INTERMEDIATE

MICROECONOMICS HALR, VARIAN

Demand

O 2010 W. Norton & Company, Inc.

Properties of Demand Functions

◆ Comparative statics analysis of ordinary demand functions -- the study of how ordinary demands x₁*(p₁,p₂,y) and x₂*(p₁,p₂,y) change as prices p₁, p₂ and income y change.

- ♦ How does x₁*(p₁,p₂,y) change as p₁ changes, holding p₂ and y constant?
- ♦ Suppose only p₁ increases, from p₁' to p₁" and then to p₁".

Own-Price Changes Fixed p₂ and y.

Own-Price Changes Fixed p₂ and y.

Own-Price Changes Fixed p₂ and y.

Own-Price Changes Fixed p₂ and y.

Own-Price Changes Fixed p₂ and y.

- ◆ The curve containing all the utilitymaximizing bundles traced out as p₁ changes, with p₂ and y constant, is the p₁- price offer curve.
- ◆ The plot of the x₁-coordinate of the p₁- price offer curve against p₁ is the ordinary demand curve for commodity 1.

♦ What does a p₁ price-offer curve look like for Cobb-Douglas preferences?

- ♦ What does a p₁ price-offer curve look like for Cobb-Douglas preferences?
- **◆** Take

$$U(x_1,x_2) = x_1^a x_2^b$$
.

Then the ordinary demand functions for commodities 1 and 2 are

$$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$

 $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}$

and

Notice that x₂* does not vary with p₁ so the p₁ price offer curve is

$$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$

 $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}$

and

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is flat

$$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$

 $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}$

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is flat and the ordinary demand curve for commodity 1 is a

and

$$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$
 $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}.$

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is **flat** and the ordinary demand curve for commodity 1 is a rectangular hyperbola.

and

Oum Price Changes

♦ What does a p₁ price-offer curve look like for a perfect-complements utility function?

♦ What does a p₁ price-offer curve look like for a perfect-complements utility function?

$$U(x_1,x_2) = \min\{x_1,x_2\}.$$

Then the ordinary demand functions for commodities 1 and 2 are

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* .

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* .

As
$$p_1 \rightarrow 0$$
, $x_1^* = x_2^* \rightarrow \frac{y}{p_2}$.

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* .

As
$$p_1 \rightarrow 0$$
, $x_1^* = x_2^* \rightarrow \frac{y}{p_2}$.

As
$$p_1 \rightarrow \infty$$
, $x_1^* = x_2^* \rightarrow 0$.

Own-Price Changes Fixed p₂ and y.

p_1 Own-Price Changes Fixed p_2 and y. X_2 $p_1 = p_1'$ y/p_2 p₁' p₁'+ p₂ **35** © 2010 W. W. Norton & Company, Inc.

♦ What does a p₁ price-offer curve look like for a perfect-substitutes utility function?

$$U(x_1,x_2) = x_1 + x_2.$$

Then the ordinary demand functions for commodities 1 and 2 are

$$x_{1}^{*}(p_{1},p_{2},y) = \begin{cases} 0 & \text{, if } p_{1} > p_{2} \\ y / p_{1} & \text{, if } p_{1} < p_{2} \end{cases}$$

and

$$x_{2}^{*}(p_{1},p_{2},y) = \begin{cases} 0 & \text{, if } p_{1} < p_{2} \\ y/p_{2} & \text{, if } p_{1} > p_{2}. \end{cases}$$

Own-Price Changes Fixed p₂ and y.

© 2010 W. W. Norton & Company, Inc.

Own-Price Changes Fixed p₂ and y. X_2 $p_1 = p_1' < p_2$ p₁' 42 © 2010 W. W. Norton & Company, Inc.

- ◆ Usually we ask "Given the price for commodity 1 what is the quantity demanded of commodity 1?"
- ◆ But we could also ask the inverse question "At what price for commodity 1 would a given quantity of commodity 1 be demanded?"

© 2010 W. W. Norton & Company, Inc.

◆ Taking quantity demanded as given and then asking what must be price describes the inverse demand function of a commodity.

A Cobb-Douglas example:

$$\mathbf{x}_1^* = \frac{\mathbf{ay}}{(\mathbf{a} + \mathbf{b})\mathbf{p}_1}$$

is the ordinary demand function and

$$p_1 = \frac{ay}{(a+b)x_1^*}$$

is the inverse demand function.

A perfect-complements example:

$$\mathbf{x}_1^* = \frac{\mathbf{y}}{\mathbf{p}_1 + \mathbf{p}_2}$$

is the ordinary demand function and

$$\mathsf{p}_1 = \frac{\mathsf{y}}{\mathsf{x}_1^*} - \mathsf{p}_2$$

is the inverse demand function.

© 2010 W. W. Norton & Company, Inc.

♦ How does the value of x₁*(p₁,p₂,y) change as y changes, holding both p₁ and p₂ constant?

Income Changes Fixed p₁ and p₂.

Income Changes Fixed p₁ and p₂.

◆ A plot of quantity demanded against income is called an Engel curve.

Income Changes and Cobb-Douglas Preferences

◆ An example of computing the equations of Engel curves; the Cobb-Douglas case.

$$U(x_1,x_2) = x_1^a x_2^b$$
.

♦ The ordinary demand equations are

$$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$

Income Changes and Cobb-Douglas Preferences

$$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$

Rearranged to isolate y, these are:

$$y = \frac{(a+b)p_1}{a}x_1^*$$
 Engel curve for good 1

$$y = \frac{(a+b)p_2}{b}x_2^*$$
 Engel curve for good 2

Income Changes and Cobb-Douglas Preferences

© 2010 W. W. Norton & Company, Inc.

Income Changes and Perfectly-Complementary Preferences

♦ Another example of computing the equations of Engel curves; the perfectly-complementary case. $U(x_1,x_2) = \min\{x_1,x_2\}.$

♦ The ordinary demand equations are

Income Changes and Perfectly-Complementary Preferences

$$x_1^* = x_2^* = \frac{y}{p_1 + p_2}.$$

Rearranged to isolate y, these are:

$$y = (p_1 + p_2)x_1^*$$
 Engel curve for good 1

$$y = (p_1 + p_2)x_2^*$$
 Engel curve for good 2

Income Changes Fixed p_1 and p_2 . X_2 **74** © 2010 W. W. Norton & Company, Inc.

Fixed p_1 and p_2 .

75

Fixed p_1 and p_2 .

© 2010 W. W. Norton & Company, Inc.

Fixed p_1 and p_2 .

Fixed p_1 and p_2 .

Fixed p_1 and p_2 .

$$y = (p_1 + p_2)x_2^*$$

81

© 2010 W. W. Norton & Company, Inc.

◆ Another example of computing the equations of Engel curves; the perfectly-substitution case.

$$U(x_1,x_2) = x_1 + x_2.$$

♦ The ordinary demand equations are

$$\begin{aligned} \textbf{x}_1^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) &= \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y} \, / \, \textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ \textbf{x}_2^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) &= \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y} \, / \, \textbf{p}_2 & \text{, if } \textbf{p}_1 > \textbf{p}_2. \end{cases} \end{aligned}$$

$$\begin{aligned} & \textbf{x}_1^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y}/\textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ & \textbf{x}_2^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y}/\textbf{p}_2 & \text{, if } \textbf{p}_1 > \textbf{p}_2. \end{cases} \end{aligned}$$

$$x_{1}^{*}(p_{1},p_{2},y) = \begin{cases} 0 & \text{, if } p_{1} > p_{2} \\ y/p_{1} & \text{, if } p_{1} < p_{2} \end{cases}$$

$$x_2^*(p_1,p_2,y) = \begin{cases} 0 & \text{, if } p_1 < p_2 \\ y \, / \, p_2 & \text{, if } p_1 > p_2. \end{cases}$$

Suppose $p_1 < p_2$. Then $x_1^* = \frac{y}{p_1}$ and $x_2^* = 0$

$$x_{1}^{*}(p_{1},p_{2},y) = \begin{cases} 0 & \text{, if } p_{1} > p_{2} \\ y/p_{1} & \text{, if } p_{1} < p_{2} \end{cases}$$

$$x_2^*(p_1,p_2,y) = \begin{cases} 0 & \text{, if } p_1 < p_2 \\ y \, / \, p_2 & \text{, if } p_1 > p_2. \end{cases}$$

Suppose $p_1 < p_2$. Then $x_1^* = \frac{y}{p_1}$ and $x_2^* = 0$

© 2010 W. W. Norton & Company, Inc.

86

Engel curve for good 1

- ♦ In every example so far the Engel curves have all been straight lines? Q: Is this true in general?
- ◆A: No. Engel curves are straight lines if the consumer's preferences are homothetic.

Homotheticity

◆ A consumer's preferences are homothetic if and only if

$$(x_1,x_2) \prec (y_1,y_2) \Leftrightarrow (kx_1,kx_2) \prec (ky_1,ky_2)$$

for every $k > 0$.

◆ That is, the consumer's MRS is the same anywhere on a straight line drawn from the origin.

Income Effects -- A Nonhomothetic Example

◆ Quasilinear preferences are not homothetic.

$$U(x_1,x_2) = f(x_1) + x_2.$$

◆ For example,

90

Quasi-linear Indifference Curves

Each curve is a vertically shifted X_2 copy of the others. **Each curve intersects** both axes. © 2010 W. W. Norton & Company, Inc.

Income Changes; Quasilinear Utility

Income Changes; Quasilinear Utility

Income Changes; Quasilinear Utility **Engel** X_2 curve for $\frac{\text{good 2}}{x_2^*}$ Engel curve for good 1 95 © 2010 W. W. Norton & Company, Inc.

Income Effects

- ◆ A good for which quantity demanded rises with income is called normal.
- ◆ Therefore a normal good's Engel curve is positively sloped.

Income Effects

- ◆ A good for which quantity demanded falls as income increases is called income inferior.
- ◆ Therefore an income inferior good's Engel curve is negatively sloped.

Ordinary Goods

◆A good is called ordinary if the quantity demanded of it always increases as its own price decreases.

Ordinary Goods

Fixed p₂ and y.

Fixed p_2 and y.

Giffen Goods

♦ If, for some values of its own price, the quantity demanded of a good rises as its own-price increases then the good is called Giffen.

Fixed p₂ and y.

Fixed p_2 and y.

Ordinary Goods **Demand curve has** Fixed p_2 and y. a positively X_2 p₁ price offer sloped part curve Good 1 is Giffen 114 © 2010 W. W. Norton & Company, Inc.

- ♦ If an increase in p₂
 - -increases demand for commodity 1 then commodity 1 is a gross substitute for commodity 2.
 - reduces demand for commodity 1
 then commodity 1 is a gross
 complement for commodity 2.

A perfect-complements example:

so
$$\begin{aligned} \mathbf{x}_1^* &= \frac{\mathbf{y}}{\mathbf{p}_1 + \mathbf{p}_2} \\ &\frac{\partial \mathbf{x}_1^*}{\partial \mathbf{p}_2} = -\frac{\mathbf{y}}{\left(\mathbf{p}_1 + \mathbf{p}_2\right)^2} < 0. \end{aligned}$$

Therefore commodity 2 is a gross complement for commodity 1.

A Cobb- Douglas example:

$$\mathbf{x}_2^* = \frac{\mathbf{by}}{(\mathbf{a} + \mathbf{b})\mathbf{p}_2}$$

SO

A Cobb- Douglas example:

$$\mathbf{x}_{2}^{*} = \frac{\mathbf{by}}{(\mathbf{a} + \mathbf{b})\mathbf{p}_{2}}$$
so
$$\frac{\partial \mathbf{x}_{2}^{*}}{\partial \mathbf{p}_{1}} = \mathbf{0}.$$

Therefore commodity 1 is neither a gross complement nor a gross substitute for commodity 2.