagen, 1992; de Haan and Sturm 1994; Alesina, Hausmann, Hommes and Stein, 1996; Padovano, 1998; de Haan, Moessen and Volkerkink, 1999; and, among the official publications, ACIR, 1987). Although these assignments are generally reasonable assessments of the rigorousness of each rule, this procedure relies upon an arbitrary numerical coding of ordinal variables. Subsequent analyses based on these variables are sensitive to the coding method chosen and thus produce spurious results. A second shortcoming derives from the aggregation of the rules. As the number of rules that compose a budget process is usually very large, regressing fiscal variables on the entire set of rules leads to highly parametric and unsatisfactory statistical models. To save degrees of 3 freedom, empirical studies estimate the rigorousness of the budget process as a whole; more specifically, they construct some index that sums the numerical values assigned to each rule of the process (von Hagen, 1992; de Haan and Sturm 1994; Alesina, Hausmann, Hommes and Stein, 1996; Padovano, 1998). Implicitly, this means that the way a budget process constrains fiscal choices can be represented by a linear additive function where all rules have equal weight, i.e., they are perfect substitutes for each other in achieving the same degree of fiscal discipline. It may be the case, however, that certain provisions restrict the choice set of fiscal decision makers more than others. Yet, the arbitrariness and the high level of aggregation of these indexes make it very difficult to learn the relative constraining power of single rules within the budget process. A third shortcoming is inherent to the form of the correspondence between budget rules to fiscal outcomes. Theory (such as von Hagen, 1991) provides little guidance for the specification of regression models in empirical tests. Most studies suppose that the degree of stringency of a rule categorized in n variants increases linearly with the number of variants. There are reasons to believe, however, that a nonlinear relationship is more appropriate. For instance, Crain and Miller (1990) show that the general veto and the line item reduction veto (the most and the least general form of veto power on a budget law) are less restrictive than the intermediate form, the line item veto. This is a prima facie evidence of a U-shaped relationship. These doubts lead Von Hagen (1992) and Padovano (1998) to use nonparametric significance tests. While this approach is correct in principle, few studies adopt it because it does not clearly expose the form of the relationship under test. To improve on each of these shortcomings, our paper proposes a Nonlinear Principal Component Analysis (hereafter, NLPCA) of the data set. NLPCA encloses a number of data transformation procedures (see Kruskal and Shepard, 1974, Young, Takana and de Leeuw, 1978, Winsberg and Ramsay, 1983 and the extensive discussion in Gifi, 1990) which 4 generalize the standard principal component analysis to a method capable of both analyzing qualitative data and reducing the number of qualitative exogenous variables for subsequent use in the standard analysis of linear models. More precisely, NLPCA assigns to each country a (small) number of scores that summarizes the degree of stringency of the overall budget structure. This summary is the solution of an optimization process that: a) minimizes the loss of explanatory power in the reduction process; b) keeps the ordinal properties of the underlying data; c) yields evaluations of the degrees of stringency of the rules that are invariant to monotone transformations, which implies that it is not sensitive to the interval differences between the numerical evaluation of the data; d) highlights which rule has the greatest disciplinary power; e) provides a non linear transformation of the independent variables based on precise mathematical properties that yields the most appropriate specification of the relationship between budget procedures and fiscal outcomes; f) permits a quantitative summary of the budgetary changes occurred in each country during the study period. With these improvements in the specification of the estimates we reach three main results: 1) more stringent budget procedures limit deficit spending; 2) there is evidence of a nonlinear relationship between budget rules and fiscal performance; 3) not all (sets of) budget rules have the same disciplinary power with respect to a given indicator of fiscal performance. For example, the negotiation of the budget proposal within the government seems to affect the level of the deficit the most, while the regulation of the amendments to the budget proposals and of the implementation of the budget bill appear the most important limit to the expansion of the public outlays. Lagona and Padovano (2000) is a first application of NLPCA to verify the relationship between budget rules and fiscal performance in (some of) the EU countries during the 1980s. Two are the crucial improvements of this paper with respect to Lagona and Padovano (2000). 5 First, we now dispose of a larger data set, which consider a greater variety of budget rules, more countries and, most importantly, observations for two decades, the 1980s and the 1990s. Second, the availability of two time periods allows us to check whether changes in the stringency of the budget rules, which certain countries implemented between the 1980s and the 1990s, have produced the predicted changes in the fiscal performance. The rest of the paper is organized as follows. Section 2 illustrates the data set of the budget rules underlying our analysis. Section 3 explains the motivations for implementing NLPCA in this matter of inquiry. Specifically, Section 3.1 explains the shortcomings of the approaches followed in the literature; Section 3.2 illustrates the main analytical properties of NLPCA. The results of NLPCA are discussed in Section 4 and applied to the investigation of the relationship between budget rules and fiscal performance in Section 5. Section 6 reassumes the main findings of our analysis. 2. Data description 2.1. Independent variables. Von Hagen (1992) still provides the most comprehensive and coherent description and codification of the budget rules of a group of independent countries characterized by homogenous and advanced economies, namely, 12 EU member countries in the 1980s. De Haan, Moessen and Volkerkink (1999) extend and improve the data set to the 1990s, other rules and EU countries. Combining these sources we are able to base our analysis on information about the budget procedures of Belgium, Denmark, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal, Spain, Sweden and the United Kingdom for the period 1980-1999. The characteristics of each country’s budget procedures are reassumed according to: 1) the internal organization of government; 2) the formulation of the budget proposal within the government; 3) the discussion and approbation of the budget law in the parliament; 4) the 6 informativeness of the budget law; 5) the flexibility in the implementation of the budget law; 6) the stringency of long-term budget documents. Each of these six “stages” is further disaggregated into several rules, up a total of 29. Specifically, about the internal organization of government (stage O), the data set considers how many government levels have fiscal power (variable O1), whether regional authorities must balance the budget (O2), if they need the central government’s authorization to borrow (O3), whether they are autonomous in planning their budget (O4), and how many ministries participate in drafting the central government’s budget (O5). Information about the formulation of the budget proposal (stage N) evidences whether it foresees a constraint on the budget totals (variable N1), who has the power of setting the agenda (N2), if this power is explicitly codified in the budget rules (N3) and what type of negotiations lead to the formulation of the budget proposal (N4). Five characteristics of the discussion and approbation of the budget by the legislative (stage P) are recorded: the parliament power to amend the government proposal (variable P1), whether these amendments are required to be offsetting (P2), if their approbation can cause the fall of the government (P3), whether the parliament votes on the entire budget law or on its chapters (P4) and if the total budget size must be voted on before or after the approbation of the single provisions (P5). The informativeness of the budget law (stage I) is evaluated according to the inclusion of special funds in the budget (variable I1), the existence of one or more budget documents (I2), the transparency of the overall document (I3), the links made to national accounts (I4) and the inclusion of government loans to non-government authorities (I5). The stage of the implementation of the budget (called F) is disaggregated into six dimensions: the possibility of the Minister of Finances to block expenditures (variable F1), the existence of cash limits for spending ministers (F2), the requirement of the approbation of a controlling authority for the disbursement of funds (F3), the possibility of transferring resources from one chapter to 7 another (F4), of changing the budget during its execution (F5) and of carrying unused funds over to next year’s budget (F6). Finally, the information regarding long-term budget documents (stage L) regards the type of fiscal variables targeted (L1), the length of the planning horizon (L2), the forecasting method (L3) and the degree of commitment of the long-term budget (L4). For a more detailed discussion of these variables, see von Hagen (1992) and de Haan, Moessen and Volkerkink (1999). These variables are given numerical values that increase in the degree of stringency of the rule but vary for range and intervals. Table A.1 in Appendix A reassumes this information. Table A.2 illustrates the rules adopted by each country. Because of the severeness of the degrees of freedom problem, scholars fill the gaps in information about the budget rule of each country by taking the average of the numerical evaluation of the other rules of that same country (see von Hagen, 1992; de Haan and Sturm, 1994; Alesina, Hausmann, Hommes and Stein, 1996). These linear combinations, however, reduce the true unobserved total variance of the data set. As in our data set the variance is of considerable magnitude, this procedure appears inappropriate and likely to yield incorrect parameter estimates. We instead choose to be as respectful as possible of the data. Accordingly, we have supplemented the missing information with those published by OECD (1987, 1995), at the cost of dropping Luxembourg from the data set, for which the OECD sources proved unhelpful. 2.2 Dependent variables. Again to maximize the comparability of the results of our approach with those of the literature, we choose as same dependent variables: 1) the ratio of total budget deficit to GDP (measured as the difference between lending minus repayments), called TDEF; 2) the ratio of primary deficit to GDP, PDEF; 3) the stock of the public debt outstanding to GDP, DEB; 4) the ratio of the total public expenditures of the consolidated government to GDP, EXP. We have also considered the ratio of total revenues to GDP, but it 8 proved multicollinear with total public expenditures, so we dropped this variable from the analysis. All data on the dependent variables are form OECD Economic Outlook (1999). Given the high persistence in the regressors, we take the average for the 1980s and the 1990s of the dependent variables as our regressands. 3. Regression on nonlinear optimal scores 3.1. Problems in summarizing budget rules. The general purpose of this analysis is to test the alternative hypotheses of dependence between differences (cross countries and between periods) in budget procedures and differences in fiscal performances, against the null hypothesis of independence. To illustrate this matter in formal terms, let zist be the value of the sth variable in country i at time t, t=1,2 (e.g., the debt-to-GDP ratio), and let iktxˆ score the degree of stringency of the kth budget rule in country i (e.g., the veto power of the finance minister). Furthermore, let zis= zis2 - zis1 and ikxˆ be (signed) measures of the change, from period 1 to period 2, occurred in the ith country with respect to the sth fiscal variable and the degree of stringency of the kth budget procedure (the way we evaluate xik is the topic of Section 3.2.) We consider two models: M1: zist = f( iKtti xx ˆ...ˆ 1 ) + εist (1) M2: zis = g( iKtti xx ˆ...ˆ 1 ) + ξis (2) where f and g are monotone decreasing function of the changes in the budgetary process and the errors ε and ξ are drawn from independent random variables with zero expectations. M1 tests the hypothesis that differences (cross country and between periods) in budget procedures result in differences in fiscal performances; M2 tests the hypothesis that changes in the budgetary processes determined changes of fiscal performance. The efficiency of any statistical estimation of both M1 and M2 is an increasing function of the degrees of freedom. In our analysis, the large number of the budget rules 9 relative to the total observations requires to restrict the available independent variables to a smaller set of regressors. However, the standard methods for reducing the number of independent variables present several problems. First, the high heterogeneity of budgetary procedures in the EU countries in the two periods of our sample, shown in Table A2, does not legitimate the deletion of regressors with low variability or/and with a high association with other variables. NLPCA, instead, captures such heterogeneity. Secondly, clustering the independent variables into homogeneous groups and conducting separate ANOVAs is also unsatisfactory, in the absence of a theory that indicates how each rule influences fiscal outcomes and, consequently, how to group the rules. Most analysts have resorted to indices that summarize the information in the K variables, by assigning to each country i J