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Cost Minimization




Cost Minimization

¢ A firm is a cost-minimizer if it
produces any given output levely >0
at smallest possible total cost.

¢ c(y) denotes the firm’s smallest
possible total cost for producing y
units of output.

¢ c(y) is the firm’s total cost function.
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Cost Minimization

¢ When the firm faces given input
prices w = (w,,w,,...,w,) the total cost
function will be written as

c(W,,...,W,,Y).




The Cost-Minimization Problem

¢ Consider a firm using two inputs to
make one output.

¢ The production function is
y = f(x4,X,)-
¢ Take the output level y = 0 as given.

¢ Given the input prices w, and w,, the
dle (x,,x,) is
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The Cost-Minimization Problem

¢ For given w,, w, and y, the firm’s
cost-minimization problem is to
solve min WwiXjy +wjXy
XI,X220

subjectto f(x1,X9) =Y.




The Cost-Minimization Problem

¢ The levels x,*(w,,w,,y) and x,*(w,,w,,y)
in the least-costly input bundle are the
firm’s conditional demands for inputs
1 and 2.

¢ The (smallest possible) total cost for
producing y output units is therefore

E
(W1, W2,Y) = WiX1(W,W2,Y)
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Conditional Input Demands

¢ Given w,, w, and y, how is the least
costly input bundle located?

¢ And how is the total cost function
computed?




Iso-cost Lines

¢ A curve that contains all of the input
bundles that cost the same amount
IS an iso-cost curve.

¢ E.g., given w, and w,, the $100 iso-

cost line has the equation
W1X1 T W9rXy = 100.




Iso-cost Lines

¢ Generally, given w, and w,, the

equation of the $c iIso-cost line is
W1X1 WHrX9y = C

l.e. W1 C
X =——X1+—




Iso-cost Lines

W. Norton & Company, Inc.




Iso-cost Lines

X2 ¢ Slopes = -w,/w,.
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The y’-Output Unit Isoquant

X2 A

All input bundles yielding y’ units
of output. Which is the cheapest?




The Cost-Minimization Problem

X2 A

All input bundles yielding y’ units
of output. Which is the cheapest?




The Cost-Minimization Problem

XZ)

\

N

All input bundles yielding y’ units
of output. Which is the cheapest?
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The Cost-Minimization Problem

X2 A

All input bundles yielding y’ units
of output. Which is the cheapest?




The Cost-Minimization Problem

X2 A

All input bundles yielding y’ units
of output. Which is the cheapest?




The Cost-Minimization Problem

X,

At an interior cost-min input bundile:
' (a) f(x1,X2) =Y




The Cost-Minimization Problem

X,

At an interior cost-min input bundile:

t (a) £(x1,x2) =Yy and

(b) slope of isocost = slope of
isoquant




The Cost-Minimization Problem

X,

At an interior cost-min input bundile:

t (a) £(x1,x2) =Yy and

(b) slope of isocost = slope of

isoquant; i.e.
_MPb

MP,

% %
at (x1,X2).




A Cobb-Douglas Example of
Cost Minimization

¢ A firm’s Cobb-Douglas production
function is 1/3_2/3

y =1(xq,x2) = X1 7Xx3
¢ Input prices are w, and w,,.

¢ What are the firm’s conditional input
demand functions?




A Cobb-Douglas Example of
Cost Minimization

At the input bundle (x,*,x,*) which minimizes
the cost of producing y output units:

(@) y=xp' P

(b)

and

0y/dxy __(1/3)(xp 3 (xp*3
wy  0y/0x; i/ 3H(x P (xy) ™3




A Cobb-Douglas Example of

Cost Minimization  «

% % W X
@y=0cD" ™ ) =
2 2xq

dunga




A Cobb-Douglas Example of
Cost Minimization B

1/3,_%.2/3 W1 _ X
(@) y = (x)"3(x3) (b) W2 2X=;°

* 2W1 %
From (b), x2 = Xq.
W2




A Cobb-Douglas Example of
Cost Minimization .

%

% W X
(@) y = (x1)gxz)2/3 (b) W1 = X2
2 2xq

> 2W1 %
From (b), (X2 F — Xq.
W2

Now substitute into (a) to get

2/3
1)




A Cobb-Douglas Example of
Cost Minimization .

%

> 2W1 %

From (b), \X2 F —— Xj.

W2

Now substitute into (a) to get

w13 2wy 2/3 W 2/3 .
y = (x1) (1 Xl) = (1) X{.
A\ W»o

1/3 % \2/3 W1 _ X2
a) y=(x X b o




A Cobb-Douglas Example of
Cost Minimization .

%

% W X
(@) y = (x1)gxz)2/3 (b) W1 = X2
2 2xq

> 2W1 %
From (b), (X2 F — Xq.
W2

Now substitute into (a) to get

2/3




A Cobb-Douglas Example of
Cost Minimization

W . W 2/3
- w %
Since X9y = —1X1 and xq = (Zj y
W2 2W1
. 2W1 Ws 2/3 ) 2W1 1/3
X2 — Y= — y
W2 2W1 WZ

is the firm’s conditional demand for input 2.




A Cobb-Douglas Example of
Cost Minimization

So the cheapest input bundle yielding y
output units Is

% %
(XI(W19W29Y)9X2(W19W29Y))

( 2/3 1/3 )
W) 2wW1
(ZW) y,( j Y
\ 1 J




Conditional Input Demand Curves

Fixed w, and w,,.

\

X,
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Conditional Input Demand Curves

A

Fixed w, and w,,.

|

X,
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Conditional Input Demand Curves

A

Fixed w, and w,,.
X;
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Conditional Input Demand Curves

A

Fixed w, and w,,.
X, VAL Se—— ®

yll __________ , E

= T %
p X2(¥'): X2(y") Xp
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Conditional Input Demand Curves

A

Fixed w, and w,,.

X, \ y' e ‘

yll __________ _’E
y' [ ’.i ’

output
expansion

XZ(y',, )
XZ*(YH) ----- N
X2(Y)|[

Xl(
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Conditional Input Demand Curves

» Cond. demand

Fixed w, and w,. for

X, y" b input 2
\ y” i
output ,
expansion y

\ Xz(Y) Xz(Y'") X2

XZ(y’,, )
XZ*(YH) ----- N
X2(Y)|[

Xl(
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A Cobb-Douglas Example of
Cost Minimization

For the production function

_ _1/3.2/3
y =f(x1,Xx3) =x7 "x3

the cheapest input bundle yielding y output
units Is

% %
(XI(W19W29Y)9X2(W19W29Y))
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A Cobb-Douglas Example of

Cost Minimization
So the firm’s total cost function is

% %
c(W1,W2,¥) = WiX1 (W1, W2,¥) + WaX9(W1,W13,Y)




A Cobb-Douglas Example of

Cost Minimization
So the firm’s total cost function is

% %
C(W1,W2,Y) = WiX1 (W1, W2,¥) + WaXs(W1,W2,Y)

2/3 1/3
_ W) 2w
= W1| y+w2 — y
2W1

W2




A Cobb-Douglas Example of

Cost Minimization
So the firm’s total cost function is

% %
C(W1,W2,Y) = WiX1 (W1, W2,¥) + WaXs (W1, W1,Y)

2/3 1/3
B W) 2w
2w WH

1 213 1/3__2/3 1/3 1/3 2/3

. = '!' Y B f ¥ -
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A Cobb-Douglas Example of

Cost Minimization
So the firm’s total cost function is

% %
C(W1,W2,Y) = W1X1(W1,W2,¥) + WoX2 (W1, W2,Y)

2/3 1/3
_ \\ ) 2w
= Wl() y+w2() y
2W1 W»

_ () W%/swiz/sy 2313 2130




A Perfect Complements Example
of Cost Minimization

¢ The firm’s production function is
y = min{4xy,X» }.

¢ Input prices w, and w, are given.

¢ What are the firm’s conditional
demands for inputs 1 and 27?
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A Perfect Complements Example

of Cost Minimization
X2 | 4x, = X,

/
/
/

v
/

v

/ min{4x,,x,} =y’
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A Perfect Complements Example

XZ A

of Cost Minimization

‘}X1 = X,




A Perfect Complements Example

of Cost Minimization
X2 4 4x, = x, Where Is the least costly
input bundle yielding
y’ output units?

min{4x1 !XZ} = y,




A Perfect Complements Example
of Cost Minimization

X2 4 ax. = x. Where is the least costly
1 2
/ input bundle yielding
\\/ y’ output units?
/
X,* =y \I \ min{4x,,X,} =y’




A Perfect Complements Example

of Cost Minimization

The firm’s production function is
y = min{4xy,X5}

and the conditional input demands are

* %
X1(W1,W2,Y) = Z and X2(W1,wW2,y) =Y.




A Perfect Complements Example

of Cost Minimization

The firm’s production function is
y = min{4xy,X5}

and the conditional input demands are

* %
X1(W1,W2,Y) = Z and X2(W1,wW2,y) =Y.

So the firm’s total cost function is

—



A Perfect Complements Example

of Cost Minimization

The firm’s production function is
y = min{4xy,X5}

and the conditional input demands are

* %
X1(W1,W2,Y) = Z and X2(W1,wW2,y) =Y.

So the firm’s total cost function is
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Average Total Production Costs

¢ For positive output levels y, a firm’s
average total cost of producing y




Returns-to-Scale and Av. Total
Costs

¢ The returns-to-scale properties of a
firm’s technology determine how
average production costs change with
output level.

¢ Our firm is presently producing y’
output units.

¢ How does the firm’s average
productlon cost chaj "ge if it mstead

. - n s B i
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Constant Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
constant returns-to-scale then
doubling its output level from y’ to
2y’ requires doubling all input levels.




Constant Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
constant returns-to-scale then
doubling its output level from y’ to
2y’ requires doubling all input levels.

¢ Total production cost doubles.
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Constant Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
constant returns-to-scale then
doubling its output level from y’ to
2y’ requires doubling all input levels.

¢ Total production cost doubles.

¢ Average production cost does not
change. m
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Decreasing Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
decreasing returns-to-scale then
doubling its output level from y’ to

2y’ requires more than doubling all
input levels.




Decreasing Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
decreasing returns-to-scale then
doubling its output level from y’ to
2y’ requires more than doubling all
input levels.

+ Total production cost more than
doubles.
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Decreasing Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
decreasing returns-to-scale then
doubling its output level from y’ to
2y’ requires more than doubling all
input levels.

¢ Total production cost more than
doubles. i

¢ Average prodt

:

dw. Norton & Company, Inc.

L



Increasing Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
increasing returns-to-scale then
doubling its output level from y’ to
2y’ requires less than doubling all
input levels.




Increasing Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
increasing returns-to-scale then
doubling its output level from y’ to
2y’ requires less than doubling all
input levels.

¢ Total production cost less than
doubles.
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Increasing Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
increasing returns-to-scale then
doubling its output level from y’ to
2y’ requires less than doubling all
input levels.

¢ Total production cost less than
doubles.

¢ Average production’cost decreases

— L o - j e
!

dw. Norton & Company, Inc.

"



Returns-to-Scale and Av. Total

Costs
$/output unit

AC(y) decreasing r.t.s.

constant r.t.s.

Increasing r.t.s.
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Returns-to-Scale and Total Costs

¢ What does this imply for the shapes
of total cost functions?




Returns-to-Scale and Total Costs

Av. cost increases with y if the firm’s
$ technology exhibits decreasing r.t.s.
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Returns-to-Scale and Total Costs

Av. cost increases with y if the firm’s
$ technology exhibits decreasing r.t.s.
c(y)

Slope = c(y')ly’
= =AC(Y’).
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Returns-to-Scale and Total Costs

Av. cost decreases with y if the firm’s
$ technology exhibits increasing r.t.s.

o 1 |

c(y’) g -

Slope = c(y’ )ly
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Returns-to-Scale and Total Costs

Av. cost decreases with y if the firm’s
$ technology exhib#s-increasing r.t.s.

y C(y)
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Returns-to-Scale and Total Costs

Av. cost is constant when the firm’s
$ technology exhibits constant r.t.s.
c(2y’) t c(y)
=2¢(y’) Slope = c(2y’)/2y’
= 2c(y’)/2y’
=c(y)ly’

c(y’) s i <o

AC(y’) = AC(2y’).




Short-Run & Long-Run Total
Costs

¢ In the long-run a firm can vary all of
its input levels.

¢ Consider a firm that cannot change
its input 2 level from x,’ units.

¢ How does the short-run total cost of
producing y output units compare to

4
—

the Iong run total cast of producing y

: W. Norton & Company Inc
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Short-Run & Long-Run Total
Costs

¢ The long-run cost-minimization
problem is mm wyx, +w,x,

XXy 2

subject to f(x,x,)=y.

¢ The short-run cost-minimization
problem is mn w,x, +sz2

- af
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Short-Run & Long-Run Total
Costs

¢ The short-run cost-min. problem is the
long-run problem subject to the extra
constraint that x, = x,’.

¢ If the long-run choice for x, was x,’
then the extra constraint x, = x,’ Is not
really a constraint at all and so the
long-run and short-run total costs of
producing y output gnits are the same.




Short-Run & Long-Run Total
Costs

¢ The short-run cost-min. problem is
therefore the long-run problem subject to
the extra constraint that x, = x,”.

¢ But, if the long-run choice for x, # x,”
then the extra constraint x, = x,” prevents
the firm in this short-run from achieving
its long-run production cost, causing the
short-run total cost té‘ pxceed the long-




Short-Run & Long-Run Total
- Costs

X, | Consider three output levels.

! !)(1 , ¥ )




Short-Run & Long-Run Total
Costs

y In the long-run when the firm
is free to choose both x, and
X,, the least-costly input

r

y

: bundles are ...




Short-Run & Long-Run Total

Costs
yI”
X2 Long-run
y' output
expansion
y' path
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Short-Run & Long-Run Total

Costs
Long-run costs are:
o1 |, o(y') = Wix} + W)X}
T ong-run c(y'") = wixy + woxy'
T\ U ey = wax| waxy
expansion
y' path

W. Norton & Company, Inc.
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Short-Run & Long-Run Total
Costs

¢ Now suppose the firm becomes
subject to the short-run constraint
that x, = x,”.




Short-Run & Long-Run Total
Costs

y'"" Short-run
X2 4 output

Long-run costs are:
c(y') = Wixq + Wax)

aa

" _ c(v") = wix7i + whx
y expansion (v") 171 272

path

rm rm aa

c(y™) = wixg+ wax
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Short-Run & Long-Run Total
Costs

y'"" Short-run
X2 4 output

Long-run costs are:
c(y') = Wixq + Wax)

aa

" _ c(v") = wix7i + whx
y expansion (v") 171 272

path

rm rm aa

c(y™) = wixg+ wax
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Short-Run & Long-Run Total

Costs
Long-run costs are:
hort-run 2 ' '
. . 3 Shortru e(y') = W1x] + W)
2 1 OUtPUt I\ — L I
T : c(y") = wix] + woxs
y expansion

c(y™) = wixg+ wax

Short-run costs are:
cs(y')>c(y')

path
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Short-Run & Long-Run Total

Costs
Long-run costs are:
hort-run 2 ' '
. . 3 Shortru e(y') = W1x] + W)
2 1 OUtPUt I\ — L I
T : c(y") = wix] + woxs
y expansion

c(y'"') = wixy'+ worxj
Short-run costs are:
cs(y')>c(y')

cs(y') =c(y")

path
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Short-Run & Long-Run Total

Costs
Long-run costs are:
« y Sh:)rt-trun c(Y') = Wix) + Woxh
2 ou pu Iy — I 1l
C = W1X1 + WhnX
expansion ()i,,) 1 ,1,, 2 %,

c(y'"') = wixy'+ worxj
Short-run costs are:
cs(y')>c(y')

cs(y') =c(y")

path
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Short-Run & Long-Run Total
Costs

"y e Long-run costs are:
Y outout c(y') = wix] + woxh
P c(y") = wixy + wrxy'

expansion sd@?r’t)'ﬂmlﬁ?ﬂﬁ Ale:

path

cs(y') > ce(y')
X2 RN i cs(y") =c(y")
X2 - § c(Y'")>ce(y'")

—
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Short-Run & Long-Run Total
Costs

¢ Short-run total cost exceeds long-run
total cost except for the output level
where the short-run input level
restriction is the long-run input level
choice.

¢ This says that the long-run total cost
curve always has o e point In
With any particular short- _
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Short-Run & Long-Run Total
Costs

A short-run total cost curve always has
one point in common with the long-run
total cost curve, and is elsewhere higher
than the long-run total cost curve.

cs(y)

$

A




