Formulas

Interest calculation

Simple interest

I = i.t.PV

 $FV = PV + I \rightarrow PV^*(1+i^*t)$ (no effect of previously paid interest, typically Money Market, securities with lifetime < 1 year)

Commercial discount (interest is payed ahead)

D = d*t*FV

 $PV = FV - D \rightarrow FV^*(1-d^*t)$ (short time securities, T-bills, Promissory note)

 $i = d/(1+d) \rightarrow d = i/(1-i)$

Compound interest

PV for 1st year... = $PV + I_1$

PV for 2nd year... = $(PV + I_1) + I_2$,... $\rightarrow PV^*(1+i)^*(1+i)$

PV for 3rd year... = $((PV + I_1) + I_2) + I_3$

•

PV for nth year... =PV*(1+i)^n

Interest period < 1 year → PV*(1+i/m)^m

Effective interest rate

$$i_e = (1+i/m)^m-1$$

<u>Combined interest</u> (When the whole time is not integer)

$$FV = PV*(1+i)^n*(1+i*R)$$

Where t = n + R, $n \in Z$ and R < 1 Interest period

Continues interest (Interest period is in every moment, if m within one year goes to infinity)

$$FV=PV*e^{\Lambda(f*t)}$$
, ... $f = In(i_e+1)$, consequently $= e^{\Lambda(f*t)}$

Real interest

... we consider the effect of inflation, then it must be true

$$PV^*(1+i_r) = PV^*(1+i_n) / (1+\pi) \rightarrow i_r = *(1+i_n) / (1+\pi) - 1$$

Tax, FV after tax

Note: The tax period is not always the same like the interest period! In most cases the tax period is one year.

PV	Present value
FV	Future value
	Interest (Amount)
D	Discount (Amount)
	Interest rate
d	Commercial discount
า	Number of Interest periods
t	Time
R	Remaining time
Γ	Tax rate

fInterest intensity