INTERMEDIATE

MICROECONOMICS HALR. VARIAN

Cost Minimization

© 2010 W. W. Norton & Company, Inc.

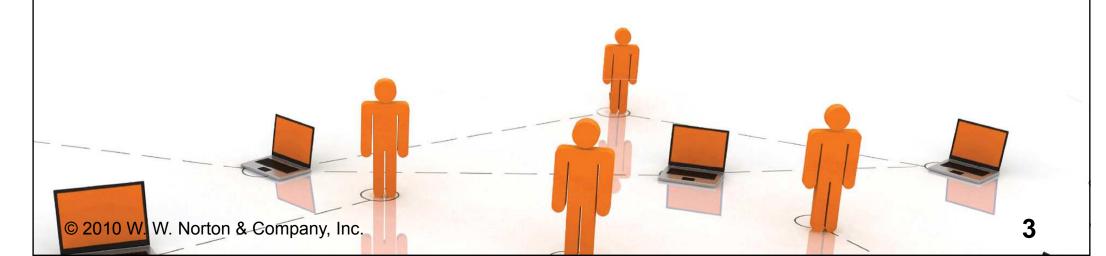
Cost Minimization

- ◆ A firm is a cost-minimizer if it produces any given output level y ≥ 0 at smallest possible total cost.
- ◆ c(y) denotes the firm's smallest possible total cost for producing y units of output.
- ◆ c(y) is the firm's total cost function.

© 2010 W. W. Norton & Company, Inc.

Cost Minimization

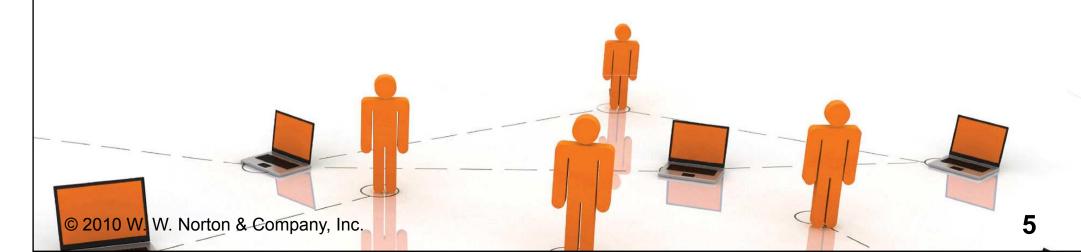
♦ When the firm faces given input prices w = (w₁,w₂,...,w_n) the total cost function will be written as c(w₁,...,w_n,y).



- ◆ Consider a firm using two inputs to make one output.
- ♦ The production function is $y = f(x_1,x_2)$.
- ♦ Take the output level $y \ge 0$ as given.
- Given the input prices w_1 and w_2 , the cost of an input bundle (x_1,x_2) is

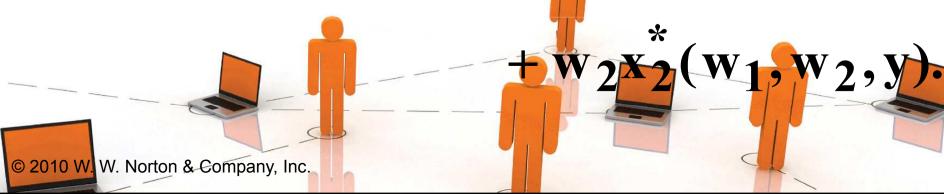
 $W_1X_1 \rightarrow W_2X_2$

♦ For given w_1 , w_2 and y, the firm's cost-minimization problem is to solve $\min_{\substack{x_1,x_2 \geq 0}} w_1x_1 + w_2x_2$ $x_1,x_2 \geq 0$ subject to $f(x_1,x_2) = y$.



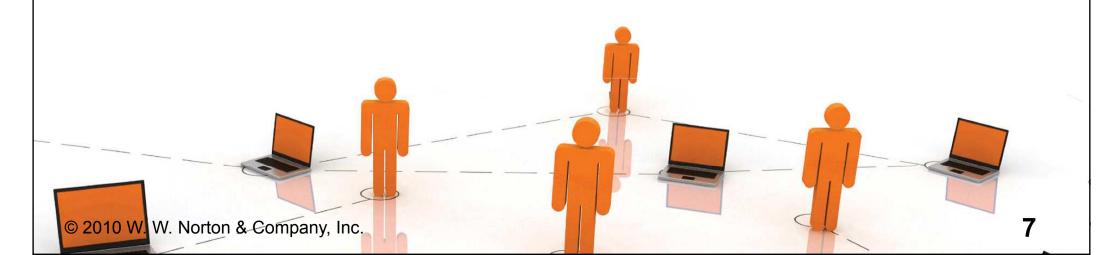
- ◆ The levels x₁*(w₁,w₂,y) and x₁*(w₁,w₂,y) in the least-costly input bundle are the firm's conditional demands for inputs 1 and 2.
- ◆ The (smallest possible) total cost for producing y output units is therefore

$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y)$$



Conditional Input Demands

- **♦** Given w₁, w₂ and y, how is the least costly input bundle located?
- ◆ And how is the total cost function computed?



- ◆ A curve that contains all of the input bundles that cost the same amount is an iso-cost curve.
- ♦ E.g., given w_1 and w_2 , the \$100 isocost line has the equation $w_1x_1 + w_2x_2 = 100$.

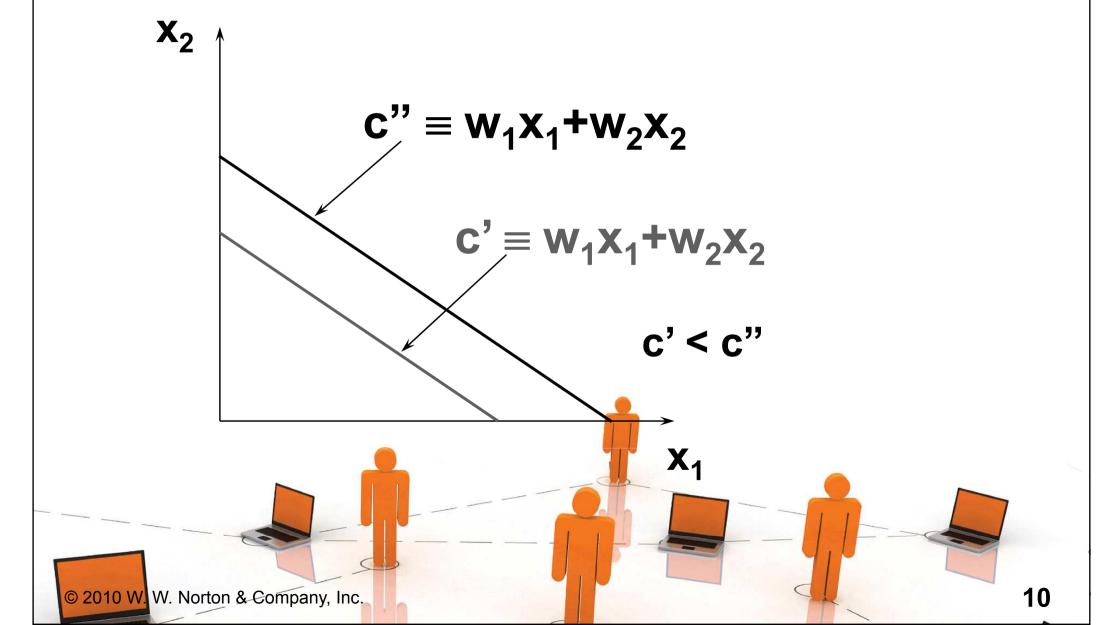


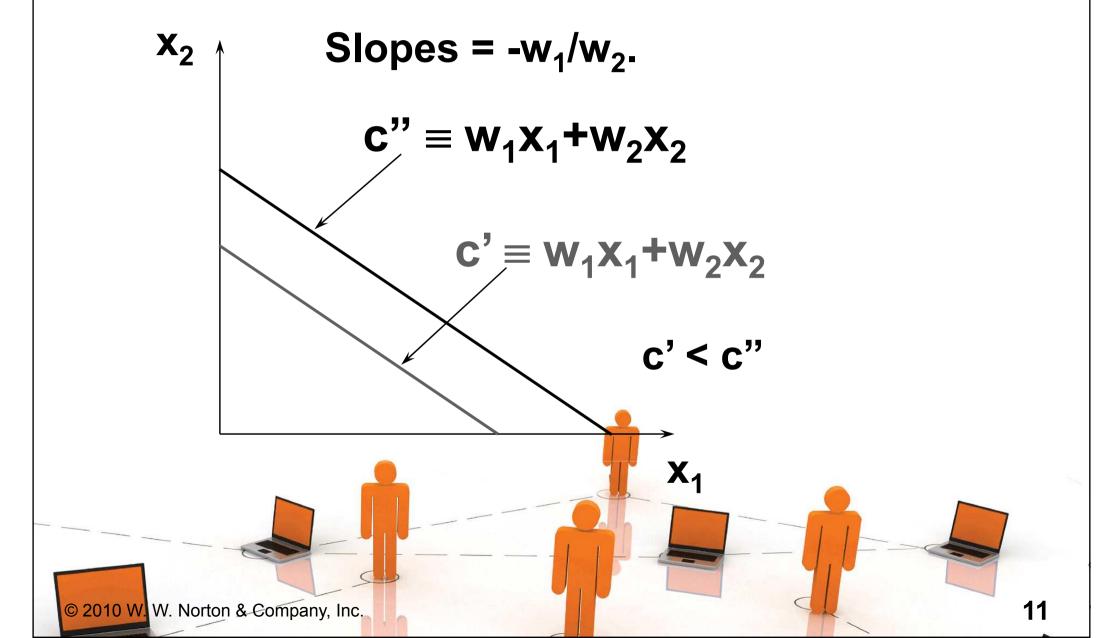
♦ Generally, given w₁ and w₂, the equation of the \$c iso-cost line is $w_1x_1 + w_2x_2 = c$

i.e.
$$x_2 = -\frac{w_1}{w_2}x_1 + \frac{c}{w_2}$$
.

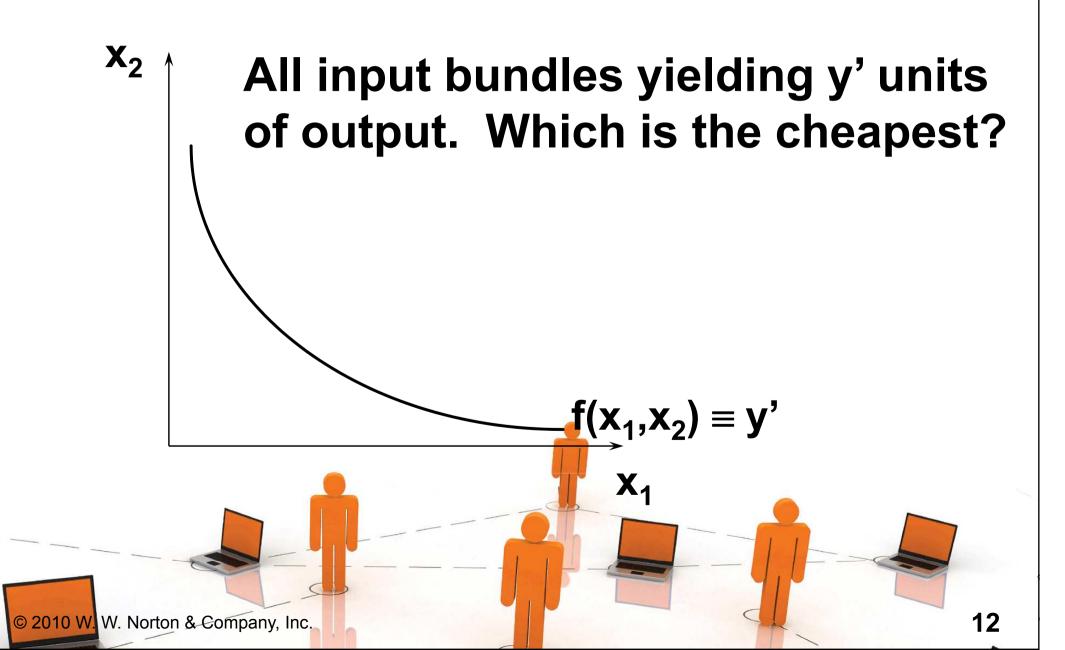
 \bullet Slope is $-\mathbf{W}_1/\mathbf{W}_2$.

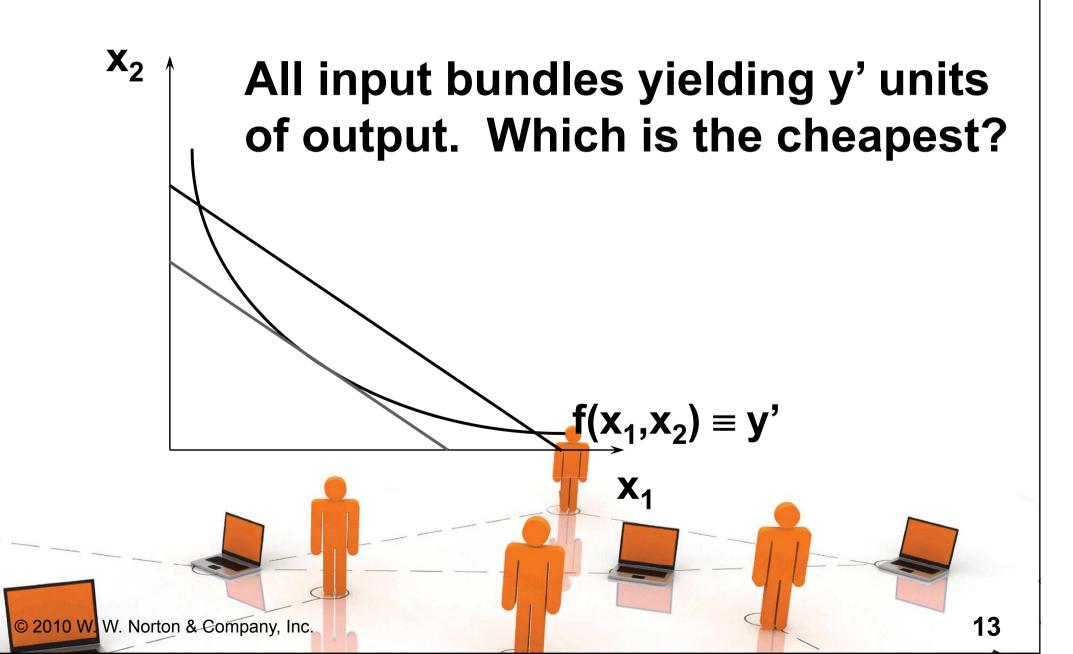
© 2010 W. W. Norton & Company, Inc.

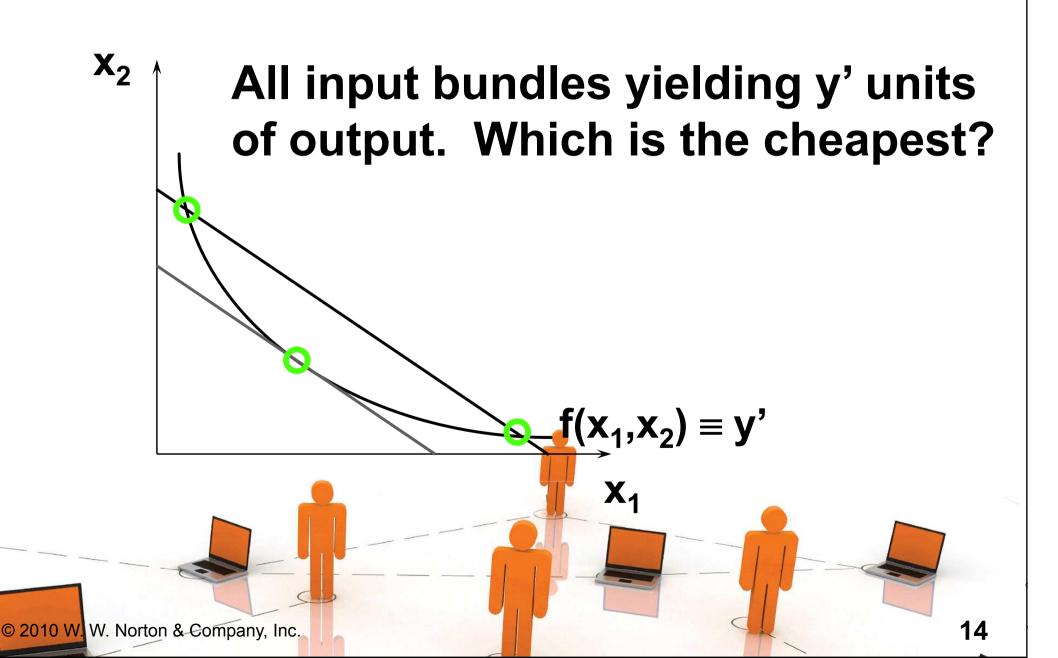


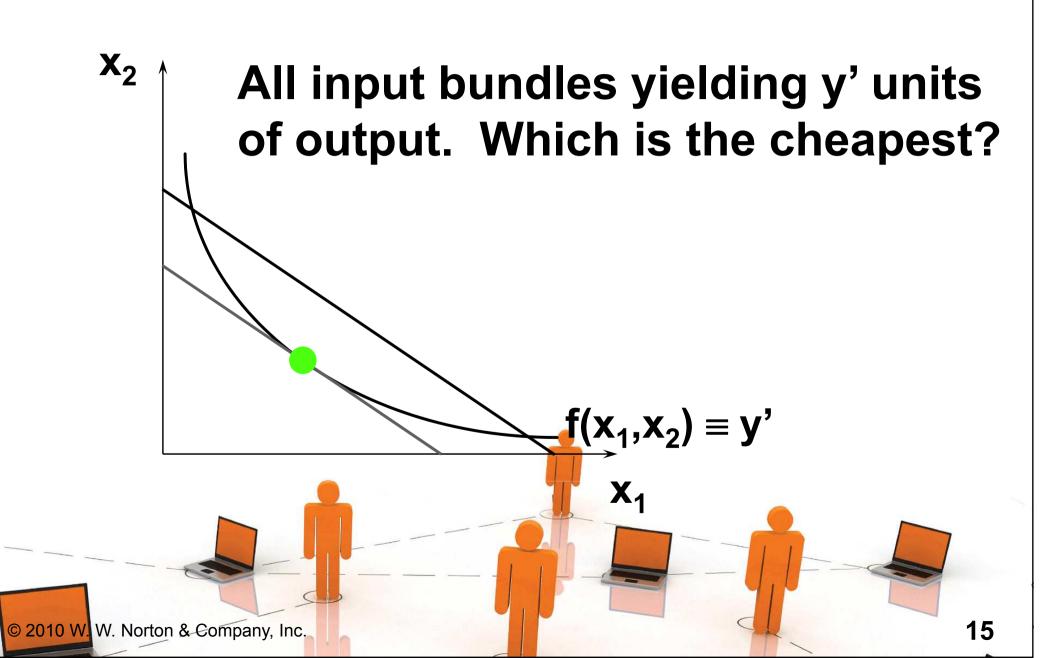


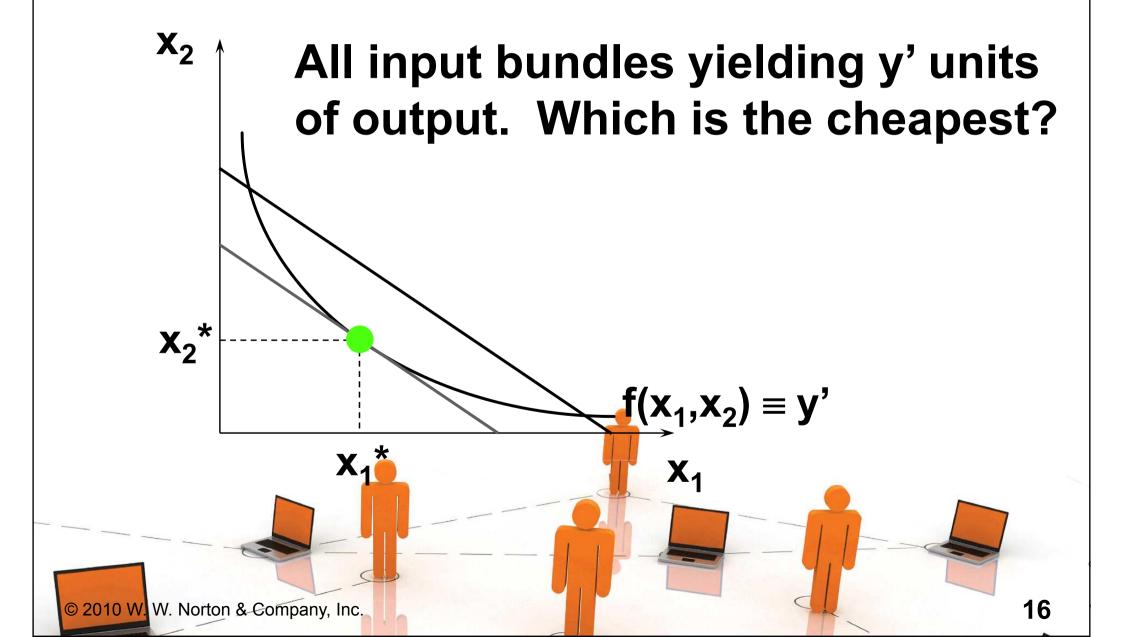
The y'-Output Unit Isoquant

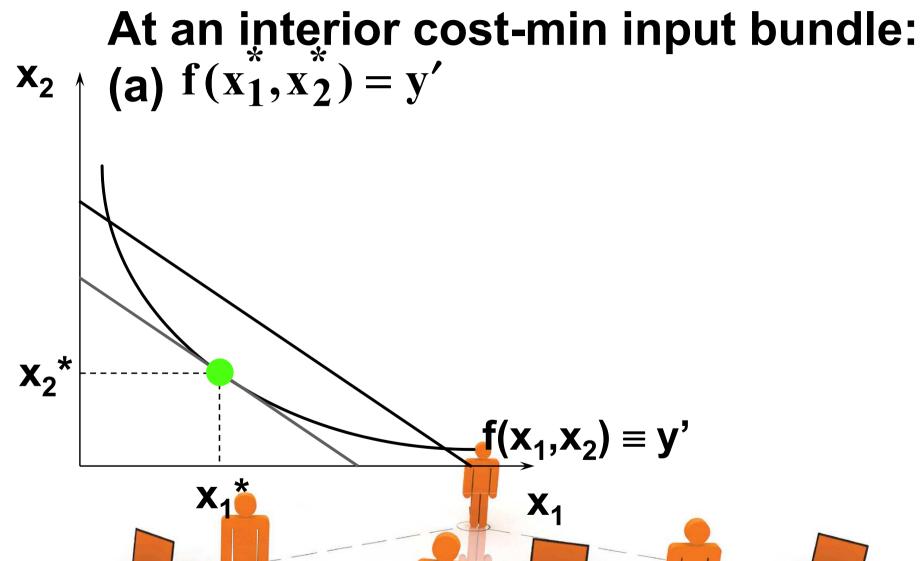






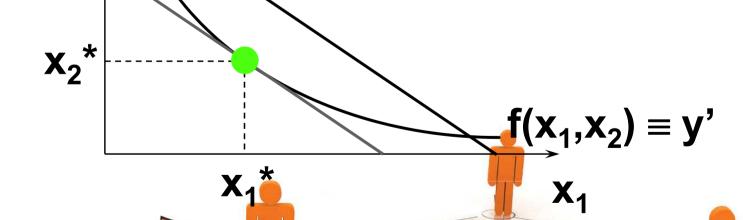






© 2010 W. W. Norton & Company, Inc.

At an interior cost-min input bundle: (a) $f(x_1,x_2) = y'$ and (b) slope of isocost = slope of isoquant



© 2010 W. W. Norton & Company, Inc.

The Cost-Minimization Problem At an interior cost-min input bundle:

 $x_2 \land (a) f(x_1, x_2) = y'$ and (b) slope of isocost = slope of

isoquant; i.e.

$$-\frac{w_1}{w_2} = TRS = -\frac{MP_1}{MP_2} \text{ at } (x_1^*, x_2^*).$$

X₂*

 $f(x_1,x_2) \equiv y'$

A Cobb-Douglas Example of Cost Minimization

- ♦ A firm's Cobb-Douglas production function is $y = f(x_1, x_2) = x_1^{1/3} x_2^{2/3}$.
- ♦ Input prices are w_1 and w_2 .
- ♦ What are the firm's conditional input demand functions?

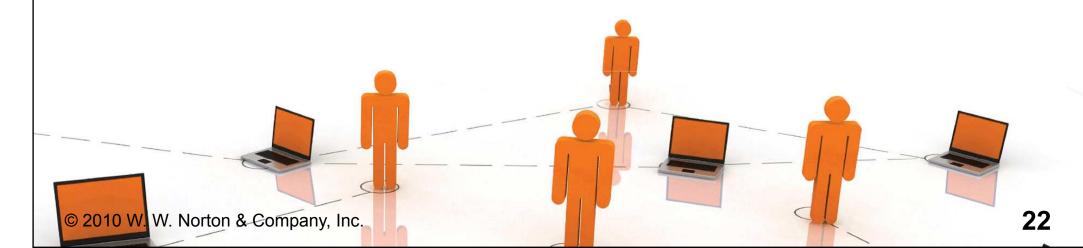
A Cobb-Douglas Example of Cost Minimization

At the input bundle (x_1^*, x_2^*) which minimizes the cost of producing y output units:

(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 and

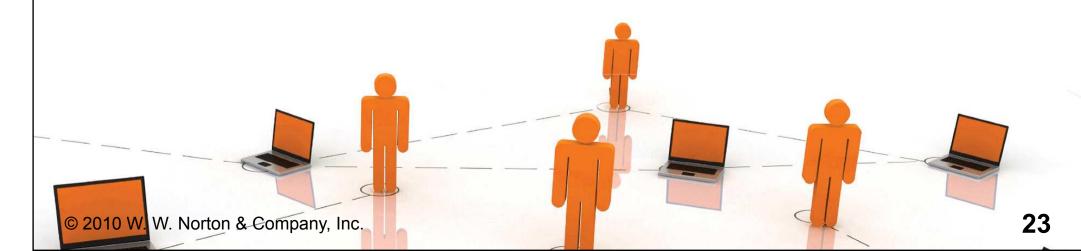
(b)
$$-\frac{\mathbf{w_1}}{\mathbf{w_2}} = -\frac{\partial \mathbf{y}/\partial \mathbf{x_1}}{\partial \mathbf{y}/\partial \mathbf{x_2}} = -\frac{(1/3)(\mathbf{x_1^*})^{-2/3}(\mathbf{x_2^*})^{2/3}}{(2/3)(\mathbf{x_1^*})^{1/3}(\mathbf{x_2^*})^{-1/3}}$$

A Cobb-Douglas Example of Cost Minimization (a) $y = (x_1^*)^{1/3} (x_2^*)^{2/3}$ (b) $\frac{w_1}{w_2} = \frac{x_2}{2x_1^*}$.



(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 (b) $\frac{w_1}{w_2} = \frac{x_2}{2x_1^*}$

From (b),
$$x_2^* = \frac{2w_1}{w_2}x_1^*$$
.



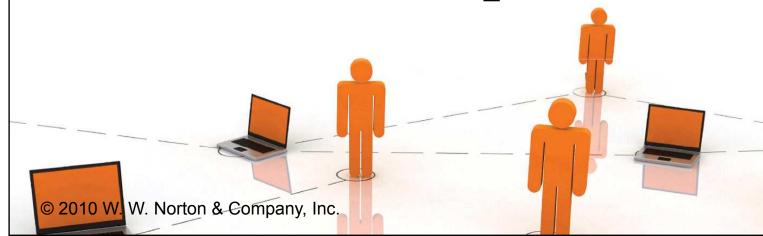
Cost Minimization

(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 (b) $\frac{w_1}{w_2} = \frac{x_2}{2x_1^*}$
From (b), $(x_2^*) = \frac{2w_1}{w_2} x_1^*$.

From (b),
$$(x_2^*) = \frac{2w_1}{w_2}x_1^*$$
.

Now substitute into (a) to get

$$y = (x_1^*)^{1/3} \left(\frac{2w_1}{w_2}x_1^*\right)^{2/3}$$



Cost Minimization

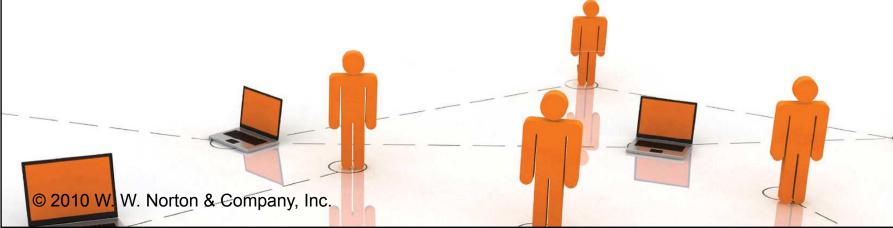
(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 (b) $\frac{w_1}{w_2} = \frac{x_2}{2x_1^*}$.
From (b), $(x_2^*) = \frac{2w_1}{w_2} x_1^*$.

From (b),
$$(x_2^*) = \frac{2w_1}{w_2}x_1^*$$
.

Now substitute into (a) to get

$$y = (x_1^*)^{1/3} \left(\frac{2w_1}{w_2}x_1^*\right)^{2/3} = \left(\frac{2w_1}{w_2}\right)^{2/3} x_1^*.$$

25



Cost Minimization

(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 (b) $\frac{w_1}{w_2} = \frac{x_2}{2x_1^*}$.
From (b), $x_2^* = \frac{2w_1}{w_2} x_1^*$.

From (b),
$$(x_2^*) = \frac{2w_1}{w_2}x_1^*$$
.

Now substitute into (a) to get

w substitute into (a) to get
$$y = (x_1^*)^{1/3} \left(\frac{2w_1}{w_2} x_1^*\right)^{2/3} = \left(\frac{2w_1}{w_2}\right)^{2/3} x_1^*.$$

So
$$x_1^* = \left(\frac{w_2}{2w_1}\right)$$

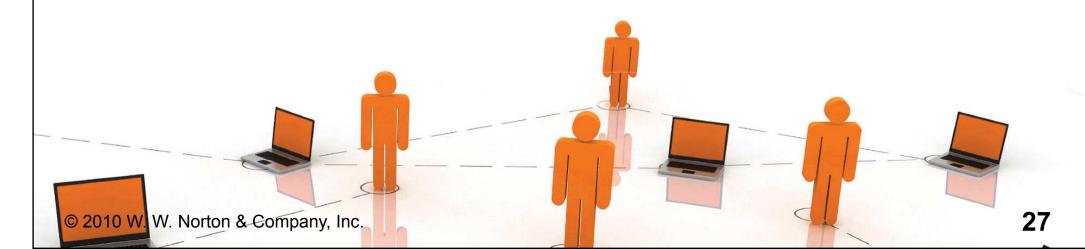
So $x_1^* = \begin{pmatrix} w_2 \\ 2w_1 \end{pmatrix}^{2/3}$ y is the firm's conditional demand for input 1.

A Cobb-Douglas Example of Cost Minimization

Since
$$x_2^* = \frac{2w_1}{w_2} x_1^*$$
 and $x_1^* = \left(\frac{w_2}{2w_1}\right)^{2/3} y$

$$\mathbf{x_2^*} = \frac{2\mathbf{w_1}}{\mathbf{w_2}} \left(\frac{\mathbf{w_2}}{2\mathbf{w_1}}\right)^{2/3} \mathbf{y} = \left(\frac{2\mathbf{w_1}}{\mathbf{w_2}}\right)^{1/3} \mathbf{y}$$

is the firm's conditional demand for input 2.

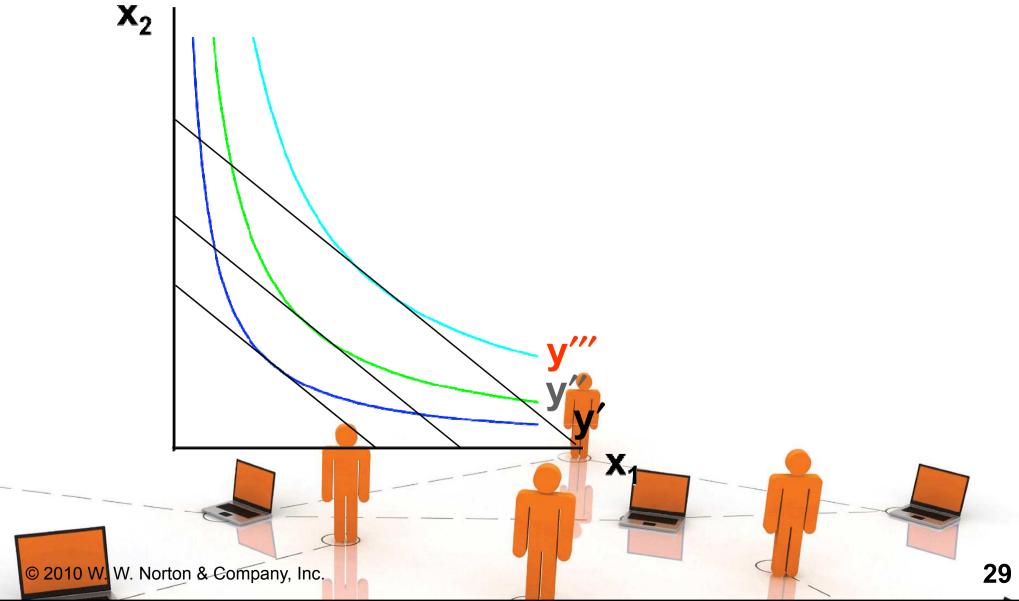


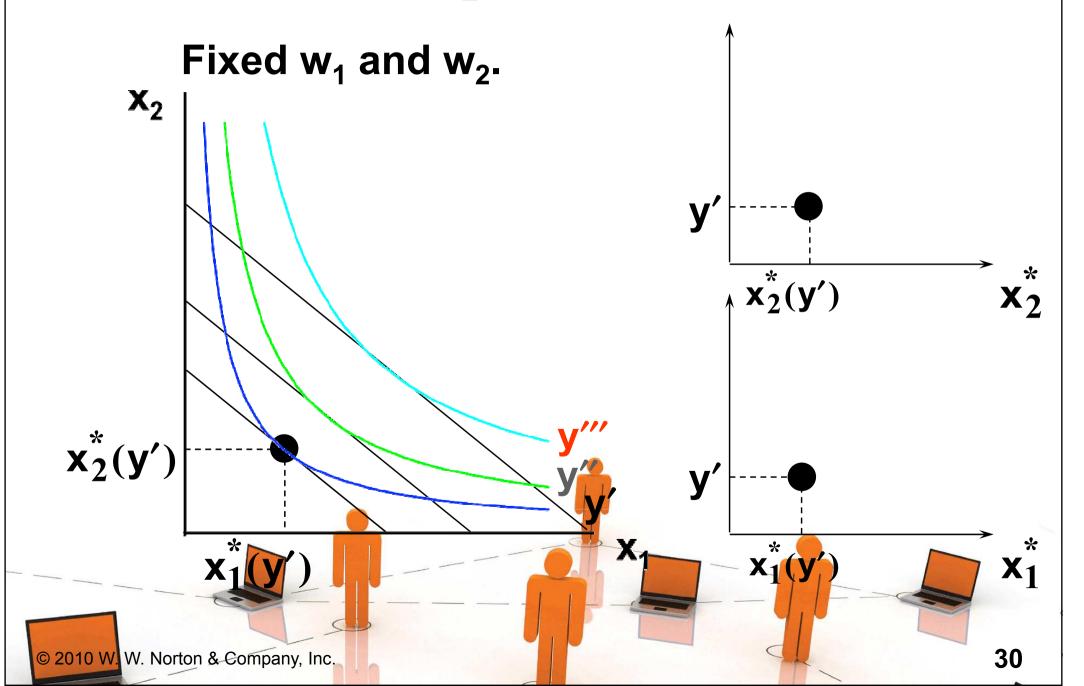
A Cobb-Douglas Example of Cost Minimization

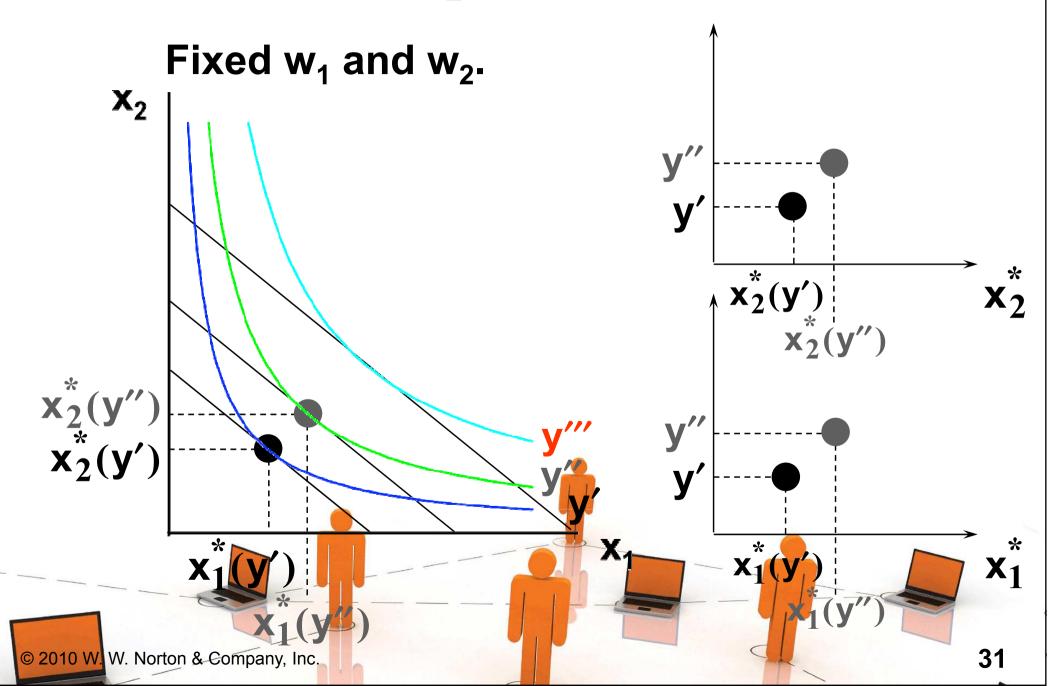
So the cheapest input bundle yielding y output units is

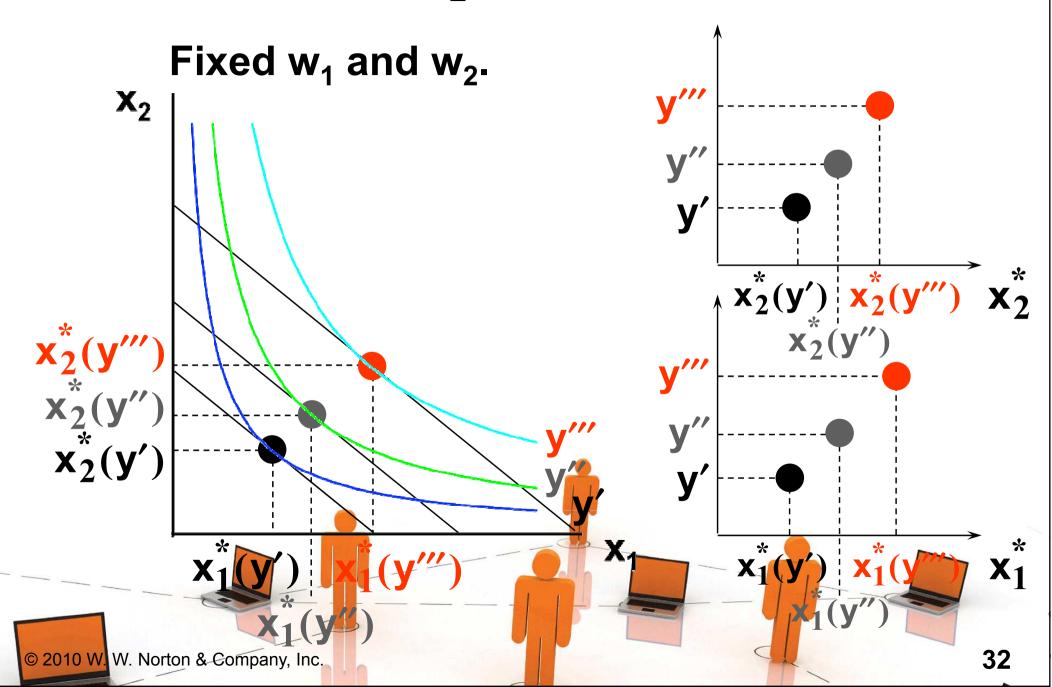
$$(x_1^*(w_1, w_2, y), x_2^*(w_1, w_2, y))$$

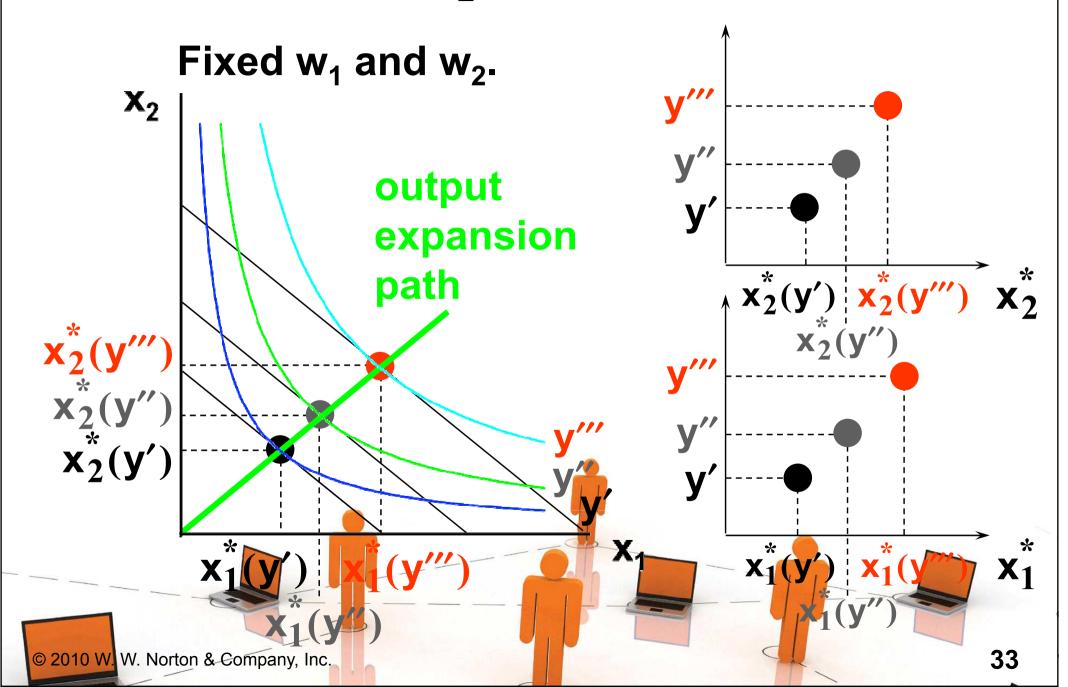
$$= \left(\left(\frac{\mathbf{w_2}}{2\mathbf{w_1}} \right)^{2/3} \mathbf{y}, \left(\frac{2\mathbf{w_1}}{\mathbf{w_2}} \right)^{1/3} \mathbf{y} \right).$$

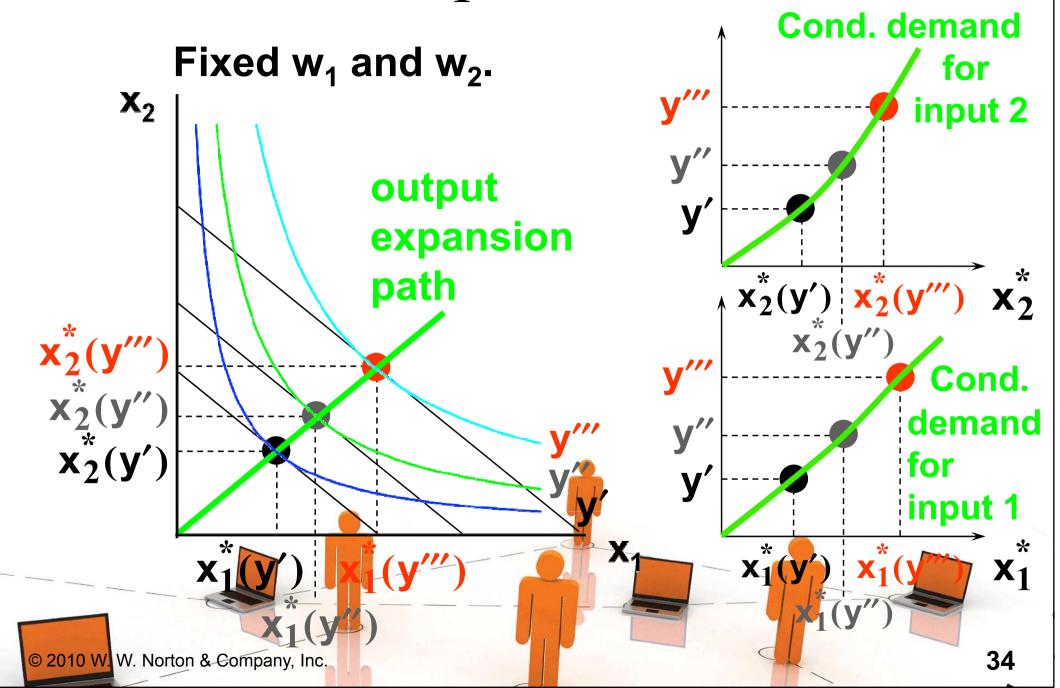












A Cobb-Douglas Example of Cost Minimization

For the production function

$$y = f(x_1, x_2) = x_1^{1/3} x_2^{2/3}$$

the cheapest input bundle yielding y output units is

$$(x_1^*(w_1, w_2, y), x_2^*(w_1, w_2, y))$$

$$= \left(\left(\frac{\mathbf{w_2}}{2\mathbf{w_1}} \right)^{2/3} \mathbf{y}, \left(\frac{2\mathbf{w_1}}{\mathbf{w_2}} \right)^{1/3} \mathbf{y} \right)$$

A Cobb-Douglas Example of Cost Minimization So the firm's total cost function is

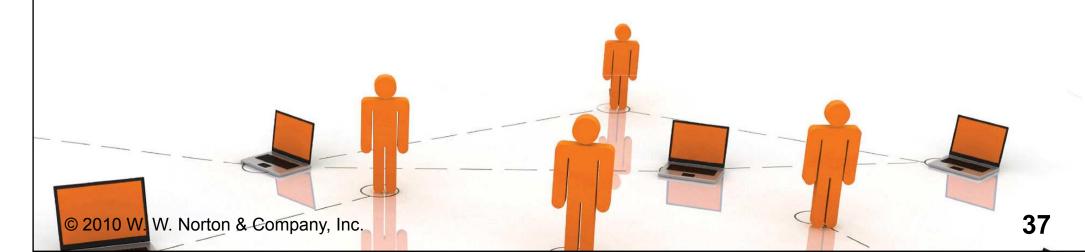
$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y) + w_2 x_2^*(w_1, w_2, y)$$



A Cobb-Douglas Example of Cost Minimization So the firm's total cost function is

$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y) + w_2 x_2^*(w_1, w_2, y)$$

$$= w_1 \left(\frac{w_2}{2w_1}\right)^{2/3} y + w_2 \left(\frac{2w_1}{w_2}\right)^{1/3} y$$



A Cobb-Douglas Example of Cost Minimization So the firm's total cost function is

$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y) + w_2 x_2^*(w_1, w_2, y)$$

$$(2/3)$$

$$(3/3)$$

$$= \mathbf{w_1} \left(\frac{\mathbf{w_2}}{2\mathbf{w_1}}\right)^{2/3} \mathbf{y} + \mathbf{w_2} \left(\frac{2\mathbf{w_1}}{\mathbf{w_2}}\right)^{1/3} \mathbf{y}$$

$$= \left(\frac{1}{2}\right)^{2/3} \mathbf{w}_{1}^{1/3} \mathbf{w}_{2}^{2/3} \mathbf{y} + 2^{1/3} \mathbf{w}_{1}^{1/3} \mathbf{w}_{2}^{2/3} \mathbf{y}$$

A Cobb-Douglas Example of Cost Minimization So the firm's total cost function is

$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y) + w_2 x_2^*(w_1, w_2, y)$$

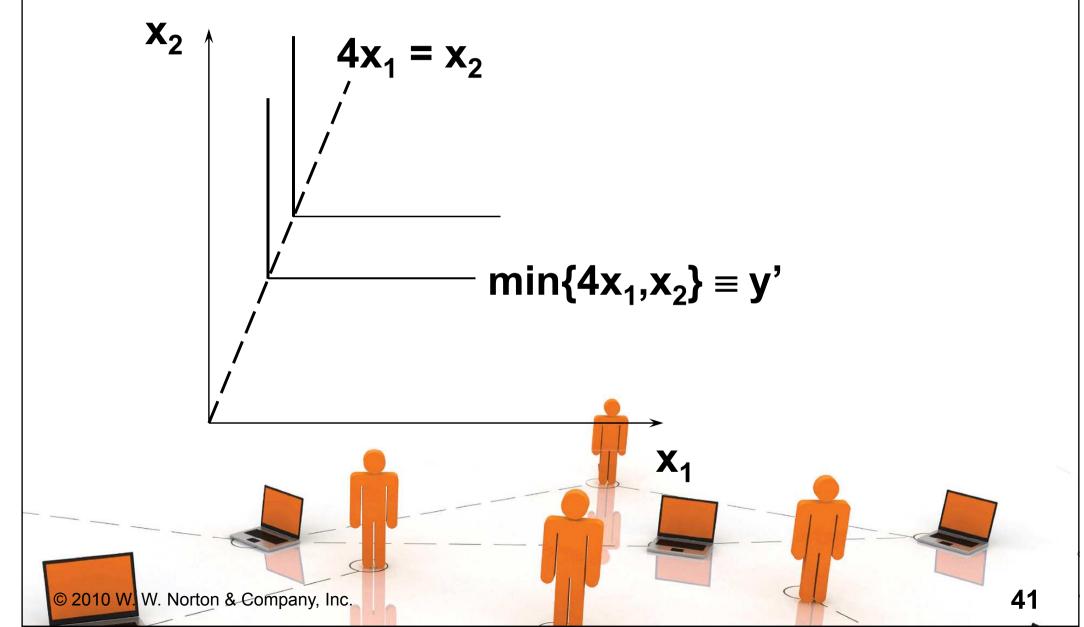
$$= w_1 \left(\frac{w_2}{2w_1}\right)^{2/3} y + w_2 \left(\frac{2w_1}{w_2}\right)^{1/3} y$$

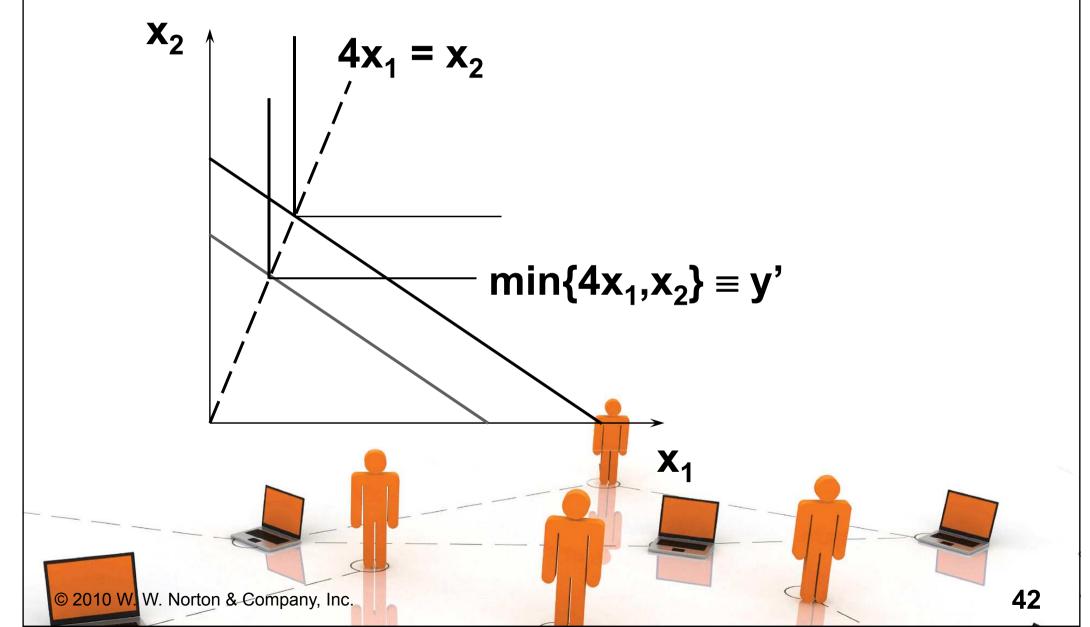
$$= \left(\frac{1}{2}\right)^{2/3} w_1^{1/3} w_2^{2/3} y + 2^{1/3} w_1^{1/3} w_2^{2/3} y$$

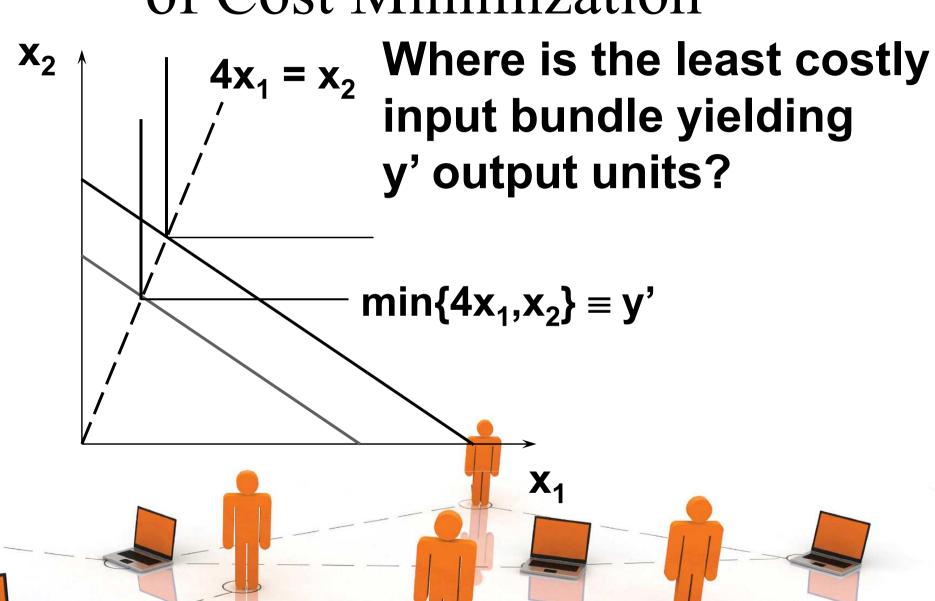
$$= (\frac{1}{2})^{1/3} w_1^{1/3} w_2^{1/3} w_2^{1/3}$$

- ♦ The firm's production function is $y = min\{4x_1, x_2\}$.
- ♦ Input prices w₁ and w₂ are given.
- ♦ What are the firm's conditional demands for inputs 1 and 2?
- ♦ What is the firm's total cost function?

© 2010 W. W. Norton & Company, Inc.

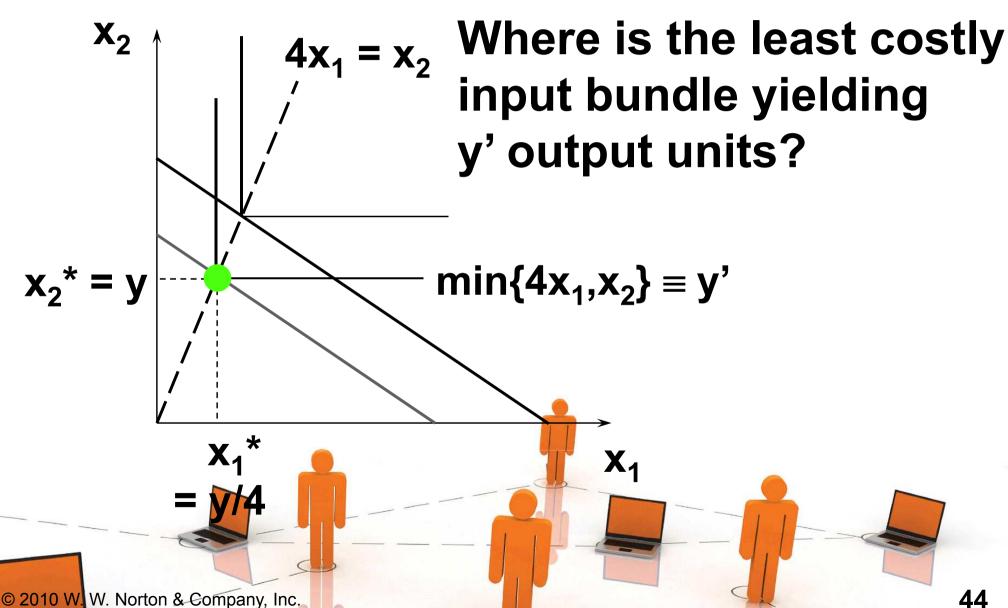




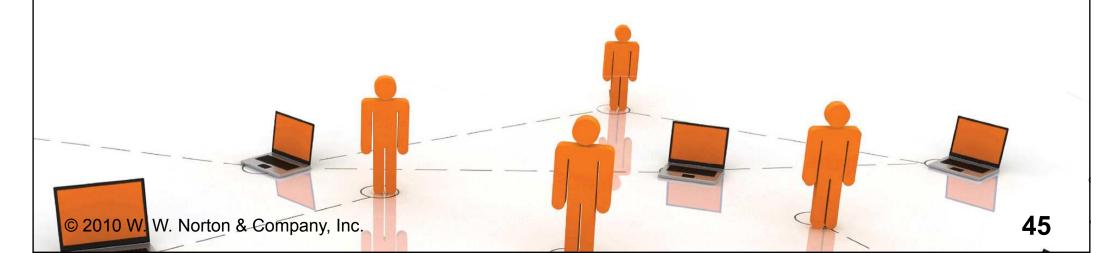


© 2010 W. W. Norton & Company, Inc.

43



A Perfect Complements Example of Cost Minimization The firm's production function is $y = \min\{4x_1, x_2\}$ and the conditional input demands are $x_1^*(w_1, w_2, y) = \frac{y}{1}$ and $x_2^*(w_1, w_2, y) = y$.



A Perfect Complements Example of Cost Minimization The firm's production function is $y = min\{4x_1, x_2\}$

and the conditional input demands are

$$x_1^*(w_1, w_2, y) = \frac{y}{4}$$
 and $x_2^*(w_1, w_2, y) = y$.

So the firm's total cost function is

$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y)$$

$$+ w_{2}x_{2}^{*}(w_{1}, w_{2}, y)$$

A Perfect Complements Example of Cost Minimization The firm's production function is $y = min\{4x_1, x_2\}$

and the conditional input demands are

$$x_1^*(w_1, w_2, y) = \frac{y}{4}$$
 and $x_2^*(w_1, w_2, y) = y$.

So the firm's total cost function is

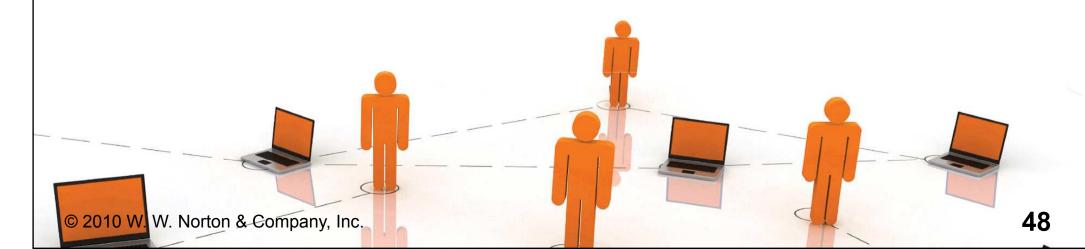
$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y)$$

$$+ w_{2}x_{2}^{*}(w_{1}, w_{2}, y)$$

$$= \mathbf{W}_{1} + \mathbf{W}_{2} \mathbf{y} = \begin{pmatrix} \mathbf{W}_{1} \\ \mathbf{W}_{2} \end{pmatrix} \mathbf{y}$$
W. Norton & Company, Inc.

Average Total Production Costs

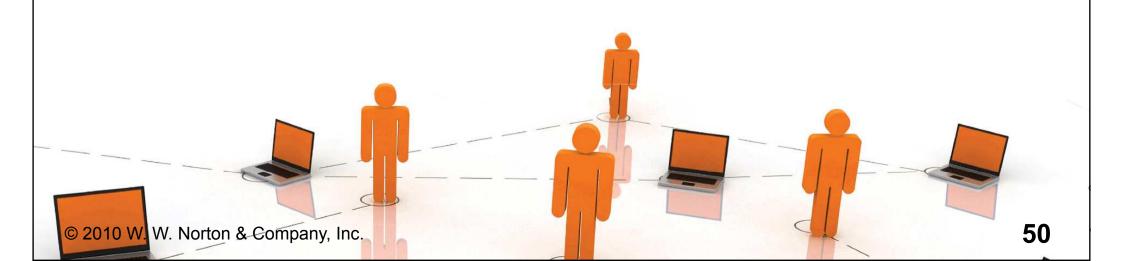
♦ For positive output levels y, a firm's average total cost of producing y units is $AC(w_1, w_2, y) = \frac{c(w_1, w_2, y)}{v}$.



- ◆ The returns-to-scale properties of a firm's technology determine how average production costs change with output level.
- ◆Our firm is presently producing y' output units.
- ♦ How does the firm's average production cost change if it instead produces 2y' units of output?

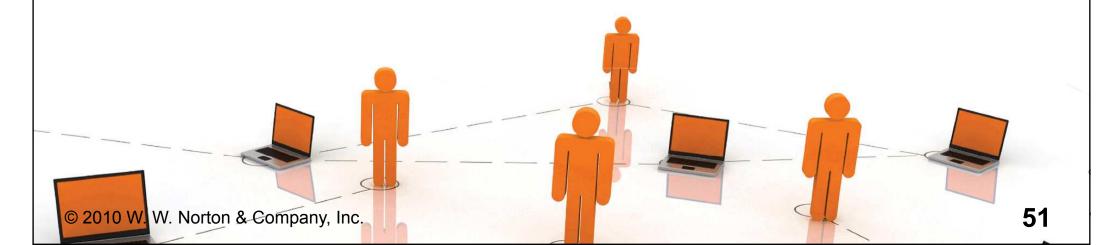
Constant Returns-to-Scale and Average Total Costs

♦ If a firm's technology exhibits constant returns-to-scale then doubling its output level from y' to 2y' requires doubling all input levels.



Constant Returns-to-Scale and Average Total Costs

- ♦ If a firm's technology exhibits constant returns-to-scale then doubling its output level from y' to 2y' requires doubling all input levels.
- **♦** Total production cost doubles.



Constant Returns-to-Scale and Average Total Costs

- ♦ If a firm's technology exhibits constant returns-to-scale then doubling its output level from y' to 2y' requires doubling all input levels.
- **♦** Total production cost doubles.

© 2010 W. W. Norton & Company, Inc.

♦ Average production cost does not change.

Decreasing Returns-to-Scale and Average Total Costs

♦ If a firm's technology exhibits decreasing returns-to-scale then doubling its output level from y' to 2y' requires more than doubling all input levels.



Decreasing Returns-to-Scale and Average Total Costs

- ♦ If a firm's technology exhibits decreasing returns-to-scale then doubling its output level from y' to 2y' requires more than doubling all input levels.
- ◆ Total production cost more than doubles.

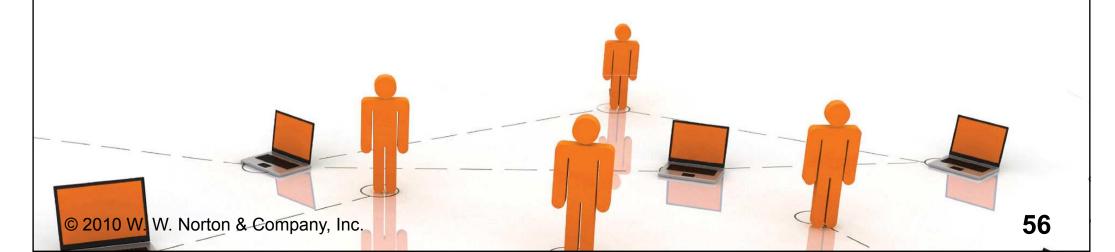
© 2010 W. W. Norton & Company, Inc.

Decreasing Returns-to-Scale and Average Total Costs

- ♦ If a firm's technology exhibits decreasing returns-to-scale then doubling its output level from y' to 2y' requires more than doubling all input levels.
- ◆ Total production cost more than doubles.
- ◆ Average production cost increases.

Increasing Returns-to-Scale and Average Total Costs

♦ If a firm's technology exhibits increasing returns-to-scale then doubling its output level from y' to 2y' requires less than doubling all input levels.



Increasing Returns-to-Scale and Average Total Costs

- ♦ If a firm's technology exhibits increasing returns-to-scale then doubling its output level from y' to 2y' requires less than doubling all input levels.
- ◆ Total production cost less than doubles.

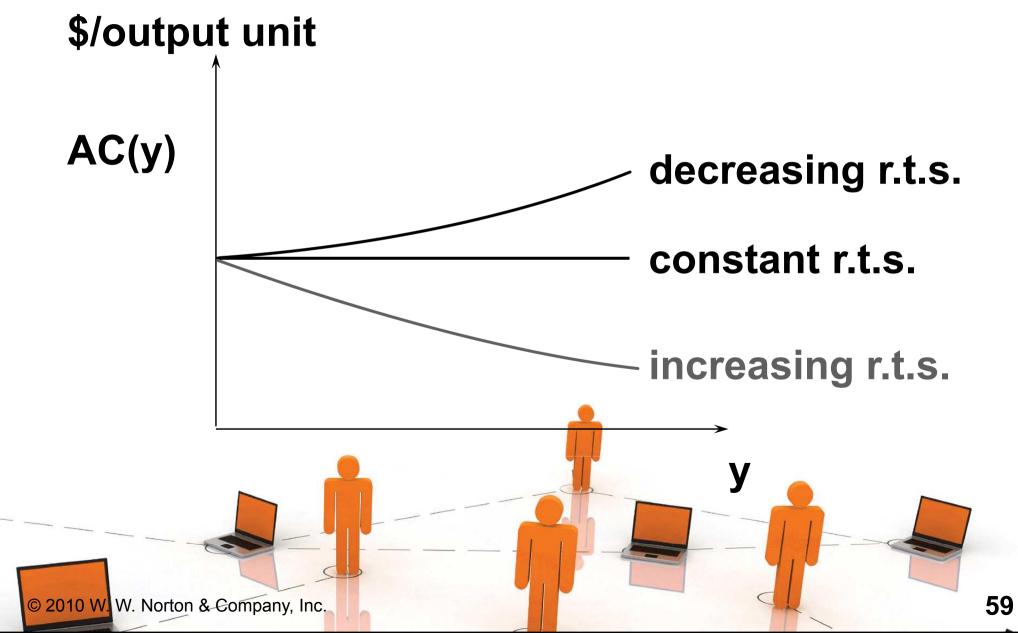
© 2010 W. W. Norton & Company, Inc.

Increasing Returns-to-Scale and Average Total Costs

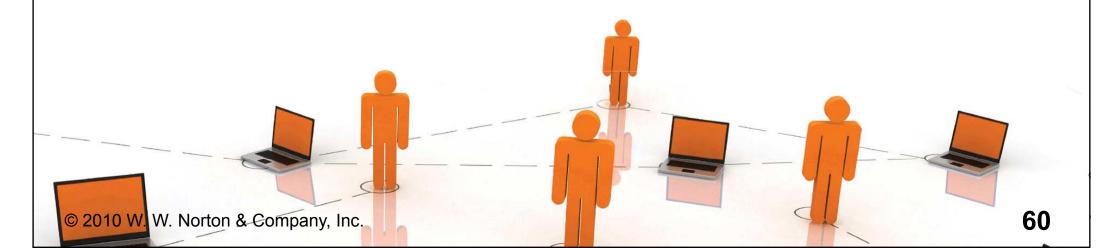
- ♦ If a firm's technology exhibits increasing returns-to-scale then doubling its output level from y' to 2y' requires less than doubling all input levels.
- ◆ Total production cost less than doubles.

© 2010 W. W. Norton & Company, Inc.

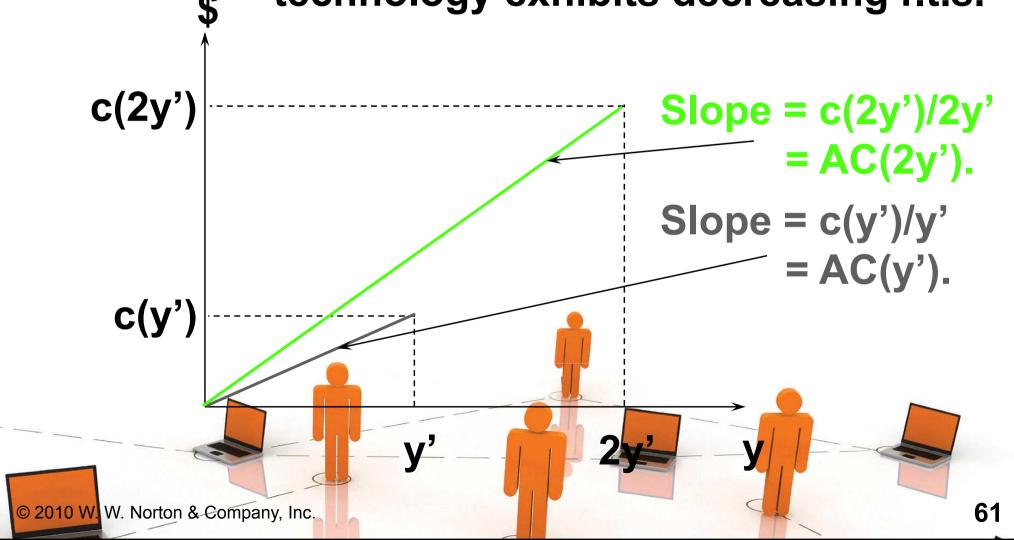
◆ Average production cost decreases.

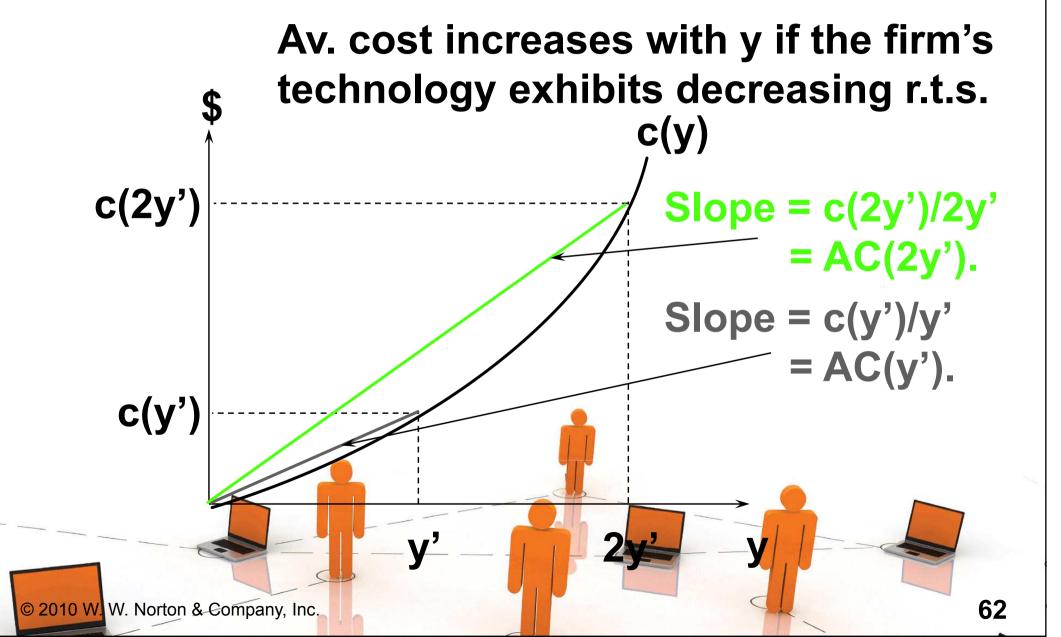


♦ What does this imply for the shapes of total cost functions?

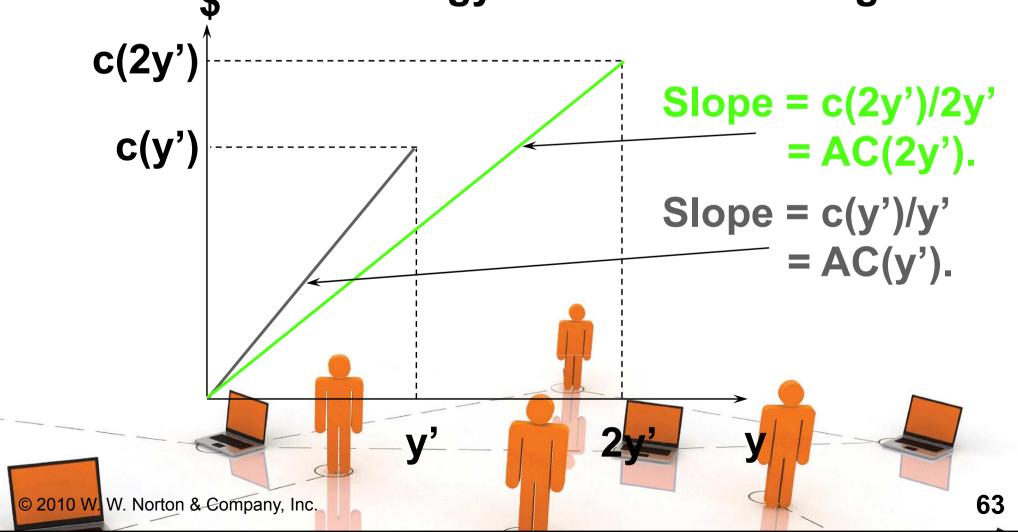


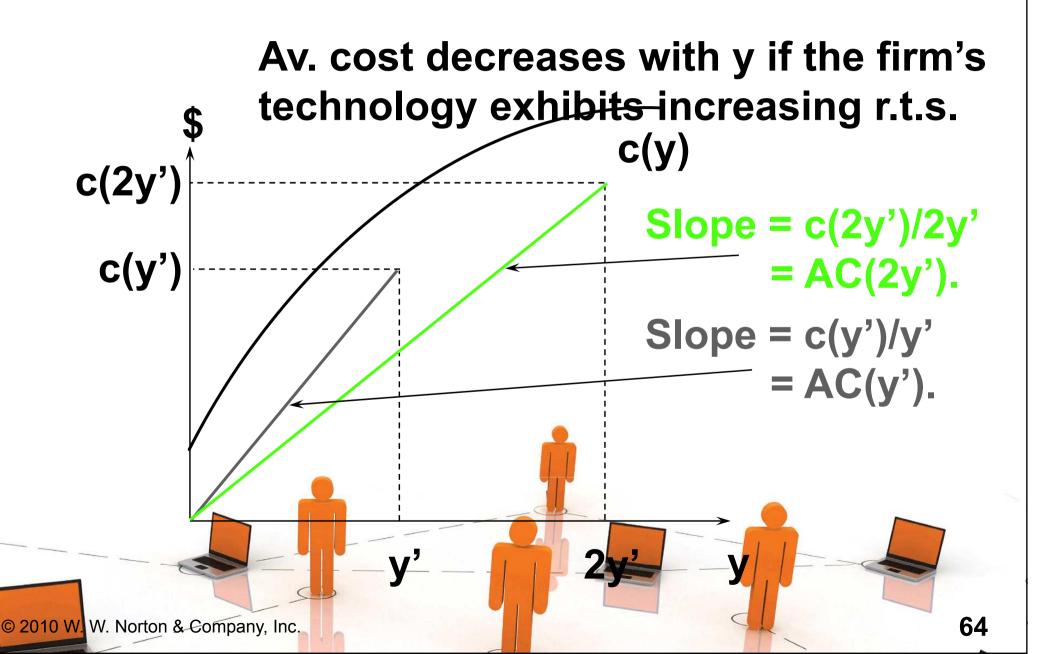
Av. cost increases with y if the firm's technology exhibits decreasing r.t.s.

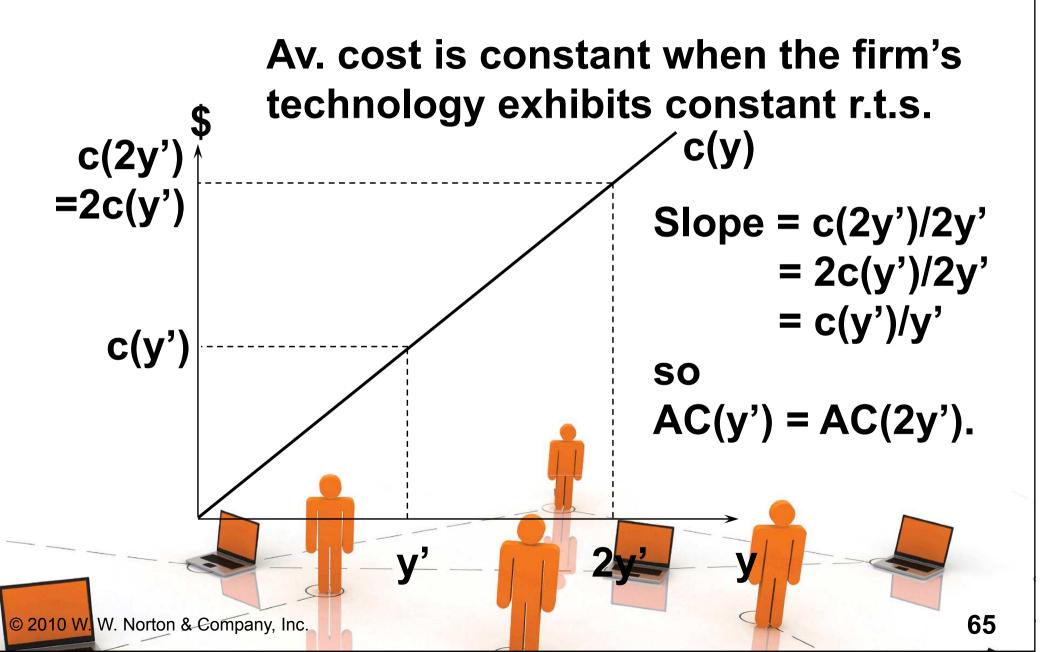




Av. cost decreases with y if the firm's technology exhibits increasing r.t.s.







- ♦ In the long-run a firm can vary all of its input levels.
- ◆ Consider a firm that cannot change its input 2 level from x₂' units.
- ♦ How does the short-run total cost of producing y output units compare to the long-run total cost of producing y units of output?

♦ The long-run cost-minimization problem is $\min_{x_1,x_2 \ge 0} w_1 x_1 + w_2 x_2$

subject to $f(x_1,x_2) = y$.

♦ The short-run cost-minimization problem is $\min_{x_1 \ge 0} w_1 x_1 + w_2 x_2'$

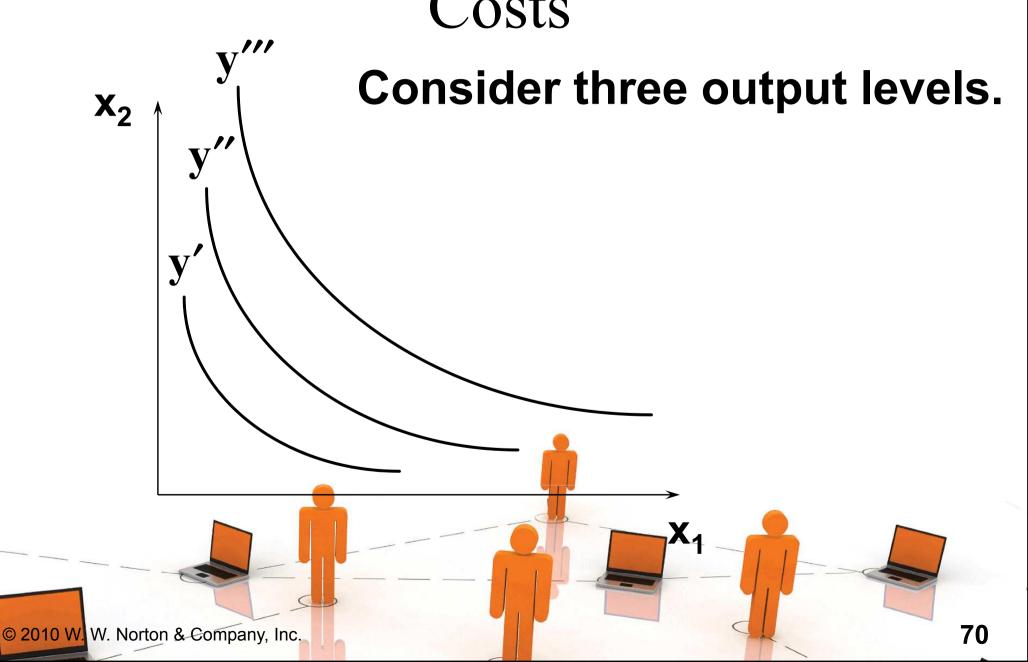
subject to $f(x_1, x_2') = y$.

Short-Run & Long-Run Total

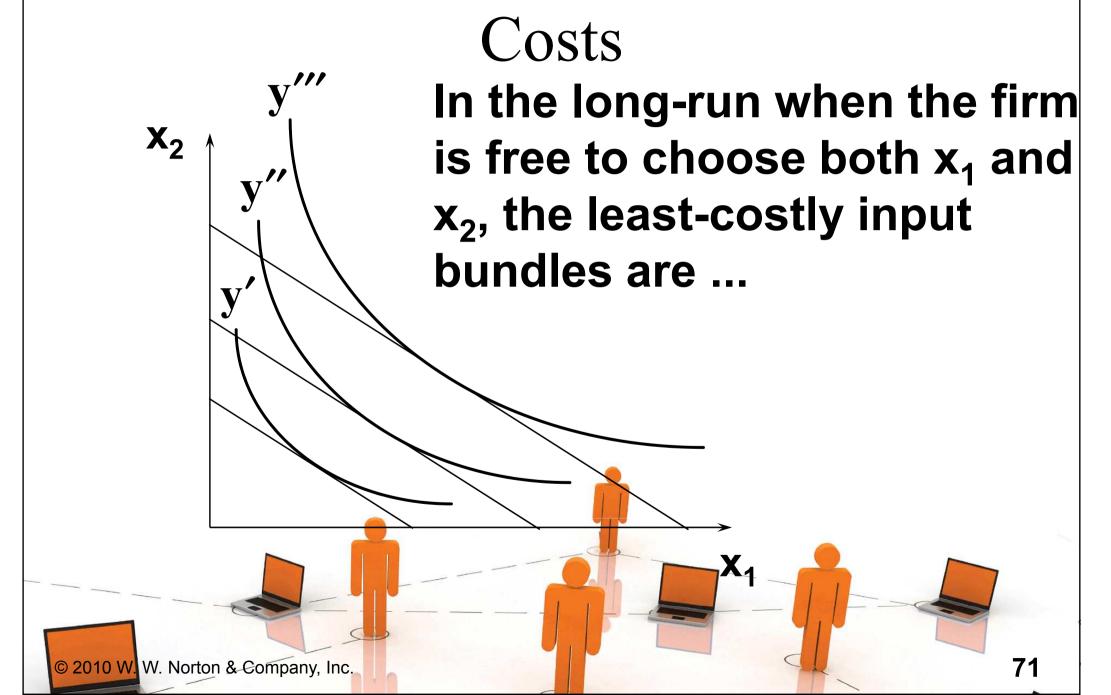
- Costs
 ◆ The short-run cost-min. problem is the
- long-run problem subject to the extra constraint that $x_2 = x_2$.
- ♦ If the long-run choice for x_2 was x_2 ' then the extra constraint $x_2 = x_2$ ' is not really a constraint at all and so the long-run and short-run total costs of producing y output units are the same.

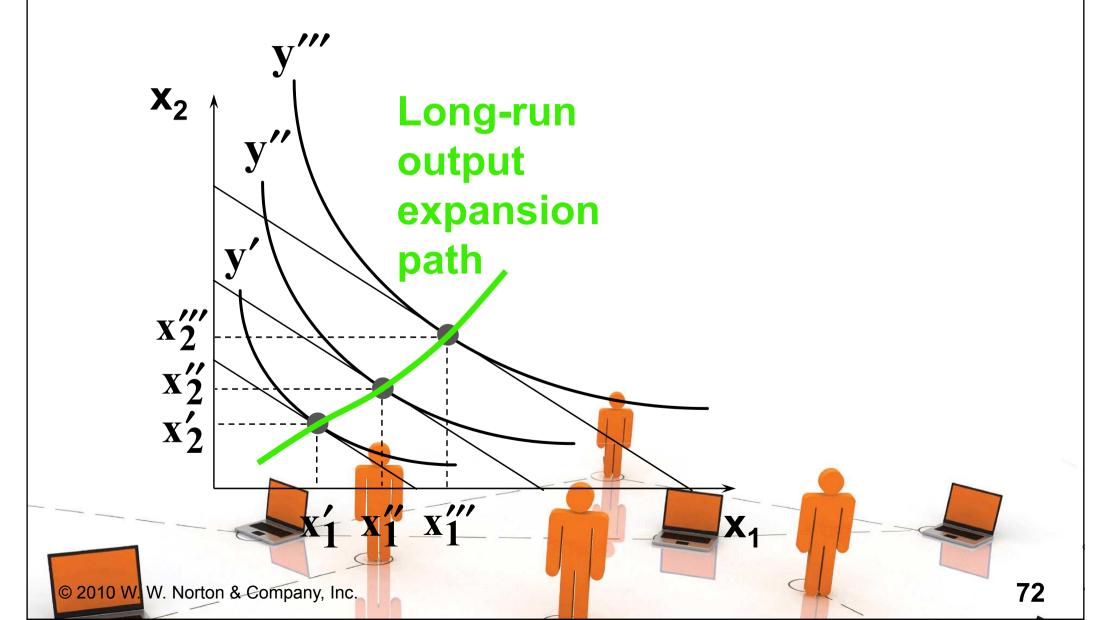
© 2010 W. W. Norton & Company, Inc.

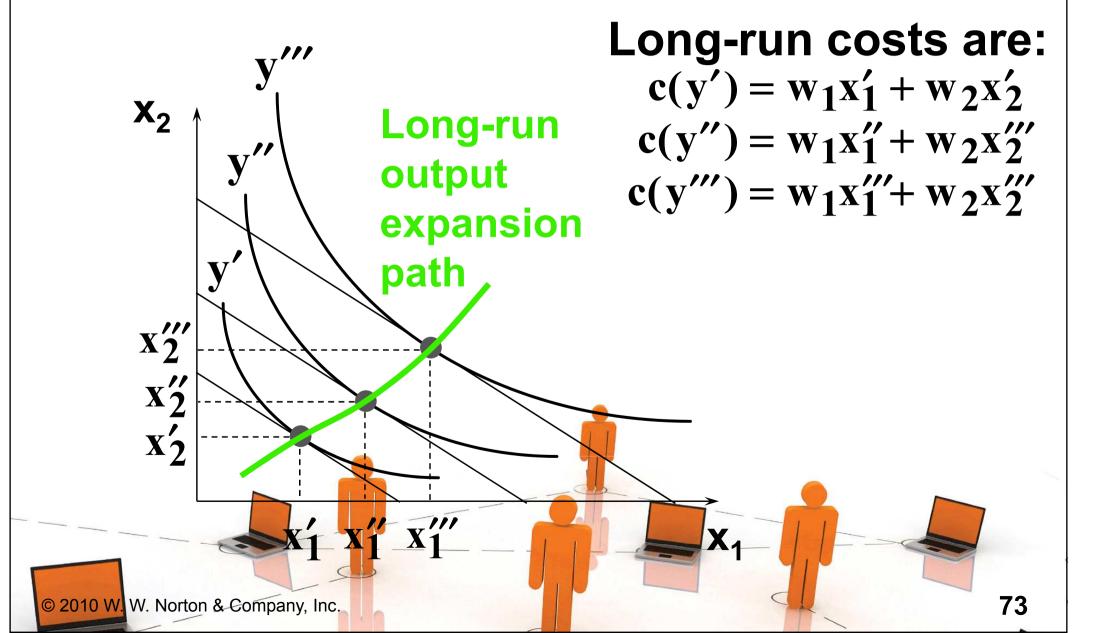
- ♦ The short-run cost-min. problem is therefore the long-run problem subject to the extra constraint that $x_2 = x_2$ ".
- ♦ But, if the long-run choice for $x_2 \neq x_2$ " then the extra constraint $x_2 = x_2$ " prevents the firm in this short-run from achieving its long-run production cost, causing the short-run total cost to exceed the long-run total cost of producing y output units.



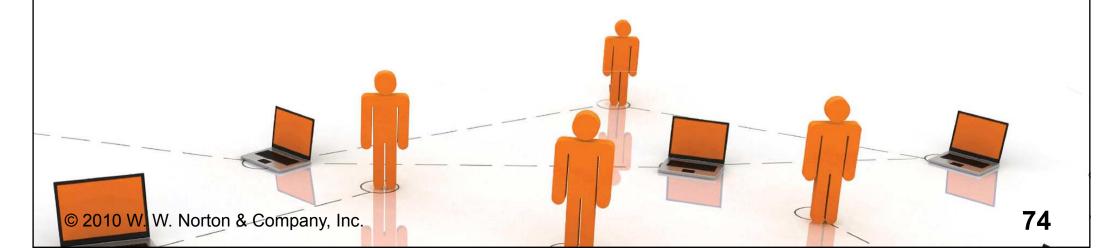
Short-Run & Long-Run Total

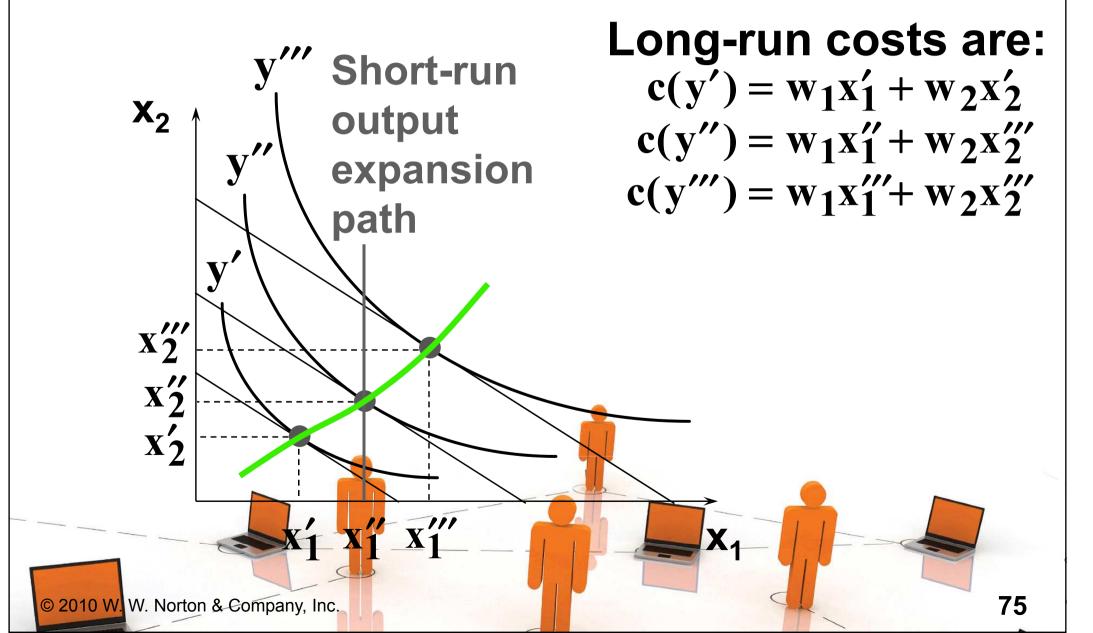


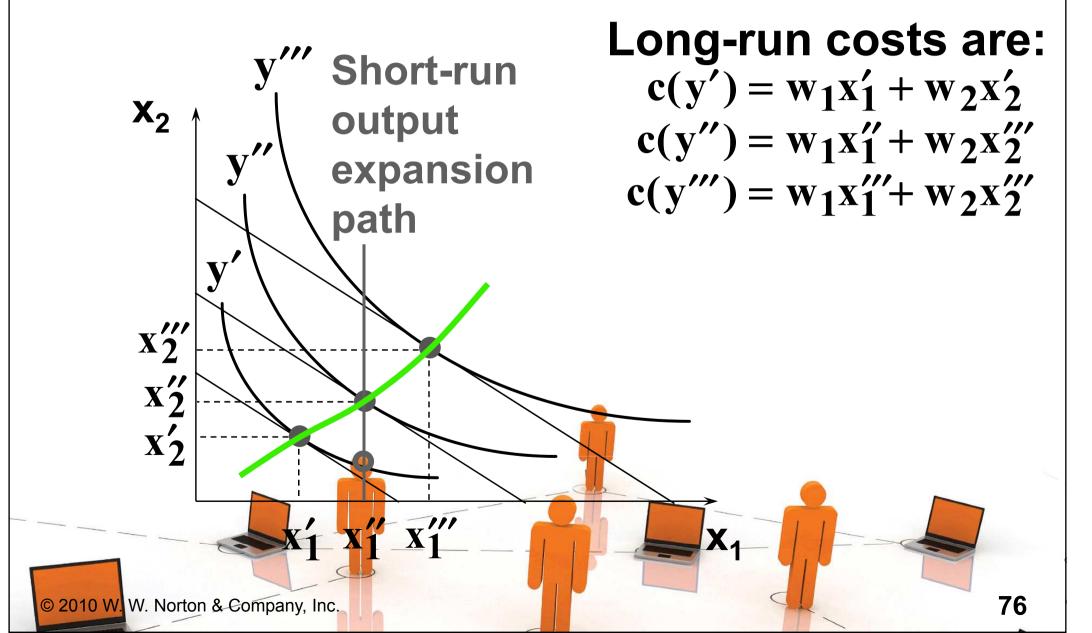


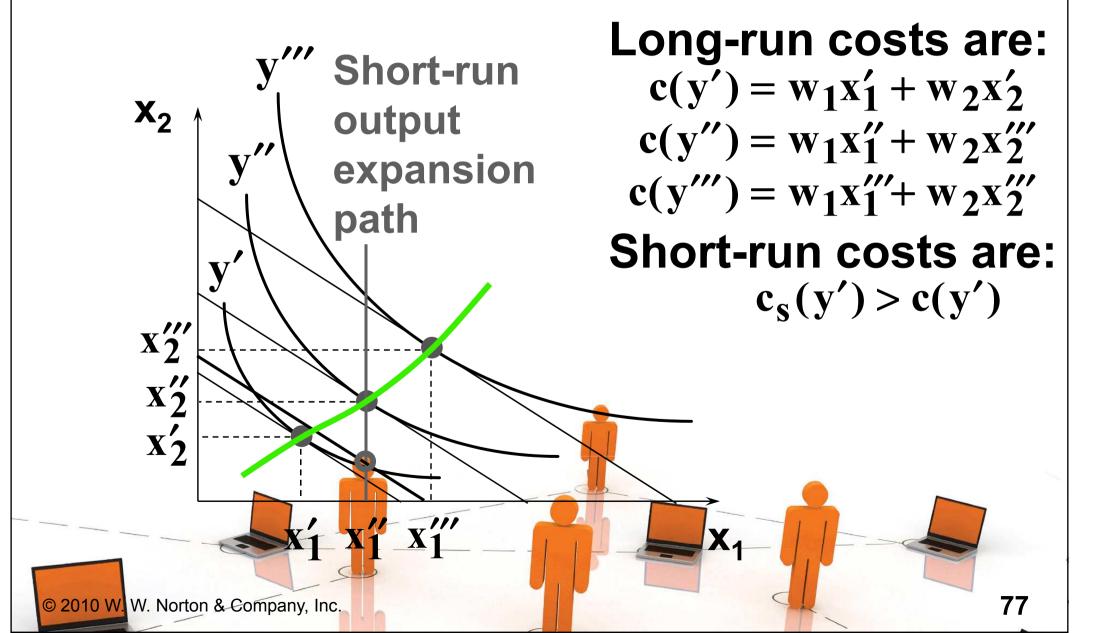


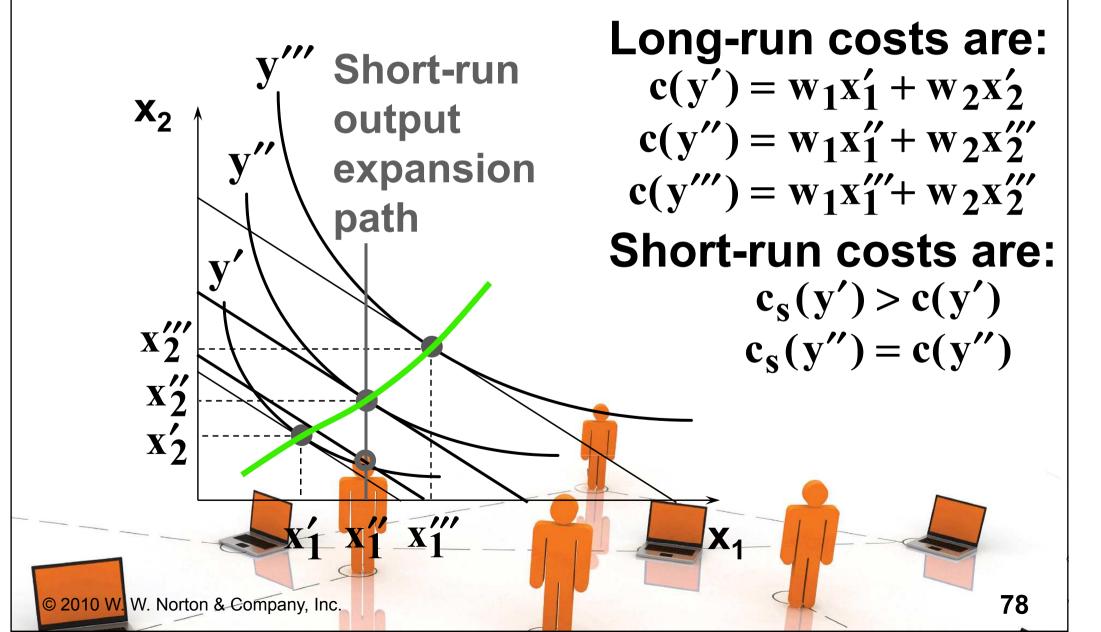
♦ Now suppose the firm becomes subject to the short-run constraint that $x_2 = x_2$ ".

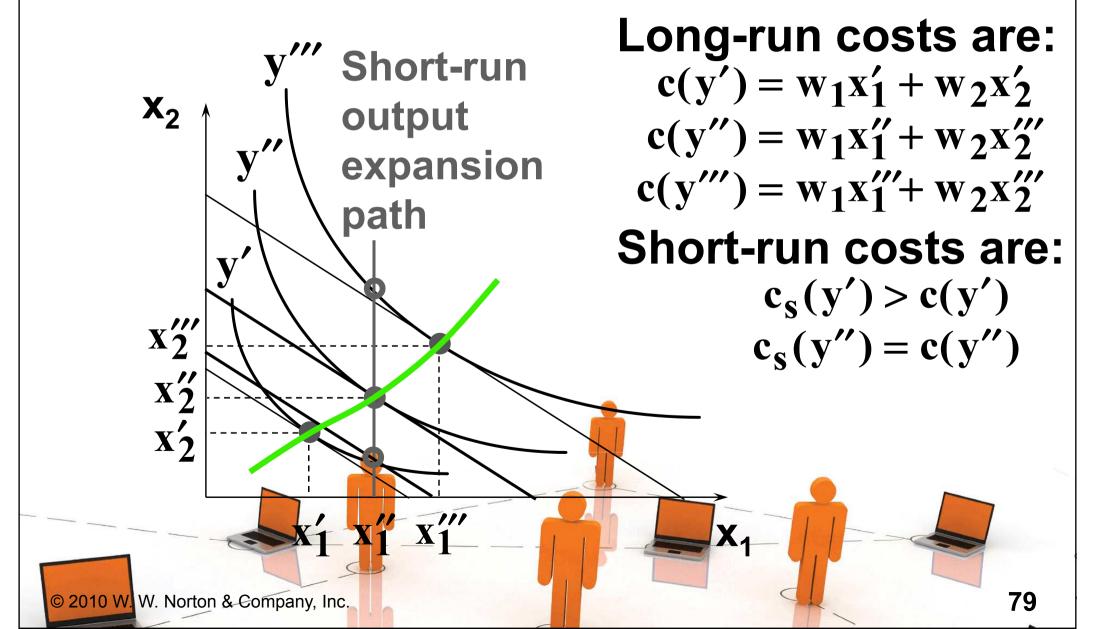


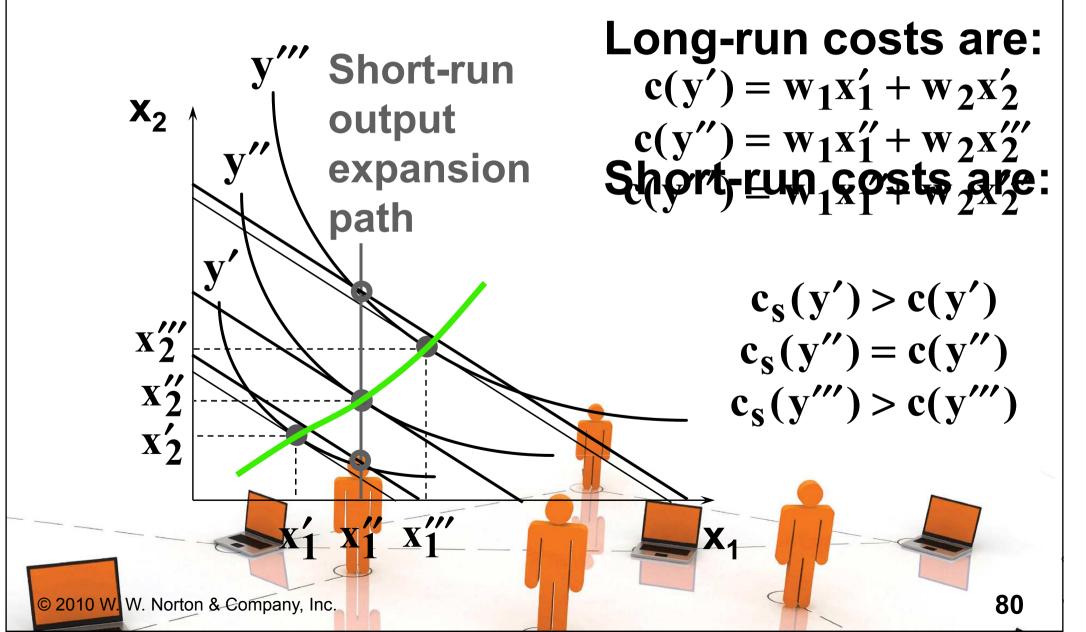












- ◆ Short-run total cost exceeds long-run total cost except for the output level where the short-run input level restriction is the long-run input level choice.
- ◆ This says that the long-run total cost curve always has one point in common with any particular shortrun total cost curve.

Short-Run & Long-Run Total

Costs

A short-run total cost curve always has one point in common with the long-run total cost curve, and is elsewhere higher than the long-run total cost curve.

