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TechnologiesTechnologies

�A technology is a process by which 

inputs are converted to an output.inputs are converted to an output.

�E.g. labor, a computer, a projector, �E.g. labor, a computer, a projector, 

electricity, and software are being 

combined to produce this lecture.
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TechnologiesTechnologies

�Usually several technologies will 

produce the same product -- a produce the same product -- a 

blackboard and chalk can be used blackboard and chalk can be used 

instead of a computer and a 

projector.projector.

�Which technology is “best”?�Which technology is “best”?

�How do we compare technologies?�How do we compare technologies?
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Input BundlesInput Bundles

�xi denotes the amount used of input i; 

i.e. the level of input i.
i

i.e. the level of input i.

�An input bundle is a vector of the �An input bundle is a vector of the 

input levels;     (x1, x2, … , xn).1 2 n

�E.g. (x1, x2, x3) = (6, 0, 9××××3).
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Production FunctionsProduction Functions

�y denotes the output level.

�The technology’s production 

function states the maximum amount function states the maximum amount 

of output possible from an input 

bundle.

y f x x==== ( , , )Ly f x xn==== ( , , )1 L
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Production FunctionsProduction Functions
One input, one output

y = f(x) is the

production

Output Level

One input, one output

production

function.y’ function.y’

y’ = f(x’) is the maximal 

output level obtainable output level obtainable 

from x’ input units.

x’ x

Input Level
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Technology SetsTechnology Sets

�A production plan is an input bundle 

and an output level; (x , … , x , y).and an output level; (x1, … , xn, y).

�A production plan is feasible if�A production plan is feasible if

y f x xn≤≤≤≤ ( , , )1 Ly f x xn≤≤≤≤ ( , , )1 L

�The collection of all feasible 

production plans is the technology set.
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Technology SetsTechnology Sets
One input, one output

y = f(x) is the

production

Output Level

One input, one output

production

function.y’ function.y’
y’ = f(x’) is the maximal 
output level obtainable 

y”

output level obtainable 
from x’ input units.

y” = f(x’) is an output level y” y” = f(x’) is an output level 
that is feasible from x’ 
input units.

x’ x

Input Level

input units.
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Technology SetsTechnology Sets

The technology set is The technology set is 

T x x y y f x x and==== ≤≤≤≤{( , , , ) | ( , , )T x x y y f x x and

x x

n n==== ≤≤≤≤
≥≥≥≥ ≥≥≥≥

{( , , , ) | ( , , )

, , }.

1 1

0 0

L L

Kx xn≥≥≥≥ ≥≥≥≥, , }.1 0 0K
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Technology SetsTechnology Sets
One input, one output

Output Level

One input, one output

y’y’

The technology

y”

The technology

set
y”

x’ x

Input Level
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Technology SetsTechnology Sets
One input, one output

Output Level

One input, one output

y’
Technically

efficient plans
y’

The technology

efficient plans

y”

The technology

setTechnicallyy” Technically

inefficient

plans

x’ x

Input Level

plans
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Technologies with Multiple Technologies with Multiple 

Inputs

�What does a technology look like 

when there is more than one input?when there is more than one input?

�The two input case:  Input levels are �The two input case:  Input levels are 

x1 and x2.  Output level is y.1 2

�Suppose the production function is

y f x x x x==== ====( , ) .1 2 1
1/3

2
1/3

2==== ====( , ) .1 2 1 22
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Technologies with Multiple Technologies with Multiple 

Inputs
�E.g. the maximal output level �E.g. the maximal output level 

possible from the input bundle

(x , x ) = (1, 8)  is(x1, x2) = (1, 8)  is

y x x==== ==== ×××× ×××× ==== ×××× ×××× ====2 2 1 8 2 1 2 4
1/3 1/3 1/3 1/3

.

And the maximal output level 

y x x==== ==== ×××× ×××× ==== ×××× ×××× ====2 2 1 8 2 1 2 41
1/3

2
1/3 1/3 1/3

.

�And the maximal output level 

possible from (x1,x2) = (8,8) ispossible from (x1,x2) = (8,8) is

y x x==== ==== ×××× ×××× ==== ×××× ×××× ====2 2 8 8 2 2 2 81
1/3

2
1/3 1/3 1/3

.y x x==== ==== ×××× ×××× ==== ×××× ×××× ====2 2 8 8 2 2 2 81 2 .
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Technologies with Multiple Technologies with Multiple 

Inputs
Output, y

x2

(8,1)
(8,8)

x1
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Technologies with Multiple Technologies with Multiple 

Inputs

�The y output unit isoquant is the set 

of all input bundles that yield at most of all input bundles that yield at most 

the same output level y.the same output level y.
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Isoquants with Two Variable Isoquants with Two Variable 

Inputsx2

y ≡ 8≡ 8≡ 8≡ 8y ≡ 8≡ 8≡ 8≡ 8

y ≡ 4≡ 4≡ 4≡ 4
x1
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Isoquants with Two Variable Isoquants with Two Variable 

Inputs

� Isoquants can be graphed by adding 

an output level axis and displaying an output level axis and displaying 

each isoquant at the height of the each isoquant at the height of the 

isoquant’s output level. 
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Isoquants with Two Variable Isoquants with Two Variable 

Inputs
Output, y

y ≡ 8≡ 8≡ 8≡ 8

x2
y ≡ 4≡ 4≡ 4≡ 4

x1
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Isoquants with Two Variable Isoquants with Two Variable 

Inputs

�More isoquants tell us more about 

the technology.the technology.
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Isoquants with Two Variable Isoquants with Two Variable 

Inputsx2

y ≡ 8≡ 8≡ 8≡ 8y ≡ 8≡ 8≡ 8≡ 8

y ≡ 6≡ 6≡ 6≡ 6

y ≡ 4≡ 4≡ 4≡ 4

y ≡ 6≡ 6≡ 6≡ 6

y ≡ 2≡ 2≡ 2≡ 2
x1

y ≡ 2≡ 2≡ 2≡ 2
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Isoquants with Two Variable Isoquants with Two Variable 

Inputs
Output, y

y ≡ 8≡ 8≡ 8≡ 8

y ≡ 6≡ 6≡ 6≡ 6

x2
y ≡ 4≡ 4≡ 4≡ 4

y ≡ 2≡ 2≡ 2≡ 2

x1
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Technologies with Multiple Technologies with Multiple 

Inputs
The complete collection of isoquants �The complete collection of isoquants 

is the isoquant map.is the isoquant map.

�The isoquant map is equivalent to 

the production function -- each is the 

other.other.

�E.g. 3/1
2

3/1
121 2),( xxxxfy ========E.g.

2121 2),( xxxxfy ========
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Technologies with Multiple Technologies with Multiple 

Inputsx2

y
x1

y
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Technologies with Multiple Technologies with Multiple 

Inputs
xx2

y

x1
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Technologies with Multiple Technologies with Multiple 

Inputs
x2

yy

x1
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Technologies with Multiple Technologies with Multiple 

Inputs
x2

yy

x1
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Technologies with Multiple Technologies with Multiple 

Inputs

x2

y

x1
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Technologies with Multiple Technologies with Multiple 

Inputs

x2x2

y

x1

© 2010 W. W. Norton & Company, Inc. 28



Technologies with Multiple Technologies with Multiple 

Inputs

yy

x1
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Technologies with Multiple Technologies with Multiple 

Inputs

yy

x1
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Technologies with Multiple Technologies with Multiple 

Inputs

y

x1
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Technologies with Multiple Technologies with Multiple 

Inputs

y

x1
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Technologies with Multiple Technologies with Multiple 

Inputs

y

x1
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Technologies with Multiple Technologies with Multiple 

Inputs

y

x1
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Technologies with Multiple Technologies with Multiple 

Inputs

y

x1
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Technologies with Multiple Technologies with Multiple 

Inputs

y

x1
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Technologies with Multiple Technologies with Multiple 

Inputs

yy

x1
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Technologies with Multiple Technologies with Multiple 

Inputs

yy

x1
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Cobb-Douglas TechnologiesCobb-Douglas Technologies

�A Cobb-Douglas production function 

is of the formis of the form

y Ax x x
a a an==== ×××× ××××1 2 L .

E.g.

y Ax x x
a a

n
an==== ×××× ××××1 2

1 2 L .

�E.g.
y x x==== 1

1/3
2
1/3

with

y x x==== 1 2

n A a and a==== ==== ==== ====2 1
1 1

1 2, , .n A a and a==== ==== ==== ====2 1
3 3

1 2, , .
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Cobb-Douglas Technologiesx2

All isoquants are hyperbolic,

Cobb-Douglas Technologies

All isoquants are hyperbolic,

asymptoting to, but neverasymptoting to, but never

touching any axis.
a a====y x x
a a==== 1 2
1 2

x1
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Cobb-Douglas Technologiesx2

All isoquants are hyperbolic,

Cobb-Douglas Technologies

All isoquants are hyperbolic,

asymptoting to, but neverasymptoting to, but never

touching any axis.
a a====y x x
a a==== 1 2
1 2

x x y
a a
1 2
1 2 ==== "x x y1 2
1 2 ==== "

x1
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Cobb-Douglas Technologiesx2

All isoquants are hyperbolic,

Cobb-Douglas Technologies

All isoquants are hyperbolic,

asymptoting to, but neverasymptoting to, but never

touching any axis.
a a====y x x
a a==== 1 2
1 2

x x y
a a
1 2
1 2 ==== "

x x y
a a
1 2
1 2 ==== '

x x y1 2
1 2 ==== "

x1

x x y1 2 ==== '
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Cobb-Douglas Technologiesx2

All isoquants are hyperbolic,

Cobb-Douglas Technologies

All isoquants are hyperbolic,

asymptoting to, but neverasymptoting to, but never

touching any axis.
a a====

y" y'>
y x x

a a==== 1 2
1 2

x x y
a a
1 2
1 2 ==== "

y" '>

x x y
a a
1 2
1 2 ==== '

x x y1 2
1 2 ==== "

x1

x x y1 2 ==== '
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Fixed-Proportions TechnologiesFixed-Proportions Technologies

�A fixed-proportions production 

function is of the formfunction is of the form

y a x a x a xn n==== min{ , , , }.1 1 2 2 L

E.g.

y a x a x a xn n==== min{ , , , }.1 1 2 2 L

�E.g.
y x x==== min{ , }1 22

with

y x x==== min{ , }1 22

n a and a==== ==== ====2 1 21 2, .n a and a==== ==== ====2 1 21 2, .
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Fixed-Proportions TechnologiesFixed-Proportions Technologies

x y x x==== min{ , }1 22x2
y x x==== min{ , }1 22

x1 = 2x2

min{x1,2x2} = 14

4
7

min{x ,2x } = 8
2
4 min{x1,2x2} = 8

min{x1,2x2} = 4

x14 8 14

min{x1,2x2} = 4
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Perfect-Substitutes TechnologiesPerfect-Substitutes Technologies

�A perfect-substitutes production 

function is of the formfunction is of the form

y a x a x a xn n==== ++++ ++++ ++++1 1 2 2 L .

E.g.

y a x a x a xn n==== ++++ ++++ ++++1 1 2 2 L .

�E.g.
y x x==== ++++1 23

with

y x x==== ++++1 23

n a and a==== ==== ====2 1 31 2, .n a and a==== ==== ====2 1 31 2, .
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Perfect-Substitution Perfect-Substitution 

Technologies
x

y x x==== ++++1 23
x2

x1 + 3x2 = 18x1 + 3x2 = 18

x1 + 3x2 = 36

8

x1 + 3x2 = 36

x1 + 3x2 = 48

6

8
x1 + 3x2 = 48

All are linear and parallel
3

6
All are linear and parallel

9 18 24 x1
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Marginal (Physical) ProductsMarginal (Physical) Products
y f x xn==== ( , , )1 L

�The marginal product of input i is the 

y f x xn==== ( , , )1 L

�The marginal product of input i is the 

rate-of-change of the output level as rate-of-change of the output level as 

the level of input i changes, holding 

all other input levels fixed.all other input levels fixed.

�That is, y
MP

∂∂∂∂====
�That is,

i
i

x

y
MP

∂∂∂∂
∂∂∂∂====

ix∂∂∂∂
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Marginal (Physical) ProductsMarginal (Physical) Products

E.g. ifE.g. if

y f x x x x==== ====( , )
/

1 2 1
1/3

2
2 3y f x x x x==== ====( , )1 2 1 2

then the marginal product of input 1 is
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Marginal (Physical) ProductsMarginal (Physical) Products

E.g. ifE.g. if

y f x x x x==== ====( , )
/

1 2 1
1/3

2
2 3y f x x x x==== ====( , )1 2 1 2

then the marginal product of input 1 is

MP
y

x
x x1 1

2 3
2
2 31

3
==== ==== −−−−∂∂∂∂

∂∂∂∂
/ /

x
1

1
1 2

3∂∂∂∂
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Marginal (Physical) ProductsMarginal (Physical) Products

E.g. ifE.g. if

y f x x x x==== ====( , )
/

1 2 1
1/3

2
2 3y f x x x x==== ====( , )1 2 1 2

then the marginal product of input 1 is

MP
y

x
x x1 1

2 3
2
2 31

3
==== ==== −−−−∂∂∂∂

∂∂∂∂
/ /

x
1

1
1 2

3∂∂∂∂
and the marginal product of input 2 isand the marginal product of input 2 is
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Marginal (Physical) ProductsMarginal (Physical) Products

E.g. ifE.g. if

y f x x x x==== ====( , )
/

1 2 1
1/3

2
2 3y f x x x x==== ====( , )1 2 1 2

then the marginal product of input 1 is

MP
y

x
x x1 1

2 3
2
2 31

3
==== ==== −−−−∂∂∂∂

∂∂∂∂
/ /

x
1

1
1 2

3∂∂∂∂
and the marginal product of input 2 isand the marginal product of input 2 is

MP
y

x
x x2 1
1/3

2
1/32

3
==== ==== −−−−∂∂∂∂

∂∂∂∂
.MP

x
x x2

2
1 2

3
==== ====

∂∂∂∂
.
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Marginal (Physical) ProductsMarginal (Physical) Products

Typically the marginal product of oneTypically the marginal product of one

input depends upon the amount used of input depends upon the amount used of 

other inputs.  E.g.  if 

MP x x2 3 2 31==== −−−− / /MP x x1 1
2 3

2
2 31

3
==== −−−− / /

then,

MP x x2 3 2 3 2 31 4==== ====−−−− −−−−/ / /MP x x1 1
2 3 2 3

1
2 31

3
8

4

3
==== ====−−−− −−−−/ / /

and if x = 27 then

if x2 = 8,

and if x2 = 27 then

MP x x2 3 2 3 2 31
27 3==== ====−−−− −−−−/ / /

.MP x x1 1
2 3 2 3

1
2 31

3
27 3==== ====−−−− −−−−/ / /

.
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Marginal (Physical) ProductsMarginal (Physical) Products

�The marginal product of input i is 

diminishing if it becomes smaller as diminishing if it becomes smaller as 

the level of input i increases.  That is, the level of input i increases.  That is, 

if
2





i yyMP ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂

.0
2

2

<<<<====







====

iiii

i

x

y

x

y

xx

MP

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

 iiii xxxx ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂
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Marginal (Physical) ProductsMarginal (Physical) Products

E.g. if y x x==== 1/3 2 3/ then

MP x x2 3 2 31==== −−−− / / MP x x1/3 1/32==== −−−−
and

E.g. if y x x==== 1
1/3

2
2 3/ then

MP x x1 1
2 3

2
2 31

3
==== −−−− / / MP x x2 1

1/3
2
1/32

3
==== −−−−

and

© 2010 W. W. Norton & Company, Inc. 55



Marginal (Physical) ProductsMarginal (Physical) Products

E.g. if y x x==== 1/3 2 3/ then

MP x x2 3 2 31==== −−−− / / MP x x1/3 1/32==== −−−−
and

E.g. if y x x==== 1
1/3

2
2 3/ then

MP x x1 1
2 3

2
2 31

3
==== −−−− / / MP x x2 1

1/3
2
1/32

3
==== −−−−

and

so ∂∂∂∂ MP 2so ∂∂∂∂
∂∂∂∂
MP

x
x x1

1
1
5 3

2
2 32

9
0==== −−−− <<<<−−−− / /

∂∂∂∂ x1 9
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Marginal (Physical) ProductsMarginal (Physical) Products

E.g. if y x x==== 1/3 2 3/ then

MP x x2 3 2 31==== −−−− / / MP x x1/3 1/32==== −−−−
and

E.g. if y x x==== 1
1/3

2
2 3/ then

MP x x1 1
2 3

2
2 31

3
==== −−−− / / MP x x2 1

1/3
2
1/32

3
==== −−−−

and

so ∂∂∂∂ MP 2so ∂∂∂∂
∂∂∂∂
MP

x
x x1

1
1
5 3

2
2 32

9
0==== −−−− <<<<−−−− / /

∂∂∂∂ x1 9

∂∂∂∂ MP
x x2 1/3 4 32

0==== −−−− <<<<−−−− /
.

and ∂∂∂∂
∂∂∂∂
MP

x
x x2

2
1
1/3

2
4 32

9
0==== −−−− <<<<−−−− /
.
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Marginal (Physical) ProductsMarginal (Physical) Products

E.g. if y x x==== 1/3 2 3/ then

MP x x2 3 2 31==== −−−− / / MP x x1/3 1/32==== −−−−
and

E.g. if y x x==== 1
1/3

2
2 3/ then

MP x x1 1
2 3

2
2 31

3
==== −−−− / / MP x x2 1

1/3
2
1/32

3
==== −−−−

and

so ∂∂∂∂ MP 2so ∂∂∂∂
∂∂∂∂
MP

x
x x1

1
1
5 3

2
2 32

9
0==== −−−− <<<<−−−− / /

∂∂∂∂ x1 9

∂∂∂∂ MP
x x2 1/3 4 32

0==== −−−− <<<<−−−− /
.

and ∂∂∂∂
∂∂∂∂
MP

x
x x2

2
1
1/3

2
4 32

9
0==== −−−− <<<<−−−− /
.

Both marginal products are diminishing.Both marginal products are diminishing.
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Returns-to-ScaleReturns-to-Scale

�Marginal products describe the 

change in output level as a singlechange in output level as a single

input level changes.input level changes.

�Returns-to-scale describes how the 

output level changes as all input 

levels change in direct proportionlevels change in direct proportion

(e.g. all input levels doubled, or 

halved).halved).
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Returns-to-ScaleReturns-to-Scale

If, for any input bundle (x ,…,x ),If, for any input bundle (x1,…,xn),

f kx kx kx kf x x xn n( , , , ) ( , , , )1 2 1 2L L====f kx kx kx kf x x xn n( , , , ) ( , , , )1 2 1 2L L====

then the technology described by thethen the technology described by the

production function f exhibits constant

returns-to-scale.returns-to-scale.

E.g. (k = 2) doubling all input levelsE.g. (k = 2) doubling all input levels

doubles the output level.
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Returns-to-ScaleReturns-to-Scale
One input, one output

Output Level

One input, one output

y = f(x)
2y’2y’

Constant
y’

Constant

returns-to-scale

x’ x

Input Level

2x’
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Returns-to-ScaleReturns-to-Scale

If, for any input bundle (x ,…,x ),If, for any input bundle (x1,…,xn),

f kx kx kx kf x x xn n( , , , ) ( , , , )1 2 1 2L L<<<<f kx kx kx kf x x xn n( , , , ) ( , , , )1 2 1 2L L<<<<

then the technology exhibits diminishingthen the technology exhibits diminishing

returns-to-scale.

E.g. (k = 2) doubling all input levels less E.g. (k = 2) doubling all input levels less 

than doubles the output level.than doubles the output level.
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Returns-to-ScaleReturns-to-Scale
One input, one output

Output Level

One input, one output

y = f(x)2f(x’)

f(2x’) Decreasing

f(x’)

Decreasing

returns-to-scale

x’ x

Input Level

2x’
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Returns-to-ScaleReturns-to-Scale

If, for any input bundle (x ,…,x ),If, for any input bundle (x1,…,xn),

f kx kx kx kf x x xn n( , , , ) ( , , , )1 2 1 2L L>>>>f kx kx kx kf x x xn n( , , , ) ( , , , )1 2 1 2L L>>>>

then the technology exhibits increasingthen the technology exhibits increasing

returns-to-scale.

E.g. (k = 2) doubling all input levelsE.g. (k = 2) doubling all input levels

more than doubles the output level.more than doubles the output level.
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Returns-to-ScaleReturns-to-Scale
One input, one output

Output Level

One input, one output

y = f(x)Increasing

returns-to-scale
f(2x’)

returns-to-scale

2f(x’)

f(x’)

2f(x’)

x’ x

Input Level

2x’
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Returns-to-ScaleReturns-to-Scale

�A single technology can ‘locally’ 

exhibit different returns-to-scale.exhibit different returns-to-scale.
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Returns-to-ScaleReturns-to-Scale
One input, one output

Output Level

One input, one output

y = f(x)
Increasing

y = f(x)
Increasing

returns-to-scale

Decreasing

returns-to-scale

Decreasing

returns-to-scale

x

Input Level
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Examples of Returns-to-ScaleExamples of Returns-to-Scale
The perfect-substitutes production

y a x a x a x==== ++++ ++++ ++++ .

The perfect-substitutes production

function is
y a x a x a xn n==== ++++ ++++ ++++1 1 2 2 L .

Expand all input levels proportionatelyExpand all input levels proportionately

by k.  The output level becomesby k.  The output level becomes
a kx a kx a kxn n1 1 2 2( ) ( ) ( )++++ ++++ ++++L

© 2010 W. W. Norton & Company, Inc. 68



Examples of Returns-to-ScaleExamples of Returns-to-Scale
The perfect-substitutes production

y a x a x a x==== ++++ ++++ ++++ .

The perfect-substitutes production

function is
y a x a x a xn n==== ++++ ++++ ++++1 1 2 2 L .

Expand all input levels proportionatelyExpand all input levels proportionately

by k.  The output level becomesby k.  The output level becomes
a kx a kx a kx

k a x a x a x

n n

n n

1 1 2 2

1 1 2 2

( ) ( ) ( )

( )

++++ ++++ ++++
==== ++++ ++++ ++++

L

Lk a x a x a xn n1 1 2 2( )==== ++++ ++++ ++++L
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Examples of Returns-to-ScaleExamples of Returns-to-Scale
The perfect-substitutes production

y a x a x a x==== ++++ ++++ ++++ .

The perfect-substitutes production

function is
y a x a x a xn n==== ++++ ++++ ++++1 1 2 2 L .

Expand all input levels proportionatelyExpand all input levels proportionately

by k.  The output level becomesby k.  The output level becomes
a kx a kx a kx

k a x a x a x

n n

n n

1 1 2 2

1 1 2 2

( ) ( ) ( )

( )

++++ ++++ ++++
==== ++++ ++++ ++++

L

Lk a x a x a x

ky

n n1 1 2 2( )

.

==== ++++ ++++ ++++
====

L

The perfect-substitutes production

function exhibits constant returns-to-scale.
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Examples of Returns-to-ScaleExamples of Returns-to-Scale
The perfect-complements production

y a x a x a x==== min{ , , , }.

The perfect-complements production

function is
y a x a x a xn n==== min{ , , , }.1 1 2 2 L

Expand all input levels proportionatelyExpand all input levels proportionately

by k.  The output level becomesby k.  The output level becomes
min{ ( ), ( ), , ( )}a kx a kx a kxn n1 1 2 2 L
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Examples of Returns-to-ScaleExamples of Returns-to-Scale
The perfect-complements production

y a x a x a x==== min{ , , , }.

The perfect-complements production

function is
y a x a x a xn n==== min{ , , , }.1 1 2 2 L

Expand all input levels proportionatelyExpand all input levels proportionately

by k.  The output level becomesby k.  The output level becomes
min{ ( ), ( ), , ( )}

(min{ , , , })

a kx a kx a kx

k a x a x a x

n n

n n

1 1 2 2

1 1 2 2

L

L==== (min{ , , , })k a x a x a xn n1 1 2 2 L====
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Examples of Returns-to-ScaleExamples of Returns-to-Scale
The perfect-complements production

y a x a x a x==== min{ , , , }.

The perfect-complements production

function is
y a x a x a xn n==== min{ , , , }.1 1 2 2 L

Expand all input levels proportionatelyExpand all input levels proportionately

by k.  The output level becomesby k.  The output level becomes
min{ ( ), ( ), , ( )}

(min{ , , , })

a kx a kx a kx

k a x a x a x

n n

n n

1 1 2 2

1 1 2 2

L

L==== (min{ , , , })

.

k a x a x a x

ky

n n1 1 2 2 L====
====

The perfect-complements production

function exhibits constant returns-to-scale.
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Examples of Returns-to-ScaleExamples of Returns-to-Scale
The Cobb-Douglas production function is

y x x x
a a

n
an==== 1 2

1 2 L .

The Cobb-Douglas production function is

n1 2

Expand all input levels proportionately

by k.  The output level becomesby k.  The output level becomes

( ) ( ) ( )kx kx kx
a a

n
an

1 2
1 2L( ) ( ) ( )kx kx kxn1 2 L
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Examples of Returns-to-ScaleExamples of Returns-to-Scale
The Cobb-Douglas production function is

y x x x
a a

n
an==== 1 2

1 2 L .

The Cobb-Douglas production function is

n1 2

Expand all input levels proportionately

by k.  The output level becomesby k.  The output level becomes

( ) ( ) ( )kx kx kx
a a

n
an

1 2
1 2L( ) ( ) ( )kx kx kx

k k k x x x

n

a a a a a an n

1 2

1 2 1 2

L

L L====
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Examples of Returns-to-ScaleExamples of Returns-to-Scale
The Cobb-Douglas production function is

y x x x
a a

n
an==== 1 2

1 2 L .

The Cobb-Douglas production function is

n1 2

Expand all input levels proportionately

by k.  The output level becomesby k.  The output level becomes

( ) ( ) ( )kx kx kx
a a

n
an

1 2
1 2L( ) ( ) ( )kx kx kx

k k k x x x

n

a a a a a an n

1 2

1 2 1 2

L

L L====

k x x x
a a a a a

n
an n

1 2
1 2 1 2L

L==== ++++ ++++ ++++
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Examples of Returns-to-ScaleExamples of Returns-to-Scale
The Cobb-Douglas production function is

y x x x
a a

n
an==== 1 2

1 2 L .

The Cobb-Douglas production function is

n1 2

Expand all input levels proportionately

by k.  The output level becomesby k.  The output level becomes

( ) ( ) ( )kx kx kx
a a

n
an

1 2
1 2L( ) ( ) ( )kx kx kx

k k k x x x

n

a a a a a an n

1 2

1 2 1 2

L

L L====

k x x x
a a a a a

n
an n

1 2
1 2 1 2L

L==== ++++ ++++ ++++

.k y
a an1 L==== ++++ ++++
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Examples of Returns-to-ScaleExamples of Returns-to-Scale
The Cobb-Douglas production function is

y x x x
a a

n
an==== 1 2

1 2 L .

The Cobb-Douglas production function is

n1 2

( ) ( ) ( ) .kx kx kx k y
a a

n
a a an n

1 2
1 2 1L

L==== ++++ ++++
( ) ( ) ( ) .kx kx kx k yn1 2 L ====

The Cobb-Douglas technology’s returns-

to-scale is

constant if   a1+ … + an = 1constant if   a1+ … + an = 1
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Examples of Returns-to-ScaleExamples of Returns-to-Scale
The Cobb-Douglas production function is

y x x x
a a

n
an==== 1 2

1 2 L .

The Cobb-Douglas production function is

n1 2

( ) ( ) ( ) .kx kx kx k y
a a

n
a a an n

1 2
1 2 1L

L==== ++++ ++++
( ) ( ) ( ) .kx kx kx k yn1 2 L ====

The Cobb-Douglas technology’s returns-

to-scale is

constant if   a1+ … + an = 1constant if   a1+ … + an = 1

increasing if   a1+ … + an > 1
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Examples of Returns-to-ScaleExamples of Returns-to-Scale
The Cobb-Douglas production function is

y x x x
a a

n
an==== 1 2

1 2 L .

The Cobb-Douglas production function is

n1 2

( ) ( ) ( ) .kx kx kx k y
a a

n
a a an n

1 2
1 2 1L

L==== ++++ ++++
( ) ( ) ( ) .kx kx kx k yn1 2 L ====

The Cobb-Douglas technology’s returns-

to-scale is

constant if   a1+ … + an = 1constant if   a1+ … + an = 1

increasing if   a1+ … + an > 1

decreasing if   a + … + a < 1.decreasing if   a1+ … + an < 1.
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Returns-to-ScaleReturns-to-Scale

�Q: Can a technology exhibit 

increasing returns-to-scale even increasing returns-to-scale even 

though all of its marginal products though all of its marginal products 

are diminishing?
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Returns-to-ScaleReturns-to-Scale

�Q: Can a technology exhibit 

increasing returns-to-scale even if all increasing returns-to-scale even if all 

of its marginal products are of its marginal products are 

diminishing?

�A: Yes.

�E.g. y x x==== 2 3 2 3/ /
.�E.g. y x x==== 1

2 3
2
2 3/ /

.
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Returns-to-ScaleReturns-to-Scale
y x x x x

a a==== ====1
2 3

2
2 3

1 2
1 2/ /y x x x x==== ====1 2 1 2

a a1 2
4

3
1++++ ==== >>>> so this technology exhibitsa a1 2

3
1++++ ==== >>>> so this technology exhibits

increasing returns-to-scale.
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Returns-to-ScaleReturns-to-Scale
y x x x x

a a==== ====1
2 3

2
2 3

1 2
1 2/ /y x x x x==== ====1 2 1 2

a a1 2
4

3
1++++ ==== >>>> so this technology exhibitsa a1 2

3
1++++ ==== >>>> so this technology exhibits

increasing returns-to-scale.
1/3 2 32 −−−− /

But MP x x1 1
1/3

2
2 32

3
==== −−−− /

diminishes as x1
3

increases
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Returns-to-ScaleReturns-to-Scale
y x x x x

a a==== ====1
2 3

2
2 3

1 2
1 2/ /y x x x x==== ====1 2 1 2

a a1 2
4

3
1++++ ==== >>>> so this technology exhibitsa a1 2

3
1++++ ==== >>>> so this technology exhibits

increasing returns-to-scale.
1/3 2 32 −−−− /

But MP x x1 1
1/3

2
2 32

3
==== −−−− /

diminishes as x1
3

increases and

MP x x2 3 1/32==== −−−−/
diminishes as xMP x x2 1

2 3
2
1/32

3
==== −−−−/

diminishes as x1

increases.increases.
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Returns-to-ScaleReturns-to-Scale

�So a technology can exhibit 

increasing returns-to-scale even if all increasing returns-to-scale even if all 

of its marginal products are of its marginal products are 

diminishing.  Why?
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Returns-to-ScaleReturns-to-Scale

A marginal product is the rate-of-�A marginal product is the rate-of-

change of output as one input level change of output as one input level 

increases, holding all other input 

levels fixed.levels fixed.

�Marginal product diminishes  �Marginal product diminishes  

because the other input levels are 

fixed, so the increasing input’s units fixed, so the increasing input’s units 

have each less and less of other have each less and less of other 

inputs with which to work.

© 2010 W. W. Norton & Company, Inc. 87



Returns-to-ScaleReturns-to-Scale

When all input levels are increased �When all input levels are increased 

proportionately, there need be no proportionately, there need be no 

diminution of marginal products  

since each input will always have the since each input will always have the 

same amount of other inputs with same amount of other inputs with 

which to work.  Input productivities 

need not fall and so returns-to-scale need not fall and so returns-to-scale 

can be constant or increasing.
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Technical Rate-of-SubstitutionTechnical Rate-of-Substitution

�At what rate can a firm substitute one 

input for another without changing input for another without changing 

its output level?its output level?
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Technical Rate-of-SubstitutionTechnical Rate-of-Substitution

x2

x2
'x2

y≡100≡100≡100≡100

x1x1
'
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Technical Rate-of-SubstitutionTechnical Rate-of-Substitution
The slope is the rate at which 

x2

The slope is the rate at which 

input 2 must be given up as 

input 1’s level is increased so as input 1’s level is increased so as 

not to change the output level.  

The slope of an isoquant is its The slope of an isoquant is its 

technical rate-of-substitution.x2
'x2

y≡100≡100≡100≡100

x1x1
'
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Technical Rate-of-SubstitutionTechnical Rate-of-Substitution

�How is a technical rate-of-substitution 

computed?computed?
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Technical Rate-of-SubstitutionTechnical Rate-of-Substitution

�How is a technical rate-of-substitution 

computed?computed?

�The production function is y f x x==== ( , ).1 2�The production function is

�A small change (dx1, dx2) in the input 

y f x x==== ( , ).1 2

�A small change (dx1, dx2) in the input 

bundle causes a change to the output 

level oflevel of

dy
y
dx

y
dx==== ++++∂∂∂∂ ∂∂∂∂

1 2 .dy
y

x
dx

y

x
dx==== ++++∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂1
1

2
2 .
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Technical Rate-of-SubstitutionTechnical Rate-of-Substitution

dy
y
dx

y
dx==== ++++∂∂∂∂ ∂∂∂∂

1 2 .dy
y

x
dx

y

x
dx==== ++++∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂1
1

2
2 .

But dy = 0 since there is to be no change

to the output level, so the changes dxto the output level, so the changes dx1

and dx2 to the input levels must satisfyand dx2 to the input levels must satisfy

0 1 2==== ++++∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

y
dx

y
dx .0

1
1

2
2==== ++++

∂∂∂∂ ∂∂∂∂x
dx

x
dx .
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Technical Rate-of-SubstitutionTechnical Rate-of-Substitution

0 ==== ++++∂∂∂∂ ∂∂∂∂y
dx

y
dx0

1
1

2
2==== ++++∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
y

x
dx

y

x
dx

1 2∂∂∂∂ ∂∂∂∂
rearranges to

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

y

x
dx

y

x
dx2 1==== −−−−

∂∂∂∂ ∂∂∂∂x x2
2

1
1==== −−−−

so dx y x2 1==== −−−− ∂∂∂∂ ∂∂∂∂/so dx

dx

y x

y x
2

1

1

2

==== −−−− ∂∂∂∂ ∂∂∂∂
∂∂∂∂ ∂∂∂∂

/

/
.

dx y x1 2∂∂∂∂ ∂∂∂∂/
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Technical Rate-of-SubstitutionTechnical Rate-of-Substitution
dx y x2 1==== −−−− ∂∂∂∂ ∂∂∂∂/dx

dx

y x

y x
2

1

1

2

==== −−−− ∂∂∂∂ ∂∂∂∂
∂∂∂∂ ∂∂∂∂

/

/

is the rate at which input 2 must be given

up as input 1 increases so as to keepup as input 1 increases so as to keep

the output level constant.  It is the slopethe output level constant.  It is the slope

of the isoquant.
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Technical Rate-of-Substitution; Technical Rate-of-Substitution; 

A Cobb-Douglas Example
a by f x x x xa b==== ====( , )1 2 1 2

so ∂∂∂∂
∂∂∂∂
y

x
ax xa b

1
1

2==== −−−− ∂∂∂∂
∂∂∂∂
y

x
bx xa b

1 2
1==== −−−− .and

∂∂∂∂ x
ax x

1
1 2====

∂∂∂∂ x
bx x

2
1 2==== .and

The technical rate-of-substitution is

dx y x ax x axa b1−−−−∂∂∂∂ ∂∂∂∂/dx

dx

y x

y x

ax x

bx x

ax

bx

a b

a b
2

1

1

2

1
1

2

1 2
1

2

1

==== −−−− ==== −−−− ==== −−−−
−−−−

−−−−
∂∂∂∂ ∂∂∂∂
∂∂∂∂ ∂∂∂∂

/

/
.

dx y x bx x bxa b
1 2 1 2

1
1

−−−−∂∂∂∂ ∂∂∂∂/
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Technical Rate-of-Substitution; 

x2

Technical Rate-of-Substitution; 

A Cobb-Douglas Example
==== ==== ====1/3 2 3 1 2/

x2
y x x a andb==== ==== ====1

1/3
2
2 3 1

3

2

3

/
;

TRS
ax

bx

x

x

x

x
==== −−−− ==== −−−− ==== −−−−2 2 21 3

2 3 2

( / )

( / )
TRS

bx x x
==== −−−− ==== −−−− ==== −−−−

1 1 12 3 2( / )

© 2010 W. W. Norton & Company, Inc. 98
x1



Technical Rate-of-Substitution; 

x2

Technical Rate-of-Substitution; 

A Cobb-Douglas Example
==== ==== ====1/3 2 3 1 2/

x2
y x x a andb==== ==== ====1

1/3
2
2 3 1

3

2

3

/
;

TRS
ax

bx

x

x

x

x
==== −−−− ==== −−−− ==== −−−−2 2 21 3

2 3 2

( / )

( / )
TRS

bx x x
==== −−−− ==== −−−− ==== −−−−

1 1 12 3 2( / )

TRS
x==== −−−− ==== −−−− ==== −−−−2 8

1
8

TRS
x

x
==== −−−− ==== −−−−

××××
==== −−−−2

12

8

2 4
1

8
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Technical Rate-of-Substitution; 

x2

Technical Rate-of-Substitution; 

A Cobb-Douglas Example
==== ==== ====1/3 2 3 1 2/

x2
y x x a andb==== ==== ====1

1/3
2
2 3 1

3

2

3

/
;

TRS
ax

bx

x

x

x

x
==== −−−− ==== −−−− ==== −−−−2 2 21 3

2 3 2

( / )

( / )
TRS

bx x x
==== −−−− ==== −−−− ==== −−−−

1 1 12 3 2( / )

TRS
x==== −−−− ==== −−−− ==== −−−−2 6 1

TRS
x

x
==== −−−− ==== −−−−

××××
==== −−−−2

12

6

2 12

1

4

6
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Well-Behaved TechnologiesWell-Behaved Technologies

�A well-behaved technology is

–monotonic, and

–convex.–convex.
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Well-Behaved Technologies -Well-Behaved Technologies -

Monotonicity

�Monotonicity:  More of any input 

generates more output.generates more output.

y yy y
monotonic

notnot

monotonic

x x
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Well-Behaved Technologies -Well-Behaved Technologies -

Convexity

�Convexity:  If the input bundles x’ 

and x” both provide y units of output and x” both provide y units of output 

then the mixture  tx’ + (1-t)x”  then the mixture  tx’ + (1-t)x”  

provides at least y units of output, 

for any 0 < t < 1. for any 0 < t < 1. 
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Well-Behaved Technologies -Well-Behaved Technologies -

Convexity
xx2

x2
'
2

x2
"

≡100≡100≡100≡100

xx'

x2
"

x"

y≡100≡100≡100≡100

x1
x1
' x1

"

© 2010 W. W. Norton & Company, Inc. 104



Well-Behaved Technologies -Well-Behaved Technologies -

Convexity
xx2

x2
'
2

(((( ))))tx t x tx t x1 1 2 21 1
' " ' "

( ) , ( )++++ −−−− ++++ −−−−

x2
"

(((( ))))tx t x tx t x1 1 2 21 1( ) , ( )++++ −−−− ++++ −−−−

≡100≡100≡100≡100

xx'

x2
"

x"

y≡100≡100≡100≡100

x1
x1
' x1

"
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Well-Behaved Technologies -Well-Behaved Technologies -

Convexity
xx2

x2
'
2

(((( ))))tx t x tx t x1 1 2 21 1
' " ' "

( ) , ( )++++ −−−− ++++ −−−−

x2
"

(((( ))))tx t x tx t x1 1 2 21 1( ) , ( )++++ −−−− ++++ −−−−

≡100≡100≡100≡100
y≡120≡120≡120≡120

xx'

x2
"

x"

y≡100≡100≡100≡100
y≡120≡120≡120≡120

x1
x1
' x1

"
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Well-Behaved Technologies -Well-Behaved Technologies -

Convexity
x Convexity implies that the TRSx2 Convexity implies that the TRS

increases (becomes less

x2
'

increases (becomes less

negative) as x1 increases.
2

x2
"

xx'

x2
"

x" x1
x1
' x1

"
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Well-Behaved TechnologiesWell-Behaved Technologies

x higher outputx2
higher output

≡100≡100≡100≡100
y≡200≡200≡200≡200

x

y≡100≡100≡100≡100y≡50≡50≡50≡50
x1
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The Long-Run and the Short-The Long-Run and the Short-

Runs

�The long-run is the circumstance in 

which a firm is unrestricted in its which a firm is unrestricted in its 

choice of all input levels.choice of all input levels.

�There are many possible short-runs.

�A short-run is a circumstance in 

which a firm is restricted in some which a firm is restricted in some 

way in its choice of at least one input way in its choice of at least one input 

level.
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The Long-Run and the Short-The Long-Run and the Short-

Runs
�Examples of restrictions that place a 

firm into a short-run:firm into a short-run:

– temporarily being unable to install, – temporarily being unable to install, 

or remove, machinery

–being required by law to meet –being required by law to meet 

affirmative action quotasaffirmative action quotas

–having to meet domestic content 

regulations. 
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The Long-Run and the Short-The Long-Run and the Short-

Runs

�A useful way to think of the long-run 

is that the firm can choose as it is that the firm can choose as it 

pleases in which short-run pleases in which short-run 

circumstance to be.
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The Long-Run and the Short-The Long-Run and the Short-

Runs
�What do short-run restrictions imply 

for a firm’s technology?for a firm’s technology?

�Suppose the short-run restriction is �Suppose the short-run restriction is 

fixing the level of input 2.

Input 2 is thus a fixed input in the � Input 2 is thus a fixed input in the 

short-run.  Input 1 remains variable.short-run.  Input 1 remains variable.
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Four short-run production functions.
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The Long-Run and the Short-The Long-Run and the Short-

Runs
y x x==== 1/3 1/3y x x==== 1

1/3
2
1/3

is the long-run production

function (both x1 and x2 are variable).function (both x1 and x2 are variable).

The short-run production function whenThe short-run production function when

x2 ≡≡≡≡ 1 is .x1xy
3/1

1
3/13/1

1 ======== .x1xy 11 ========

The short-run production function when The short-run production function when 

x2 ≡≡≡≡ 10 is .x15210xy
3/1

1
3/13/1

1 ⋅⋅⋅⋅======== .x15210xy 11 ⋅⋅⋅⋅========
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Four short-run production functions.


