INTERMEDIATE ### MICROECONOMICS HALR, VARIAN Demand O 2010 W. Norton & Company, Inc. #### Properties of Demand Functions ◆ Comparative statics analysis of ordinary demand functions -- the study of how ordinary demands x₁*(p₁,p₂,y) and x₂*(p₁,p₂,y) change as prices p₁, p₂ and income y change. - ♦ How does x₁*(p₁,p₂,y) change as p₁ changes, holding p₂ and y constant? - ♦ Suppose only p₁ increases, from p₁' to p₁" and then to p₁". ## Own-Price Changes Fixed p₂ and y. ## Own-Price Changes Fixed p₂ and y. ## Own-Price Changes Fixed p₂ and y. #### Own-Price Changes Fixed p₂ and y. #### Own-Price Changes Fixed p₂ and y. - ◆ The curve containing all the utilitymaximizing bundles traced out as p₁ changes, with p₂ and y constant, is the p₁- price offer curve. - ◆ The plot of the x₁-coordinate of the p₁- price offer curve against p₁ is the ordinary demand curve for commodity 1. ♦ What does a p₁ price-offer curve look like for Cobb-Douglas preferences? - ♦ What does a p₁ price-offer curve look like for Cobb-Douglas preferences? - **◆** Take $$U(x_1,x_2) = x_1^a x_2^b$$. Then the ordinary demand functions for commodities 1 and 2 are $$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$ $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}$ and Notice that x₂* does not vary with p₁ so the p₁ price offer curve is $$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$ $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}$ and Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is flat $$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$ $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}$ Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is flat and the ordinary demand curve for commodity 1 is a and $$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$ $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}.$ Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is **flat** and the ordinary demand curve for commodity 1 is a rectangular hyperbola. and # Oum Price Changes ♦ What does a p₁ price-offer curve look like for a perfect-complements utility function? ♦ What does a p₁ price-offer curve look like for a perfect-complements utility function? $$U(x_1,x_2) = \min\{x_1,x_2\}.$$ Then the ordinary demand functions for commodities 1 and 2 are $$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$ $$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$ With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* . $$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$ With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* . As $$p_1 \rightarrow 0$$, $x_1^* = x_2^* \rightarrow \frac{y}{p_2}$. $$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$ With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* . As $$p_1 \rightarrow 0$$, $x_1^* = x_2^* \rightarrow \frac{y}{p_2}$. As $$p_1 \rightarrow \infty$$, $x_1^* = x_2^* \rightarrow 0$. ## Own-Price Changes Fixed p₂ and y. #### p_1 Own-Price Changes Fixed p_2 and y. X_2 $p_1 = p_1'$ y/p_2 p₁' p₁'+ p₂ **35** © 2010 W. W. Norton & Company, Inc. ♦ What does a p₁ price-offer curve look like for a perfect-substitutes utility function? $$U(x_1,x_2) = x_1 + x_2.$$ Then the ordinary demand functions for commodities 1 and 2 are $$x_{1}^{*}(p_{1},p_{2},y) = \begin{cases} 0 & \text{, if } p_{1} > p_{2} \\ y / p_{1} & \text{, if } p_{1} < p_{2} \end{cases}$$ and $$x_{2}^{*}(p_{1},p_{2},y) = \begin{cases} 0 & \text{, if } p_{1} < p_{2} \\ y/p_{2} & \text{, if } p_{1} > p_{2}. \end{cases}$$ # Own-Price Changes Fixed p₂ and y. © 2010 W. W. Norton & Company, Inc. ## Own-Price Changes Fixed p₂ and y. X_2 $p_1 = p_1' < p_2$ p₁' 42 © 2010 W. W. Norton & Company, Inc. - ◆ Usually we ask "Given the price for commodity 1 what is the quantity demanded of commodity 1?" - ◆ But we could also ask the inverse question "At what price for commodity 1 would a given quantity of commodity 1 be demanded?" © 2010 W. W. Norton & Company, Inc. ◆ Taking quantity demanded as given and then asking what must be price describes the inverse demand function of a commodity. #### A Cobb-Douglas example: $$\mathbf{x}_1^* = \frac{\mathbf{ay}}{(\mathbf{a} + \mathbf{b})\mathbf{p}_1}$$ is the ordinary demand function and $$p_1 = \frac{ay}{(a+b)x_1^*}$$ is the inverse demand function. A perfect-complements example: $$\mathbf{x}_1^* = \frac{\mathbf{y}}{\mathbf{p}_1 + \mathbf{p}_2}$$ is the ordinary demand function and $$\mathsf{p}_1 = \frac{\mathsf{y}}{\mathsf{x}_1^*} - \mathsf{p}_2$$ is the inverse demand function. © 2010 W. W. Norton & Company, Inc. ♦ How does the value of x₁*(p₁,p₂,y) change as y changes, holding both p₁ and p₂ constant? # Income Changes Fixed p₁ and p₂. # Income Changes Fixed p₁ and p₂. ◆ A plot of quantity demanded against income is called an Engel curve. ## Income Changes and Cobb-Douglas Preferences ◆ An example of computing the equations of Engel curves; the Cobb-Douglas case. $$U(x_1,x_2) = x_1^a x_2^b$$. **♦** The ordinary demand equations are $$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$ ## Income Changes and Cobb-Douglas Preferences $$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$ Rearranged to isolate y, these are: $$y = \frac{(a+b)p_1}{a}x_1^*$$ Engel curve for good 1 $$y = \frac{(a+b)p_2}{b}x_2^*$$ Engel curve for good 2 ## Income Changes and Cobb-Douglas Preferences © 2010 W. W. Norton & Company, Inc. ## Income Changes and Perfectly-Complementary Preferences **♦** Another example of computing the equations of Engel curves; the perfectly-complementary case. $U(x_1,x_2) = \min\{x_1,x_2\}.$ **♦** The ordinary demand equations are # Income Changes and Perfectly-Complementary Preferences $$x_1^* = x_2^* = \frac{y}{p_1 + p_2}.$$ Rearranged to isolate y, these are: $$y = (p_1 + p_2)x_1^*$$ Engel curve for good 1 $$y = (p_1 + p_2)x_2^*$$ Engel curve for good 2 # Income Changes Fixed p_1 and p_2 . X_2 **74** © 2010 W. W. Norton & Company, Inc. Fixed p_1 and p_2 . **75** Fixed p_1 and p_2 . © 2010 W. W. Norton & Company, Inc. Fixed p_1 and p_2 . Fixed p_1 and p_2 . Fixed p_1 and p_2 . $$y = (p_1 + p_2)x_2^*$$ 81 © 2010 W. W. Norton & Company, Inc. ◆ Another example of computing the equations of Engel curves; the perfectly-substitution case. $$U(x_1,x_2) = x_1 + x_2.$$ **♦** The ordinary demand equations are $$\begin{aligned} \textbf{x}_1^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) &= \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y} \, / \, \textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ \textbf{x}_2^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) &= \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y} \, / \, \textbf{p}_2 & \text{, if } \textbf{p}_1 > \textbf{p}_2. \end{cases} \end{aligned}$$ $$\begin{aligned} & \textbf{x}_1^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y}/\textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ & \textbf{x}_2^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y}/\textbf{p}_2 & \text{, if } \textbf{p}_1 > \textbf{p}_2. \end{cases} \end{aligned}$$ $$x_{1}^{*}(p_{1},p_{2},y) = \begin{cases} 0 & \text{, if } p_{1} > p_{2} \\ y/p_{1} & \text{, if } p_{1} < p_{2} \end{cases}$$ $$x_2^*(p_1,p_2,y) = \begin{cases} 0 & \text{, if } p_1 < p_2 \\ y \, / \, p_2 & \text{, if } p_1 > p_2. \end{cases}$$ Suppose $p_1 < p_2$. Then $x_1^* = \frac{y}{p_1}$ and $x_2^* = 0$ $$x_{1}^{*}(p_{1},p_{2},y) = \begin{cases} 0 & \text{, if } p_{1} > p_{2} \\ y/p_{1} & \text{, if } p_{1} < p_{2} \end{cases}$$ $$x_2^*(p_1,p_2,y) = \begin{cases} 0 & \text{, if } p_1 < p_2 \\ y \, / \, p_2 & \text{, if } p_1 > p_2. \end{cases}$$ Suppose $p_1 < p_2$. Then $x_1^* = \frac{y}{p_1}$ and $x_2^* = 0$ © 2010 W. W. Norton & Company, Inc. 86 Engel curve for good 1 - ♦ In every example so far the Engel curves have all been straight lines? Q: Is this true in general? - ◆A: No. Engel curves are straight lines if the consumer's preferences are homothetic. ### Homotheticity ◆ A consumer's preferences are homothetic if and only if $$(x_1,x_2) \prec (y_1,y_2) \Leftrightarrow (kx_1,kx_2) \prec (ky_1,ky_2)$$ for every $k > 0$. ◆ That is, the consumer's MRS is the same anywhere on a straight line drawn from the origin. # Income Effects -- A Nonhomothetic Example ◆ Quasilinear preferences are not homothetic. $$U(x_1,x_2) = f(x_1) + x_2.$$ ◆ For example, 90 ### Quasi-linear Indifference Curves Each curve is a vertically shifted X_2 copy of the others. **Each curve intersects** both axes. © 2010 W. W. Norton & Company, Inc. # Income Changes; Quasilinear Utility # Income Changes; Quasilinear Utility ### Income Changes; Quasilinear Utility **Engel** X_2 curve for $\frac{\text{good 2}}{x_2^*}$ Engel curve for good 1 95 © 2010 W. W. Norton & Company, Inc. ### Income Effects - ◆ A good for which quantity demanded rises with income is called normal. - ◆ Therefore a normal good's Engel curve is positively sloped. ### Income Effects - ◆ A good for which quantity demanded falls as income increases is called income inferior. - ◆ Therefore an income inferior good's Engel curve is negatively sloped. ### Ordinary Goods ◆A good is called ordinary if the quantity demanded of it always increases as its own price decreases. ### Ordinary Goods Fixed p₂ and y. Fixed p_2 and y. ## Giffen Goods ♦ If, for some values of its own price, the quantity demanded of a good rises as its own-price increases then the good is called Giffen. Fixed p₂ and y. Fixed p_2 and y. Ordinary Goods **Demand curve has** Fixed p_2 and y. a positively X_2 p₁ price offer sloped part curve Good 1 is Giffen 114 © 2010 W. W. Norton & Company, Inc. - ♦ If an increase in p₂ - -increases demand for commodity 1 then commodity 1 is a gross substitute for commodity 2. - reduces demand for commodity 1 then commodity 1 is a gross complement for commodity 2. #### A perfect-complements example: so $$\begin{aligned} \mathbf{x}_1^* &= \frac{\mathbf{y}}{\mathbf{p}_1 + \mathbf{p}_2} \\ &\frac{\partial \mathbf{x}_1^*}{\partial \mathbf{p}_2} = -\frac{\mathbf{y}}{\left(\mathbf{p}_1 + \mathbf{p}_2\right)^2} < 0. \end{aligned}$$ Therefore commodity 2 is a gross complement for commodity 1. ### A Cobb- Douglas example: $$\mathbf{x}_2^* = \frac{\mathbf{by}}{(\mathbf{a} + \mathbf{b})\mathbf{p}_2}$$ **SO** #### A Cobb- Douglas example: $$\mathbf{x}_{2}^{*} = \frac{\mathbf{by}}{(\mathbf{a} + \mathbf{b})\mathbf{p}_{2}}$$ so $$\frac{\partial \mathbf{x}_{2}^{*}}{\partial \mathbf{p}_{1}} = \mathbf{0}.$$ Therefore commodity 1 is neither a gross complement nor a gross substitute for commodity 2.