Econometrics - Lecture 3

Regression Models: Interpretation and Comparison

Contents

- The Linear Model: Interpretation
- Selection of Regressors
- Specification of the Functional Form

Economic Models

Describe economic relationships (not only a set of observations), have an economic interpretation

Linear regression model:

$$y_i = \beta_1 + \beta_2 x_{i2} + \dots + \beta_K x_{iK} + \varepsilon_i = x_i' \beta + \varepsilon_i$$

- Variables Y, X₂, ..., X_K: observable
- Observations: y_i, x_{i2}, ..., x_{iK}, i = 1, ..., N
- Error term $ε_i$ (disturbance term) contains all influences that are not included explicitly in the model; unobservable
- Assumption (A1), i.e., $E\{\varepsilon_i \mid X\} = 0$ or $E\{\varepsilon_i \mid x_i\} = 0$, gives $E\{y_i \mid x_i\} = x_i$ ' β

the model describes the expected value of y_i given x_i (conditional expectation)

Example: Wage Equation

Wage equation (Verbeek's dataset "wages1")

$$wage_i = \beta_1 + \beta_2 male_i + \beta_3 school_i + \beta_4 exper_i + \varepsilon_i$$

Answers questions like:

Expected wage p.h. of a female with 12 years of education and 10 years of experience

Wage equation fitted to all 3294 observations

$$wage_i = -3.38 + 1.34*male_i + 0.64*school_i + 0.12*exper_i$$

Expected wage p.h. of a female with 12 years of education and 10 years of experience: 5.50 USD

Regression Coefficients

Linear regression model:

$$y_i = \beta_1 + \beta_2 x_{i2} + \dots + \beta_K x_{iK} + \varepsilon_i = x_i' \beta + \varepsilon_i$$

Coefficient β_k measures the change of Y if X_k changes by one unit

$$\frac{\Delta E\{y_i \mid x_i\}}{\Delta x_k} = \beta_k \quad \text{for } \Delta x_k = 1$$

For continuous regressors

$$\frac{\partial E\{y_i|x_i\}}{\partial x_{ik}} = \beta_k$$

Marginal effect of changing X_k on Y

- Ceteris paribus condition: measuring the effect of a change of Y due to a change $\Delta x_k = 1$ by β_k implies
 - □ knowledge which other X_i , $i \neq k$, are in the model
 - that all other X_i, i ≠ k, remain unchanged

Example: Coefficients of Wage Equation

Wage equation

$$wage_i = \beta_1 + \beta_2 \ male_i + \beta_3 \ school_i + \beta_4 \ exper_i + \varepsilon_i$$

 β_3 measures the impact of one additional year at school upon a person's wage, keeping gender and years of experience fixed

$$\frac{\partial E\{wage_{i} | male_{i}, school_{i}, exper_{i}\}}{\partial school_{i}} = \beta_{3}$$

Wage equation fitted to all 3294 observations

$$wage_i = -3.38 + 1.34*male_i + 0.64*school_i + 0.12*exper_i$$

- One extra year at school, e.g., at the university, results in an increase of 64 cents; a 4-year study results in an increase of 2.56 USD of the wage p.h.
- This is true for otherwise (gender, experience) identical people

Regression Coefficients, cont'd

 The marginal effect of a changing regressor may be depending on other variables

Examples

• Wage equation: $wage_i = \beta_1 + \beta_2 male_i + \beta_3 age_i + \beta_4 age_i^2 + \varepsilon_i$ the impact of changing age depends on age:

$$\frac{\partial E\{y_i | x_i\}}{\partial age_i} = \beta_3 + 2\beta_4 age_i$$

Wage equation may contain β₃ age_i + β₄ age_i male_i: marginal effect of age depends upon gender

$$\frac{\partial E\{y_i | x_i\}}{\partial age_i} = \beta_3 + \beta_4 male_i$$

Elasticities

Elasticity: measures the *relative* change in the dependent variable Y due to a *relative* change in X_k

For a linear regression, the elasticity of Y with respect to X_k is

$$\frac{\partial E\{y_i | x_i\} / E\{y_i | x_i\}}{\partial x_{ik} / x_{ik}} = \frac{\partial E\{y_i | x_i\}}{\partial x_{ik}} \frac{x_{ik}}{E\{y_i | x_i\}} = \frac{x_{ik}}{x_i' \beta} \beta_k$$

For a loglinear model with $(\log x_i)' = (1, \log x_{i2}, ..., \log x_{ik})$

$$\log y_i = (\log x_i)' \beta + \varepsilon_i$$

elasticities are the coefficients β (see slide 10)

$$\frac{\partial E\{y_i | x_i\} / E\{y_i | x_i\}}{\partial x_{ik} / x_{ik}} = \beta_k$$

Example: Wage Elasticity

Wage equation, fitted to all 3294 observations:

 $log(wage_i) = 1.09 + 0.20 \ male_i + 0.19 \ log(exper_i)$

The coefficient of log(exper_i) measures the elasticity of wages with respect to experience:

- 100% more time of experience results in an increase of wage by
 0.19 or a 19% higher wage
- 10% more time of experience results in a 1.9% higher wage

Elasticities, continues slide 8

This follows from

$$\frac{\partial E\{\log y_{i} \mid x_{i}\}}{\partial x_{ik}} = \frac{\beta_{k}}{x_{ik}} = \frac{\partial E\{\log y_{i} \mid x_{i}\}}{\partial E\{y_{i} \mid x_{i}\}} \frac{\partial E\{y_{i} \mid x_{i}\}}{\partial x_{ik}}$$

$$\approx \frac{\partial \log E\{y_{i} \mid x_{i}\}}{\partial E\{y_{i} \mid x_{i}\}} \frac{\partial E\{y_{i} \mid x_{i}\}}{\partial x_{ik}} = \frac{1}{E\{y_{i} \mid x_{i}\}} \frac{\partial E\{y_{i} \mid x_{i}\}}{\partial x_{ik}}$$

and

$$\frac{\partial E\{y_i \mid x_i\}}{\partial x_{ik}} \frac{x_{ik}}{E\{y_i \mid x_i\}} = \frac{\partial E\{\log y_i \mid x_i\}}{\partial x_{ik}} \frac{x_{ik} E\{y_i \mid x_i\}}{E\{y_i \mid x_i\}}$$

$$= \frac{\beta_k}{x_{ik}} x_{ik} = \beta_k$$

Semi-Elasticities

Semi-elasticity: measures the *relative* change in the dependent variable Y due to an (absolute) one-unit-change in X_k

Linear regression for

$$\log y_i = x_i' \beta + \varepsilon_i$$

the elasticity of Y with respect to X_k is

$$\frac{\partial E\{y_i | x_i\} / E\{y_i | x_i\}}{\partial x_{ik} / x_{ik}} = \beta_k x_{ik}$$

 β_k measures the relative change in Y due to a change in X_k by one unit

 β_k is called semi-elasticity of Y with respect to X_k

Example: Wage Differential

Wage equation, fitted to all 3294 observations:

$$log(wage_i) = 1.09 + 0.20 \ male_i + 0.19 \ log(exper_i)$$

- The semi-elasticity of the wages with respect to gender, i.e., the relative wage differential between males and females, is the coefficient of male; 0.20 or 20%
- The wage differential between males (male_i =1) and females is obtained from wage_f = exp{1.09 + 0.19 log(exper_i)} and wage_m = wage_f exp{0.20} = 1.22 wage_f; the wage differential is 0.22 or 22%, i.e., approximately the coefficient 0.20¹⁾

¹⁾ For small x, $\exp\{x\} = \sum_{k} x^{k}/k! \approx 1+x$

Contents

- The Linear Model: Interpretation
- Selection of Regressors
- Specification of the Functional Form

Selection of Regressors

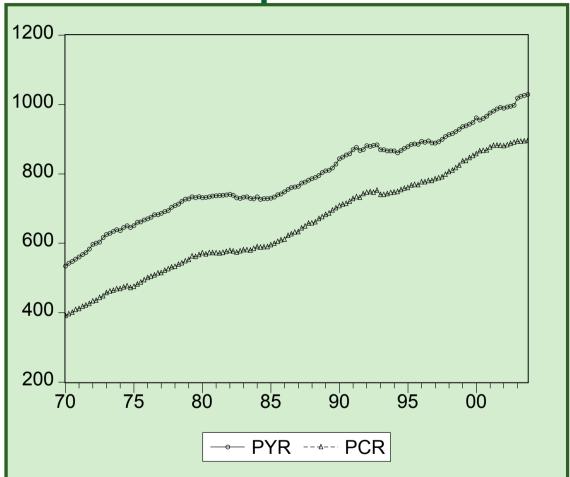
Specification errors:

- Omission of a relevant variable
- Inclusion of an irrelevant variable

Questions:

- What are the consequences of a specification error?
- How to avoid specification errors?
- How to detect an erroneous specification?

Example: Income and Consumption



PCR: Private Consumption,

real, in bn. EUROs

PYR: Household's Dispos-

able Income, real, in bn.

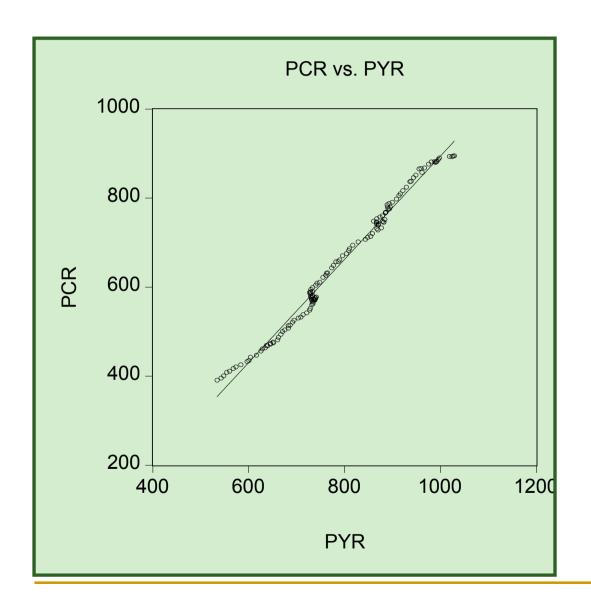
EUROs

1970:1-2003:4

Basis: 1995

Source: AWM-Database

Income and Consumption



PCR: Private Consumption,

real, in bn. EUROs

PYR: Household's Dispos-

able Income, real, in bn.

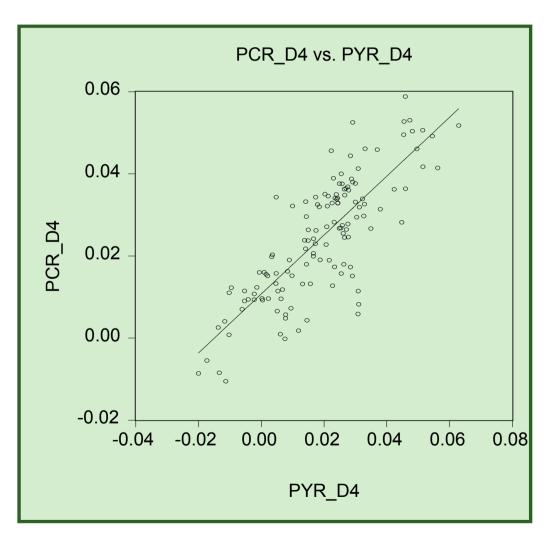
EUROs

1970:1-2003:4

Basis: 1995

Source: AWM-Database

Income and Consumption: Growth Rates



PCR_D4: Private Consumption, real, yearly growth rate PYR_D4: Household's Disposable Income, real, yearly growth rate 1970:1-2003:4

Basis: 1995

Source: AWM-Database

Consumption Function

C: Private Consumption, real, yearly growth rate (PCR_D4)

Y: Household's Disposable Income, real, yearly growth rate (PYR_D4)

T: Trend ($T_i = i/1000$)

$$\hat{C} = 0.011 + 0.761Y$$
, $adj R^2 = 0.717$

Consumption function with trend $T_i = i/1000$:

$$\hat{C} = 0.016 + 0.708Y - 0.068T$$
, $adj R^2 = 0.741$

Consumption Function, cont'd

OLS estimated consumption function: Output from GRETL

Dependent variable : PCR_D4							
	coefficient	std. error	t-ratio	p-value			
const	0,0162489	0,00187868	8,649	1,76e-014 ***			
PYR_D4	0,707963	0,0424086	16,69	4,94e-034 ***			
Т	-0,0682847	0,0188182	-3,629	0,0004 ***			
Mean dependent var		0,024911	S.D. dependent var	0,015222			
Sum squared resid		0,007726	S.E. of regression	0,007739			
R- squared		0,745445	Adjusted R-squared	0,741498			
F(2, 129)		188,8830	P-value (F)	4,71e-39			
Log-likelihood		455,9302	Akaike criterion	-905,8603			
Schwarz criterion		-897,2119	Hannan-Quinn	-902,3460			
rho		0,701126	Durbin-Watson	0,601668			

Consequences

Consequences of specification errors:

- Omission of a relevant variable
- Inclusion of a irrelevant variable

Misspecification: Two Models

Two models:

$$y_i = x_i'\beta + z_i'\gamma + \varepsilon_i$$
 (A)

$$y_i = x_i'\beta + v_i \tag{B}$$

with J-vector z_i

Misspecification: Omitted Regressor

Specified model is (B), but true model is (A)

$$y_i = x_i'\beta + z_i'\gamma + \varepsilon_i$$
 (A)

$$y_i = x_i'\beta + v_i \tag{B}$$

OLS estimates b_B of β from (B) can be written with y_i from (A):

$$b_B = \beta + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i z_i' \gamma + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i \varepsilon_i$$

If (A) is the true model but (B) is specified, i.e., J relevant regressors z_i are omitted, b_B is biased by

$$E\left\{\left(\sum_{i} x_{i} x_{i}^{\prime}\right)^{-1} \sum_{i} x_{i} z_{i}^{\prime} \gamma\right\}$$

Omitted variable bias

No bias if (a) $\gamma = 0$ or if (b) variables in x_i and z_i are orthogonal

Misspecification: Irrelevant Regressor

Specified model is (A), but true model is (B):

$$y_i = x_i'\beta + z_i'\gamma + \varepsilon_i$$
 (A)

$$y_i = x_i'\beta + v_i \tag{B}$$

If (B) is the true model but (A) is specified, i.e., the model contains irrelevant regressors z_i

The OLS estimates b_A

- are unbiased
- have higher variances and standard errors than the OLS estimate
 b_B obtained from fitting model (B)

Specification Search

General-to-specific modeling:

- 1. List all potential regressors, based on, e.g.,
 - economic theory
 - empirical research
 - availability of data
- 2. Specify the most general model: include all potential regressors
- 3. Iteratively, test which variables have to be dropped, re-estimate
- 4. Stop if no more variable has to be dropped

The procedure is known as the LSE (London School of Economics) method

Specification Search, cont'd

Alternative procedures

- Specific-to-general modeling: start with a small model and add variables as long as they contribute to explaining Y
- Stepwise regression

Specification search can be subsumed under data mining

Practice of Specification Search

Applied research

- Starts with a in terms of economic theory plausible specification
- Tests whether imposed restrictions are correct
 - Tests for omitted regressors
 - Tests for autocorrelation of residuals
 - Tests for heteroskedasticity
- Tests whether further restrictions need to be imposed
 - Tests for irrelevant regressors

Obstacles for good specification

- Complexity of economic theory
- Limited availability of data

Regressor Selection Criteria

Criteria for adding and deleting regressors

- t-statistic, F-statistic
- Adjusted R²
- Information Criteria: penalty for increasing number of regressors
 - Akaike's Information Criterion

$$AIC = \log \frac{1}{N} \sum_{i} e_i^2 + \frac{2K}{N}$$

Schwarz's Bayesian Information Criterion

$$BIC = \log_{\frac{1}{N}} \sum_{i} e_i^2 + \frac{K}{N} \log N$$

model with smaller BIC (or AIC) is preferred

The corresponding probabilities for type I and type II errors can hardly be assessed

Wages: Which Regressors?

Are school and exper relevant regressors in

```
wage_i = \beta_1 + \beta_2 \ male_i + \beta_3 \ school_i + \beta_4 \ exper_i + \varepsilon_i or shall they be omitted?
```

- t-test: p-values are 4.62E-80 (school) and 1.59E-7 (exper)
- F-test: F = [(0.1326-0.0317)/2]/[(1-0.1326)/(3294-4)] = 191.24, with p-value 2.68E-79
- adj R²: 0.1318 for the wider model, much higher than 0.0315
- AIC: the wider model (AIC = 16690.2) is preferable; for the smaller model: AIC = 17048.5
- BIC: the wider model (BIC = 16714.6) is preferable; for the smaller model: BIC = 17060.7

All criteria suggest the wider model

Wages, cont'd

OLS estimated smaller wage equation (Table 2.1, Verbeek)

Dependent variable: wage							
Variable	Estimate	Standard error					
constant male	5.1469 1.1661	0.0812 0.1122					
s = 3.2174	$R^2 = 0.0317$	F = 107.93					

with AIC = 17048.46, BIC = 17060.66

Wages, cont'd

OLS estimated wider wage equation (Table 2.2, Verbeek)

Table 2.2 OLS results wage equation							
Dependent variable: wage							
Variable	Estimate	Standard error	t-ratio				
constant	-3.3800	0.4650	-7.2692				
male	1.3444	0.1077	12.4853				
school	0.6388	0.0328	19.4780				
exper	0.1248	0.0238	5.2530				
s = 3.0462	$2 R^2 = 0.1326$	$\overline{R}^2 = 0.1318$	F = 167.63				

with AIC = 16690.18, BIC = 16714.58

The AIC Criterion

Various versions in literature

Verbeek, also Greene:

$$AIC_V = \log \frac{1}{N} \sum_i e_i^2 + \frac{2K}{N} = \log(s^2) + 2K / N$$

Akaike's original formula is

$$AIC_A = -\frac{2\ell(b)}{N} + \frac{2K}{N} = AIC_V + 1 + 2\pi$$

with the log-likelihood function

$$\ell(b) = -\frac{N}{2} \left(1 + \log(2\pi) + \log(s^2) \right)$$

GRETL:

$$AIC_G = N \log(s^2) + 2K + N(1 + \log(2\pi)) = NAIC_A$$

Nested Models: Comparison

Model (B), $y_i = x_i'\beta + v_i$, see slide 21, is nested in model

$$y_i = x_i'\beta + z_i'\gamma + \varepsilon_i$$
 (A)

(A) is extended by J additional regressors z_i

Do the *J* added regressors contribute to explaining *Y*?

• F-test (t-test when J = 1) for testing H_0 : coefficients of added regressors are zero

$$F = \frac{(R_A^2 - R_B^2)/J}{(1 - R_A^2)/(N - K)}$$

 R_B^2 and R_A^2 are the R^2 of the models without (B) and with (A) the J additional regressors, respectively

- Comparison of adjusted R^2 : adj R_A^2 > adj R_B^2 equivalent to F > 1
- Information Criteria: choose the model with the smaller value of the information criterion

Comparison of Non-nested Models

Non-nested models:

$$y_i = x_i'\beta + \varepsilon_i$$
 (A)

$$y_{i} = z_{i}'\gamma + v_{i} \tag{B}$$

at least one component in z_i that is not in x_i

 Non-nested or encompassing F-test: compares by F-tests artificially nested models

$$y_i = x_i'\beta + z_{2i}'\delta_B + \varepsilon_i^*$$
 with z_{2i} : regressors from z_i not in x_i
 $y_i = z_i'\gamma + x_{2i}'\delta_A + v_i^*$ with x_{2i} : regressors from x_i not in z_i

- □ Test validity of model A by testing H_0 : $\delta_B = 0$
- □ Analogously, test validity of model B by testing H_0 : $\delta_A = 0$
- Possible results: A or B is valid, both models are valid, none is valid
- Other procedures: J-test, PE-test (see below)

Wages: Which Model?

Which of the models is adequate?

$$log(wage_i) = 0.119 + 0.260 \ male_i + 0.115 \ school_i$$
 (A)
adj $R^2 = 0.121$, BIC = 5824.90,
 $log(wage_i) = 0.119 + 0.064 \ age_i$ (B)
adj $R^2 = 0.069$, BIC = 6004.60

Artificially nested model

```
log(wage_i) =
= -0.472 + 0.243 male<sub>i</sub> + 0.088 school<sub>i</sub> + 0.035 age<sub>i</sub>
```

- Test of model validity
 - □ model A: *t*-test for age, *p*-value 5.79E-15; model A is not adequate
 - model B: F-test for male and school: model B is not adequate

J-Test: Comparison of Nonnested Models

Non-nested models: (A) $y_i = x_i'\beta + \varepsilon_i$, (B) $y_i = z_i'\gamma + v_i$ with components of z_i that are not in x_i

Combined model

$$y_i = (1 - \delta) x_i'\beta + \delta z_i'\gamma + u_i$$

with $0 < \delta < 1$; δ indicates model adequacy

Transformed model

$$y_i = x_i'\beta^* + \delta z_i'c + u_i = x_i'\beta^* + \delta \hat{y}_{iB} + u_i^*$$

with OLS estimate c for γ and predicted values $\hat{y}_{iB} = z_i$ 'c obtained from fitting model B; $\beta^* = (1-\delta)\beta$

- **J**-test for validity of model A by testing H_0 : $\delta = 0$
- Less computational effort than the encompassing F-test

Wages: Which Model?

Which of the models is adequate?

$$log(wage_i) = 0.119 + 0.260 \ male_i + 0.115 \ school_i$$
 (A)

adj
$$R^2 = 0.121$$
, BIC = 5824.90,

$$log(wage_i) = 0.119 + 0.064 age_i$$
 (B)

adj
$$R^2 = 0.069$$
, BIC = 6004.60

Test the validity of model B by means of the *J*-test

Extend the model B to

$$log(wage_i) = -0.587 + 0.034 \ age_i + 0.826 \ \hat{y}_{iA}$$

with values \hat{y}_{iA} predicted for $log(wage_i)$ from model A

- Test of model validity: *t*-test for coefficient of \hat{y}_{iA} , t = 15.96, *p*-value 2.65E-55
- Model B is not a valid model

Linear vs. Loglinear Model

Choice between linear and loglinear functional form

$$y_i = x_i'\beta + \varepsilon_i$$
 (A)

$$\log y_i = (\log x_i)'\beta + v_i$$
 (B)

- In terms of economic interpretation: Are effects additive or multiplicative?
- Log-transformation stabilizes variance, particularly if the dependent variable has a skewed distribution (wages, income, production, firm size, sales,...)
- Loglinear models are easily interpretable in terms of elasticities

PE-Test: Linear vs. Loglinear Model

Choice between linear and loglinear functional form

Estimate both models

$$y_i = x_i'\beta + \varepsilon_i$$
 (A)

$$\log y_i = (\log x_i)'\beta + v_i$$
 (B)

calculate the fitted values \hat{y} (from model A) and $\log y$ (from B)

• Test $\delta_{IIN} = 0$ in

$$y_i = x_i'\beta + \delta_{LIN} (\log \hat{y}_i - \log y_i') + u_i$$

not rejecting $\delta_{IIN} = 0$ favors the model A

• Test $\delta_{IOG} = 0$ in

$$\log y_i = (\log x_i)'\beta + \delta_{LOG}(\hat{y}_i - \exp\{\log y_i'\}) + u_i$$

not rejecting $\delta_{LOG} = 0$ favors the model B

Both null hypotheses are rejected: find a more adequate model

Wages: Which Model?

Test of validity of models by means of the PE-test

The fitted models are (with I_x for log(x))

$$wage_i = -2.046 + 1.406 \ male_i + 0.608 \ school_i$$
 (A)

$$I_{wage_{i}} = 0.119 + 0.260 \ male_{i} + 0.115 \ I_{school_{i}}$$
 (B)

- x_f: predicted value of x: d_log = log(wage_f) l_wage_f, d_lin = wage_f exp(l_wage_f)
- Test of model validity, model A:

$$wage_i = -1.708 + 1.379 \ male_i + 0.637 \ school_i - 4.731 \ d_log_i$$

with *p*-value 0.013 for *d_log*; validity in doubt

Test of model validity, model B:

$$I_{wage_{i}} = -1.132 + 0.240 \ male_{i} + 1.008 \ I_{school_{i}} + 0.171 \ d_{lin_{i}}$$

with *p*-value 0.076 for *d_lin*; model B to be preferred

The PE-Test

Choice between linear and loglinear functional form

- The auxiliary regressions are estimated for testing purposes
- If the linear model is not rejected: accept the linear model
- If the loglinear model is not rejected: accept the loglinear model
- If both are rejected, neither model is appropriate, a more general model should be considered
- In case of the Individual Wages example:
 - Linear model (A): t-statistic is 4.731, p-value 0.013: the model is rejected
 - Loglinear model (B): t-statistic is 0.171, p-value 0.076: the model is not rejected

Contents

- The Linear Model: Interpretation
- Selection of Regressors
- Specification of the Functional Form

Non-linear Functional Forms

Model specification

$$y_i = g(x_i, \beta) + \varepsilon_i$$

substitution of $g(x_i, \beta)$ for $x_i'\beta$: allows for two types on non-linearity

- = g(x_i , β) non-linear in regressors (but linear in parameters)
 - □ Powers of regressors, e.g., $g(x_i, \beta) = \beta_1 + \beta_2 age_i + \beta_3 age_i^2$
 - Interactions of regressors

OLS technique still works; *t*-test, *F*-test for specification check

- $g(x_i, β)$ non-linear in regression coefficients, e.g.,
 - $g(x_i, \beta) = \beta_1 x_{i1}^{\beta 2} x_{i2}^{\beta 3}$ logarithmic transformation: log g(x_i, β) = log β₁ + β₂log x_{i1}+ β₃log x_{i2}
 - $g(x_i, β) = β_1 + β_2 x_i^{β3}$ non-linear least squares estimation, numerical procedures

Various specification test procedures, e.g., RESET test, Chow test

Individual Wages: Effect of Gender and Education

Effect of gender may be depending of education level

- Separate models for males and females
- Interaction terms between dummies for education level and male

Example: Belgian Household Panel, 1994 ("bwages", N=1472)

- Five education levels
- Model for log(wage) with education dummies
- Model with interaction terms between education dummies and gender dummy
- F-statistic for interaction terms:

$$F(5, 1460) = {(0.4032-0.3976)/5}/{(1-0.4032)/(1472-12)}$$
$$= 2.74$$

with a p-value of 0.018

Wages: Model with Education Dummies

Model with education dummies: Verbeek, Table 3.11

	Table 3.11	OLS results specification 5			
Dependent variable: log(wage)					
	ъ.	0 1 1			

Variable	Estimate	Standard error	<i>t</i> -ratio
constant	1.272	0.045	28.369
male	0.118	0.015	7.610
educ = 2	0.144	0.033	4.306
educ = 3	0.305	0.032	9.521
educ = 4	0.474	0.033	14.366
educ = 5	0.639	0.033	19.237
$\log(exper)$	0.230	0.011	21.804

$$s = 0.282$$
 $R^2 = 0.3976$ $\bar{R}^2 = 0.3951$ $F = 161.14$ $S = 116.47$

Wages: Model with Gender Interactions

Wage equation with interactions educ*male

Table 3.12 OLS results specification 6						
Dependent variable: log(wage)						
Variable	Estimate	Standard error	<i>t</i> -ratio			
constant	1.216	0.078	15.653			
male	0.154	0.095	1.615			
educ = 2	0.224	0.068	3.316			
educ = 3	0.433	0.063	6.851			
educ = 4	0.602	0.063	9.585			
educ = 5	0.755	0.065	11.673			
log(exper)	0.207	0.017	12.535			
$educ = 2 \times male$	-0.097	0.078	-1.242			
$educ = 3 \times male$	-0.167	0.073	-2.272			
$educ = 4 \times male$	-0.172	0.074	-2.317			
$educ = 5 \times male$	-0.146	0.076	-1.935			
$\log(exper) \times male$	0.041	0.021	1.891			
$s = 0.281 R^2 = 0.4032$	$\bar{R}^2 = 0.3988$	F = 89.69 $S = 115.37$	7			

RESET Test

Test of the linear model $E\{y_i | x_i\} = x_i'\beta$ against misspecification of the functional form:

- Null hypothesis: linear model is correct functional form
- Test of H₀: RESET test (Regression Equation Specification Error Test)
- Test idea: powers of various degrees of \hat{y}_i , the fitted values from the linear model, e.g., \hat{y}_i^2 , \hat{y}_i^3 , ..., do not improve model fit under H₀
- Test procedure: linear model extended by adding \hat{y}_i^2 , \hat{y}_i^3 , ...
- F- (or t-) test to decide whether powers of fitted values like \hat{y}_i^2 , \hat{y}_i^3 , ... contribute as additional regressors to explaining Y
- Maximal power Q of fitted values: typical choice is Q = 2 or Q = 3

RESET Test: The Idea

Test procedure: linear model extended by adding \hat{y}_i^2 , \hat{y}_i^3 , ...

- \hat{y}_i^2 is a function of squares (and interactions) of the regressor variables; analogously for \hat{y}_i^3 , ...
- If the F-test indicates that the additional regressor \hat{y}_i^2 contributes to explaining Y: the linear relation is not adequate, another functional form is more appropriate

Wages: RESET Test

The fitted models are (with I_x for log(x))

```
wage_i = -2.046 + 1.406 \ male_i + 0.608 \ school_i (A)
```

$$I_{wage_{i}} = 0.119 + 0.260 \ male_{i} + 0.115 \ I_{school_{i}}$$
 (B)

Test of specification of the functional form with Q = 3

- Model A: Test statistic: F(2, 3288) = 10.23, p-value = 3.723e-005
- Model B: Test statistic: F(2, 3288) = 4.52, p-value = 0.011

For both models the adequacy of the functional form is in doubt

Structural Break: Chow Test

In time-series context, coefficients of a model may change due to a major policy change, e.g., the oil price shock

Modeling a process with structural break

$$E\{y_i | x_i\} = x_i'\beta + g_ix_i'\gamma$$

with dummy variable g_i =0 before the break, g_i =1 after the break

- Regressors x_i , coefficients β before, β+γ after the break
- Null hypothesis: no structural break, γ=0
- **Test procedure: fitting the extended model,** F- (or t-) test of γ=0

$$F = \frac{S_r - S_u}{S_u} \frac{N - 2K}{K}$$

with $S_r(S_u)$: sum of squared residuals of the (un)restricted model

Chow test for structural break or structural change

Chow Test: The Practice

Test procedure is performed in the following steps

- Fit the restricted model: S_r
- Fit the extended model: S_{...}
- Calculate F and the p-value from the F-distribution with K and N-2K d.f.

Needs knowledge of break point

Your Homework

- 1. Use the data set "bwages" of Verbeek for the following analyses:
 - a) Estimate the model where the log hourly wages (*Inwage*) are explained by *Inwage*, *male*, and *educ*; interpret the results.
 - b) Repeat exercise a) using dummy variables for the education levels, e.g., d1 for educ = 1, instead of the variable educ; compare the models from exercises a) and b) by using (i) the non-nested F-test and (ii) the J-test; interpret the results.
 - c) Use the PE-test to decide whether the model in a) (where log hourly wages *Inwage* are explained) or the same model but with levels *wage* of hourly wages as explained variable is to be preferred; interpret the result.
 - d) Repeat exercise b) with the interaction *male*exper* as additional regressor; interpret the result.

Your Homework, cont'd

- 2. OLS is used to estimate β from $y_i = x_i'\beta + \varepsilon_i$, but a relevant regressor z_i is neglected: Show that the estimate b is biased, and derive an expression for the bias.
- 3. The model for a process with structural break is specified as $y_i = x_i'\beta + g_ix_i'\gamma + \varepsilon_i$, or $y = Z\delta + \varepsilon$ in matrix form, with dummy variable g_i =0 before the break, g_i =1 after the break. Write down the design matrix Z of the model.