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Chapter 7
THE ECONOMIC THEORY OF INDEX NUMBERS: A SURVEY*

W.E. Diewert

1. Introduction

The literature on index numbers is so vast that we can cover only a small
fraction of it in this chapter. Frisch [1936] distinguishes three approaches to
index number theory: (i) ‘statistical’ approaches, (ii) the test approach, and
(iii) the functional approach, which Wold [1953; 135] calls the preference field
approach and Samuelson and Swamy [1974; 573] call the economic theory of
index numbers. We shall mainly cover the essentials of the third approach. In
the following two sections, we define the different economic index number con-
cepts that have been suggested in the literature and develop various numerical
bounds. Then in Section 4, we briefly survey some of the other approaches
to index number theory. In Section 5, we relate various functional forms for
utility or production functions to various index number formulae. In Section 6,
we develop the link between ‘flexible’ functional forms and ‘superlative’ index
number formulae. The final section offers a few historical notes and some com-
ments on some related topics such as the measurement of consumer surplus
and the Divisia index.

*First published in Essays in the Theory and Measurement of Consumer Be-
haviour in Honour of Sir Richard Stone, edited by A. Deaton, London: Cam-
bridge University Press, 1981, pp. 163–208. The financial support of the
Canada Council is gratefully acknowledged as are the helpful comments of
R.C. Allen, C. Blackorby, and A. Deaton, who are not responsible for the re-
maining shortcomings of this chapter. It is a pleasure to dedicate this chapter
to Professor Stone, since the author first learned of the existence of the index
number problem as a graduate student at Berkeley by reading some of Professor
Stone’s work.
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2. Price Indexes and the Konüs Cost of Living Index

We assume that a consumer is maximizing a utility function F (x) subject to the
expenditure constraint pT x ≡

∑N
i=1 pixi ≤ y where x ≡ (x1, . . . , xN )T ≥ 0N

is a nonnegative vector of commodity rentals, p ≡ (p1, . . . , pN )T � 0N is a
positive vector of commodity prices1 and y > 0 is expenditure on the N com-
modities. We could also assume that a producer is maximizing a production
function F (x) subject to the expenditure constraint pT x ≤ y where x ≥ 0N is
now an input vector, p � 0N is an input price vector and y > 0 is expendi-
ture on the inputs. In order to cover both the consumer and producer theory
applications, we shall call the utility or production function F an aggregator
function in what follows.

The consumer’s (or producer’s) aggregator maximization problem can be
decomposed into two stages: in the first stage, the consumer (or producer)
attempts to minimize the cost of achieving a given utility (or output) level,
and, in the second stage, he chooses the maximal utility (or output) level that
is just consistent with his budget constraint.

The solution to the first stage problem defines the consumer’s (or pro-
ducer’s) cost function C:

(1) C(u, p) ≡ min
x

{pT x : F (x) ≥ u, x ≥ 0N}

The cost function C turns out to play a pivotal role in the economic
approach to index number theory.

Throughout much of this chapter, we shall assume that the aggregator
function F satisfies the following conditions I: F is a real valued function of N
variables defined over the nonnegative orthant Ω ≡ {x : x ≥ 0N} which has the
three properties of (i) continuity, (ii) increasingness2 and (iii) quasiconcavity.3

Let U be the range of F . From I(i) and (ii), it can be seen that U ≡ {u :
u ≤ u ≤ ou} where u ≡ F (0N ) < ou. Note that the least upper bound ou
could be a finite number or +∞. In the context of production theory, typically
u = 0 and ou = +∞, but, for consumer theory applications, there is no reason
to restrict the range of the utility function F in this manner.

1Notation: x ≥ 0N means each component of the column vector x is nonneg-
ative, x � 0N means each component is positive, x > 0N means x ≥ 0N but
x 6= 0N where 0N is an N dimensional vector of zeros, and xT denotes the
transpose of x.
2If x′′ � x′ ≥ 0N , then F (x′′) > F (x′).
3For every u ∈ range F , the upper level set L(u) ≡ {x : F (x) ≥ u} is a convex
set. A set S is convex iff x′ ∈ S, x′′ ∈ S, 0 ≤ λ ≤ 1 implies λx′ +(1−λ)x′′ ∈ S:
i.e. the line segment joining any two points belonging to S also belongs to S.

Define the set of positive prices p ≡ {p : p � 0N}. It can be shown
that (see Diewert [1978c]) if F satisfies conditions I, then the cost function C
defined by (1) satisfies the following conditions II:

(i) C(u, p) is a real valued function of N +1 variables defined over U×P
and is jointly continuous in (u, p) over this domain.

(ii) C(u, p) = 0 for every p ∈ P .
(iii) C(u, p) is increasing in u for every p ∈ P ; i.e., if p ∈ P , u′, u′′ ∈ U ,

with u′ < u′′, then C(u′, p) < C(u′′, p).
(iv) C(ou, p) = +∞ for every p ∈ P ; i.e., if p ∈ P , un ∈ U , limn un = u,

then limn C(un, p) = +∞.
(v) C(u, p) is (positively) linearly homogenous in p for every u ∈ U ; i.e.,

u ∈ U , λ > 0, p ∈ P implies C(u, λp) = λC(u, p).
(vi) C(u, p) is concave in p for every u ∈ U ; i.e., if p′ � 0N , p′′ � 0N , 0 ≤

λ ≤ 1, u ∈ U , then C(u, λp′+(1−λ)p′′) ≥ λC(u, p′)+(1−λ)C(u, p′′).
(vii) C(u, p) is increasing in p for u > u and u ∈ U .
(viii) C is such that the function F ∗(x) ≡ maxu{u : pT x ≥ C(u, p) for

every p ∈ P, u ∈ U} is continuous for x ≥ 0N .
For some of the theorems to be presented in this chapter, we can weaken

the regularity conditions on the aggregator function F to just continuity from
above.4 Under this weakened hypothesis on F , the cost function C defined by
(1) will still satisfy many of the properties in conditions II above.5

Finally, some of the theorems below make use of the following (stronger)
regularity conditions on the aggregator function: we say that F is a neoclassical
aggregator function if it is defined over the positive orthant {x : x � 0N} and
is (i) positive, i.e. F (x) > 0 for x � 0N , (ii) (positively) linearly homogeneous,
and (iii) concave over {x : x � 0N}. Under these conditions (let us call
them conditions III) F can be extended to the nonnegative orthant Ω, and the
extended F will be nonnegative, linearly homogeneous, concave, increasing and
continuous over Ω (see Diewert [1978c]). Moreover, if F is neoclassical, then
F ’s cost function C factors into

(2) C(u, p) ≡ uC(1, p) ≡ uc(p)

4F is continuous from above over x ≥ 0N iff for every u ∈ range F , L(u) ≡
{x : F (x) ≥ u} is a closed set.
5Specifically, Diewert [1978c] shows that C will satisfy the following condi-
tions II′′: (i) C(u, p) is a real valued function of N + 1 variables defined over
U × P and is continuous in p for fixed u and continuous from below in u for
fixed p (the set U is now the convex hull of the range of F ), (ii) C(u, p) ≥ 0
for every u ∈ U and p ∈ P , (iii) C(u, p) is nondecreasing in u for fixed p, (iv)
C(u, p) is nondecreasing in p for fixed u, and properties (v) and (vi) are the
same as (v) and (vi) of conditions II.
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for u ≥ 0 and p � 0N where c(p) ≡ C(1, p) is F ’s unit cost function. It can
be shown that c satisfies the same regularity conditions as F ; i.e. c is also a
neoclassical function. Also, if we are given a neoclassical unit cost function c,
then the underlying aggregator function F can be defined for x � 0N by

F (x) ≡ max
u

{u : C(u, p) ≤ pT x for every p > 0N}

= max
u

{u : uc(p) ≤ pT x for every p ≥ 0N , pT x = 1}

= min
p

{1/c(p) : p ≥ 0N , pT x = 1}(3)

= 1/ max
p

{c(p) : pT x = 1, p ≥ 0N}.(4)

Now that we have disposed of the mathematical preliminaries, we can
define the Konüs [1924] cost of living index 6 PK : for p0 � 0N , p1 � 0N and
x > 0N

(5) PK(p0, p1, x) ≡ C[F (x), p1]/C[F (x), p0].

Thus PK depends on three sets of variables: (i) p0, a vector of period 0
or base period prices, (ii) p1, a vector of period 1 or current period prices,7

and (iii) x, a reference vector of quantities.8 In the consumer context, PK can
be interpreted as follows. Pick a reference indifference surface indexed by the
quantity vector x > 0N . Then PK(p0, p1, x) is the minimum cost of achieving
the standard of living indexed by x when the consumer faces period 1 prices
p1 relative to the minimum cost of achieving the same standard of living when
the consumer faces period 0 prices p0. Thus PK can be interpreted as a level
of prices in period 1 relative to a level of prices in period 0. If the number of
goods is only one (i.e. N = 1), then it is easy to see that PK(p0

1, p
1
1, x1) = p1

1/p0
1

for all x1 > 0.
Note that the mathematical properties of PK with respect to p0, p1 and x

are determined by the mathematical properties of F and C given by conditions I
and II above. In particular, for λ > 0, p0 � 0N , p1 � 0N and x � 0N , we

6Or cost of production index in the producer context.
7In the theory of international comparisons, p0 and p1 can be interpreted as
price vectors that a given consumer (whose utility level is indexed by the quan-
tity vector x) faces in countries 0 and 1.
8The index PK can also be written as PK(p0, p1, u) ≡ C(u, p1)/C(u, p0) where
u is the reference output or utility level. Written in this form, the symmetry of
the Konüs price index PK with the Malmquist quantity index to be introduced
later becomes apparent. However, our present notation for PK is more conve-
nient when we set the reference consumption vector x equal to the observed
consumption vector xr in period r.

have PK(p0, λp0, x) = λ and PK(p0, p1, x) = 1/PK(p1, p0, x). Thus if period 1
prices are proportional to period 0 prices, then PK is equal to the common
factor of proportionality for any reference quantity vector x. However, if prices
are not proportional, then in general PK depends on the reference vector x,
except when preferences are homothetic as is shown in the following result.

Theorem 1. (Malmquist [1953; 215], Pollak [1971a; 31], Samuelson and Swamy
[1974; 569–570]): Let the aggregator function F satisfy conditions I. Then
PK(p0, p1, x) is independent of x if and only if F is homothetic.9

Proof: If F is homothetic, then, by definition, there exists a continu-
ous, monotonically increasing function of one variable G, with G(u) = 0 such
that G[F (x)] ≡ f(x) is a neoclassical aggregator function (i.e. f satisfies con-
ditions III above). Under these conditions, F ’s cost function decomposes as
follows: for u > 0, p � 0N ,

C(u, p) ≡ min
x

{pT x : F (x) ≥ u}

= min
x

{pT x : G[F (x)] ≥ G(u)}

= G(u)c(p)(6)

where c is the unit cost function which corresponds to the neoclassical aggre-
gator function f . Thus for p0 � 0N , p1 � 0N and x > 0N , we have

PK(p0, p1, x) ≡ C[F (x), p1]/C[F (x), p0]
= G[F (x)]c(p1)/G[F (x)]c(p0)
= c(p1)/c(p0)(7)

which is independent of x.
Conversely, if PK is independent of x, then we must have the factorization

(7); i.e. we must have for every x � 0N , p � 0N

(8) C(F (x), p) = G[F (x)]c(p)

for some functions G and c, whose regularity properties must be such that C
satisfies conditions II. It can be verified that the regularity conditions on C and
the decomposition (8) imply that the functions c and G(F ) both satisfy condi-
tions III,10 so that, in particular, G[F (x)] is (positively) linearly homogeneous
in x. Thus F is homothetic.qed

9It seems clear that earlier researchers such as Frisch [1936; 25] also knew this
result, but they had some difficulty in stating it precisely, since the concept of
homotheticity was not invented until 1953 (by Shephard [1953] and Malmquist
[1953]).
10Linear homogeneity of G(F ) follows from the following identity which can
be derived in a manner analogous to (4): G[F (x)] = 1/ maxp{c(p) : p ≥ 0N ,
pT x = 1} for every x � 0N .
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Thus in the case of a homothetic aggregator function, the Konüs cost of
living index PK(p0, p1, x) is independent of the reference quantity vector x and
is equal to a ratio of unit cost functions, c(p1)/c(p0).

If we knew the consumer’s preferences (or the producer’s production func-
tion), then we could construct the cost function C(u, p) and the Konüs price
index PK . However, usually we do not know F or C and thus it is useful to
develop nonparametric bounds on PK ; i.e. bounds that do not depend on the
functional form for the aggregator function F (or its cost function dual C).

Theorem 2. (Lerner [1935–36], Joseph [1935–36; 149], Samuelson [1947; 159],
Pollak [1971a; 12]): If the aggregator function F is continuous from above,
then, for every p0 ≡ (p0

1, . . . , p
0
N )T � 0N , p1 ≡ (p1

1, . . . , p
1
N )T � 0N and

x > 0N where F (x) > F (0N ),

(9) min
i
{p1

i /p0
i : i = 1, . . . , N} ≤ PK(p0, p1, x) ≤ max

i
{p1

i /p0
i : i = 1, . . . , N};

i.e. PK lies between the smallest and the largest price ratio.

Proof: Let p0 � 0N , p1 � 0N , x > 0N where F (x) > F (0N) and let
x0 ≥ 0N and x1 ≥ 0 solve the following cost minimization problems:

C[F (x), p0] ≡ min
x

{p0T x : F (x) ≥ F (x)} = p0T x0 > 0(10)

C[F (x), p1] ≡ min
x

{p1T x : F (x) ≥ F (x)} = p1T x1 > 0.(11)

Then

C[F (x), p1] ≡ min
x

{p1T x : F (x) ≥ F (x)}

≥ min
x

{p1T x : p0T x ≥ p0T x0, x ≥ 0N}

since {x : F (x) ≥ F (x)} ⊂ {x : p0T x ≥ p0T x0, x ≥ 0N}
= min

i
{p1

i (p
0T x0/p0

i ) : i = 1, . . . , N}(12)

since the solution to the linear programming problem minx{p1T x : p0T x ≥
p0T x0, x ≥ 0N} can be taken to be a corner solution. Similarly,

C[F (x), p0] ≥ min
i
{p0

i (p
1T x1/p1

i ) : i = 1, . . . , N}

or

(13) 1/C[F (x), p0] ≤ max
i

{p1
i /p0

i p
1T x1 : i = 1, . . . , N}.

Since PK(p0, p1, x) ≡ C[F (x), p1]/C[F (x), p0], (10) and (12) imply the lower
limit of (9) while (11) and (13) imply the upper limit.qed

The geometric idea behind the above algebraic proof is that the sets
{x : p0T x ≥ p0T x0, x ≥ 0N} and {x : p1T x1 ≥ p1T x1, x ≥ 0N} form outer
approximations to the true utility (or production) possibility set {x : F (x) ≥
F (x)}. Moreover, it can be seen that the bounds on PK given by (9) are the
best possible,11 i.e., if F (x) ≡ p0T x, then PK will attain the lower bound while,
if F (x) ≡ p1T x, then PK will attain the upper bound in (9).

It is natural to assume that we can observe the consumer’s (or producer’s)
quantity choices, x0 > 0N and x1 > 0N , made during periods 0 and 1 in
addition to the prices which prevailed during those periods, p0 � 0N and
p1 � 0N . In the remainder of this section, we shall also assume that the
consumer (or producer) is engaging in cost minimizing behavior during the two
periods. Thus we assume:

(14) p0T x0 = C[F (x0), p0]; p1T x1 = C[F (x1), p1]; p0, p1 � 0N ; x0, x1 > 0N .

Given the above assumptions, we now have two natural choices for the
quantity vector x which occurs in the definition of the Konüs cost of living
index PK(p0, p1, x): x0 or x1. The Laspeyres–Konüs cost of living index is
defined as PK(p0, p1, x0) and the Paasche–Konüs cost of living index is defined
as PK(p0, p1, x1).12 It turns out that the Laspeyres–Konüs index PK(p0, p1, x0)
is related to the Laspeyres price index PL(p0, p1, x0, x1) ≡ p1T x0/p0T x0 while
the Paasche–Konüs index PK(p0, p1, x1) is related to the Paasche price index
PP (p0, p1, x0, x1) ≡ p1T x1/p0T x1.

Theorem 3. (Konüs [1924; 17–19]): Suppose F is continuous from above and
(14) holds. Then

PK(p0, p1, x0) ≤ p1T x0/p0T x0 ≡ PL and(15)
PK(p0, p1, x1) ≥ p1T x1/p0T x1 ≡ PP .(16)

Proof:

PK(p0, p1, x0) ≡ C[F (x0), p1]/C[F (x0), p0]
= C[F (x0), p1]/p0T x0 using (14)
≡ min

x
{p1T x : F (x) ≥ F (x0)}/p0T x0

≤ p1T x0/p0T x0

since x0 is feasible for the cost minimization problem (but is not necessarily
optimal), which proves (15). Similarly,

PK(p0, p1, x1) = p1T x1/C[F (x1), p0]
= p1T x1/ min

x
{p0T x : F (x) ≥ F (x1)}

≥ p1T x1/p0T x1. qed

11This point is made by Pollak [1971a; 28].
12The terminology is due to Wold [1953; 136].
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Corollary 3.1. (Pollak [1971a; 17]):

(17) min
i
{p1

i /p0
i : i = 1, . . . , N} ≤ PK(p0, p1, x0) ≤ p1T x0/p0T x0 ≡ PL.

Corollary 3.2. (Pollak [1971a; 18]):

(18) PP ≡ p1T x1/p0T x1 ≤ PK(p0, p1, x1) ≤ max
i

{p1
i /p0

i : i = 1, . . . , N}.

Corollary 3.3. (Frisch [1936; 25]): If in addition F is homothetic, then for
x � 0N ,

(19) PP ≡ p1T x1/p0T x1 ≤ PK(p0, p1, x) ≤ p1T x0/p0T x0 ≡ PL.

The first two corollaries follow from Theorems 2 and 3, while the third
corollary follows from Theorems 1 and 2. Note that

PL ≡ p1T x0/p0T x0 =
∑N

i=1
(p1

i /p0
i )(p

0
i x

0
i /p0T x0)

≡
∑N

i=1
(p1

i /p0
i )s

0
i ≤ max

i
{p1

i /p0
i : i = 1, 2, . . . , N}

since a share weighted average of the price ratios p1
i /p0

i will always be equal
to or less than the maximum price ratio. Thus the bounds given by (17) will
generally be sharper than the Joseph–Pollak bounds given by (9). Similarly,

PP ≡ p1T x1/p0T x1 ≡
∑N

i=1
(p1

i /p0
i )(p

0
i x

1
i /p0T x1)

≥ min
i
{p1

i /p0
i : i = 1, 2, . . . , N},

so that the bounds (18) are generally sharper than the bounds (9).
The geometric idea behind the proof of Theorem 3 is that the sets {x :

x = x0} and {x : x = x1} form inner approximations to the true utility (or
production) possibility sets {x : F (x) ≥ F (x0)} and {x : F (x) ≥ F (x1)}
respectively. Moreover, it can be seen that the bounds on PK given by (15)
and (16) are attainable if F is a Leontief aggregator function (so that the
corresponding cost function is linear in prices).13

13Pollak [1971a; 20] makes this well known point. F is a Leontief aggregator
function if F (x1, x2, . . . , xN ) ≡ mini{xi/ai : i = 1, 2, . . . , N} where aT ≡
(a1, a2, . . . , aN ) > 0N . In this case C(u, p) = upT a.

Theorem 4. (Konüs [1924; 20–21]): Let F satisfy conditions I and suppose
(14) holds. Then there exists a λ∗ such that 0 ≤ λ∗ ≤ 1 and PK [p0, p1, λ∗x1 +
(1 − λ∗)x0] lies between PL and PP ; i.e. either

PL ≡ p1T x0/p0T x0 ≤ PK [p0, p1, λ∗x1 + (1 − λ∗)x0](20)
≤ p1T x1/p0T x1 ≡ PP

or

(21) PP ≤ PK [p0, p1, λ∗x1 + (1 − λ∗)x0] ≤ PL.

Proof: Define h(λ) ≡ PK(p0, p1, λx1 + (1 − λ)x0) ≡ C[F (λx1 + (1 +
λ)x0), p1]/C[F (λx1 + (1− λ)x0), p0]. Since both F and C are continuous with
respect to their arguments, h is continuous over the closed interval [0, 1]. Note
that h(0) = PK(p0, p1, x0) and h(1) = PK(p0, p1, x1). There are 4! = 24
possible inequalities between the four numbers PL, PP , h(0) and h(1). However,
from Theorem 3, we have the restrictions h(0) ≤ PL and PP ≤ h(1). These
restrictions imply that there are only six possible inequalities between the four
numbers: (1) h(0) ≤ PL ≤ PP ≤ h(1), (2) h(0) ≤ PP ≤ PL ≤ h(1), (3) h(0) ≤
PP ≤ h(1) ≤ PL, (4) PP ≤ h(0) ≤ PL ≤ h(1), (5) PP ≤ h(1) ≤ h(0) ≤ PL

and (6) PP ≤ h(0) ≤ h(1) ≤ PL. Since h(λ) is continuous over (0, 1) and thus
assumes all intermediate values between h(0) and h(1), it can be seen that we
can choose λ between 0 and 1 so that PL ≤ h(λ∗) ≤ PP for case (1) or so that
PP ≤ h(λ∗) ≤ PL for cases (2) to (6), which establishes (20) or (21).qed

It should be noted that λ∗ can be chosen so that (20) or (21) is satisfied
and in addition F [λ∗x1 + (1− λ∗)x0] lies between F (x0) and F (x1). Thus the
Paasche and Laspeyres indexes provide bounds for the Konüs cost of living
index for some reference indifference surface which lies between the period 0
and period 1 indifference surfaces.

The above theorems provide bounds for the Konüs price index PK(p0, p1, x)
under various hypotheses. We cannot improve upon these bounds unless we
are willing to make specific assumptions about the functional form for the ag-
gregator function F , a strategy we will pursue in Sections 5 and 6.

3. The Konüs, Allen and Malmquist Quantity Indexes

In the case of only one commodity, a quantity index could be defined as x1
1/x0

1,
the ratio of the quantity in period 1 to the quantity in period 0. This ratio is
also equal to the ratio of expenditures in the two periods, p1

1x
1
1/p0

1x
0
1, divided

by the price index p1
1/p0

1. This suggests that a reasonable notion of a quantity
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index in the general N commodity case could be the expenditure ratio deflated
by the Konüs cost of living index. Thus we define the Konüs–Pollak [1971a; 64]
implicit quantity index for p0 � 0N , p1 � 0N , x0 > 0N , x1 > 0N and x > 0N

as

Q̃K(p0, p1, x0, x1, x) ≡ p1T x1/p0T x0PK(p0, p1, x)(22)

=
C[F (x1), p1]
C[F (x0), p0]

/C[F (x), p1]
C[F (x), p0]

(23)

where (23) follows if the consumer or producer is engaging in cost minimizing
behavior during the two periods; i.e. (23) follows if (14) is true. Note that Q̃K

depends on the period 0 prices and quantities, p0 and x0, the period 1 prices
and quantities, p1 and x1, and the reference indifference surface indexed by the
quantity vector x.

The following result shows that Q̃K gives the correct answer (at least
ordinally) if the reference quantity vector x is chosen appropriately.

Theorem 5. Suppose F satisfies conditions I and (14) holds. (i) If F (x1) >

F (x0), then for every x ≥ 0N such that F (x1) ≥ F (x) ≥ F (x0), Q̃K(p0, p1,
x0, x1, x) > 1. (ii) If F (x1) = F (x0), then, for every x ≥ 0N such that

F (x) = F (x1) = F (x0), Q̃K(p0, p1, x0, x1, x) = 1. (iii) If F (x1) < F (x0), then

for every x ≥ 0N such that F (x1) ≤ F (x) ≤ F (x0), Q̃K(p0, p1, x0, x1, x) < 1.

Proof of (i):

Q̃K(p0, p1, x0, x1, x) =
C[F (x1), p1]
C[F (x), p1]

C[F (x), p0]
C[F (x0), p0]

using (23)

> 1

since F (x1) ≥ F (x) implies C[F (x1), p1] ≥ C[F (x), p1] and F (x) ≥ F (x0)
implies C[F (x), p0] ≥ C[F (x0), p0] with at least one of the inequalities holding
strictly, using property (iii) on the cost function C.

Parts (ii) and (iii) follow in an analogous manner.qed
It can be verified that if F (x1) > F (x0) > F (x), then, if F is not homo-

thetic, it is not necessarily the case that Q̃K(p0, p1, x0, x1, x) > 1. However,
if we choose x to be x0 or x1, then the resulting Q̃K will have the desirable
properties outlined in Theorem 5. Thus define the Laspeyres–Konüs implicit
quantity index as

Q̃K(p0, p1, x0, x1, x0) ≡ p1T x1/p0T x0PK(p0, p1, x0)
= C[F (x1), p1]/C[(F (x0), p0] · (C[F (x0), p1]/C[F (x0), p0])

using (5) and (14)
= C[F (x1), p1]/C[F (x0), p1](24)

and the Paasche–Konüs implicit quantity index as

Q̃K(p0, p1, x0, x1, x1) ≡ p1T x1/p0T x0PK(p0, p1, x1)
= C[F (x1), p0]/C[F (x0), p0](25)

where (25) follows using definition (5) for PK and the assumptions (14) of cost
minimizing behavior.

It turns out that the quantity indexes defined by (24) and (25) are special
cases of another class of quantity indexes. For x0 > 0N , x1 > 0N and p � 0N ,
define the Allen [1949; 199] quantity index as

(26) QA(x0, x1, p) ≡ C[F (x1), p]/C[F (x0), p].

Note that Q̃K(p0, p1, x0, x1, x) = QA(x0, x, p0)QA(x, x1, p1) and that the
Laspeyres–Allen quantity index QA(x0, x1, p0) equals the Paasche–Konüs im-
plicit quantity index Q̃K(p0, p1, x0, x1, x1) while the Paasche–Allen quantity
index QA(x0, x1, p1) equals Q̃K(p0, p1, x0, x1, x0), assuming that (14) holds.

Theorem 6. Suppose F satisfies conditions I. (i) If F (x1) > F (x0) > u,
then QA(x0, x1, p) > 1 for every p � 0N . (ii) If F (x1) = F (x0) > u, then
QA(x0, x1, p) = 1 for every p � 0N . (iii) If u < F (x1) < F (x0), then
QA(x0, x1, p) < 1 for every p � 0N .

The proof of the above lemma follows directly from definition (26) and
property (iii) for the cost function C(u, p): increasingness in u.14

It turns out that Allen quantity indexes do not satisfy bounds analogous
to those given by Theorem 2 for the Konüs price indexes. However, there is a
counterpart to Theorem 3.

Theorem 7. (Samuelson [1947; 162], Allen [1949; 199]): If the aggregator
function F is continuous from above and (14) holds, then

QA(x0, x1, p0) ≤ p0T x1/p0T x0 ≡ QL(p0, p1, x0, x1) and(27)
QA(x0, x1, p1) ≥ p1T x1/p1T x0 ≡ QP (p0, p1, x0, x1);(28)

i.e. the Laspeyres–Allen quantity index is bounded from above by the Laspeyres
quantity index QL and the Paasche–Allen quantity index is bounded below by
the Paasche quantity index QP .

Proof:

QA(x0, x1, p0) = C[F (x1), p0]/p0T x0 using (26) and (14)
≡ min

x
{p0T x : F (x) ≥ F (x1)}/p0T x0

≤ p0T x1/p0T x0

14We also utilize property (ii) for C : C(u, p) = 0 for every p � 0N .
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since x1 is feasible for the minimization problem. Similarly,

QA(x0, x1, p1) = p1T x1/ min
x

{p1T x : F (x) ≥ F (x0)}

≥ p1T x1/p1T x0

since x0 is feasible for the minimization problem and p1T x0 > 0.qed

Theorem 8. If F is homothetic (so that there exists a continuous, monotoni-
cally increasing function of one variable such that G[F (x)] is neoclassical) and
(14) holds, then for every x � 0N and p � 0N

Q̃K(p0, p1, x0, x1, x) = QA(x0, x1, p)
= G[F (x1)]/G[F (x0)].(29)

Proof:

Q̃K(p0, p, x0, x1, x) =
C[F (x1), p1]
C[F (x0), p0]

/C[F (x), p1]
C[F (x), p0]

using (23)

=
G[F (x1)]c(p1)
G[F (x0)]c(p0)

/G[F (x)]c(p1)
G[F (x)]c(p0)

by homotheticity of F

= G[F (x1)]/G[F (x0)]
= G[F (x1)]c(p)/G[F (x0)]c(p)
= C[F (x1), p]/C[F (x0), p]

by homotheticity again
≡ QA(x0, x1, p). qed

Corollary 8.1. (Samuelson and Swamy [1974; 570]): If QA(x0, x1, p) is in-
dependent of p and F satisfies conditions I, then F must be homothetic.

Proof: If QA(x0, x1, p) is independent of p, then C[F (x1), p]/C[F (x1), p]
is independent of p for all x0 � 0N and x1 � 0N . Thus we must have
C[F (x), p] = G(F (x)]c(p) for some functions G and c which implies that F
is homothetic.qed

Corollary 8.2. If F is neoclassical (so that G(u) ≡ u) and (14) holds, then
for every x � 0N , and every p � 0N :

(30) Q̃K(p0, p1, x0, x1, x) = QA(x0, x1, p) = F (x1)/F (x0).

Corollary 8.3. If F is homothetic and (14) holds, then for every x � 0N

and p � 0N :

QP ≡ p1T x1/p1T x0 ≤ Q̃K(p0, p1, x0, x1, x) = QA(x0, x1, p)
≤ p0T x1/p0T x0 ≡ QL.(31)

Proof: From (28),

QP ≤ QA(x0, x1, p1) = Q̃K(p0, p1, x0, x1, x) = QA(x0, x1, p)
= QA(x0, x1, p0) using (29)
≤ QL using (27). qed

Thus if the aggregator function is homothetic, then the Allen and implicit
Konüs quantity indexes coincide for all reference vectors p and x, and their
common value is bounded from below by the Paasche quantity index QP and
above by the Laspeyres quantity index QL. Note that QP and QL can be
computed from observable data.

In the general case when F is not necessarily homothetic, the following
results give bounds for Q̃K and QA.

Theorem 9. Let F satisfy conditions I and suppose (14) holds. Then there
exists a λ∗ such that 0 ≤ λ∗ ≤ 1 and QK [x0, x1, p0, p1, λ∗x1 + (1 − λ∗)x0] lies
between QP and QL.

Proof: From Theorem 4, either (20) or (21) holds for PK [p0, p1, λ∗x1 +
(1 − λ∗)x0] for some λ∗ between 0 and 1. If (20) holds, then, using definition
(22):

QL = (p1T x1/p0T x0)/PP ≤ Q̃K [x0, x1, p0, p1, λ∗x1 + (1 − λ∗)x0]
≤ (p1T x1/p0T x0)/PL = QP .

Similarly, if (21) holds then QP ≤ QK [x0, x1, p0, p1, λ∗x1 + (1 − λ∗)x0] ≤
QL.qed

Theorem 10. Let F be continuous from above and suppose (14) holds. Then
there exists a λ∗ such that 0 ≤ λ∗ ≤ 1 and QA[x0, x1, λ∗p1 + (1 − λ∗)p0] lies
between QL and QP .

Proof: Define h(λ) ≡ QA[x0, x1, λp1 + (1 − λ)p0] ≡ C[F (x1), λp1 + (1 −
λ)p0]/C[F (x0), λp1 + (1 − λ)p0]. Since F is continuous from above, C(u, p)
is continuous in p and thus h(λ) is continuous for 0 ≤ λ ≤ 1. Note that
h(0) = QA(x0, x1, p) and h(1) = QA(x0, x1, p1). From Theorem 7, h(0) ≤ QL

and QP ≤ h(1). Now repeat the proof of Theorem 9 with QL and QP replacing
PL and PP .qed

Thus the Paasche and Laspeyres quantity indexes (which are observable)
bound both the implicit Konüs quantity index Q̃K and the Allen quantity
index QA, provided that we choose appropriate reference vectors between x0

and x1 or p0 and p1 respectively. However, it is also necessary to assume cost
minimizing behavior on the part of the consumer or producer during the two
periods in order to derive the above bounds.
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Recall that the Konüs price index PK had the desirable property that
PK(p0, λp0, x) = λPK(p0, p0, x) for all λ > 0, p0 � 0N , and x � 0N ; i.e.
if the current period prices were proportional to the base period prices, then
the price index equalled this common factor of proportionality λ. It would be
desirable if an analogous homogeneity property held for the quantity indexes.
Unfortunately, it is not always the case that Q̃K(x0, λx0, p0, p1, x) = λ or that
QA(x0, λx0, p) = λ. However, the following quantity index does have this
desirable homogeneity property.

For x � 0N , x0 � 0N , x1 � 0N , define the Malmquist [1953; 232]
quantity index as

(32) QM (x0, x1, x) ≡ D[F (x), x1]/D[F (x), x0]

where D[u, x] ≡ maxk{k : F (x/k) ≥ u, k > 0} is the deflation function15 which
corresponds to the aggregator function F . Thus D[F (x), x1] is the biggest num-
ber which will just deflate the period 1 quantity vector x1 onto the boundary of
the utility (or production) possibility set [x : F (x) ≥ F (x), x ≥ 0N ] indexed by
the quantity vector x while D[F (x), x0] is the biggest number which will just
deflate the period 0 quantity vector x0 onto the utility possibility set indexed
by x, and QM is the ratio of these two deflation factors.

Note that the assumption of cost minimizing behavior is not required in
order to define the Malmquist quantity index QM .

Theorem 11. (Malmquist [1953; 231], Pollak [1971a; 62]): If F satisfies con-
ditions I, then (i) λ > 0, x0 � 0N , x � 0N implies QM (x0, λx0, x) = λ and (ii)
x0 � 0N , x1 � 0N , x2 � 0N , x � 0N implies QM (x0, x1, x)QM (x1, x2, x) =
QM (x0, x2, x).

Proof: (i) If F is merely continuous from above and increasing, then
D[F (x), x] is well defined for all x � 0N and x � 0N . Moreover, D has the

15If F satisfies conditions I, then it can be shown (e.g., see Diewert, [1978c]),
that the deflation function D satisfies conditions IV: (i) D(u, x) is a real valued
function of N +1 variables defined over Int U × Int Ω = {u : u < u < ou}×{x :
x � 0N} and is continuous over this domain, (ii) D(u, x) = +∞ for every x ∈
Int Ω; i.e., un ∈ Int U , lim un = u, x ∈ Int Ω implies limn D(un, x) = +∞, (iii)
D(u, x) is decreasing in u for every x ∈ Int Ω; i.e., if x ∈ Int Ω, u′, u′′ ∈ Int U
with u′ < u′′, then D(u′, x) > D(u′′, x), (iv) D(ou, x) = 0 for every x ∈ Int Ω;
i.e. u′′ ∈ Int U , lim u′′ = ou, x ∈ Int Ω implies limn D(un, x) = 0, (v) D(u, x)
is (positively) linearly homogeneous in x for every u ∈ Int U ; i.e., u ∈ Int U ,
λ > 0, x ∈ Int Ω implies D(u, λx) = λD(u, x), (vi) D(u, x) is concave in x
for every u ∈ Int U , (vii) D(u, x) is increasing in x for every u ∈ Int U ; i.e.,
u ∈ Int U , x′, x′′ ∈ Int Ω implies D(u, x′ + x′′) > D(u, x′), and (viii) D is such
that the function F̃ (x) ≡ {u : u ∈ Int U , D(u, x) = 1} defined for x � 0N has
a continuous extension to x ≥ 0N .

following homogeneity property (recall property (v) of conditions IV on D):
for λ > 0, D[F (x), λx] = λD[F (x), x]. Thus QM (x0, λx0, x) ≡ D[F (x), λx0]/
D[F (x), x0] = λD[F (x), x0]/D[F (x), x0] = λ. (ii) follows directly from defini-
tion (32).qed

Property (ii) in the above theorem is a desirable transitivity property of
QM . Q̃K , QA, PA and PK all possess the analogous transitivity property (or
circularity property as it is sometimes called in the index number literature).

Theorem 12. If F satisfies conditions I, x0 � 0N , x1 � 0N , x � 0N and F (x)
is between F (x0) and F (x1), then the Malmquist quantity index QM (x0, x1, x)
will correctly indicate whether the aggregate has remained constant, increased
or decreased from period 0 to period 1.

Proof: (i) Suppose F (x0) = F (x) = F (x1). Then QM (x0, x1, x) =
D[F (x), x1]/D[F (x), x0] = 1/1 = 1. (ii) Suppose F (x0) ≤ F (x) ≤ F (x1) with
F (x0) < F (x1). Then QM (x0, x1, x) = k1/k0 where F (x1/k1) = F (x) ≤ F (x1)
which implies k1 ≥ 1 and F (x0/k0) = F (x) ≥ F (x0) which implies 0 < k0 ≤ 1.
Since at least one of the inequalities F (x) ≤ F (x1) and F (x) ≤ F (x0) is strict;
at least one of the inequalities k1 ≥ 1 and k0 ≤ 1 must also be strict. Thus
QM (x0, x1, x) = k1/k0 > 1. The remaining case is similar.qed

If F is nonhomothetic, then the restriction that the reference indifference
surface indexed by F (x) lie between the indifference surfaces indexed by F (x0)
and F (x1) is necessary in order to prove Theorem 12; e.g. if F (x0) < F (x1) <
F (x), then it need not be the case that QM (x0, x1, x) > 1.

The following result shows that the Malmquist quantity index satisfies
the analogue to the Joseph–Pollak bounds for the Konüs price index.

Theorem 13. If F satisfies conditions I and x0 � 0N , x1 � 0N , x � 0N ,
then
(33)

min
i
{x1

i /x0
i : i = 1, . . . , N} ≤ QM (x0, x1, x) ≤ max

i
{x1

i /x0
i : i = 1, . . . , N}.

Proof: If F satisfies conditions I, then the deflation function D satis-
fies conditions IV. Thus D(u, x) satisfies the same mathematical regularity
properties with respect to x as C(u, p) satisfies with respect to p. Since
C[F (x), p1]/C[F (x), p0] ≡ PK(p0, p1, x) satisfies the inequalities in (9),
D[F (x), x1]/D(F (x), x0] ≡ QM (x0, x1, x) will satisfy the analogous inequali-
ties (33).16qed

16More explicitly, C[F (x), p] is the support function for the set L[F (x)] ≡ {x :
pT x ≥ C[F (x), p] for every p � 0N} and the sets {x : p0T x ≥ p0T x0, x ≥ 0N}
and {x : p1T x ≥ p1T x1, x ≥ 0N} form outer approximations to this set where
x0 ∈ ∂pC[F (x), p0] and x1 ∈ ∂pC[F (x), p1]. ∂pC(u, p0) denotes the set of
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In general, the Malmquist quantity index will depend on the reference
indifference surface indexed by x. As usual, two natural choices for x are x0

or x1, the observed quantity choices during period 0 or 1. Thus the Laspeyres–
Malmquist quantity index is defined as

QM (x0, x1, x0) ≡ D[F (x0), x1]/D[F (x0), x0] = D[F (x0), x1]

since D[F (x0), x0] = 1 if F is continuous from above and increasing, and the
Paasche–Malmquist quantity index is defined as

QM (x0, x1, x1) ≡ D[F (x1), x1]/D[F (x1), x0] = 1/D[F (x1), x0]

since D[F (x1), x1] = 1 if F is continuous from above and increasing.

Theorem 14. (Malmquist [1953; 231]): Suppose F satisfies conditions I and
(14) holds. Then

QM (x0, x1, x0) ≤ p0T x1/p0T x0 ≡ QL and(34)
QM (x0, x1, x1) ≥ p1T x1/p1T x0 ≡ QP .(35)

Proof:

QM (x0, x1, x0) ≡ D[F (x0), x1]
≡ max

k
{k : F (x1/k) ≥ F (x0), k > 0}

= k1 where F (x1/k1) = F (x0).

Now

p0T x0 = C[F (x0), p0]
≡ min

x
{p0T x : F (x) ≥ F (x0)}

≤ p0T x1/k1

since x1/k1 is feasible for the cost minimization problem. Thus

k1 = QM (x0, x1, x0) ≤ p0T x1/p0T x0 ≡ QL,

which proves (34). The proof of (35) is similar.qed

supergradients to the concave function of p, C(u, p), evaluated at the point p0.
Analogously, D[F (x), x] is the support function for the set L∗[F (x)] ≡ {p :
pT x ≥ D[F (x), x] for every x � 0N} and the sets {p : pT x0 ≥ p0T x0, p ≥ 0N}
and {p : pT x1 ≥ p1T x1, p ≥ 0N} form outer approximations to this set where
p0 ∈ ∂xD[F (x), x0] and p1 ∈ ∂xD[F (x), x1].

Theorem 15. Suppose F satisfies conditions I and (14) holds. Then there
exists a λ∗ such that 0 ≤ λ∗ ≤ 1 and QM (x0, x1, λ∗x1 + (1 − λ∗)x0) lies
between QL and QP .

Proof: Define h(λ) ≡ QM [x0, x1, λx1 + (1 − λ)x0] ≡ D
[
F [λx1 + (1 −

λ)x0], x1
]
/D

[
F [λx1 + (1 − λ)x0], x0

]
. Since F [λx1 + (1 − λ)x0] is continuous

with respect to λ and D(u, x) is continuous with respect to u (recall property
(i) of conditions IV on D, h(λ) is continuous for λ between 0 and 1. Moreover,
h(0) = QM (x0, x1, x0) and h(1) = QM (x0, x1, x1). From Theorem 14, h(0) ≤
QL and QP ≤ h(1). Now repeat the proof of Theorem 10.qed

It should be noted that λ∗ can be chosen so that 0 ≤ λ∗ ≤ 1 and
QM [x0, x1, λ∗x1+(1−λ∗)x0] lies between QL and QP , and in addition, F [λ∗x1+
(1 − λ∗)x0] lies between F (x0) and F (x1). Thus the Paasche and Laspeyres
quantity indexes provide bounds for the Malmquist quantity index for some
reference indifference surface which lies between the period 0 and period 1
indifference surfaces.

The following theorem relates the Paasche and Laspeyres Malmquist
quantity indexes to the Paasche and Laspeyres implicit Konüs and Allen quan-
tity indexes.

Theorem 16. (Malmquist [1953; 233]): Suppose F satisfies conditions I and
(14) holds. Then

QM (x0, x1, x0) ≤ Q̃K(p0, p1, x0, x1, x0) = QA(x0, x1, p1) and(36)

QM (x0, x1, x1) ≥ Q̃K(p0, p1, x0, x1, x1) = QA(x0, x1, p0).(37)

Proof:

QM (x0, x1, x0) = D[F (x0), x1]
= k1 say where F (x1/k1) = F (x0).

Also

QA(x0, x1, p1) = p1T x1/C[F (x0), p1] using (26) and (14)

= Q̃K(p0, p1, x0, x1, x0) using (23)
= p1T x1/ min

x
{p1T x : F (x) ≥ F (x0)}

≤ p1T x1/p1T (x1/k1) since x1/k1 is
feasible but not necessarily optimal

= k1



194 Essays in Index Number Theory 7. The Economic Theory 195

which establishes (36). (37) follows in a similar manner.qed

It is obvious that an implicit Malmquist price index P̃M can be defined
as the expenditure ratio for the two periods deflated by QM : i.e. define

(38) P̃M (p0, p1, x0, x1, x) ≡ p1T x0/p0T x0QM (x0, x1, x).

However, the resulting price index does not have the desirable homogeneity
property P̃M (p0, λp0, x0, x1, x) = λ. Thus P̃M has properties analogous to the
implicit Konüs quantity index Q̃K , except that the role of prices and quantities
is reversed.

Now that we have studied price and quantity indexes separately, it is
time to observe that it is essential to study them together. For empirical
work, it is highly desirable that the product of the price index P and the
quantity index Q equal the actual expenditure ratio for the two periods under
consideration, p1T x1/p0T x0. If P and Q satisfy this property, then we say that
P and Q satisfy the weak factor reversal test17 or the product test.18 We have
seen that the Konüs price index PK is a desirable price index and that the
Malmquist quantity index QM is a desirable quantity index since they each
have a desirable homogeneity property. The following result shows that there
exists at least one reference indifference surface such that PK and QM satisfy
the product test.

Theorem 17. (Malmquist [1953; 234]): Suppose the aggregator function F
satisfies conditions I and (14) holds. Then there exists a λ∗ such that 0 ≤ λ∗ ≤ 1
and

(39) PK [p0, p1, λ∗x1+(1−λ∗)x0]QM [x0, x1, λ∗x1+(1−λ∗)x0] = p1T x1/p0T x0.

Proof: For 0 ≤ λ ≤ 1, define the continuous function

h(λ) ≡ PK [p0, p1, λx1 + (1 − λ)x0]QM [x0, x1, λx1 + (1 − λ)x0].

Thus

h(0) ≡ PK(p0, p1, x0)QM (x0, x1, x0)

≡
[
C[F (x0), p1]/C[F (x0), p0]

][
D[F (x0), x1]/D[F (x0), x0]

]

by (5) and (32)

≤ C[F (x0), p1]
C[F (x0), p0]

C[F (x1), p1]
C[F (x0), p1]

using (36) and (26)

17The concept is associated with Irving Fisher [1922].
18This terminology is due to Frisch [1930].

= p1T x1/p0T x0 using (14)

=
[
C[F (x1), p1]/C[F (x1), p0]

][
C[F (x1), p0]/C[F (x0), p0]

]

≤
C[F (x1), p1]
C[F (x1), p0]

D[F (x1), x1]
D[F (x1), x0]

using (37), (26) and (32)

= PK(p0, p1, x1)QM (x0, x1, x1) using (5) and (32)
≡ h(1).

Since h(λ) is continuous over [0, 1] and since h(0) ≤ p1T x1/p0T x0 ≤ h(1),
there exists 0 ≤ λ∗ ≤ 1 such that h(λ∗) = p1T x1/p0T x0 and thus (39) is
satisfied. Moreover, since h(λ) ≡

(
C

[
F [λx1 + (1 − λ)x0], p1

]
/C

[
F [λx1 + (1 −

λ)x0], p0
])(

D
[
F [λx1+(1−λ)x0], x1

]
/D

[
F [λx1+(1−λ)x0], x0

])
, we can choose

λ∗ so that F [λ∗x1 + (1 − λ∗)x0] lies between F (x0) and F (x1).qed
Thus the reference indifference surface indexed by λ∗x1+(1−λ∗)x0 which

occurs in the above theorem lies between the surfaces indexed by x0 and x1,
the quantity vectors observed during periods 0 and 1.

The final result in this section shows that all three quantity indexes that
we have considered coincide (and are independent of reference price or quantity
vectors) if the aggregator function is homothetic.

Theorem 18. (Pollak [1971a; 65]): If F is homothetic (so that there exists a
continuous, monotonically increasing function of one variable such that G[F (x)]
is neoclassical) and (14) holds, then for every x � 0N and p � 0N

QM (x0, x1, x) = Q̃K(p0, p1, x0, x1, x) = QA(x0, x1, p)
= G[F (x1)]/G[F (x0)].(40)

Proof:

QM (x0, x1, x) ≡ D[F (x), x1]/D[F (x), x0]
≡ max

k>0
{k : F (x1/k) ≥ F (x)}/ max

k>0
{k : F (x0/k) ≥ F (x)}

=
maxk{k : G[F (x1/k)] ≥ G[F (x)], k > 0}
maxk[k : G[F (x0/k)] ≥ G[F (x)], k > 0}

= k1/k0 say

where G[F (x1/k1)] = G[F (x)] and G[F (x0/k0)] = G[F (x)]. Since G[F (x)] is
linearly homogeneous in x, the last two equations imply k1 = G[F (x1)]/G[F (x)]
and k0 = G[F (x0)]/G[F (x)] which in turn implies k1/k0 = QM (x0, x1, x) =
G[F (x1)]/G[F (x0)]. The other two equalities in (40) now follow from (29) and
(30).qed
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Corollary 18.1.

QP ≤ QM (x0, x1, x) = Q̃K(p0, p1, x0, x1, x) = QA(x0, x1, p) ≤ QL.

Proof: Follows from (40) and (31).qed

Corollary 18.2. If QM (x0, x1, x) is independent of x � 0N for all x0 � 0N

and x1 � 0N and F satisfies conditions I, then F must be homothetic.

Proof: If QM (x0, x1, x) is independent of x, then D[F (x), x1]/D[F (x), x0]
is independent of x for all x0 � 0N and x1 � 0N . Thus we must have
D[F (x), x0] = f(x0)/G[F (x)] for some functions f and G. Since F satisfies
conditions I, D must satisfy conditions IV and it is evident that f can be
taken to be neoclassical and G can be taken to be a monotonically increasing,
continuous function of one variable with G(u) > 0 if u > u ≡ F (0N ). Since
D[F (x), x] = 1 = f(x)/G[F (x)] for every x � 0N , we have G[F (x)] = f(x),
a positive, increasing, concave, linearly homogeneous and continuous function
for x � 0N . Thus F is homothetic.qed

Finally, we note that if F is neoclassical and (14) holds, then: (i) all
quantity indexes coincide and equal the value of the aggregator function eval-
uated at the period 1 quantities x1 divided by the value of F evaluated at the
period 0 quantities x0; i.e., we have

(41) QM (x0, x1, x) = Q̃K(p0, p1, x0, x1, x) = QA(x0, x1, p) = F (x1)/F (x0)

for all x � 0N and p � 0N ; (ii) all price indexes coincide and equal the ratio
of unit costs for the two periods; i.e., we have

(42) PK(p0, p1, x) = P̃M (p0, p1, x0, x1, x) = c(p1)/c(p0)

for all x � 0N ; and (iii) the expenditure ratio for the two periods is equal to
the product of the price index times the quantity index:

(43) p1T x1/p0T x0 = [c(p1)/c(p0)][F (x1)/F (x0)].

4. Other Approaches to Index Number Theory

During the period 1875–1925, perhaps the main approach to index number
theory was what Frisch [1936] called the ‘atomistic’ or ‘statistical’ approach.
This approach assumed that all prices are affected proportionately (except for
random errors) by the expansion of the money supply. Therefore, it does not

matter which price index was used to measure the common factor of proportion-
ality, as long as the index number contains a sufficient number of statistically
independent price ratios. Proponents of this approach were Jevons and Edge-
worth but the approach was rather successfully attacked by Bowley [1928] and
Keynes. For references to this literature, see Frisch [1936; 2–5].

A ‘neostatistical’ approach has been initiated by Theil [1960]. For the
case of two observations, Theil’s best linear price and quantity indexes P0, P1,
Q0, Q1 are the solution to the following constrained least squares problem:

min
P0,P1,Q0,Q1,e1,e2,e3,e4

4∑

i=1

e2
i subject to

(i) p0T x0 = P0Q0 + e1, (ii) p0T x1 = P0Q1 + e2

(iii) p1T x0 = P1Q0 + e3, (iv) p1T x1 = P1Q1 + e4

(44)

and one other normalization such as P0 = 1 is required. As usual, p0 and
p1 are the price vectors for the two periods while x0 and x1 are the corre-
sponding quantity vectors. P0 and P1 are scalars which are interpreted as the
price level in periods 0 and 1 respectively while Q0 and Q1 are the quantity
levels for the two periods. Finally, the ei are regarded as errors. Kloek and
de Wit [1961] suggested a number of modifications to Theil’s approach; they
suggested (44) for the case of two observations, but with the following three
sets of additional normalizations: (1) P0 = 1, e1 = 0, (2) P0 = 1, e1 + e4 = 0,
and (3) P0 = 1, e1 = 0, e4 = 0. Stuvel [1957] and Banerjee [1975] have sug-
gested similar ‘neostatistical’ index number formulae: Stuvel’s index numbers
P1/P0 and Q1/Q0 can be generated by solving (44) subject to the additional
normalizations P0 = 1, e1 = 0, e4 = 0 and e2 = e3.

The other major approach to index number theory is the test or axiomatic
approach, initiated by Irving Fisher [1911] [1922]. The test approach assumes
that the price and quantity indexes are functions of the price and quantity
vectors pertaining to two periods, say P (p0, p1, x0, x1) and Q(p0, p1, x0, x1).
Tests are a prior ‘reasonable’ properties that the functions P and Q should
possess. However, several researchers (e.g. Frisch [1930], Wald [1937], Samuel-
son [1974a], Eichhorn [1976] [1978a], Eichhorn and Voeller [1976]) have shown
that not all a priori reasonable properties for P and Q can be consistent with
each other; i.e. there are various impossibility theorems. Moreover, if one works
with a restricted set of tests which are consistent, the resulting family of index
number formulae is often not uniquely determined.

However, it turns out that the economic and test approaches to index
number theory can be partially reconciled. In the following two sections, we
shall assume explicit functional forms for the underlying aggregator function
plus the assumption of cost minimizing behavior on the part of the consumer
or producer. We shall show that certain functional forms for the aggregator
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function can be associated with certain functional forms for index number
formulae. Many of the resulting index number formulae (e.g. Fisher’s [1922]
ideal formula) have been suggested as desirable in the literature on the test
approach to index number theory.

5. Exact Index Number Formulae

Suppose we are given price and quantity data for two periods, p0, p1, x0

and x1. A price index P is defined to be a function of prices and quantities,
P (p0, p1, x0, x1), while a quantity index Q is defined to be another function
of the observable prices and quantities for the two periods, Q(p0, p1, x0, x1).
Given either a price index or a quantity index, the other function can be de-
fined implicitly by the following equation (Fisher’s [1922] weak factor reversal
test):

(45) P (p0, p1, x0, x1)Q(p0, p1, x0, x1) = p1T x1/p0T x0;

i.e., the product of the price index times the quantity index should equal the
expenditure ratio between the two periods.

Assume that the producer or consumer is maximizing a neoclassical19

aggregator function f subject to a budget constraint during the two periods.
Under these conditions, it can be shown that the consumer (or producer) is
also minimizing cost subject to a utility (or output) constraint and that the
cost function C which corresponds to f can be written as

(46) C[f(x), p] = f(x)c(p)

for x ≥ 0N and p � 0N where c(p) ≡ minx{pT x : f(x) ≥ 1, x ≥ 0N} is f ’s
unit cost function.20

A quantity index Q(p0, p1, x0, x1) is defined to be exact for a neoclassical
aggregator function f if, for every p0 � 0N , p1 � 0N ,21 xr � 0N a solution to
the aggregator maximization problem maxx{f(x) : prT x ≤ prT xr, x ≥ 0N} =
f(xr) > 0 for r = 0, 1, we have

(47) Q(p0, p1, x0, x1) = f(x1)/f(x0).

Thus in (47), the price and quantity vectors (p0, p1, x0, x1) are not re-
garded as completely independent variables — on the contrary, we assume

19f is positive, linearly homogeneous and concave over the positive orthant and
is extended to the nonnegative orthant Ω by continuity.
20Recall (6) with G(u) ≡ u. The function c is also neoclassical.
21Sometimes p0 and p1 are restricted to a subset of the positive orthant.

that (p0, x0) and (p1, x1) satisfy the following restrictions in order for the price
and quantity vectors to be consistent with ‘utility’ maximizing behavior during
the two periods:
(48)
pr � 0N , xr � 0N , f(xr) = max

x
{f(x) : prT x ≤ prT xr , x ≥ 0N} > 0; r = 0, 1.

If f is neoclassical, then, using (46), it can be verified that (48) implies
(49) and vice versa:

(49) pr � 0N , xr � 0N , prT xr = f(xr)c(pr) = C(f(xr), pr) > 0; r = 0, 1.

Now we are ready to define the notion of an exact price index.
A price index P (p0, p1, x0, x1) is defined to be exact for a neoclassical

aggregator function f which has the dual unit cost function c, if for every
(p0, x0) and (p1, x1) which satisfies (48) or (49), we have

(50) P (p0, p1, x0, x1) = c(p1)/c(p0).

Note that if Q is exact for a neoclassical aggregator function f , then Q
can be interpreted as a Malmquist, Allen or implicit Konüs quantity index
(recall (41)), and the corresponding price index P defined implicitly by Q via
(45) can be interpreted as a Konüs or implicit Malmquist price index (recall
(42)).

Some examples of exact index number formulae are presented in the fol-
lowing theorems. Before proceeding with these theorems, it is convenient to
develop some implications of (48) and (49). If f is neoclassical, (48) is satisfied,
and f is differentiable at x0 and x1, then

(51) pr/prT xr = ∇f(xr)/xrT∇f(xr) = ∇f(xr)/f(xr); r = 0, 1.

The first equality in (51) follows from the Hotelling [1935; 71], Wold [1944;
69–71], [1953; 145] identity22 while the second equality follows from Euler’s
Theorem on linearly homogeneous functions, f(xr) = xrT∇f(xr). Also if f
is neoclassical, (49) holds and f ’s unit cost function c is differentiable at p0

and p1, then

(52) xr/prT xr = ∇pC[f(xr), pr]/C[f(xr), pr] = ∇c(pr)/c(pr); r = 0, 1.

The first equality in (52) follows from Shephard’s [1953; 11] Lemma while the
second equality follows from (49).

22Alternatively, the first equality in (51) is implied by the Kuhn–Tucker con-
ditions for the concave programming problem in (48) upon eliminating the La-
grange multiplier for the binding constraint prT x ≤ prT xr. The nonnegativity
constraints x ≥ 0N are not binding because we assume the solution xr � 0N .
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Theorem 19. (Konüs and Byushgens [1926; 162], Pollak [1971a], Samuelson
and Swamy [1974; 574]): The Paasche and Laspeyres price indexes, PP (p0, p1,
x0, x1) ≡ p1T x1/p0T x1 and PL(p0, p1, x0, x1) ≡ p1T x0 / p0T x0, and the Paasche
and Laspeyres quantity indexes, QP (p0, p1, x0, x1) ≡ p1T x1 / p1T x0 and QL(p0, p1,
x0, x1) ≡ p0T x1 / p0T x0, are exact for a Leontief [1941] aggregator function,
f(x) ≡ mini{xi/bi : i = 1, . . . , N}, where x ≡ (x1, . . . , xN )T ≥ 0N and
b ≡ (b1, . . . , bN )T � 0N is a vector of positive constants.

Proof: If f is the Leontief or fixed coefficients aggregator function defined
above, then its unit cost function is c(p) ≡ pT b for p � 0N . Now assume (49).
Then

PL ≡ p1T x0/p0T x0

= p1T [∇c(p0)/c(p0)] using (52)
= p1T b/c(p0) since ∇c(p0) = b

≡ c(p1)/c(p0).

Similarly,

PP ≡ p1T x1/p0T x1 = 1/(p0T x1/p1T x1)
= 1/

[
p0T [∇c(p1)/c(p1)]

]
using (52)

= c(p1)/p0T b since ∇c(p1) = b

≡ c(p1)/c(p0).

Thus PL and PP are exact price indexes for f , and thus the corresponding
quantity indexes, QP and QL, defined implicitly by the weak factor reversal
test (45), are exact quantity indexes for f .qed

Theorem 20. (Pollak [1971a] Samuelson and Swamy [1974; 574]): The Paasche
and Laspeyres price and quantity indexes are also exact for a linear aggrega-
tor function, f(x) ≡ aT x where aT ≡ (a1, . . . , aN ) � 0N is a vector of fixed
constants.

Proof: Assume (48).23 Then

QL ≡ p0T x1/p0T x0

= x1T [∇f(x0)/f(x0)] using (51)
= x1T a/f(x0) since ∇f(x) = a

≡ f(x1)/f(x0).

23Note that the definition of exactness requires xr � 0N and xr is a solution
to the appropriate aggregator maximization problem. Thus it can be seen that
p0 must be proportional to a.

Similarly, QP = f(x1)/f(x0) and so QL and QP are exact for the linear aggre-
gator function f defined above. Thus the corresponding price indexes, PP and
PL, defined implicitly by the weak factor reversal test (45) are exact price in-
dexes for f and its corresponding unit cost function, c(p) ≡ minx{pT x : aT x ≥
1, x ≥ 0N} = mini{pi/ai : i = 1, . . . , N}.qed

The above theorems show that more than one index number formula can
be exact for the same aggregator function, and one index number formula can
be exact for quite different aggregator functions.

Theorem 21. (Konüs and Byushgens [1926; 163–166], Afriat [1972b; 46],
Pollak [1971a], Samuelson and Swamy [1974; 574]): The family of geomet-

ric price indexes defined by PG(p0, p1, x0, x1) ≡
∏N

i=1(p
1
i /p0

i )
si (where for

i = 1, 2, . . . , N , si ≡ mi(s0
i , s

1
i ), s0

i ≡ p0
i x

0
i /p0T x0, s1

i ≡ p1
i x

1
i /p1T x1 and

mi is any function which has the property mi(s, s) ≡ s) is exact for a Cobb–
Douglas [1928] aggregator function f defined by

(53) f(x) ≡ α0

N∏

i=1

xαi

i , where α0 > 0, α1 > 0, . . . , αN > 0,
∑N

i=1
αi = 1.

The family of geometric quantity indexes,

QG(p0, p1, x0, x1) ≡
N∏

i=1

(x1
i /x0

i )
si , si ≡ mi(s0

i , s
1
i )

is also exact for the aggregator function defined by (53).

Proof: If f is Cobb–Douglas and (48) holds, then for r = 0, 1, differenti-
ating (53) yields

xr
i

∂f(xr)
∂xi

/
f(xr) = αi = xr

i p
r
i /prT xr using (51)

≡ sr
i .

Thus s0
i = s1

i = αi = si ≡ mi(s0
i , s

1
i ) and

PG(p0, p1, x0, x1) ≡
N∏

i=1

(p1
i /p0

i )
si =

N∏

i=1

(p1
i /p0

i )
αi

= k

N∏

i=1

(p0
i )

αi/k

N∏

i=1

(p0
i )

αi = c(p1)/c(p0)

since it can be verified by Lagrangian techniques that the Cobb–Douglas func-
tion defined by (53) has the unit cost function

c(p) ≡ k

N∏

i=1

pαi

i where k ≡ 1/α0

N∏

i=1

ααi

i .
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Thus PG is exact for f . Similarly

QG(p0, p1, x0, x1) ≡
N∏

i=1

(x1
i /x0

i )
si =

N∏

i=1

(x1
i /x0

i )
αi

= α0

N∏

i=1

(x1
i )

αi/α0

N∏

i=1

(x0
i )

αi = f(x1)/f(x0)

and so QG is also exact for f defined by (53).qed

Theorem 22. (Byushgens [1925], Konüs and Byushgens [1926; 1971], Frisch
[1936; 30], Wald [1939; 331], Afriat [1972b; 45] [1977], Pollak [1971a] and Diew-
ert [1976a; 132]):24 Irving Fisher’s [1922] ideal quantity index

QF (p0, p1, x0, x1) ≡ (p1T x1/p1T x0)1/2(p0T x1/p0T x0)1/2 = (QP QL)1/2

and the corresponding price index

PF (p0, p1, x0, x1) ≡ (p1T x1/p0T x1)1/2(p1T x0/p0T x0)1/2

= (PP PL)1/2 = p1T x1/p0T x0QF (p0, p1, x0, x1)

are exact for the homogeneous quadratic function f defined by

(54) f(x) ≡ (xT Ax)1/2, x ∈ S

where A is a symmetric N ×N matrix of constants and S is any open, convex
subset of the nonnegative orthant Ω such that f is positive, linearly homoge-
neous and concave over this subset.25

Proof: We suppose that the following modified version of (48) holds:26

(55)
pr � 0N , xr � 0N , f(xr) = max

x
{f(x) : prT x ≤ prT xr , x ∈ S}; r = 0, 1.

24Samuelson [1947; 155] states that S. Alexander also derived this result in an
unpublished Harvard paper.
25f can be extended to the nonnegative orthant as follows. Because (xT Ax)1/2

is linearly homogeneous, S can be taken to be a convex cone. Extend f to S,
the closure of S, by continuity. Now define the free disposal level sets of f by
L(u) ≡ {x : x ≥ x′, f(x′) ≥ u, x′ ∈ S} for u ≥ 0. The extended f is defined as
f(x) ≡ maxu{u : x ∈ L(u), u ≥ 0} for x ≥ 0N .
26The nonnegativity constraints x ≥ 0N have been replaced by x ∈ S. Because
we assume that S is an open set and we assume that xr ∈ S, the constraints
x ∈ S are not binding in (55).

Since only the budget constraints prT x ≤ prT xr will be binding in the concave
programming problems defined in (55), the Hotelling–Wold relations (51) will
also hold, since the f defined by (54) is differentiable. Thus

pr/prT xr = ∇f(xr)/f(xr) for r = 0, 1 by (51)

=
1
2
(xrT Axr)−1/22Axr/(xrT Axr)1/2 differentiating (54)

= Axr/xrT Axr,(56)

and

QF (p0, p1, x0, x1) ≡ [x1T (p0/p0T x0)/x0T (p1/p1T x1)]1/2

= [x1T (Ax0/x0T Ax0)/x0T (Ax1/x1T Ax1)]1/2 using (56)

= (x1T Ax1)1/2/(x0T Ax0)1/2 since x1T Ax0 = x0T Ax1

≡ f(x1)/f(x0) using (54).

Thus QF and the corresponding implicit price index

PF (p0, p1, x0, x1) = p1T x1/p0T x0QF (p0, p1, x0, x1)
= f(x1)c(p1)/f(x0)c(p0)[f(x1)/f(x0)] using (49)
= c(p1)/c(p0)

are exact for the aggregator function f defined by (54) where c is the unit cost
function which is dual to f .qed

The set S which occurs in (54) will be nonempty if we take A to be a sym-
metric matrix with one positive eigenvalue (and the corresponding eigenvector
is positive) while the other eigenvalues of A are zero or negative. For example,
take A = aaT where a � 0N is a vector of positive constants. In this case,
S can be taken to be the positive orthant and f(x) ≡ (xT aaT x)1/2 = aT x, a
linear aggregator function. Thus the Fisher price and quantity indexes are also
exact for a linear aggregator function.

The above example shows that the matrix A in (54) does not have to
be invertible. However if A−1 does exist, then, using Lagrangian techniques,
it can be shown27 that c(p) ≡ (pT A−1p)1/2 for p ∈ S∗ where S∗ is the set of
positive prices where c(p) is positive, linearly homogeneous and concave.

27See Pollak [1971a] and Afriat [1972b; 45].
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6. Superlative Index Number Formulae

The last example of an exact index number formula is very important for the
following reason: unlike the linear aggregator function aT x or the geometric
aggregator function defined by (53), the homogeneous quadratic aggregator
function f(x) ≡ (xT Ax)1/2 can provide a second order differential approxima-
tion to an arbitrary, linearly homogeneous, twice continuously differentiable
aggregator function, i.e. (xT Ax)1/2 is a flexible functional form.28 Thus if
the true aggregator function can be approximated closely by a homogeneous
quadratic, and the producer or consumer is engaging in competitive maximiz-
ing behavior during the two periods, then the Fisher price and quantity indexes
will closely approximate the true ratios of unit and output (or utility). Note
that it is not necessary to econometrically estimate the (generally unknown)
coefficients which occur in the A matrix, only the observable price and quantity
vectors are required.

Diewert [1976a; 117] defined a quantity index Q to be superlative29 if it is
exact for an aggregator function f which is capable of providing a second order
differential approximation to an arbitrary twice continuously differentiable lin-
early homogeneous aggregator function. Thus Theorem 22 implies that Fisher’s
ideal index number formula QF is superlative.

Theorem 23. (Konüs and Byushgens [1926; 167–172], Pollak [1971a], Diewert
[1976a; 133–134]): Irving Fisher’s ideal price and quantity indexes, PF and QF ,
are exact for the aggregator function which is dual to the unit cost function c
defined by

(57) c(p) ≡ (pT Bp)1/2

28f is a flexible functional form if it can provide a second order (differential)
approximation to an arbitrary twice continuously differentiable function f∗ at
a point x∗. f differentially approximates f∗ at x∗ iff (i) f(x∗) = f∗(x∗), (ii)
∇f(x∗) = ∇f∗(x∗) and (iii) ∇2f(x∗) = ∇2f∗(x∗), where both f and f∗ are as-
sumed to be twice continuously differentiable at x∗ (and thus the two Hessian
matrices in (iii) will be symmetric). Thus a general flexible functional form
f must have at least 1 + N + N(N + 1)/2 free parameters. If f and f∗ are
both linearly homogeneous, then f∗(x∗) = x∗T∇f∗(x∗) and ∇2f∗(x∗)x∗ = 0N ,
and thus a flexible linearly homogeneous functional form f need have only
N + N(N − 1)/2 = N(N + 1)/2 free parameters. The term ‘differential ap-
proximation’ is in Lau [1974; 184]. Diewert [1974b; 125] or [1976a; 130] shows
that (xT Ax)1/2 is a flexible linearly homogeneous functional form.
29The term is due to Fisher [1922; 247] who defined a quantity index Q to be
superlative if it was numerically close to his ideal index, QF .

where B is a symmetric matrix of constants and S∗ is any convex subset of Ω
such that c is positive, linearly homogeneous and concave over S∗.30

Proof: Assume that (49) is satisfied where p0, p1 ∈ S∗, c is defined by (57)
and f is the aggregator function dual to this c. Then, since c is differentiable,
(52) also holds. Thus we have

PF (p0, p1, x0, x1) ≡ (p1T x1/p0T x1)1/2(p1T x0/p0T x0)1/2

= [p0T∇c(p1)/c(p1)]−1/2[p1T∇c(p0)/c(p0)]1/2 using (52)

= (p0T Bp1/p1T Bp1)−1/2(p1T Bp0/p0T Bp0)1/2

differentiating (57)

= (p1T Bp1)1/2/(p0T Bp0)1/2 since p0T Bp1 = p1T Bp0

≡ c(p1)/c(p0) using (57).

Thus PF and the corresponding implicit quantity index

QF (p0, p1, x0, x1) = p1T x1/p0T x0PF (p0, p1, x0, x1)
= f(x1)c(p1)/f(x0)c(p0)[c(p1)/c(p0)]

using (49)
= f(x1)/f(x0)

are exact for the unit cost function defined by (57).qed
The set S∗ which occurs in (57) will be nonempty if we take B to be a

symmetric matrix with one positive eigenvalue (and the corresponding eigen-
vector is a vector with positive components) while the other eigenvalues of B
are zero or negative. For example, take B ≡ bbT where b � 0N is a vector
of positive constants. In this case, S∗ can be taken to be the positive orthant
and c(p) = (pT bbT p)1/2 = pT b, a Leontief unit cost function. Thus the Fisher
price and quantity indexes are also exact for a Leontief aggregator function.31

This example shows that the f and c defined by Theorem 23 do not have to
coincide with the f and c defined in Theorem 22. However, QF and PF are
exact for both classes of functions. Of course, if B−1 or A−1 exist, then the f
and c defined in Theorem 22 coincide with the f and c defined in Theorem 23
(for a subset of prices and quantities at least).

A price index P is defined to be superlative if it is exact for a unit cost
function c which can provide a second order differential approximation to an

30The aggregator function f which is dual to c defined by (57) can be con-
structed using the local duality techniques explained in Blackorby and Diewert
[1979].
31This fact was first noted by Pollak [1971a].
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arbitrary twice continuously differentiable unit cost function. Since the c de-
fined by (57) can provide such an approximation, Theorem 23 implies that PF

is a superlative price index.
If P is a superlative price index and Q̃ is the corresponding quantity

index defined implicitly by the weak factor reversal test (45), then we define
the pair of index number formulae (P, Q̃) to be superlative. Similarly, if Q is
a superlative quantity index and P̃ is the corresponding implicit price index
defined by (45), then the pair of index number formulae (P̃ , Q) is also defined
to be superlative.

Before defining some additional pairs of superlative indexes, it is necessary
to note the following result. If

f∗(z1, . . . , zN) ≡ α0 +
∑N

i=1
αizi +

1
2

∑N

i=1

∑N

j=1
αijzizj

is a quadratic function defined over an open convex set S, then for every z0, z1 ∈
S, the following identity is true:

(58) f∗(z1) − f∗(z0) =
1
2
[∇f∗(z1) + ∇f∗(z0)]T (z1 − z0)

where ∇f∗(zr) is the gradient vector of f∗ evaluated at zr, r = 0, 1. The
above identity follows simply by differentiating f∗ and substituting the partial
derivatives into (58).32

Now define the Törnqvist [1936] price and quantity indexes, P0 and Q0:

P0(p0, p1, x0, x1) ≡
N∏

i=1

(p1
i /p0

i )
(s0

i +s1
i )/2(59)

Q0(p0, p1, x0, x1) ≡
N∏

i=1

(x1
i /x0

i )
(s0

i +s1
i )/2(60)

where p0 � 0N , p1 � 0N , x0 � 0N , x1 � 0N , s0
i ≡ p0

i x
0
i /p0T x0 and

s1
i ≡ p1

1x
1
1/p1T x1 for i = 1, 2, . . . , N .

Theorem 24. (Diewert [1976a; 119]): Q0 is exact for the homogeneous translog
aggregator function f defined as33

(61) ln f(x) ≡ α0 +
∑N

i=1
αi ln xi +

1
2

∑N

i=1

∑N

j=1
αij ln xi ln xj , x ∈ S

32On the other hand if f∗ satisfies (58) for all z0, z1 ∈ S, then Diewert [1976a;
138] (assuming that f∗ is thrice differentiable) and Lau [1979] (assuming that
f∗ is once differentiable) show that f∗ must be a quadratic function.
33This functional form is due to Christensen, Jorgenson and Lau [1971] and
Sargan [1971].

where
∑N

i=1 αi = 1, αij = αji for all i, j,
∑N

j=1 αij = 0 for i = 1, . . . , N and S
is an open convex subset of Ω such that f is positive and concave over S (the
above restrictions on the α’s ensure that f is linearly homogeneous).

Proof: Assume that the producer or consumer is engaging in maximizing
behavior during periods 0 and 1 so that (55) holds. Now define zi ≡ ln xr

i

for r = 0, 1 and i = 1, 2, . . . , N . If we define f∗(z) ≡ α0 +
∑N

i=1 αizi +
(1/2)

∑N
i=1

∑N
j=1 αijzizj where the α’s are as defined in (61), then, since f∗ is

quadratic in z, we can apply the identity (58). Since

∂f∗(zr)/∂zj ≡ ∂ ln f(xr)/∂ ln xj = [xr
j/f(xr)][∂f(xr)/∂xj ]

for r = 0, 1 and j = 1, . . . , N , (58) translates into the following identity involv-
ing the partial derivatives of the f defined by (61):

ln f(x1) − ln f(x0) =
1
2

∑N

i=1

[ x1
i

f(x1)
∂f(x1)

∂xi
+

x0
i

f(x0)
∂f(x0)

∂xi

]
(ln x1

i − ln x0
i )

=
1
2
[∇ln x ln f(x1) + ∇ln x ln f(x0)](ln x1 − ln x0)

or

ln f(x1)/f(x0) =
1
2

∑N

i=1

[ x1
i p

1
i

p1T x1
+

x0
i p

0
i

p0T x0

]
ln(x1

i /x0
i ) using (51).

Therefore

f(x1)/f(x0) =
N∏

i=1

(x1
i /x0

i )
(s1

i +s0
i )/2 ≡ Q0(p0, p1, x0, x1). qed

Define the implicit Törnqvist price index, P̃0(p0, p1, x0, x1) ≡ p1T x1/[p0T x0

×Q0(p0, p1, x0, x1)]. Since Q0 is exact for the homogeneous translog f defined
by (61), and since the homogeneous translog f is a flexible functional form
(it can provide a second order differential approximation to an arbitrary twice
continuously differentiable linearly homogeneous aggregator function), (P̃0, Q0)
is a superlative pair of index number formulae.

Theorem 25. (Diewert [1976a; 121]):34 P0 defined by (59) is exact for the
translog unit cost function c defined as

(62) ln c(p) ≡ α∗
0 +

∑N

i=1
α∗

i ln pi +
1
2

∑N

i=1

∑N

j=1
α∗

ij ln pi ln pj , p ∈ S∗

34Theil [1965; 71–72] virtually proved this theorem; however, he did not impose
linear homogeneity on c(p) defined by (62), which is required in order for (52)
to be valid.
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where
∑N

i=1 α∗
i = 1, α∗

ij = α∗
ji for all i, j,

∑N
j=1 α∗

ij = 0 for i = 1, . . . , N and
S∗ is an open, convex subset of Ω such that c is positive and concave over S∗.

Proof: Assume that the producer or consumer is engaging in cost min-
imizing behavior during periods 0 and 1 and thus we assume that (49) and
its consequence (52) hold, with p0, p1 ∈ S∗. Since ln c(p) is quadratic in the
variables zi ≡ ln pi, we can again apply the identity (58) which translates into
the following identity involving the partial derivatives of the c defined by (62):

ln c(p1) − ln c(p0) =
1
2

∑N

i=1

[
p1

i

c(p1)
∂c(p1)
∂pi

+
p0

i

c(p0)
∂c(p0)
∂pi

]
(ln p1

i − ln p0
i )

or

ln c(p1)/c(p0) =
1
2

∑N

i=1

[
p1

i x
1
i

p1T x1
+

p0
i x

0
i

p0T x0

]
ln(p1

i /p0
i ) using (52).

Therefore

c(p1)/c(p0) = P0(p0, p1, x0, x1) using definition (59) qed.

Now define the implicit Törnqvist quantity index, Q̃0(p0, p1, x0, x1) ≡
p1T x1/p0T x0P0(p0, p1, x0, x1). Since P0 is exact for the flexible functional form
defined by (62), (P0, Q̃0) is also a superlative pair of index number formulae.
It should be noted that the translog unit cost function is in general not dual
to the homogeneous translog aggregator function defined by (61) (except when
all αij = 0 = α∗

ij and αi = α∗
i , in which case (61) and (62) reduce to the

Cobb–Douglas functional form).
Thus far, we have found three pairs of superlative index number formulae:

(PF , QF ), (P0, Q̃0) and (P̃0, Q0). In turns out that there are many more such
formulae. For r 6= 0, define the quadratic mean of order r aggregator function35

fr as

(63) fr(x) ≡
(∑N

i=1

∑N

j=1
aijx

r/2
i x

r/2
j

)1/r

, x ∈ S

where S is an open subset of Ω where fr is neoclassical, and define the quadratic
mean order r unit cost function36 cr as

(64) cr(p) ≡
(∑N

i=1

∑N

j=1
bijp

r/2
i p

r/2
j

)1/r

, p ∈ S∗

35An ordinary mean of order r (see Hardy, Littlewood and Polya [1934]) is
defined as Fr(x) ≡

( ∑N
i=1 aix

r
i )

1/r for x � 0N where ai ≥ 0 and
∑N

i=1 ai =
1. Note that kFr(x) where k > 0 is the constant elasticity of substitution
functional form (see Arrow, Chenery, Minhas and Solow [1961]) so that fr

defined by (63) contains this functional form as a special case.
36See Denny [1974] who introduced cr to the economics literature.

where S∗ is an open subset of Ω where cr is neoclassical. For r 6= 0, define the
following price and quantity indexes:

Pr(p0, p1, x0, x1) ≡
[ ∑N

i=1
s0

i (p
1
i /p0

i )
r/2

]1/r[ ∑N

j=1
s1

j (p
1
j/p0

j )
−r/2

]−1/r

Qr(p0, p1, x0, x1) ≡
[ ∑N

i=1
s0

i (x
1
i /x0

i )
r/2

]1/r[ ∑N

j=1
s1

j (x
1
j/x0

j )
−r/2

]−1/r

(65)

where p0, p1, x0, x1 � 0N , s0
i ≡ p0

i x
0
i /p0T x0 and s1

i ≡ p1
i x

1
i /p1T x1 for i =

1, 2, . . . , N .
It can be shown37 (in a manner analogous to the proof of Theorem 22),

that for each r 6= 0, Qr defined by (65) is exact for fr defined by (63). Similarly,
it can be shown38 (in a manner analogous to the proof of Theorem 23), that
Pr defined by (65) is exact for cr defined by (64). Since it is easy to show
(cf. Diewert [1976a; 130] that fr and cr are flexible functional forms for each
r 6= 0, it can be shown that (Pr , Q̃r) and (P̃r, Qr) are pairs of superlative
index number formulae for each r 6= 0, where Q̃r ≡ p1T x1/p0T x0T Pr and
P̃r ≡ p1T x1/p0T x0Qr. Note that P2 = PF (Fisher’s ideal price index) and Q2 =
QF (Fisher’s ideal quantity index) so that (P2, Q̃2) = (P̃2, Q2) = (PF , QF ).
Moreover, it can be shown that the homogeneous translog aggregator function
defined by (61) is a limiting case of fr defined by (63) as r tends to zero
(similarly, the translog unit cost function defined by (62) is a limiting case of
cr as r tends to zero)39 and that Q0 defined by (60) is a limiting case of Qr as
r tends to 0 while P0 defined by (59) is a limiting case of Pr as r tends to 0.40

Given such a multiplicity of superlative indexes, the question arises: which
index number formula should be used in empirical applications? The answer
appears to be that it doesn’t matter, provided that the variation in prices
and quantities is not too great going from period 0 to period 1. This is
because it has been shown41 that the functions Pr and Ps differentially ap-
proximate each other to the second order for all r and s, provided that the
derivatives are evaluated at any point where p0 = p1 and x0 = x1: i.e. we have
Pr(p0, p1, x0, x1) = P̃s(p0, p1, x0, x1), ∇Pr(p0, p1, x0, x1) = ∇P̃s(p0, p1, x0, x1)
and ∇2Pr(p0, p1, x0, x1) = ∇2P̃s(p0, p1, x0, x1) for all r and s, provided that
p0 = p1 � 0N and x0 = x1 � 0N . ∇Pr stands for the 4N dimensional vector
of first order partials of Pr, ∇2Pr stands for the 4N matrix of second order

37See Diewert [1976a; 132].
38See Diewert [1976a; 133–134].
39See Diewert [1980; 451].
40See Khaled [1978; 95–96].
41See Diewert [1978b] who utilizes the work of Vartia [1976a] [1976b]. Vartia
[1978] provides an alternative proof.
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partials of Pr, etc. The quantity indexes Qr and Q̃s similarly differentially ap-
proximate each other to the second order for all r and s, provided that prices
and quantities are the same for the two periods. These results are established
by straightforward but tedious calculations — moreover, the assumption of op-
timizing behavior on the part of the consumer or producer is not required in
order to derive these results.

Diewert [1978b] also shows that the Paasche and Laspeyres price indexes,
PP and PL, differentially approximate each other and the superlative indexes,
Pr and P̃s, to the first order for all r and s, provided that prices and quantities
are the same for the two periods. Thus if the variation in prices and quantities
is relatively small between the two periods, the indexes PL, PP , Pr and P̃s will
all yield approximately the same answer.

Diewert [1978b] argues that the above results provide a reasonably strong
justification for using the chain principle when calculating official indexes such
as the consumer price index or the GNP deflator, rather than using a fixed
base, since in using the chain principle the base is changed every year, and
thus the changes between p0 and p1 and x0 and x1 will be minimized, leading
to smaller discrepancies between PL and PP , and even smaller discrepancies
between the superlative indexes Pr and P̃s.42

However, in some situations (e.g. in cross country comparisons or when
decennial census data are being used) there can be considerable variation in
the price and quantity data going from period (or observation) 0 to period (or
observation) 1, in which case the indexes Pr and P̃s can differ considerably. In
this situation, it is sometimes useful to compare the variation in the N quan-
tity ratios (x1

i /x0
i ) to the variation in the N price ratios (p1

i /p0
i ). If there is

less variation in the quantity ratios than in the price ratios, then the quan-
tity indexes Qr defined by (66) are share weighted averages of the quantity
ratios and will tend to be more stable than the implicit indexes Q̃r. On the
other hand, if there is less variation in the price ratios than in the quantity
ratios (the more typical case), then the price indexes Pr defined by (65) are
share weighted averages of the price ratios (p1

i /p0
i ) and will tend to be in closer

agreement with each other than the implicit price indexes P̃r. Thus, in the first
situation, we would recommend the use of (P̃r, Qr) for some r,43 while in the
second situation we would recommend the use of (Pr, Q̃r) for some r.44 Notice

42The chain principle can also be justified from the viewpoint of Divisia indexes;
see Wold [1953; 134–139] and Jorgenson and Griliches [1967].
43If (x1

i /x0
i ) = k > 0 for all i, then (P̃r, Qr) = (p1T x1/p0T x0k, k) for all r, and

the use of (P̃r, Qr) can be theoretically justified using Leontief’s [1936; 54–57]
Aggregation Theorem.
44If (p1

i /p0
i ) = k > 0 for all i, then (Pr , Q̃r) = (k, p1T x1/p0T x0k) for all r,

and the use of (Pr, Q̃r) can be theoretically justified using Hicks’ [1946; 312–

that the Fisher index, (PF , QF ) = (P2, Q̃2) = (P̃2, Q2) can be used in either
situation. A further advantage for the Fisher formulae (PF , QF ) is that QF

is consistent with revealed preference theory: i.e., even if the true aggregator
function f is nonhomothetic, under the assumption of maximizing behavior,
QF will correctly indicate the direction of change in the aggregate when re-
vealed preference theory tells us that the aggregate is decreasing, increasing or
remaining constant (cf. Diewert [1976a; 137]). Recall also that QF is consistent
both with a linear aggregator function (perfect substitutability) and a Leontief
aggregator function (no substitutability). No other superlative index number
formula Qr or Q̃r, r 6= 2, has the above rather nice properties.

We conclude this section by showing that some of the above superlative
index number formulae are also exact for nonhomothetic aggregator functions.

Theorem 26. (Diewert [1976a; 122]): Let the functional form for the cost
function C(u, p) be a general translog defined by

(66) ln C(u, p) ≡ α0 +
∑N

i=1
αi ln pi +

1
2

∑N

i=1

∑N

j=1
γij ln pi ln pj

+ δ0 ln u +
∑N

i=1
δi ln pi ln u +

1
2
ε0(ln u)2

where the parameters satisfy the following restrictions:

(67)

∑N

i=1
αi = 1; γij = γji for all i, j;

∑N

j=1
γij = 0 for i = 1, 2, . . . , N, and

∑N

i=1
δi = 0.

Let (u0, p0) and (u1, p1) belong to a (u, p) region where C(u, p) satisfies con-
ditions II where u0 > 0, u1 > 0, p0 � 0N , p1 � 0N and the corresponding
quantity vectors are x0 ≡ ∇pC(u0, p0) > 0N and x1 ≡ ∇pC(u1, p1) > 0N

respectively. Then

(68) P0(p0, p1, x0, x1) = C(u∗, p1)/C(u∗, p0)

where P0 is the Törnqvist price index defined by (59) and the reference utility
level u∗ ≡ (u0u1)1/2.

Proof: For a fixed u∗, ln C(u∗, p) is quadratic in the variables zi ≡ ln pi

and thus we may apply the identity (53) to obtain

ln C(u∗, p1) − ln C(u∗, p0)

313] Composite Commodity Theorem. See also Wold [1953; 102–110], Gorman
[1953; 76–77] and Diewert [1978a; 23].
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=
1
2

∑N

i=1

[
[p1

i ln C(u∗, p1)/∂pi] + [p0
i ln C(u∗, p0)/∂pi]

]
(ln p1

i − ln p0
i )

=
1
2

∑N

i=1

[
[p1

i ∂ ln C(u1, p1)/∂pi] + [p0
i ∂ ln C(u0, p0)/∂pi]

]
(ln p1

i − ln p0
i )

where the equality follows upon evaluating the derivatives of C and noting that
2 lnu∗ = ln u1 + ln u0,

= ln P0(p0, p1, x0, x1)

using the definitions of x0, x1 and P0 and equations (52).qed
Note that the right hand side of (68) is the true Konüs price index which

corresponds to the general translog cost function defined by (66), evaluated
at the reference utility level of u∗, the square root of the product of the pe-
riod 0 and 1 utility levels, u0 and u1. We note that the translog cost function
can provide a second order differential approximation to an arbitrary twice
continuously differentiable cost function.

Theorem 27. (Diewert [1976a; 123–124]): Let the aggregator function F be
such that F ’s distance function D is the translog distance function defined by
ln D(u, x) ≡ ln C(u, x) where C is defined by (66) and (67). Let (u0, x0) and
(u1, x1) belong to a (u, x) region where D(u, x) satisfies conditions IV where
u0 > 0, u1 > 0, x0 � 0N , x1 � 0N , D(u0, x0) = 1, D(u1, x1) = 1 and the
corresponding vectors of normalized prices are p0/p0T x0 ≡ ∇xD(u0, x0) > 0N

and p1/p1T x1 ≡ ∇xD(u1, x1) > 0N respectively.45 Then

(69) Q0(p0, p1, x0, x1) = D(u∗, x1)/D(u∗, x0)

where Q0 is the Törnqvist quantity index defined by (60) and the reference
utility level u∗ ≡ (u0u1)1/2.

Proof: For a fixed u∗, ln D(u∗, x) is quadratic in the variables zi ≡ ln xi

and thus we may apply the identity (58) to obtain

ln D(u∗, x1) − ln D(u∗, x0)

=
1
2

∑N

i=1

[
[x1

i ∂ ln D(u∗, x1)/∂xi] + [x0
i ∂ ln D(u∗, x0)/∂xi]

]
(ln x1

i − ln x0
i )

=
1
2

∑N

i=1

[
[x1

i ln D(u1, x1)/∂xi] + [x0
i ∂ ln D(u0, x0)/∂xi]

]
ln(x1

i /x0
i )

45These assumptions imply that xr is a solution to the aggregator maximization
problem maxx{F (x) : prT x = prT xr, x ≥ 0N} = F (xr) ≡ ur for r = 0, 1 where
F is locally dual (cf. Blackorby and Diewert [1979]) to the translog distance
function D defined above.

where the equality follows upon evaluating the derivatives of D and noting that
2 lnu∗ = ln u1 + ln u0

=
1
2

∑N

i=1

[
[x1

i p
1
i /p1T x1D(u1, x1)] + [x0

i p
0
i /p0T x0D(u0, x0)]

]
ln(x1

i /x0
i )

using pr/prT xr = ∇xD(ur, xr), r = 0, 1,46

= ln Q0(p0, p1, x0, x1)

using D(u1, x1) = 1, D(u0, x0) = 1 and the definition of Q0.qed
Note that the right hand side of (69) is the Malmquist quantity index

which corresponds to the translog distance function, evaluated at the reference
utility level u∗ = (u0u1)1/2. Theorem 27 provides a fairly strong justification
for the use of Q0 in empirical applications, since the translog distance function
can differentially approximate an arbitrary twice continuously differentiable
distance function to the second order.47 However, the Fisher ideal index Q2

can be given a similar strong justification in the context of nonhomothetic
aggregator functions.48

7. Historical notes and additional related topics

Our survey of the economic theory of index numbers is based on the work
of Konüs [1924], Frisch [1936], Allen [1949], Malmquist [1953], Pollak [1971a],
Afriat [1972a] [1972b] [1977] and Samuelson and Swamy [1974]. The results
noted in Sections 2 and 3 are either taken directly from or are straightforward
modifications of results obtained by the above authors, except that in many
cases we have weakened the original author’s regularity conditions.49

46This identity is due to Shephard [1953; 10–13] and Hanoch [1978a; 116].
47Let D be a distance function which satisfies certain local regularity proper-
ties and let F be the corresponding local aggregator function, and C be the
corresponding local cost function. Blackorby and Diewert [1979] show that
if D differentially approximates D∗ to the second order, then F differentially
approximates F ∗, and C differentially approximates C∗ to the second order
where F ∗ and C∗ are dual to D∗.
48See Diewert [1976b; 149].
49Our regularity conditions can be further weakened: for all of the results in
Sections 2 and 3 which do not involve the Malmquist quantity index, we need
only assume that F be continuous and be subject to local nonsatiation (it turns
out that the corresponding C will still satisfy conditions II). Also Theorems 11,
12, 14 and 16 can be proven provided that F be only continuous from above
and increasing.



214 Essays in Index Number Theory 7. The Economic Theory 215

The reader will have noted that many of the proofs in Sections 2 and 3
use arguments that are used in revealed preference theory. For further material
on the interconnections between revealed preference theory and index number
theory, see Leontief [1936], Samuelson [1947; 146–163], Allen [1949], Diewert
[1976b], Vartia [1976b; 144] and Afriat [1977].

There is extensive literature on the measurement of real output or real
value added that is analogous to our discussion on the measurement of utility or
real input: see Samuelson [1950a], Bergson [1961], Moorsteen [1961], Fisher and
Shell [1972b; 49–113] (the last three references make use of a quantity index
analogous to the Malmquist index), Samuelson and Swamy [1974; 588–592],
Sato [1976b], Archibald [1977] and Diewert [1980].

Background material on the duality between cost, production or utility,
and distance or deflation functions can be found in Shephard [1953] [1970],
McFadden [1978a], Hanoch [1978a], Blackorby, Primont and Russell [1978],
Diewert [1974a] [1978c], Deaton [1979] and Weymark [1980].

Turning now to Sections 5 and 6, for theorems which prove converses to
Theorems 19 to 25 under various regularity conditions, see Byushgens [1925],
Konüs and Byushgens [1926], Pollak [1971a], Diewert [1976a] and Lau [1979].

Sato [1976a] shows that a certain index number formula (which was de-
fined independently by Vartia [1974]) is exact for the CES aggregator function
defined by (63) with aij ≡ 0 for i 6= j for all r, while Lau [1979] develops a
partial converse theorem.

In Theorem 22, preferences were assumed to be represented by the trans-
formed quadratic function, (xT Ax)1/2. The assumption that preferences can
be represented, at least locally, by a general quadratic function of the form
a0 + aT x + 1/2xT Ax has a long history in economics, perhaps starting with
Bennet [1920]. Other authors who have approximated preferences quadrati-
cally, in addition to those mentioned in Theorem 22, include Bowley [1928],
Hotelling [1938], Hicks [1946; 331–333], Kloek [1967], Theil [1967; 200–212]
[1968], and Harberger [1971].

Kloek and Theil utilize quadratic approximations in the logarithms of
prices and quantities and they obtain results which are related to Theorems 25
and 26 above. Kloek [1967] shows that the Törnqvist price index P0(p0, p1,
x0, x1) approximates the true Konüs price index PK(p0, p1, um) to the sec-
ond order where um, an intermediate utility level, is defined implicitly by
the equation C(um, p0)/C(u0, p0) = C(u1, p1)/C(um, p1) and C is the true
cost function. On the quantity side, Kloek [1967] shows that the implicit
Törnqvist quantity index Q̃0(p0, p1, x0, x1) approximates the true Allen quan-
tity index QA(x0, x1, pm) ≡ C[F (x1), pm] / C[F (x0), pm] to the second order
where pm ≡ (pm

1 , pm
2 , . . . , pm

N )T , an intermediate price vector, is defined by
pm

i ≡ (p0
i p

1
i )

1/2, i = 1, . . . , N and F is the aggregator function dual to the true
cost function C. On the other hand, Theil [1968] shows that P0(p0, p1, x0, x1)

approximates the true Konüs price index PK(p0, p1, u) to the second order
where u, an intermediate utility level, is defined as u ≡ G(pm/ym) where G is
the indirect utility function dual to the true cost function C,50 pm is Kloek’s
intermediate price vector defined above and ym ≡ (p0T x0p1T x1)1/2 is an inter-
mediate expenditure. Finally, on the quantity side, Theil [1967] [1968] proves
Kloek’s result (i.e. that Q̃0(p0, p1, x0, x1) approximates QA(x0, x1, pm) to the
second order) and in addition, shows that the direct Törnqvist quantity index
Q0(p0, p1, x0, x1) also approximates QA(x0, x1, pm) to the second order.

It should be noted that index number theory and consumer surplus analy-
sis are closely related. Thus the Paasche–Allen quantity index QA(x0, x1, p1) ≡
C[F (x1), p1]/C[F (x0), p1], is closely related to Hicks’ [1941–42; 128] [1946; 40–
41] compensating variation in income,51 C[F (x1), p1] − C[F (x0), p1], and the
Laspeyres–Allen quantity index, QA(x0, x1, p0) ≡ C[F (x1), p0]/C[F (x0), p0], is
closely related to Hicks’ [1941–42; 128] [1946; 331] equivalent variation in in-
come, C[F (x1), p0] − C[F (x0), p0]. Thus the various bounds we developed for
index numbers in the previous section have counterparts in consumer surplus
analysis. Hicks [1941–42] and Samuelson [1947; 189–202] emphasized the in-
terconnection between index number theory and consumer surplus measures.
For additional results and references to the literature on consumer surplus, see
Hotelling [1938], Samuelson [1942], Harberger [1971], Silberberg [1972], Hause
[1975], Chipman and Moore [1976] and Diewert [1976b]. The attractiveness of
the Malmquist quantity index QM (x0, x1, x) does not seem to have been noted
in the applied welfare economics literature, although the closely related concept
inherent in Debreu’s [1951] coefficient of resource utilization has been recog-
nized. Perhaps in the future there will be more applications of the Kloek–Theil
approximation results, or of Theorem 27 above which shows that the Törnqvist
quantity index Q0 is numerically equal to a certain Malmquist index.

Another type of price and quantity index which we must mention is the
Divisia [1925] [1926; 40] index (which is perhaps due to Bennet [1920; 461]).
The Bennet–Divisia justification for these indexes proceeds as follows. Regard
(x1, . . . , xN )T ≡ x and (p1, . . . , pN )T ≡ p as functions of time, x(t) and p(t)
for i = 1, . . . , N . Now differentiate expenditure with respect to time and we

50G(pm/ym) ≡ maxu{u : C(u, pm/ym) ≤ 1} ≡ maxx{F (x) : (pm/ym)T x ≤
1, x ≥ 0N} where C is the cost function and F is the aggregator function.
51Hicks’ verbal definition of the compensating variation can be interpreted to
mean C[F (x0), p1] − C[F (x0), p0], and this interpretation is related to the
Laspeyres–Konüs cost of living index.



216 Essays in Index Number Theory 7. The Economic Theory 217

obtain.52

(70) ∂
[∑N

i=1
pi(t)xi(t)

]/
∂t =

∑N

i=1
pi(t)∂xi(t)/∂t +

∑N

i=1
xi(t)∂pi(t)/∂t.

Now divide both sides of the above equation through by
∑N

i=1 pi(t)xi(t) ≡
p(t)T x(t) and we obtain the identity:

(71) ∂ ln[p(t)T x(t)]/∂t =
∑N

i=1
si(t)∂ ln xi(t)/∂t +

∑N

i=1
si(t)∂ ln pi(t)/∂t

where si(t) ≡ pi(t)xi(t)/p(t)T x(t) for i = 1, 2, . . . , N . The term on the left
hand side of (70) is the rate of change of expenditures, which is decomposed
into a share weighted rate of change of quantities plus a share weighted rate of
change of prices. Denote ẋi(t) ≡ ∂xi(t)/∂t and ṗi(t) ≡ ∂pi(t)/∂t and integrate
both sides of (70) to obtain

(72) ln p(1)T x(1)/p(0)T x(0) =
∫ 1

0

[ ∑N

i=1
si(t)ẋi(t)/xi(t)

]
dt

+
∫ 1

0

[ ∑N

i=1
si(t)ṗi(t)/pi(t)

]
dt.

The first term on the right hand side of the above equation is defined to be
the natural logarithm of the Divisia quantity index, ln[X(1)/X(0)], while the
second term is the logarithm of the Divisia price index, ln[P (1)/P (0)].

The above derivation of the Divisia indexes, X(1)/X(0) and P (1)/P (0),
is devoid of any economic interpretation. However, Ville [1951–52], Malmquist
[1953; 227], Wold [1953; 134–147], Solow [1957], Gorman [1959; 479] [1970],
Jorgenson and Griliches [1967; 253] and Hulten [1973] show that if the con-
sumer or producer is continuously maximizing a well behaved linearly homo-
geneous aggregator function subject to a budget constraint between t = 0 and
t = 1, then P (1)/P (0) = PK(p(0), p(1), x) (i.e. the Divisia price index equals
the true Konüs price index for any reference quantity vector x � 0N) and
we can deduce that X(1)/X(0) = QM (x(0), x(1), x) = QA(x(0), x(1), p) =

52‘The fundamental idea is that over a short period the rate of increase of ex-
penditure of a family can be divided into two parts x and I , where x measures
the increase due to change of prices and I measures the increase due to in-
crease of consumption; x is the total of the various quantities consumed, each
multiplied by the appropriate rate of increase of price, and I is the total of the
prices of commodities, each multiplied by the rate of increase in its consump-
tion’ (Bennet [1920; 455]). I is the first term on the right hand side of (70)
while x is the second term.

Q̃K(p(0), p(1), x(0), x(1), x) (i.e. the Divisia quantity index equals the Malm-
quist, Allen, and implicit Konüs quantity indexes for all reference vectors
x � 0N and p � 0N ). On the other hand, Ville [1951–52; 127], Malmquist
[1953; 226–227], Gorman [1970; 7], Silberberg [1972; 944] and Hulten [1973;
1021–1022] show that if the aggregator function is not homothetic, then the
line integrals defined on the right hand side of (72) are not independent of the
path of integration and thus the Divisia indexes are also path dependent.

We have not stressed the Divisia approach to index numbers in this survey
since economic data typically are not collected on a continuous time basis. Since
there are many ways of approximating the line integrals in (72) using discrete
data points, the Divisia approach to index number theory does not significantly
narrow down the range of discrete type index number formulae, P (p0, p1, x0, x1)
and Q(p0, p1, x0, x1), that are consistent with the Divisia approach.

The line integral approach also occurs in consumer surplus analysis; see
Samuelson [1942] [1947; 189–202], Silberberg [1972], Rader [1976] and Chipman
and Moore [1976].

Divisia indexes and exact index number formulae also play a key role in
another area of economics which has a vast literature, namely the measurement
of total factor productivity. A few references to this literature are Solow [1957],
Domar [1961], Richter [1966], Jorgenson and Griliches [1967] [1972], Gorman
[1970], Ohta [1974], Star [1974], Usher [1974], Christensen, Cummings and
Jorgenson [1980], Diewert [1976a; 124–129] [1980; 487–498] and Allen [1981].
To see the relationship of this literature to superlative index number formulae,
consider the following example: Let ur ≡ f(xr) > 0, r = 0, 1 be ‘intermediate’
output produced by a competitive (in input markets) cost minimizing firm
where xr � 0N is a vector of inputs utilized during period r, and f is the
homogeneous translog production function defined by (61). Letting w0 � 0N

and w1 � 0N be the vectors of input prices the producer faces during periods 0
and 1, Theorem 24 tells us that

(73) f(x1)/f(x0) = Q0(w0, w1, x0, x1)

where Q0 is the Törnqvist quantity index defined by (60). Using (49), we also
have

(74) c(wr)f(xr) = wrT xr, r = 0, 1

where c(w) is the unit cost function which is dual to f(x). Suppose now
that ‘final’ output is yr ≡ arf(xr), r = 0, 1 where ar > 0 is defined to be a
technology index for period r. The ratio a1/a0 can be defined to be a measure
of Hicks neutral technical progress.53 Using (73),

(75) a1/a0 ≡ (y1/y0)/[f(x1)/f(x0)] = y1/y0Q0(w0, w1, x0, x1).

53See Blackorby, Lovell and Thursby [1976] for a discussion of the various types
of neutral technological change.
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Thus a1/a0 can be calculated using observable data.54 The unit cost function
for y in period r is c(w)/ar. Now suppose the producer behaves monopolisti-
cally on his output market and sells his period r output yr at a price pr equal
to unit cost times a markup factor mr > 0, i.e.

(76) pr ≡ mrc(wr)/ar, r = 0, 1.

Using (76),

(77) m1/m0 = (p1/p0)(a1/a0)/[c(w1)/c(w0)] = (p1y1/p0y0)/(w1T x1/w0T x0)

using (74) and (75). Thus the rate of markup change m1/m0 can be calculated
by (77), the value of output ratio deflated by the value of inputs ratio, using
observable data.55 However, if pure profits are zero in each period, then pryr =
wrT xr = [mrc(wr)/ar][arf(xr)] (using (76)) = mrwrT xr (using (74)) so that
mr = 1 for r = 0, 1.

Another area of research which somewhat surprisingly is closely related
to index number theory is the measurement of inequality; see Blackorby and
Donaldson [1978] [1980] [1981].

Typically, a price or quantity index is not constructed in a single step.
For example, in constructing a cost of living index, first food, clothing, trans-
portation and other subindexes are constructed and then they are combined
to form a single cost of living index. Vartia [1974; 39–42] [1976a; 124] [1976b;
84–89] defines an index number formula P (p0, p1, x0, x1) to be consistent in
aggregation if the numerical value of the index constructed in two (or more)
stages necessarily coincides with the value of the index calculated in a single
stage. Vartia [1976b; 90] stresses the importance of the consistency in aggrega-
tion property for national income accounting and notes that the Paasche and
Laspeyres indexes have this property (as do the geometric indexes PG and QG

defined in Theorem 21 above). Vartia [1976b; 121–140] exhibits many other
index number formulae that are consistent in aggregation. Unfortunately, the
two families of superlative indexes, (Pr, Q̃r) and (P̃s, Qs), are not consistent
in aggregation for any r or s. However, Diewert [1978b] using some of Var-
tia’s results shows that the superlative indexes are approximately consistent in
aggregation (to the second order in a certain sense). Additional results are
contained in Blackorby and Primont [1980]. Related to the consistency in ag-
gregation property for an index number formula are the following issues which
have been considered by Pollak [1975], Primont [1977], Blackorby and Russell
[1978] and Blackorby, Primont and Russell [1978; Chapter 9]: (i) under what

54This part of the analysis is due to Diewert [1976a; 124–129].
55This argument is essentially due to Allen [1981]. Allen also generalized his
results to many outputs and to nonneutral measures of technical change.

conditions do well defined Konüs cost of living subindexes exist for a subset
of the commodity space and (ii) under what conditions can the subindexes be
combined into the true overall Konüs cost of living index PK? Finally, a re-
lated result is due to Gorman [1970; 3] who shows that the line integral Divisia
indexes defined above ‘aggregate conformably’ or are consistent in aggregation,
to use Vartia’s term.

If we are given more than two price and quantity observations, then some
ideas due to Afriat [1967] can be utilized in order to construct nonparametric
index numbers. Let there be I given price-quantity vectors (pi, xi) where pi �
0N , xi > 0N , i = 1, 2, . . . , I . Use the given data in order to define Afriat’s ijth
cross coefficient, Dij ≡ (piT xj/piT xi) − 1 for 1 ≤ i, j ≤ I . Now consider the
following linear programming problem in the 2I + 2I2 variables λi, φi, s+

ij , s−ij ,
i, j = 1, . . . , I :

(78) minimize
∑I

i=1

∑I

j=1
s−ij subject to

(i) λiDij = φj − φi + s+
ij − s−ij ; i, j = 1, 2, . . . , I,

(ii) λi ≥ 1; i = 1, 2, . . . , I, and
(iii) φi ≥ 0, s+

ij ≥ 0, s−ij ≥ 0; i, j = 1, 2, . . . , I.

Diewert [1973b]56 shows that if xi is a solution to

(79) max
x

{F (x) : piT x ≤ piT xi, x ≥ 0N}

for i = 1, 2, . . . , I where F is a continuous from above aggregator function which
is subject to local nonsatiation (so that the budget constraint piT x ≤ piT xi

will always hold as an equality for an x which maximizes F (x) subject to the
budget constraint), then the objective function in the programming problem
(78) will attain its lower bound of zero. On the other hand, Afriat [1967]
shows that if the objective function in (78) attains its lower bound of 0 so
that λ∗

i Dij ≥ φ∗
j − φ∗

i for all i and j where λ∗
i , φ∗

i denote solution variables to
(78), then the given quantity vector xi is a solution to the utility maximization
problem (79) for i = 1, 2, . . . , I . Moreover Afriat [1967; 73–74] shows that a
utility function F ∗ which is consistent with the given data in the sense that
F ∗(xi) = maxx{F ∗(x) : piT x ≤ piT xi; x ≥ 0N} for i = 1, 2, . . . , I can be
defined as F ∗(x) ≡ mini{F ∗

i (x) : i = 1, . . . , I} where

(80) F ∗
i (x) ≡ φ∗

i + λ∗
i [(p

iT x/piT xi) − 1], i = 1, 2, . . . , I,

56Afriat [1967] has essentially this result. However, there is a slight error in
his proof and he does not phrase the problem as a linear programming prob-
lem. (78) corrects some severe typographical errors in Diewert’s [1973b; 421]
equation (3.2).
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and where the number φ∗
i and λ∗

i are taken from the solution to (78). Afriat
notes that this F ∗ is continuous, increasing and concave over the nonnegative
orthant and that F ∗(xi) = φ∗

i for i = 1, . . . , I . Thus if the observed data are
consistent with a decision maker maximizing a continuous from above, locally
nonsatiated aggregator function F (x) subject to I budget constraints, then
the solution to the linear programming problem (78) can be used in order to
construct an approximation F ∗ to the true F , and this F ∗ will satisfy much
stronger regularity conditions. Diewert [1973b; 424] notes that we can test
whether the given data are consistent with the additional hypothesis that the
true aggregator function is homothetic or linearly homogeneous by adding the
following restrictions to (78): (iv) λi = φi, 1 = 1, . . . , I . Geometrically, these
additional restrictions force all of the hyperplanes defined by (61) through the
origin; i.e. F ∗

i (0N) = 0 for all i. Once the linear program (78) is solved, either
with or without the additional normalizations (iv), we can calculate F ∗(xi) =
φ∗

i for all i and thus the quantity indexes F ∗(xi+1)/F ∗(xi) can readily be
calculated. Diewert and Parkan [1978] calculated these nonparametric quantity
indexes using some Canadian time series data57 and compared them with the
superlative indexes Q2, Q0 and Q̃0. The differences among all of these indexes
turned out to be small.58 The above method for constructing nonparametric
indexes is of course closely related to revealed preference theory.

Finally, we mention that there is an analogous ‘revealed production the-
ory’ which allows one to construct nonparametric index numbers and nonpara-
metric approximations to production functions and production possibility sets
by solving various linear programming problems:59 see Farrell [1957], Afriat
[1972a], Hanoch and Rothschild [1972] and Diewert and Parkan [1983].
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