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1.1  What Is Econometrics?

“Econometrics is too mathematical; it's the reason my best friend isn't
majoring in economics.”

“There are two things you don't want to see in the making—sausage
and econometric research. 71

“Econometrics may be defined as the quantitative analysis of actual eco-

nomic phenomena.”

2

“It's my experience that ‘economy-tricks’ is usually nothing more than a
justification of what the author believed before the research was begun.”

Obviously, econometrics means different things to different people. To begin-
ning students, it may seem as if econometrics is an overly complex obstacle
to an otherwise useful education. To skeptical observers, econometric results
should be trusted only when the steps that produced those results are com-
pletely known. To professionals in the field, econometrics is a fascinating set

1. Attributed to Edward E. Leamer.

2. Paul A. Samuelson, T. C. Koopmans, and J. R. Stone, “Report of the Evaluative Committee
for Econometrica,” Econometrica, 1954, p. 141.
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of techniques that allows the measurement and analysis of economic phe-
nomena and the prediction of future economic trends.

You're probably thinking that such diverse points of view sound like the
statements of blind people trying to describe an elephant based on what they
happen to be touching, and you're partially right. Econometrics has both a
formal definition and a larger context. Although you can easily memorize the
formal definition, you'll get the complete picture only by understanding the
many uses of and alternative approaches to econometrics.

That said, we need a formal definition. Econometrics, literally “economic
measurement,” is the quantitative measurement and analysis of actual eco-
nomic and business phenomena. It attempts to quantify economic reality
and bridge the gap between the abstract world of economic theory and the
real world of human activity. To many students, these worlds may seem far
apart. On the one hand, economists theorize equilibrium prices based on
carefully conceived marginal costs and marginal revenues; on the other,
many firms seem to operate as though they have never heard of such con-
cepts. Econometrics allows us to examine data and to quantify the actions of
firms, consumers, and governments. Such measurements have a number of
different uses, and an examination of these uses is the first step to under-
standing econometrics.

1.1.1 Uses of Econometrics

Econometrics has three major uses:

1. describing economic reality
2. testing hypotheses about economic theory
3. forecasting future economic activity

The simplest use of econometrics is description. We can use econometrics
to quantify economic activity because econometrics allows us to put num-
bers in equations that previously contained only abstract symbols. For exam-
ple, consumer demand for a particular commodity often can be thought of as
a relationship between the quantity demanded (Q) and the commodity’s
price (P), the price of a substitute good (P,), and disposable income (Yd). For
most goods, the relationship between consumption and disposable income
is expected to be positive, because an increase in disposable income will be
associated with an increase in the consumption of the good. Econometrics
actually allows us to estimate that relationship based upon past consump-
tion, income, and prices. In other words, a general and purely theoretical
functional relationship like:

.
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Q=f({PP,Yd - - : s (1.1)
can become explicit:
Q = 31.50 — 0.73P + 0.11P; + 0.23Yd , (1.2)

This technique gives a much more specific and descriptive picture of the
function.3 Let's compare Equations 1.1 and 1.2. Instead of expecting con-
sumption merely to “increase” if there is an increase in disposable income,
Equation 1.2 allows us to expect an increase of a specific amount (0.23 units
for each unit of increased disposable income). The number 0.23 is called an
estimated regression coefficient, and it is the ability to estimate these coeffi-
cients that makes econometrics valuable.

The second and perhaps the most common use of econometrics is hy-
pothesis testing, the evaluation of alternative theories with quantitative evi-
dence. Much of economics involves building theoretical models and testing
them against evidence, and hypothesis testing is vital to that scientific ap-
proach. For example, you could test the hypothesis that the product in Equa-
tion 1.1 is what economists call a normal good (one for which the quantity
demanded increases when disposable income increases). You could do this
by applying various statistical tests to the estimated coefficient (0.23) of dis-
posable income (Yd) in Equation 1.2. At first glance, the evidence would
seem to support this hypothesis because the coefficient’s sign is positive, but
the “statistical significance” of that estimate would have to be investigated
before such a conclusion could be justified. Even though the estimated coef-
ficient is positive, as expected, it may not be sufficiently different from zero
to imply that the true coefficient is indeed positive instead of zero. Unfortu-
nately, statistical tests of such hypotheses are not always easy, and there are
times when two researchers can look at the same set of data and come to
slightly different conclusions. Even given this possibility, the use of econo-
metrics in testing hypotheses is probably its most important function.

The third and most difficult use of econometrics is to forecast or predict
what is likely to happen next quarter, next year, or further into the future,
based on what has happened in the past. For example, economists use
econometric models to make forecasts of variables like sales, profits, Gross
Domestic Product (GDP), and the inflation rate. The accuracy of such fore-
casts depends in large measure on the degree to which the past is a good
guide to the future. Business leaders and politicians tend to be especially in-

3. The results in Equation 1.2 are from a model of the demand for chicken that we will examine
in more detail in Section 6.1.
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terested in this use of econometrics because they need to make decisions
about the future, and the penalty for being wrong (bankruptcy for the entre-
preneur and political defeat for the candidate) is high. To the extent that
econometrics can shed light on the impact of their policies, business and
government leaders will be better equipped to make decisions. For example,
if the president of a company that sold the product modeled in Equation 1.1
wanted to decide whether to increase prices, forecasts of sales with and with-
out the price increase could be calculated and compared to help make such a
decision. In this way, econometrics can be used not only for forecasting but
also for policy analysis.

1.1.2 Alternative Econometric Approaches

There are many different approaches to quantitative work. For example, the
fields of biology, psychology, and physics all face quantitative questions sim-
ilar to those faced in economics and business. However, these fields tend to
use somewhat different techniques for analysis because the problems they
face aren’t the same. “We need a special field called econometrics, and text-
books about it, because it is generally accepted that economic data possess
certain properties that are not considered in standard statistics texts or are
not sufficiently emphasized there for use by economists.”*

Different approaches also make sense within the field of economics. The
kind of econometric tools used to quantify a particular function depends in
part on the uses to which that equation will be put. A model built solely for
descriptive purposes might be different from a forecasting model, for exam-
ple.

To get a better picture of these approaches, let’s look at the steps necessary
for any kind of quantitative research:

1. specifying the models or relationships to be studied

2. collecting the data needed to quantify the models

3. quantifying the models with the data

Steps 1 and 2 are similar in all quantitative work, but the techniques used
in step 3, quantifying the models, differ widely between and within disci-
plines. Choosing the best technique for a given model is a theory-based skill

that is often referred to as the “art” of econometrics. There are many alterna-
tive approaches to quantifying the same equation, and each approach may

4. Clive Granger, “A Review of Some Recent Textbooks of Econometrics,” Journal of Economic
Literature, March 1994, p. 117.
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give somewhat different results. The choice of approach is left to the individ-
ual econometrician (the researcher using econometrics), but each researcher
should be able to justify that choice.

This book will focus primarily on one particular econometric approach:
single-equation linear regression analysis. The majority of this book will thus
concentrate on regression analysis, but it is important for every econometri-
cian to remember that regression is only one of many approaches to econo-
metric quantification.

The importance of critical evaluation cannot be stressed enough; a good
econometrician can diagnose faults in a particular approach and figure out
how to repair them. The limitations of the regression analysis approach must
be fully perceived and appreciated by anyone attempting to use regression
analysis or its findings. The possibility of missing or inaccurate data, incor-
rectly formulated relationships, poorly chosen estimating techniques, or im-
proper statistical testing procedures implies that the results from regression
analyses should always be viewed with some caution.

1.2 What Is Regression Anaysis?

Econometricians use regression analysis to make quantitative estimates of
economic relationships that previously have been completely theoretical in
nature. After all, anybody can claim that the quantity of compact discs de-
manded will increase if the price of those discs decreases (holding everything
else constant), but not many people can put specific numbers into an equa-
tion and estimate by how many compact discs the quantity demanded will in-
crease for each dollar that price decreases. To predict the direction of the
change, you need a knowledge of economic theory and the general character-
istics of the product in question. To predict the amount of the change, though,
you need a sample of data, and you need a way to estimate the relationship.
The most frequently used method to estimate such a relationship in econo-
metrics is regression analysis.

1.2.1 Dependent Variables, Independent Variables, and Causality

Regression analysis is a statistical technique that attempts to “explain”
movements in one variable, the dependent variable, as a function of move-
ments in a set of other variables, called the independent (or explanatory)
variables, through the quantification of a single equation. For example in
Equation 1.1:

Q = (P, Py, Yd) ' | (1.1)
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Q is the dependent variable and P, P, and Yd are the independent variables.
Regression analysis is a natural tool for economists because most (though not
all) economic propositions can be stated in such single-equation functional
forms. For example, the quantity demanded (dependent variable) is a func-
tion of price, the prices of substitutes, and income (independent variables).

Much of economics and business is concerned with cause-and-effect
propositions. If the price of a good increases by one unit, then the quantity
demanded decreases on average by a certain amount, depending on the price
elasticity of demand (defined as the percentage change in the quantity de-
manded that is caused by a one percent change in price). Similarly, if the
quantity of capital employed increases by one unit, then output increases by
a certain amount, called the marginal productivity of capital. Propositions
such as these pose an if-then, or causal, relationship that logically postulates -
that a dependent variable’s movements are causally determined by move-
ments in a number of specific independent variables.

Don’t be deceived by the words dependent and independent, however. Al-
though many economic relationships are causal by their very nature, a regres-
sion result, no matter how statistically significant, cannot prove causality. All
regression analysis can do is test whether a significant quantitative relationship
exists. Judgments as to causality must also include a healthy dose of economic
theory and common sense. For example, the fact that the bell on the door of a
flower shop rings just before a customer enters and purchases some flowers by
no means implies that the bell causes purchases! If events A and B are related
statistically, it may be that A causes B, that B causes A, that some omitted factor
causes both, or that a chance correlation exists between the two.

The cause-and-effect relationship is often so subtle that it fools even the
most prominent economists. For example, in the late nineteenth century,
English economist Stanley Jevons hypothesized that sunspots caused an in-
crease in economic activity. To test this theory, he collected data on national
output (the dependent variable) and sunspot activity (the independent vari-
able) and showed that a significant positive relationship existed. This result
led him, and some others, to jump to the conclusion that sunspots did in-
deed cause output to rise. Such a conclusion was unjustified because regres-
sion analysis cannot confirm causality; it can only test the strength and direc-
tion of the quantitative relationships involved.

1.2.2 Single-Equation Linear Models

The simplest single-equation linear regression model is:

Y =By + B1X (1.3)
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Equation 1.3 states that Y, the dependent variable, is a single-equation linear
function of X, the independent variable. The model is a single-equation
model because no equation for X as a function of Y (or any other variable)
has been specified. The model is linear because if you were to plot Equation
1.3 on graph paper, it would be a straight line rather than a curve.

@ The Bs are the coefficients that determine the coordinates of the straight
line at any point. B is the constant or intercept term; it indicates the value
of Y when X equals zero. B is the slope coefficient, and it indicates the
amount that Y will change when X increases by one unit. The solid line in
Figure 1.1 illustrates the relationship between the coefficients and the graph-
ical meaning of the regression equation. As can be seen from the diagram,
Equation 1.3 is indeed linear.

The slope coefficient, B, shows the response of Y to a change in X. Since
being able to explain and predict changes in the dependent variable is the es-
sential reason for quantifying behavioral relationships, much of the empha-
sis in regression analysis is on slope coefficients such as ;. In Figure 1.1 for
example, if X were to increase from X to X, (AX), the value of Y in Equation
1.3 would increase from Y, to Y, (AY). For linear (i.e,, straight-line) regres-
sion models, the response in the predicted value of Y due to a change in X is
constant and equal to the slope coefficient ;:

(YZ—Y])_M_
(Xz—Xl)_AX_Bl

where A is used to denote a change in the variables. Some readers may recog-
nize this as the “rise” (AY) divided by the “run” (AX). For a linear model, the
slope is constant over the entire function.

We must distinguish between an equation that is linear in the variables
and one that is linear in the coefficients. This distinction is important be-
cause if linear regression techniques are going to be applied to an equation,
that equation must be linear in the coefficients.

An equation is linear in the variables if plotting the function in terms of X
and Y generates a straight line. For example, Equation 1.3:

Y =By + BiX o3
is linear in the variables, but Equation 1.4:
Y = By + B X? : (1.4)

is not linear in the variables because if you were to plot Equation 1.4 it
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Figure 1.1 Graphical Representation of the Coefficients of the
Regression Line

The graph of the equation Y = By + B;X is linear with a constant slope equal to
B, = AY/AX. The graph of the equation Y = B¢ + B,X?, on the other hand, is nonlinear
with an increasing slope (if 8; > 0).

would be a quadratic, not a straight line. This difference® can be seen in
Figure 1.1.

An equation is linear in the coefficients only if the coefficients (the 8s)
appear in their simplest form—they are not raised to any powers (other than
one), are not multiplied or divided by other coefficients, and do not them-
selves include some sort of function (like logs or exponents). For example,
Equation 1.3 is linear in the coefficients, but Equation 1.5:

Y =B, + XP1 (1.5)

is not linear in the coefficients By and §,. Equation 1.5 is not linear because
there is no rearrangement of the equation that will make it linear in the 8s of
original interest, B, and B;. In fact, of all possible equations for a single ex-
planatory variable, only functions of the general form:

f(Y) = Bo *+ B:1f(X) (1.6)

5. Equations 1.3 and 1.4 have the same B, in Figure 1.1 for comparison purposes only. If the
equations were applied to the same data, the estimated Bgs would be different.
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are linear in the coefficients B, and B,. In essence, any sort of configuration
of the Xs and Ys can be used and the equation will continue to be linear in
the coefficients. However, even a slight change in the configuration of the gs
will cause the equation to become nonlinear in the coefficients.

Although linear regressions need to be linear in the coefficients, they do
not necessarily need to be linear in the variables. Linear regression analysis
can be applied to an equation that is nonlinear in the variables if the equa-
tion can be formulated in a way that is linear in the coefficients. Indeed,
when econometricians use the phrase “linear regression,” they usually mean
“regression that is linear in the coefficients.”®

1.2.3 The Stochastic Error Term

Besides the variation in the dependent variable (Y) that is caused by the in-
dependent variable (X), there is almost always variation that comes from
other sources as well. This additional variation comes in part from omitted
explanatory variables (e.g., X, and X3). However, even if these extra variables
are added to the equation, there still is going to be some variation in Y that
simply cannot be explained by the model.” This variation probably comes
from sources such as omitted influences, measurement error, incorrect func-
tional form, or purely random and totally unpredictable occurrences. By
random we mean something that has its value determined entirely by
chance.

Econometricians admit the existence of such inherent unexplained varia-
tion (“error”) by explicitly including a stochastic (or random) error term in
their regression models. A stochastic error term is a term that is added to a
regression equation to introduce all of the variation in Y that cannot be ex-
plained by the included Xs. It is, in effect, a symbol of the econometrician’s
ignorance or inability to model all the movements of the dependent variable.

6. The application of regression analysis to equations that are nonlinear in the variables is cov-
ered in Chapter 7. The application of regression techniques to equations that are nonlinear in
the coefficients, however, is much more difficult.

7. The exception would be the extremely rare case where the data can be explai ned by some sort
of physical law and are measured perfectly. Here, continued variation would point to an omit-
ted independent variable. A similar kind of problem is often encountered in astronomy, where
planets can be discovered by noting that the orbits of known planets exhibit variations that can
be caused only by the gravitational pull of another heavenly body. Absent these kinds of physi-
cal laws, researchers in economics and business would be foolhardy to believe that all variation
in Y can be explained by a regression model because there are always elements of error in any
attempt to measure a behavioral relationship.

11
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The error term (sometimes called a disturbance term) is usually referred to
with the symbol epsilon (e), although other symbols (like u or v) are some-
times used.

The addition of a stochastic error term (€) to Equation 1.3 results in a typ-
ical regression equation:

Y=B,+BX+e (1.7)

Equation 1.7 can be thought of as having two components, the deterministic
component and the stochastic, or random, component. The expression
Bo + B Xis called the deterministic component of the regression equation be-
cause it indicates the value of Y that is determined by a given value of X,
which is assumed to be nonstochastic. This deterministic component can
also be thought of as the expected value of Y given X, the mean value of the
Ys associated with a particular value of X. For example, if the average height
of all 14-year-old girls is 5 feet, then 5 feet is the expected value of a girl’s
height given that she is 14. The deterministic part of the equation may be
written:

E(YIX) = By + B,X a8

which states that the expected value of Y given X, denoted as E(Y|X), is a lin-
ear function of the independent variable (or variables if there are more than
one).8

Unfortunately, the value of Y observed in the real world is unlikely to be
exactly equal to the deterministic expected value E(Y|X). After all, not all 14-
year-old girls are 5 feet tall. As a result, the stochastic element (€) must be
added to the equation:

Y= B(YIX) + €= By + BX + e (1.9)

8. This property holds as long as E(e]X) = 0 [read as “the expected value of X, given epsilon”
equals zero|, which is true as long as the Classical Assumptions (to be outlined in Chapter 4)
are met. It's easiest to think of E(€) as the mean of €, but the expected value operator E techni-
cally is a summation of all the values that a function can take, weighted by the probability of
each value. The expected value of a constant is that constant, and the expected value of a sum of
variables equals the sum of the expected values of those variables.
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The stochastic error term must be present in a regression equation
because there are at least four sources of variation in Y other than the
variation in the included Xs:

1. Many minor influences on Y are omitted from the equation (for
example, because data are unavailable}.

2. It is virtually impossible to avoid some sort of measurement error
in at least one of the equation’s variables.

3. The underlying theoretical equation might have a different func-
tional form (or shape) than the one chosen for the regression. For
example, the underlying equation might be nonlinear in the vari-
ables for a linear regression.

4. All attempts to generalize human behavior must contain at least
some amount of unpredictable or purely random variation.

To get a better feeling for these components of the stochastic error term,
let’s think about a consumption function (aggregate consumption as a func-
tion of aggregate disposable income). First, consumption in a particular year
may have been less than it would have been because of uncertainty over the
future course of the economy. Since this uncertainty is hard to measure,
there might be no variable measuring consumer uncertainty in the equa-
tion. In such a case, the impact of the omitted variable (consumer uncer-
tainty) would likely end up in the stochastic error term. Second, the ob-
served amount of consumption may have been different from the actual
level of consumption in a particular year due to an error (such as a sampling
error) in the measurement of consumption in the National Income Ac-
counts. Third, the underlying consumption function may be nonlinear, but
a linear consumption function might be estimated. (To see how this incor-
rect functional form would cause errors, see Figure 1.2.) Fourth, the con-
sumption function attempts to portray the behavior of people, and there is
always an element of unpredictability in human behavior. At any given time,
some random event might increase or decrease aggregate consumption in a
way that might never be repeated and couldn't be anticipated.

These possibilities explain the existence of a difference between the ob-
served values of Y and the values expected from the deterministic component
of the equation, E(Y|X). These sources of error will be covered in more detail
in the following chapters, but for now it is enough to recognize that in econo-
metric research there will always be some stochastic or random element, and,
for this reason, an error term must be added to all regression equations.
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Y : : : ; Linear Functional Form

| e
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“True” Relationship
(nonlinear)
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Figure 1.2 Errors Caused by Using a Linear Functional Form to Model a
Nonlinear Relationship

One source of stochastic error is the use of an incorrect functional form. For example, if a
linear functional form is used when the underlying relationship is nonlinear, systematic er-
rors (the es) will occur. These nonlinearities are just one component of the stochastic error
term. The others are omitted variables, measurement error, and purely random variation.

1.2.4 Extending the Notation

Our regression notation needs to be extended to include reference to the
number of observations and to allow the possibility of more than one inde-
pendent variable. If we include a specific reference to the observations, the
single-equation linear regression model may be written as;

Y, =By + B X + ¢ (i=12...,n) (1.10)
where: Y; = the ith observation® of the dependent variable
X = the ith observation of the independent variable
€ = the ith observation of the stochastic error term
Bo. By = the regression coefficients
n = the number of observations

9. A typical observation (or unit of analysis) is an individual persen, year, or country. For exam-
ple, a series of annual observations starting in 1950 would have Y; =Y for 1950, Y, for 1951, etc.
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This equation is actually n equations, one for each of the n observations:
Y =Bo t BiX; T &

Y, =Bp+ BiX; t e
Bo + B1X3 * &

[
w
I

n=Bo T BiXy T €

That is, the regression model is assumed to hold for each observation. The
coefficients do not change from observation to observation, but the values of
Y, X, and € do.

A second notational addition allows for more than one independent vari-
able. Since more than one independent variable is likely to have an effect on
the dependent variable, our notation should allow these additional explana-
tory Xs to be added. If we define:

Xy; = the ith observation of the first independent variable
X,; = the ith observation of the second independent variable
Xs; = the ith observation of the third independent variable

then all three variables can be expressed as determinants of Y in a multivari-
ate (more than one independent variable) linear regression model:

Y; = Bg + B Xy + BoXy + BsX3 + g (1.11)

The meaning of the regression coefficient B, in this equation is the impact

of a one unit increase in X; on the dependent variable Y, holding constant the

other included independent variables (X, and X3). Similarly, B, gives the im-
pact of a one-unit increase in X, on Y, holding X; and X3 constant. These
multivariate regression coefficients (which are parallel in nature to partial
derivatives in calculus) serve to isolate the impact on Y of a change in one
variable from the impact on Y of changes in the other variables. This is possi-
ble because multivariate regression takes the movements of X, and X3 into
account when it estimates the coefficient of X;. The result is quite similar to
what we would obtain if we were capable of conducting controlled labora-
tory experiments in which only one variable at a time was changed.

In the real world, though, it is almost impossible to run controlled experi-
ments, because many economic factors change simultaneously, often in oppo-
site directions. Thus the ability of regression analysis to measure the impact of
one variable on the dependent variable, holding constant the influence of the other
variables in the equation, is a tremendous advantage. Note that if a variable is not
included in an equation, then its impact is not held constant in the estimation
of the regression coefficients. This will be discussed further in Chapter 6.

15
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The general multivariate regression model with K independent variables
thus is written as:

- Y; = Bg t B1Xy + B2Xp 0+ BicXia t € (1.12)

(i=12...,n)

If the sample consists of a series of years or months (called a time series),
then the subscript i is usually replaced with a t to denote time. 10

1.3 The Estimated Regression Equation

Once a specific equation has been decided upon, it must be quantified. This
quantified version of the theoretical regression equation is called the esti-
mated regression equation and is obtained from a sample of actual Xs and
Ys. Although the theoretical equation is purely abstract in nature:

Y; =B T B X T g (1.13)

the estimated regression equation has actual numbers in it:

-~

The observed, real-world values of X and Y are used to calculate the coeffi-
cient estimates 103.40 and 6.38. These estimates are used to determine Y
(read as “Y-hat"), the estimated or fitted value of Y.

Let's look at the differences between a theoretical regression equation and
an estimated regression equation. First, the theoretical regression coefficients
Bo and B, in Equation 1.13 have been replaced with estimates of those coeffi-
cients like 103.40 and 6.38 in Equation 1.14. We can't actually observe the
values of the truel! regression coefficients, so instead we calculate estimates
of those coefficients from the data. The estimated regression coefficients,

10. It also does not matter if X,;, for example, is written as X;; as long as the appropriate defin-
itions are presented. Often the observational subscript (i or t) is deleted, and the reader is ex-
pected to understand that the equation holds for each observation in the sample.

11. Our use of the word true throughout the text should be taken with a grain of salt. Many
philosophers argue that the concept of truth is useful only relative to the scientific research pro-
gram in question. Many economists agree, pointing out that what is true for one generation
may well be false for another. To us, the true coefficient is the one that you'd obtain if you
could run a regression on the entire relevant population. Thus, readers who so desire can sub-
stitute the phrase “population coefficient” for “true coefficient” with no loss in meaning.
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more generally denoted by Bo and f?»l (read as “beta-hats”), are empirical best
guesses of the true regression coefficients and are obtained from data from a
sample of the Ys and Xs. The expression

Y; = Bg + BiX; (1.15)

is the empirical counterpart of the theoretical regression Equation 1.13. The
calculated estimates in Equation 1.14 are examples of estimated regression
~ coefficients B and ﬁl. For each sample we calculate a different set of esti-
mated regression coefficients.

i Is the estimated value of Y;, and it represents the value of Y calculated
from the estimated regression equation for the ith observation. As such, Y is
our predication of E(Y;|X;) from the regression equation. The closer Y is to

; the better the fit of the equation. (The word fit is used here much as it
would be used to describe how well clothes fit.)

The difference between the estimated value of the dependent variable (Yl)
and the actual value of the dependent variable (Y;) is defined as the residual (e;):

e = Yi - Yi (116)

Note the distinction between the residual in Equation 1.16 and the error term:
=Y, - E(%;|X) r (1.17)

The residual is the difference between the observed Y and the estimated re-
gression line (Y), while the error term is the difference between the observed
Y and the true regression equation (the expected value of Y). Note that the er-
ror term is a theoretical concept that can never be observed, but the residual
is a real-world value that is calculated for each observation every time a re-
gression is run. Most regression techniques not only calculate the residuals
but also attempt to select values of B, and B that keep the residuals as low as
. possible. The smaller the residuals, the better the fit, and the closer the Ys will
be to the Ys. 4
All these concepts are shown in Figure 1.3. The (X, Y) pairs are shown as
points on the diagram, and both the true regression equation (which cannot
be seen in real applications) and an estimated regression equation are in-
cluded. Notice that the estimated equation is close to but not equivalent to
the true line. This is a typical result. For example, ?6, the computed value of Y

17
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M,
Y Y= Bo+ BiX;
(Bstimated Line)
Y6 .

2

E(YiiX) = Bo + B1X

(True Line)
o
Bo >
. -
Nl
0 Xe X

Figure 1.3 True and Estimated Regression Lines

The true relationship between X and Y (the solid line) cannot typically be observed, but
the estimated regression line (the dotted line) can. The difference between an observed
data point (for example, i = 6) and the true line is the value of the stochastic error term
(€6). The difference between the observed Yq and the estimated value from the regression
line (Yg) is the value of the residual for this observation, eg.

for the sixth observation, lies on the estimated (dashed) line, and it differs
from Y, the actual observed value of Y for the sixth observation. The differ-
ence between the observed and estimated values is the residual, denoted by
e In addition, although we usually would not be able to see an observation
of the error term, we have drawn the assumed true regression line here (the
solid line) to see the sixth observation of the error term, € which is the dif-
ference between the true line and the observed value of Y, Y¢. :

Another way to state the estimated regression equation is to combine
Equations 1.15 and 1.16, obtaining:

Y; = Bo + BX;+e - (1.18)

Compare this equation to Equation 1.13. When we replace the theoretical re-
gression coefficients with estimated coefficients, the error term must be re-
placed by the residual, because the error term, like the regression coefficients
B and By, can never be observed. Instead, the residual is observed and mea-
sured whenever a regression line is estimated with a sample of Xs and Ys. In
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this sense, the residual can be thought of as an estimate of the error term, and
e could have been denoted as .

The following chart summarizes the notation used in the true and esti-
mated regression equations:

True Regression Equation ' Estimated Regression Equation
Bo Bo
1 B1
€ 7 : €

The estimated regression model can be extended to more than one inde-
pendent variable by adding the additional Xs to the right side of the equa-
tion. The multivariate estimated regression counterpart of Equation 1.12 is:

Y= Bo + BiXy + BoXyy + o+ BiXi (1.19)

1.4 A Simple Example of Regression Analysis

Let’s look at a fairly simple example of regression analysis. Suppose you've
accepted a summer job as a weight guesser at the local amusement park,
Maﬁic Hill. Customers pay 50 cents each, which you ﬁet to keeP if you guess

their weight within 10 pounds. If you miss by more than 10 pounds, then
you have to give the customer a small prize that you buy from Magic Hill for
60 cents each. Luckily, the friendly managers of Magic Hill have arranged a
number of marks on the wall behind the customer so that you are capable of
measuring the customer’s height accurately. Unfortunately, there is a five-foot
wall between you and the customer, so you can tell little about the person ex-
cept for height and (usually) gender.

On your first day on the job, you do so poorly that you work all day and
somehow manage to lose two dollars, so on the second day you decide to
collect data to run a regression to estimate the relationship between weight
and height. Since most of the participants are male, you decide to limit your
sample to males. You hypothesize the following theoretical relationship:

+
Y = (X)) + € =Bo t B1Xi + ¢ (1.20)

where: Y, = the weight (in pounds) of the ith customer
X; = the height (in inches above 5 feet) of the ith customer
€; = the value of the stochastic error term for the ith customer

19
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TABLE 1.1

DATA FOR AND RESULTS OF THE WEIGHT-GUESSING EQUATION

Obser- Height ~+ Predicted

vation Above 5’ Weight Weight Residual $ Gain

i X; Y; i e or Loss
(M @ 3 C)) (5) (6)
1 5.0 140.0 135.3 4.7 +.50
2 9.0 157.0 160.8 —3.8 +.50
3 13.0 205.0 186.3 18.7 —.60
4 12.0 198.0 179.9 18.1 —.60
5 10.0 162.0 167.2 —5.2 +.50
6 11.0 174.0 173.6 0.4 +.50
7 8.0 150.0 154.4 -~4.4 +.50
8 9.0 165.0 160.8 42  +.50
9 10.0 170.0 167.2 2.8 +.50
10 12.0 ~180.0 179.9 0.1 +.50
11 11.0 170.0 173.6 —3.6 +.50
12 . 9.0 162.0 160.8 1.2 +.50
13 10.0 165.0 167.2 —2.2 +.50
14 12.0 180.0 179.9 0.1 +.50
15 8.0 160.0 154.4 5.6 +.50
16 9.0 155.0 160.8 —-5.8 +.50
17 10.0 165.0 167.2 —2.2 +.50
18 15.0 190.0 199.1 —-9.1 +.50
19 13.0 185.0 186.3 -1.3 +.50
20 11.0 155.0 173.6 —-18.6 —.60
TOTAL = $6.70

Note: This data set, and every other data set in the text, is available on the text’s website in four for-
mats and on the EViews CD-ROM. This data set's filename is HTWT1

In this case, the sign of the theoretical relationship between height and
weight is believed to be positive (signified by the positive sign above X; in the
general theoretical equation}, but you must quantify that relationship in or-
der to estimate weights given heights. To do this, you need to collect a data
set, and you need to apply regression analysis to the data.

The next day you collect the data summarized in Table 1.1 and run your
regression on the Magic Hill computer, obtaining the following estimates:

~

Bp =103.40 B, =638

This means that the equation
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Figure 1.4 A Weight-Guessing Equation

If we plot the data from the weight-guessing example and include the estimated regres-
sion line, we can see that the estimated Ys come fairly close to the observed Ys for all but
three observations. Find a male friend’s height and weight on the graph; how well does
the regression equation work?

Estimated weight = 103.40 + 6.38 - Height (inches above five feet)
(1.21)

is worth trying as an alternative to just guessing the weights of your cus-
tomers. Such an equation estimates weight with a constant base of 103.40
pounds and adds 6.38 pounds for every inch of height over 5 feet. Note that
the sign of Bl is positive, as you expected.

How well does the equation work? To answer this question, you need to
calculate the residuals (Y; minus S?i) from Equation 1.21 to see how many
were greater than ten. As can be seen in the last column in Table 1.1, if you
had applied the equation to these 20 people you wouldn’t exactly have got-
ten rich, but at least you would have earned $6.70 instead of losing $2.00.
Figure 1.4 shows not only Equation 1.21 but also the weight and height data
for all 20 customers used as the sample.

Equation 1.21 would probably help a beginning weight guesser, but it
could be improved by adding other variables or by collecting a larger sample.
Such an equation is realistic, though, because it’s likely that every successful
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weight guesser uses an equation like this without consciously thinking about
that concept.

Our goal with this equation was to quantify the theoretical weight/height
equation, Equation 1.20, by collecting data (Table 1.1) and calculating an es-
timated regression, Equation 1.21. Although the true equation, like observa-
tions of the stochastic error term, can never be known, we were able to come
up with an estimated equation that had the sign we expected for Bl and that
helped us in our job. Before you decide to quit school or your job and try to
make your living guessing weights at Magic Hill, there is quite a bit more to
learn about regression analysis, so we'd better move on.

1.5

Using Regression to Explain Housin

g Prices

As much fun as guessing weights at an amusement park might be, it's hardly
a typical example of the use of regression analysis. For every regression run
on such an off-the-wall topic, there are literally hundreds run to describe the
reaction of GDP to an increase in the money supply, to test an economic
theory with new data, or to forecast the effect of a price change on a firm's
sales.

As a more realistic example, let’s look at a model of housing prices. The
purchase of a house is probably the most important financial decision in an
individual’s life, and one of the key elements in that decision is an appraisal
of the house’s value. If you overvalue the house, you can lose thousands of
dollars by paying too much; if you undervalue the house, someone might
outbid you.

All this wouldn’t be much of a problem if houses were homogeneous
products, like corn or gold, that have generally known market prices with
which to compare a particular asking price. Such is hardly the case in the real
estate market. Consequently, an important element of every housing pur-
chase is an appraisal of the market value of the house, and many real estate
appraisers use regression analysis to help them in their work.

Suppose your family is about to buy a house in Southern California, but
you're convinced that the owner is asking too much money. The owner says
that the asking price of $230,000 is fair because a larger house next door sold
for $230,000 about a year ago. You're not sure it's reasonable to compare the
prices of different-sized houses that were purchased at different times. What
can you do to help decide whether to pay the $230,000?

Since you're taking an econometrics class, you decide to collect data on
all local houses that were sold within the last few weeks and to build a re-
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gression model of the sales prices of the houses as a function of their
sizes.12 Such a data set is called cross-sectional because all of the observa-
tions are from the same point in time and represent different individual
economic entities (like countries, or in this case, houses) from that same
point in time.

To measure the impact of size on price, you include the size of the house
as an independent variable in a regression equation that has the price of that
house as the dependent variable. You expect a positive sign for the coefficient
of size, since big houses cost more to build and tend to be more desirable
than small ones. Thus the theoretical model is:

+
Py =1(S;) + =8¢+ BSi + ¢ (1.22)

where:  P; = the price (in thousands of $) of the ith house
S; = the size (in square feet) of that house
€; = the value of the stochastic error term for that house

You collect the records of all recent real estate transactions, find that 43 lo-
cal houses were sold within the last 4 weeks, and estimate the following re-
gression of those 43 observations:

P, = 40.0 + 0.138S; (1.23)

What do these estimated coefficients mean? The most important coefficient
is B; = 0.138, since the reason for the regression is to find out the impact of
size on price. This coefficient means that if size increases by 1 square foot,
price will increase by 0.138 thousand dollars ($138). fil thus measures the
change in P; associated with a one-unit increase in §;. It's the slope of the re-
gression line in a graph like Figure 1.5.

What does QO = 40.0 mean? éo is the estimate of the constant or intercept
term. In our equation, it means that price equals 40.0 when size equals zero.
As can be seen in Figure 1.5, the estimated regression line intersects the price
axis at 40.0. While it might be tempting to say that the average price of a va-
cant lot is $40,000, such a conclusion would be unjustified for a number of

12. It's unusual for an economist to build a model of price without including some measure of
quantity on the right-hand side. Such models of the price of a good as a function of the attrib-
utes of that good are called hedonic models and will be discussed in greater depth in Section
11.7. The interested reader is encouraged to skim the first few paragraphs of that section before
continuing on with this example.

23
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Price
(thousands of $)

P, = 40.0 + 0.138S,

1 1
Intercept = 40.0 /

Slope = .138

Size of the house (square feet)

Figure 1.5 A Cross Sectional Model of Housing Prices

A regression equation that has the price of a house in Southern California as a function of
the size of that house has an intercept of 40.0 and a slope of 0.138, using Equation 1.23.

reasons, which will be discussed in later chapters. It's much safer either to in-
terpret BO = 40.0 as nothing more than the value of the estimated regression
when §; = 0, or to not interpret BO at all.

How can you use this estimated regression to help decide whether to pay
$230,000 for the house? If you calculatea Y (predlcted price) for a house that
is the same size (1,600 square feet) as the one you're thinking of buying, you
can then compare this Y with the asking price of $230,000. To do this, substi-
tute 1600 for S; in Equation 1.23, obtaining:

P, = 40.0 + 0.138(1600) = 40.0 + 220.8 = 260.8

The house seems to be a good deal. The owner is asking “only” $230,000
for a house when the size implies a price of $260,800! Perhaps your origi-
nal feeling that the price was too high was a reaction to the steep housing
prices in Southern California in general and not a reflection of this specific
price.

On the other hand, perhaps the price of a house is influenced by more
than just the size of the house. (After all, what good’s a house in Southern
California unless it has a pool or air-conditioning?) Such multivariate mod-
els are the heart of econometrics, but we'll hold off adding more indepen-
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dent variables to Equation 1.23 until we return to this housing price example
later in the text.

1.6 Summary ‘

1. Econometrics, literally “economic measurement,” is a branch of eco-
nomics that attempts to quantify theoretical relationships. Regression
analysis is only one of the techniques used in econometrics, but it is
by far the most frequently used.

2. The major uses of econometrics are description, hypothesis testing,
and forecasting. The specific econometric techniques employed may
vary depending on the use of the research.

3. While regression analysis specifies that a dependent variable is a func-
tion of one or more independent variables, regression analysis alone
cannot prove or even imply causality.

4, Linear regression can only be applied to equations that are linear in
the coefficients, which means that the regression coefficients are in
their simplest possible form. For an equation with two explanatory
variables, this form would be:

f(Y;) = Bp + Bif(Xy3) + Bof(Xp) + &

5. A stochastic error term must be added to all regression equations to
account for variations in the dependent variable that are not ex-
plained completely by the independent variables. The components of
this error term include:

a. omitted or left-out variables

b. measurement errors in the data

c. an underlying theoretical equation that has a dlfferent functional
- form (shape) than the regression equation

d. purely random and unpredictable events

6. An estimated regression equation is an approximation of the true
equation that is obtained by using data from a sample of actual Ys
and Xs. Since we can never know the true equation, econometric
analysis focuses on this estimated regression equation and the esti-
mates of the regression coefficients. The difference between a particu-
lar observation of the dependent variable and the value estimated
from the regression equation is called the residual.

25
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(Answers to even-numbered exercises are in Appendix A.)

1.

Write the meaning of each of the following terms without referring to
the book (or your notes), and compare your definition with the ver-
sion in the text for each:
. stochastic error term
. regression analysis
linear in the variables
. slope coefficient
multivariate regression model
expected value
g. residual
h. linear in the coefficients

me AN o

Use your own computer’s regression software and the weight (Y) and
height (X) data from Table 1.1 to see if you can reproduce the esti-
mates in Equation 1.21. There are three different ways to load the
data: You can type in the data yourself, you can open datafile HTWT1
on the EViews CD, or you can download datafile HTWTL (in any of
four formats: SAS, EXCEL, SHAZAM, and ASCII) from the text's web-
site: www.awlonline.com/studenmund/ Once the datafile is loaded,
then run Y = f(X), and your results should match Equation 1.21. Dif-
ferent programs require different commands to run a regression. For
help in how to do this with EViews, for example, see the answer to
this question in Appendix A.

Decide whether you would expect relationships between the follow-

ing pairs of dependent and independent variables (respectively) to be

positive, negative, or ambiguous. Explain your reasoning.

a. Aggregate net investment in the U.S. in a given year and GDP in
that year.

b. The amount of hair on the head of a male professor and the age of
that professor.

¢. The number of acres of wheat planted in a season and the price of
wheat at the beginning of that season.

d. Aggregate net investment and the real rate of interest in the same
year and country.

e. The growth rate of GDP in a year and the average hair length in that
year.

f The quantity of canned heat demanded and the price of a can of
heat.
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Let's return to the height/weight example in Section 1.4: -

a.

Go back to the data set and identify the three customers who
seem to be quite a distance from the estimated regression line.
Would we have a better regression equation if we dropped these
customers from the sample?

. Measure the height of a male friend and plug it into Equation 1.21.

Does the equation come within ten pounds? If not, do you think
you see why? Why does the estimated equation predict the same
weight for all males of the same height when it is obvious that all
males of the same height don't weigh the same?

Look over the sample with the thought that it might not be ran-
domly drawn. Does the sample look abnormal in any way? (Hint:
Are the customers who choose to play such a game a random sam-
ple?} If the sample isn't random, would this have an effect on the
regression results and the estimated weights?

. Think of at least one other factor besides height that might be a

good choice as a variable in the weight/height equation. How
would you go about obtaining the data for this variable? What
would the expected sign of your variable’s coefficient be if the vari-
able were added to the equation?

Continuing with the height/weight example, suppose you collected
data on the heights and weights of 29 more customers and estimated
the following equation:

Y, = 125.1 + 4.03%; : (1.24)

where: Y; = the weight (in pounds) of the ith person

a.

b.

X; = the height (in inches over five feet) of the ith person

Why aren't the coefficients in Equation 1.24 the same as those we
estimated previously (Equation 1.21)?

Compare the estimated coefficients of Equation 1.24 with those in
Equation 1.21. Which equation has the steeper estimated relation-
ship between height and weight? Which equation has the higher
intercept? At what point do the two intersect?

Use Equation 1.24 to “predict” the 20 original weights given the
heights in Table 1.1. How many weights does Equation 1.24 miss by
more than ten pounds? Does Equation 1.24 do better or worse than
Equation 1.217 Could you have predicted this result beforehand?

. Suppose you had one last day on the weight-guessing job. What

equation would you use to guess weights? (Hint: There is more
than one possible answer.)

27
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Not all regression coefficients have positive expected signs. For example,
a Sports Illustrated article by Jaime Diaz reported on a study of golfing
putts of various lengths on the Professional Golfers Association (PGA)
Tour.!3 The article included data on the percentage of putts made (P;)
as a function of the length of the putt in feet (L;). Since the longer the
putt, the less likely even a professional is to make it, we'd expect L; to
have a negative coefficient in an equation explaining P;. Sure enough, if
you estimate an equation on the data in the article, you obtain:

b, = f(L;) = 83.6 — 4.1L; . (1.25)

a. Carefully write out the exact meaning of the coefficient of L;.

b. Use Equation 1.25 to determine the percent of the time you'd expect
a PGA golfer to make a 10-foot putt. Does this seem realistic? How
about a 1-foot putt or a 25-foot putt? Do these seem as realistic?

. Your answer to part b should suggest that there’s a problem in apply-
ing a linear regression to these data. What is that problem? (Hint: If
you're stuck, first draw the theoretical diagram you'd expect for P; as
a function of L;, then plot Equation 1.25 onto the same diagram.)

d. Suppose someone else took the data from the article and estimated:

P, = 83.6 — 4.1L; + e

Is this the same result as that in Equation 1.25? If so, what definition
do you need to use to convert this equation back to Equation 1.25?

Return to the housing price model of Section 1.5 and consider the fol-
lowing equation:

S; = 72.2 + 5.77P, (1.26)

where:  §; = the size (in square feet) of the ith house
P; = the price (in thousands of $) of that house

a. Carefully explain the meaning of each of the estimated regression
coefficients.

b. Suppose you're told that this equation explains a significant por-
tion (more than 80 percent) of the variation in the size of a house.
Have we shown that high housing prices cause houses to be large?
If not, what have we shown?

c. What do you think would happen to the estimated coefficients of

13. Jaime Diaz, “Perils of Putting,” Sports liustrated, April 3, 1989, pp. 76-79.
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~ this equation if we had measured the price variable in dollars in-
stead of in thousands of dollars? Be specific.

8. Ifan equation has more than one independent variable, we have to be
careful when we interpret the regression coefficients of that equation.
Think, for example, about how you might build an equation to ex-
plain the amount of money that different states spend per pupil on
public education. The more income a state has, the more they proba-
bly spend on public schools, but the faster enrollment is growing, the
less there would be to spend on each pupil. Thus, a reasonable equa-
tion for per pupil spending would include at least two variables: in-
come and enrollment growth:

§i = Bo T B1Yi T B2G + ' (1.27)

= educational dollars spent per public school student
in the ith state

Y; = per capita income in the ith state

G; = the percent growth of public school enrollment in

the ith state

where:  §;

a. State the economic meaning of the coefficients of Y and G. (Hint:
Remember to hold the impact of the other variable constant.)

b. If we were to estimate Equation 1.27, what signs would you expect
the coefficients of Y and G to have? Why?

¢. In 1995 Fabio Silva and Jon Sonstelie estimated a cross-sectional
model of per student spending by state that is very similar to Equa-
tion 1.27.14

§, = — 183 + 0.1422Y; — 5926G; (1.28)
n =49

Do these estimated coefficients correspond to your expectations?
Explain Equation 1.28 in common sense terms.

d. The authors measured G as a decimal, so if a state had a 10 percent
growth in enrollment, then G equaled .10. What would Equation 1.28
have looked like if the authors had measured G in percentage points,
so that if a state had 10 percent growth, then G would have equaled 10?
(Hint: Write out the actual numbers for the estimated coefficients.)

14. Fabio Silva and Jon Sonstelie, “Did Serrano Cause a Decline in School Spending?” National
Tax Review, June 1995, pp. 199-215. The authors also included the tax price for spending per
pupil in the ith state as a variable.
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9. Your friend estimates a simple equation of bond prices in different
years as a function of the interest rate that year (for equal levels of
risk) and obtains:

¥, = 101.40 — 4.78%;

where:  Y; = U.S. government bond prices (per $100 bond) in the
ith year
X, = the federal funds rate (percent) in the ith year

a. Carefully explain the meanings of the two estimated coefficients.
Are the estimated signs what you would have expected?

b. Why is the left-hand variable in your friend’s equation Y and not Y?

c. Didn't your friend forget the stochastic error term in the estimated
equation?

d_ What is the economic meaning of this equation? What criticisms
would you have of this model? (Hint: The federal funds rate is a

rate that applies to overnight holdings in banks.)

10. Housing price models can be estimated with time-series as well as
cross-sectional data. If you study aggregate time-series housing prices
(see Table 1.2 for data and sources), you have:

« +
p, = f(GDP) = 7404.6 + 19.8Y;
n = 31 (annual 1964-1994)

where: P, = the nominal median price of new single-family
houses in the U.S. in year t
Y,= the U.S. GDP in year t (billions of current $)

a. Carefully interpret the economic meaning of the estimated coeffi-
cients.

b. What is Y, doing on the right side of the equation? Shouldn't it be
on the left side?

c. Both the price and GDP variables are measured in nominal (or cur-
rent, as opposed to real, or inflation-adjusted) dollars. Thus a ma-
jor portion of the excellent explanatory power of this equation
(more than 99 percent of the variation in P, can be explained by Y,
alone) comes from capturing the huge amount of inflation that
took place between 1964 and 1994. What could you do to elimi-
nate the impact of inflation in this equation?

d. GDP is included in the equation to measure more than just infla-
tion. What factors in housing prices other than inflation does the
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TABLE 1.2 DATA FOR THE TIME-SERIES MODEL OF HOUSING PRICES

t Year Price(Py) GDP(Yy
1 1964 18,900 648.0
2 1965 , 20,000 702.7
3 1966 21,400 769.8
4 1967 22,700 . 8143
5 1968 24,700 889.3
6 1969 25,600 959.5
7 1970 . 23,400 1010.7
8 1971 25,200 1097.2
9 1972 27,600 1207.0
10 1973 , 32,500 1349.6
11 1974 ' 35,900 1458.6
12 1975 39,300 1585.9
13 1976 44,200 1768.4
14 1977 48,800 19741
15 1978 ‘ 55,700 2232.7
16 1979 62,900 - 2488.6
17 1980 64,600 2708.0
18 1981 68,900 3030.6
i 19 1982 69,300 3149.6
20 1983 75,300 3405.0
21 1984 79,900 3777.2
22 1985 84,300 4038.7
23 1986 92,000 4268.6
24 1987 104,500 4539.9
25 1988 112,500 4900.4
26 1989 120,000 5250.8
27 1990 122,900 5546.1
28 1991 120,000 5724.8
29 1992 121,500 6020.2
30 -~ 1993 126,500 6343.3
31 1994 130,000 6736.9

P, = the nominal median price of new single family houses in the U.S. in year t.
(Source: The Statistical Abstract of the U.S.)

Y, = the U.S. GDP in year t (billions of current dollars).
(Source: The Fconomic Report of the President)

Note: EViews filename = HOUSE1

GDP variable help capture? Can you think of a variable that might
do a better job?

11. The distinction between the stochastic error term and the residual is
one of the most difficult concepts to master in this chapter.
a. List at least three differences between the error term and the residual.

B eias, e
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12.

13.

b. Usually, we can never observe the error term, but we can get around
this difficulty if we assume values for the true coefficients. Calculate
values of the error term and residual for each of the following six
observations given that the true B, equals 0.0, the true B, equals
1.5, and the estimated regression equation is Yl = 0.48 + 1.32X;:

Y.

1

X.

1

2 6 3 8 5 4
1 4 2 5 3 4

(Hint: To answer this question, you'll have to solve Equation 1.13
for € and substitute Equation 1.15 into Equation 1.16.)
Note: filename = EX1

Look over the following equations and decide whether they are linear
in the variables, linear in the coefficients, both, or neither.

a Y=o+ BiX tg

b. Yy = By + BilogX; + &
c. logy¥; = Bg + BilogX; + ¢
d. Y, =By + B XP2 + ¢

e Yoo =B, + B, X + ¢

What's the relationship between the unemployment rate and the
amount of help-wanted advertising in an economy? In theory, the
higher the unemployment rate, the lower the number of help-wanted
ads, but is that what happens in the real world? Damodar Gujarati!®
tested this theory using time-series data for six years. You'd think that
six years’ worth of data would produce just six observations, far too
few with which to run a reliable regression. However, Gujarati used
one observation per quarter, referred to as “quarterly data,” giving
him a total of 24 observations. If we take his data set and run a linear-
in-the-variables regression, we obtain:

P
HWI, = 364 — 46.4UR, | (1.29)
n = 24 (quarterly 1962-1967)

where:  HWI, = the U.S. help-wanted advertising index in quarter t
UR, = the U.S. unemployment rate in quarter t

a. What sign did you expect for the coefficient of UR? (Hint: HWI
rises as the amount of help-wanted advertising rises.) Explain your
reasoning. Do the regression results support that expectation?

15. Damodar Gujarati, “The Relation Between the Help-Wanted Index and the Unemployment
Index,” Quarterly Review of Economics and Business, Winter 1968, pp. 67-73.
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IS

"% b. This regression is linear both in the coefficients and in the vari-

ables. Think through the underlying theory involved here. Does the
theory support such a linear-in-the-variables model? Why or why
not?

¢. The model includes only one independent variable. Does it make
sense to model the help-wanted index as a function of just one
variable? Can you think of any other variables that might be im-
portant?

d. (optional) We have included Gujarati’s data set, in Table 1.3 on our
website, and on the EViews CD (as file HELP1). Use the EViews
program (or any other regression software) to estimate Equation
1.29 on your own computer. Compare your results with Equation
1.29; are they the same?

Observation Quarter HWI UR
1 1962:1 104.66 5.63
2 1962:2 103.53 5.46
3 1962:3 97.30 5.63
4 1962:4 95.96 . 5.60
5 1963:1 98.83 5.83
6 1963:2 97.23 5.76
7 1963:3 99.06 5.56
8 1963:4 ' 113.66 5.63
9 1964:1 117.00 ’ 5.46

10 1964:2 119.66 5.26
11 ‘ 1964:3 124.33 5.06
12 1964:4 133.00 5.06
13 1965:1 143.33 4.83
14 1965:2 14466 4.73
15 ' 1965:3 152.33 4.46
16 1965:4 178.33 4.20
17 : ‘ 1966:1 B 192.00 3.83
18 1966:2 186.00 3.90
19 1966:3 188.00 3.86
20 1966:4 193.33 3.70
21 1967:1 187.66 o 3.63
22 1967:2 B 175.33 3.83
23 1967:3 178.00 3.93
24 : 1967:4 187.66 3.96

Note: filename = HELP1
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Ordinary Least Squares

2.1 Estimating Single-Independent-Variable Models with OLS

2.2 Estimating Multivariate Regression Models with OLS

2.3 Evaluating the Quality of a Regression Equation
2.4 Describing the Overall Fit of the Estimated Model
2.5  An Example of the Misuse of R2

2.6 Summary and Exercises

el

The bread and butter of regression analysis is the estimation of the coeffi-
cients of econometric models with a technique called Ordinary Least Squares
(OLS). The first two sections of this chapter summarize the reasoning behind
and the mechanics of OLS. Regression users usually rely on computers to do
the actual OLS calculations, so the emphasis here is on understanding what
OLS attempts to do and how it goes about doing it.

How can you tell a good equation from a bad one once it has been esti-
mated? One factor is the extent to which the estimated equation fits the ac-
tual data. The rest of the chapter is devoted to developing an understanding
of the most commonly used measures of this fit: R2 and the adjusted RZ, R?,
pronounced R-bar-squared. The use of R? is not without perils, however, so
the chapter concludes with an example of the misuse of this statistic.

Estimating Single-Independent-Variable Models with OLS

The purpose of regression analysis is to take a purely theoretical equation like:
Yi=Bo + BiXi + ¢ (2.1)
and use a set of data to create an estimated equation like:

Yi = By + B.X; ' (2.2)
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where each “hat” indicates a sample estimate of the true population value.
(In the case of Y, the “true population value” is E[Y|X].) The purpose of the
estimation technique is to obtain numerical values for the coefficients of an
otherwise completely theoretical regression equation.

The most widely used method of obtaining these estimates is Ordinary Least
Squares (OLS). OLS has become so standard that its estimates are presented as
a point of reference even when results from other estimation techniques are
used. Ordinary Least Squares is a regression estimation technique that calcu-

lates the Bs so as to minimize the sum of the squared residuals, thus:*

n
OLS minimizes 2, e? (i=12...,n) (2.3)
i=1
Since these residuals (e;s) are the differences between the actual Ys and the
estimated Ys produced by the regression (the Ys in Equation 2.2), Equation
2.3 is equivalent to saying that OLS minimizes S (Y - )2

2.1.1 Why Use Ordinary Least Squares?

Although OLS is the most-used regression estimation technique, it's not the
only one. Indeed, econometricians have invented what seems like zillions of dif-
ferent estimation techniques, a number of which we'll discuss later in this text.

There are at least three important reasons for using OLS to estimate regres-
sion models:

1. OLS is relatively easy to use.

2. The goal of minimizing >e? is quite appropriate from a theoretical
point of view.

3. OLS estimates have a number of useful characteristics.

The first reason for using OLS is that it’s the simplest of all econometric es-
timation techniques. Most other techniques involve complicated nonlinear

1. The summation symbol, 3, means that al} terms to its right should be added (or summed)
over the range of the i values attached to the bottom and top of the symbol. In Equation 2.3,
for example, this would mean adding up e? for all integer values between 1 and n:

n

2 = o2 2 2
’21ei =eftept - te
j=

Often the 3 notation is simply written as S as in Equation 2.5, and it is assumed that the

1
summation is over all observations from i = 1toi= n.Sometimes, the i is omitted entirely, as
in Equation 2.16, and the same assumption is made implicitly. For more practice in the basics
of summation algebra, see Exercise 2.
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formulas or iterative procedures, many of which are extensions of OLS itself.
In contrast, OLS estimates are simple enough that, if you had to, you could
compute them without using a computer or a calculator (for a single-
independent-variable model).

The second reason for using OLS is that minimizing the summed, squared
residuals is an appropriate theoretical goal for an estimation technique. To
see this, recall that the residual measures how close the estimated regression
equation comes to the actual observed data:

i=Yi Y (i=12...,n) (1.16)

Since it's reasonable to want our estimated regression equation to be as close
as possible to the observed data, you might think that you'd want to mini-
mize these residuals. The main problem with simply totaling the residuals
and choosing that set of 8s that minimizes them is that e; can be negative as
well as positive. Thus, negative and positive residuals mlght cancel each other
out, allowing a wildly inaccurate equation to have a very low > e;. For exam-
ple, if Y = 100,000 for two consecutive observations and if your equation
predicts 1.1 million and —900,000, respectively, your residuals will be +1
million and —1 million, which add up to zero!

We could get around this problem by minimizing the sum of the absolute
values of the residuals, but this approach has problems as well. Absolute val-
ues are difficult to work with mathematically, and summing the absolute val-
ues of the residuals gives no extra weight to extraordinarily large residuals.
That is, it often doesn’t matter if a number of estimates are off by a small
amount, but it's important if one estimate is off by a huge amount. For exam-
ple, recall the weight-guessing equation of Chapter 1; you lost only if you
missed the customer’s weight by 10 or more pounds. In such a circumstance,
you'd want to avoid large residuals.

Minimizing the summed squared residuals gets around these problems.
Squared functions pose no unusual mathematical difficulties in terms of ma-
nipulations, and the technique avoids canceling positive and negative residu-
als because squared terms are always positive. In addition, squaring gives
greater weight to big residuals than it does to smaller ones because ef gets rel-
atively larger as e; increases. For example, one residual equal to 4.0 has a
greater weight than two residuals of 2.0 when the residuals are squared (42 =
16vs. 22 + 22 = 8).

The final reason for using OLS is that its estimates have at least three desir-
able characteristics:

1. The estimated regression line (Equation 2. 2) goes through the means
© of Yand X. That is, if you substitute Y and X into Equation 2.2, the
equation holds exactly: Y; = By + B;X;.
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2. The sum of the residuals is exactly zero.

3. OLS can be shown to be the “best” estimator possible under a set of
fairly restrictive assumptions.

An estimator is a mathematical technique that is applied to a sample of
data to produce real-world numerical estimates of the true population re-
gression coefficients (or other parameters). Thus, Ordinary Least Squares is
an estimator, and a B produced by OLS is an estimate.

2.1.2 How Does OLS Work?

How would OLS estimate a single-independent-variable regression model
like Equation 2.17

Y, =Bo t B1X; + & (2.1)

OLS selects those estimates of By and B; that minimize the squared residuals,
summed over all the sample data points:

i 2= (,-%)?* (i=1,2...,n) | (2.4)

However, ?i = f&o + BXH, so OLS actually minimizes
Sef = 2 (¥~ Bo ~ BiX)? (25)
1 1

by choosing the Bs that do so. In other words, OLS yields the fis that mini-
mize Equation 2.5. For an equation with just one independent variable, these
coefficients are?:

%=X+ (%]
By =— (2.6)
3% -X%° - s

i=1 :

and, given this estimate of 8,

2. For those with a moderate grasp of calculus and algebra, the derivation of these equations is
informative. See Exercise 12.
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(2.7)

>
<
Il
~<I
|
-
el

where X = the mean of X, or 3X/n, and Y = the mean of Y, or 3, Y/n.

What do these equations mean? Equation 2.6 sets f’)l equal to the joint
variation of X and Y (around their means) divided by the variation of X
around its mean. It measures the portion of the variation in Y that is associ-
ated with variations in X. Equation 2.7 defines QO to ensure that the regres-
sion equation does indeed pass through the means of X and Y. In addition, it
can be shown that Equations 2.6 and 2.7 provide Bs that minimize the
summed square residuals. Note that for each different data set, we'll get dif-
ferent estimates of B; and By, depending on the sample.

mia—

2.1.3 Total, Explained, and Residual Sums of Squares

Before going on, let’s pause to develop some measures of how much of the vari-
ation of the dependent variable is explained by the estimated regression equa-
tion. A comparison of the estimated values with the actual values can help the
researcher get a feeling for the adequacy of the hypothesized regression model.

Various statistical measures can be used to assess the degree to which the Ys
approximate the corresponding sample Ys, but all of them are based on the de-
gree to which the regression equation estimated by OLS explains the values of
Y better than a naive estimator, the sample mean, denoted by Y. That is, econo-
metricians use the squared variations of Y around its mean as a measure of the
amount of variation to be explained by the regression. This computed quantity
is usually called the total sum of squares, or TSS, and is written as:

n
TSS = > (Y; — V)2 (2.8)
i=1
For Ordinary Least Squares, the total sum of squares has two components, that
variation which can be explained by the regression and that which cannot:

2= -9+ 36 (2.9)
1 1 1
Total Sum = Explained  + Residual
of ‘ Sum of Sum of
Squares Squares Squares
(TSS) (ESS) (RSS)

This is usually called the “decomposition of variance.”

e A
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Figure 2.1 Decomposition of the Variance in Y

The variation of Y around its mean (Y — Y) can be decomposed into two parts: (1 _
(Y; — Y), the difference between the estimated value of Y (Y) and the mean value of Y (Y);
and (2) (Y, — Y;), the difference between the actual value of Y and the estimated value of Y.

Figure 2.1 illustrates the decomposition of variance for the simple regres-
sion model. All estimated values of Y, lie on the estimated regression line
Y, =B + B,X;. The total deviation of the actual value of Y; from its sample
mean value is decomposed into two components, the deviation of Y; from
the mean and the deviation of the actual value of Y; from the fitted value Y;.
Thus, the first component of Equation 2.9 measures the amount of the
squared deviation of Y; from its mean that is explained by the regression line.
This component of the total sum of the squared deviations, called the ex-
plained sum of squares, or ESS, is attributable to the fitted regression line.

The ESS is the explained portion of the TSS. The unexplained portion (that
is, unexplained in an empirical sense by the estimated regression equation),
is called the residual sum of squares, or RSS.3

We can see from Equation 2.9 that the smaller the RSS is relative to the
TSS, the better the estimated regression line appears to fit the data. Thus,
given the TSS, which no estimating technique can alter, researchers desire an
estimating technique that minimizes the RSS and therefore maximizes the
ESS. That technique is OLS.

3. Note that some authors reverse the definitions of TSS, RSS, and ESS (defining ESS as >e?),
and other authors reverse the order of the letters, as in SSR.

39
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m R
2.1.4 An lllustration of OLS Estimation

The equations for calculating regression coefficients might seem a little for-
bidding, but it's not hard to apply them yourself to data sets that have only a
few observations and independent variables. Although you'll usually want to
use regression software packages to do your estimation, you'll understand
OLS better if you work through the following illustration.

To keep things simple, let’s attempt to estimate the regression coefficients
of the height and weight data given in Section 1.4. For your convenience in
following this illustration, the original data are reproduced in Table 2.1. As
was noted in Section 2.1.2, the formulas for OLS estimation for a regression
equation with one independent variable are Equations 2.6 and 2.7:

S =% (% - V]

>
My
Il
i
¥

e (2.6)
2 (X — X)? |

i=1
Qo =Y - BIX . (2.7)
If we undertake the calculations outlined in Table 2.1 and substitute them
into Equations 2.6 and 2.7, we obtain these values:

~ 590.20
17 9250

= 6.38

By = 169.4 — (6.38 - 10.35) = 103.4

If you compare these estimates, you'll find that the manually calculated coef-
ficient estimates are the same as the computer regression results summarized
in Section 1.4.

Table 2.1 can also be used to exemplify some of the characteristics of OLS esti-
mates. For instance, the sum of the Ys (column 8) equals the sum of the Ys (col-
umn 2), so the sum of the residuals (column 9) does indeed equal zero (except
for rounding errors). Another property of OLS estimates, that the estimated re-
gression line goes through the means of Y and X, can be shown by substituting
Y and X from Table 2.1 into the estimated regression equation. (Of course, this is
hardly a surprise, since OLS calculates Bo s0 as to ensure that this property holds.)

The figures in Table 2.1 can also be used to derive the total sum of squares
(TSS), the explained sum of squares (ESS), and the residual sum of squares
(RSS). The TSS equals 3, (Y; — Y)?2, or the sum of the squares of the values in
column four, which equals 5,065. The ESS equals >, (S?i — Y)?, or the sum of
the squared differences between the values in column eight and Y, which
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TABLE 2.1 THE CALCULATION OF ESTIMATED REGRESSION COEFFICIENTS FOR
THE WEIGHT/HEIGHT EXAMPLE

Raw Data Required Intermediate Calculations
i Yi X (Y-Y) (6-% X%-%F X%-X¥-V) Y e=Yi- Y;
m (2 3 @ (5) (6) @) ®) C)]
1 140 5 —29.40 —5.35 28.62 157.29 135.3 4.7
2 157 9 -—12.40 —-1.35 1.82 16.74 160.8 -3.8
3 205 13 35.60 2.65 7.02 94.34 186.3 18.7
4 198 12 2860 - 1.65 2.72 47.19 179.9 18.1
5 162 10 -7.40 —-0.35 0.12 2.59 167.2 —-5.2
6 174 11 4.60 0.65 0.42 2.99 173.6 0.4
7 150 8 —19.40 —2.35 5.52 : 45.59 154.4 —4.4
8 165 9 —4.40 —-1.35 1.82 5.94 160.8 4.2
9 170 10 0.60 —0.35 0.12 —0.21 167.2 2.8
10 180 12 10.60 1.65 2.72 17.49 179.9 0.1
11 170 11 0.60 0.65 0.42 : 0.39 173.6 -3.6
12 162 9 —-740 —1.35 1.82 ‘ 9.99 160.8 1.2
13 165 10 —4.40 —0.35 0.12 7 1.54 167.2 2.8
14 180 12 10.60 1.65 2.72 17.49 179.9 0.1
15 160 8 —9.40 —2.35 5.52 22.09 154.4 5.6
16 155 9 -14.40 -1.35 1.82 19.44 160.8 —-5.8
17 165 10 —4.40 —0.35 0.12 1.54 167.2 —2.2
18 190 15 20.60 4.65 21.62 95.79 199.1 -9.1
19 185 13 15.60 2.65 7.02 41.34 186.3 -1.3
20 155 11 —14.40 0.65 0.42 —-9.36 173.6 —18.6
Sum 3388 207 0.0 0.0 92.50 590.20 33833 —03
Mean 169.4 10.35 0.0 0.0 169.4 0.0

equals 3,765. The RSS, Se?, is the sum of the squares of the values in col-
umn nine, which equals 1,305. Note that TSS = ESS + RSS except for round-
ing errors. For practice in the use of these concepts, see Exercise 4.

2.2 n Models with OLS

Estimating Multivariate Regressio

Let's face it, only a few dependent variables can be explained fully by a single
independent variable. A person’s weight, for example, is influenced by more
than just that person’s height. What about bone structure, percent body fat,
exercise habits, or diet?

As important as additional explanatory variables might seem to the

4. If there is no constant term in the equation, TSS will not necessarily equal ESS + RSS, nor
will > e necessarily equal zero.
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‘height/weight example, there’s even more reason to include a variety of inde-

pendent variables in economic and business applications. Although the
quantity demanded of a product is certainly affected by price, that’s not the
whole story. Advertising, aggregate income, the prices of substitutes, the in-
fluence of foreign markets, the quality of customer service, possible fads, and
changing tastes all are important in real-world models. As a result, we feel
that it's vital to move from single-independent-variable regressions to multi-
variate regression models, equations with more than one independent variable.

2.2.1 The Meaning of Multivariate Regression Coefficients

The general multivariate regression model with K independent variables can
be represented by Equation 1.12:

Yi =B + B Xy +BoXpi + -0 +BXi t g (1.12)

where i, as before, goes from 1 to n and indicates the observation number.
Thus, X,; indicates the ith observation of independent variable X;, while X,;
indicates the ith observation of another independent variable, X,.

The biggest difference between a single-independent-variable regression
model and a multivariate regression model is in the interpretation of the lat-
ter’s slope coefficients. These coefficients, often called partial® regression coef-
ficients, are defined to allow a researcher to distinguish the impact of one
variable on the dependent variable from that of other independent variables.

Specifically, a multivariate regression coefficient indicates the change
in the dependent variable associated with a one-unit increase in the in-
dependent variable in question holding constant the other independent
variables in the equation.

This last italicized phrase is a key to understanding multiple regression (as
multivariate regression is often called). The coefficient §; measures the im-
pact on Y of a one-unit increase in X;, holding constant X,, X5, . . . and Xg
but not holding constant any relevant variables that might have been omitted

5. The term “partial regression coefficient” will seem especially appropriate to those readers
who have taken calculus, since multivariate regression coefficients correspond to partial deriva-
tives. Indeed, in Equation 1.12 the partial derivative of Y; with respect to Xy; is B;, etc.
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from the equation (e.g., Xg4+1)- The coefficient B is the value of Y when all
the Xs and the error term equal zero. As we'll learn in Section 7.1, you should
always include a constant term in a regression equation, but you should not
rely on estimates of B for inference.

As an example of multivariate regression, let’s consider the following an-
nual model of the per capita demand for beef in the United States:

B, = 37.54 — 0.88P, + 11.9Yd, ~(2.10) |

where: B, = the per capita consumption of beef in year t (in pounds per
person)
P, = the price of beef in year t (in cents per pound)
Yd, = the per capita disposable income in year t (in thousands of
dollars)

The estimated coefficient of income, 11.9, tells us that beef consumption will
increase by 11.9 pounds per person if per capita disposable income goes up
by $1,000, holding constant the price of beef. The ability to hold price con-
stant is crucial because we'd expect such a large increase in per capita income
to stimulate demand, therefore pushing up prices and making it hard to dis-
tinguish the effect of the income increase from the effect of the price increase.
The multivariate regression estimate allows us to focus on the impact of the
income variable by holding the price variable constant.

Note, however, that the equation does not hold constant other possible
variables (like the price of a substitute) because these variables are not in-
cluded in Equation 2.10. Before you move on to the next section, take the time
to think through the meaning of the estimated coefficient of P in Equation
2.10; do you agree that the sign and relative size fit with economic theory?

2.2.2 OLS Estimation of Multivariate Regression Models

The application of OLS to an equation with more than one independent vari-
able is quite similar to its application to a single—independent—variable
model. To see this, let’s follow the estimation of the simplest possible multi-
variate model, one with just two independent variables:

Y; = Bo + BiXy + BoXoi * & (2.11)
The goal of OLS is to choose those Bs that minimize the summed square

residuals, but now these residuals are from a multivariate model. For Equa-
tion 2.11, OLS would minimize:

43
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e = (Y - )% = 3(Y; - Bo — BiXys — f”zxzi)z (2.12)

While OLS estimation of multivariate models is identical in general approach
to that of single-independent-variable models, the equations themselves are
more cumbersome. For Equation 2.11, the estimated coefficients are:

A (EYXJ(EX%) - (zyxz)(lexz)

2.13

b1 Ex)(E8) - (Sxix)’ (213)
. )R - (Zyx) (2xx,)

= 2.14

b2 (SD(E) - (Zxxm)® 214

Bo =Y - B:X; — B:Xy , (2.15)

where lower case variables indicate deviations from the mean, asiny = Y; — Y;
x; = X;; — Xpand x, = Xy — X,

For the reader who is just about to throw this book away because of the
complexity of the previous equations, there’s both bad and good news. The
bad news is that Equations 2.13 through 2.15 are for a regression model with
only two independent variables; with three or more, the situation really gets
out of hand! The good news is that numerous user-friendly computer pack-
ages can calculate all of the above in less than a second of computer time. In-
deed, only someone lost in time or stuck on a desert island would bother es-
timating a multivariate regression model without a computer. The rest of us
will use EViews, SHAZAM, SAS, TSP, RATS, BIOMED, MINITAB, or any of the
other commercially available regression packages. The purpose of presenting
these equations is to help you understand what multivariate estimation in-
volves, not to teach you how to do it without a computer.

2.2.3 An Example of a Multivariate Regression Model

As an example of the estimation of a multivariate regression model, let’s re-
turn to the beef demand equation of the previous section, Equation 2.10:

A

B, = 37.54 — 0.88P, + 11.9Yd, (2.10)

where: B, = the per capita consumption of beef in year t (in pounds per
person)
P, = the price of beef in year t (in cents per pound)
Yd, = the per capita disposable income in year t (in thousands of
dollars)
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TABLE 2.2 DATA FOR THE DEMAND FOR BEEF EXAMPLE

Year B Yd P
1960 85.1 6.036 20.40
1961 87.8 6.113 20.20
1962 88.9 6.271 21.30
1963 94.5 6.378 19.90
1964 99.9 6.727 18.00
1965 99.5 7.027 19.90
1966 104.2 7.280 22.20
1967 106.5 7.513 22.30
1968 109.7 7.728 23.40 .
1969 110.8 7.891 26.20
1970 113.7 8.134 27.10
1971 113.0 8.322 29.00
1972 116.0 8.562 33.50
1973 108.7 9.042 42.80
1974 115.4 8.867 35.60
1975 118.9 8.944 32.20
1976 \ 127.4 . 9.175 33.70
1977 123.5 9.381 34.40
1978 117.9 ' 9.735 48.50
1979 . 105.4 9.829 66.10
1980 103.2 9.722 62.40
1981 104.2 9.769 58.60
1982 1037 9.725 56.70
1983 - 105.7 9.930 55.50
1984 105.5 10.419 57.30
1985 106.5 10.625 53.70
1986 107.3 10.905 52.60
1987 © 1033 10.970 ‘ 61.10

Note: filename = BEEF2

These coefficients were calculated by a computer program using Equations
2.13-2.15 with the data in Table 2.2.

How would we go about graphing a multivariate regression result? We
could use a three-dimensional diagram to graph Equation 2.10, as can be seen
in Figure 2.2, but any additional variables would push us into four or more di-
mensions. What can we do? The answer is to draw a diagram of the dependent
variable as a function of one of the independent variables holding the other in-
dependent variable(s) constant. In geometric terms, this means restricting the di-
agram to just one slice (or plane) of its actual multidimensional space.

To illustrate, look at Figures 2.3 and 2.4. These figures contain two differ-
ent views of Equation 2.10. Figure 2.3 is a diagram of the effect of P on B,
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Figure 2.2 Beef Consumption as a Function of Price and Income

A three-dimensional rendering of Equation 2.10 is a plane that rises as per capita dispos-
able income rises but falls as the price of beef rises.

Slope = —0.88 = 3, (holding Yd, constant)

0 P,

Figure 2.3 Beef Consumption as a Function of the Price of Beef

In Equation 2.10, an increase in the price of beef by a penny decreases per capita beef
consumption by 0.88 pounds, holding disposable income (per capita) constant.
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Slope = 11.9 = By (holding P, constant)

0 Y4,

Figure 2.4 Beef Consumption as a Function of Per Capita Disposable
Income

In Equation 2.10, an increase in per capita disposable income of a thousand dollars in-
creases per capita beef consumption by 11.9 pounds, holding the price of beef constant.

holding Yd constant, and Figure 2.4 shows the effect of Yd on B, holding P
constant. These two figures are graphical representations of multivariate re-
gression coefficients, since they measure the impact on the dependent vari-
able of a given independent variable, holding constant the other variables in
the equation.

2.3 Evaluating the Quality of a Regression Equation

If the bread and butter of regression analysis is OLS estimation, then the heart
and soul of econometrics is figuring out how good these OLS estimates are.

Many beginning econometricians have a tendency to accept regression es-
timates as they come out of a computer, or as they are published in an article,
without thinking about the meaning or validity of those estimates. Such
blind faith makes as much sense as buying an entire wardrobe of clothes
without trying them on. Some of the clothes will fit just fine, but many oth-
ers will turn out to be big (or small) mistakes.

Instead, the job of an econometrician is to carefully think about and eval-
uate every aspect of the equation, from the underlying theory to the quality

il e R e
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of the data, before accepting a regression result as valid. In fact, most good
econometricians spend quite a bit of time thinking about what to expect
from an equation before they estimate that equation.

Once the computer estimates have been produced, however, it’s time to
evaluate the regression results. The list of questions that should be asked dur-
ing such an evaluation is long. For example:

1. Is the equation supported by sound theory?

How well does the estimated regression as a whole fit the data?
Is the data set reasonably large and accurate?

Is OLS the best estimator to be used for this equation?

voA W

How well do the estimated coefficients correspond to the expectations
developed by the researcher before the data were collected?

6. Are all the obviously important variables included in the equation?
7. Has the most theoretically logical functional form been used?

8. Does the regression appear to be free of major econometric
problems?

The goal of this text is to help you develop the ability to ask and appropri-
ately answer these kinds of questions. In fact, the number in front of each
question above roughly corresponds to the chapter in which we’ll address the
issues raised by that question. Since this is Chapter 2, it'll come as no surprise
to you to hear that the rest of the chapter will be devoted to the second of
these topics, the overall fit of the estimated model.

2.4 Describing the Overall Fit of the Estimated Model

Let's face it, we expect that a good estimated regression equation will explain
the variation of the dependent variable in the sample fairly accurately. If it
does, we say that the estimated model fits the data well.

Looking at the overall fit of an estimated model is useful not only for eval-
uating the quality of the regression, but also for comparing models that have
different data sets, functional forms, or combinations of independent vari-
ables. We can never be sure that one estimated model represents the truth
any more than another, but evaluating the quality of the fit of the equation is
one ingredient in a choice between different formulations of a regression
model. The simplest commonly used measure of that fit is the coefficient of
determination, R2,
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2.4.1 RZ, The Coefficient of Determination

The coefficient of determination is the ratio of the explained sum of squares
to the total sum of squares:

2
_BSS_ . RSS _ ¢

==l T =1- Sw 57 (2.16)

R2
The higher R?, the closer the estimated regression equation fits the sample
data. Measures of this type are called “goodness of fit” measures. Since TSS,
RSS, and ESS are all nonnegative (being squared deviations), and since
ESS = TSS, R? must lie in the interval

0=R’=<1 (2.17)

A value of R? close to one shows an excellent overall fit, whereas a value near
zero shows a failure of the estimated regression equation to explain the val-
ues of Y; better than could be explained by the sample mean Y. In other
words, R2 can be defined by the percentage of the variation of Y around Y
that is explained by the regression equation. Since OLS selects the parameter
estimates that minimize RSS, OLS provides the largest possible R2, given the
linear specification of the model.

Figures 2.5 through 2.7 demonstrate some extremes. Figure 2.5 shows an X
and Y that are unrelated. The fitted regression line might as well be Y = Y,
the same value it would have if X were omitted. As a result, the estimated lin-
ear regression is no better than the sample mean as an estimate of Y;. The ex-
plained portion, ESS, = 0, and the unexplained portion, RSS, equals the total
squared deviations TSS; thus, R? = 0. In this case, the residuals are large rela-
tive to the deviations in Y from its mean, implying that a regression line is
not useful in describing the relationship between X and Y,

Figure 2.6 shows a relationship between X and Y that can be “explained”
quite well by a linear regression equation: the value of R? is .95. This kind of
result is typical of a time-series regression with a good fit. Most of the varia-
tion has been explained, but there still remains a portion of the variation that
is essentially random or unexplained by the model. Goodness of fit is relative
to the topic being studied. If the sample is cross-sectional, an R? of .50 might
be considered a good fit. In other words, there is no simple method of deter-
mining how high R? must be for the fit to be considered satisfactory. Instead,
knowing when R? is relatively large or small is a matter of experience. It
should be noted that a high R? does not imply that changes in X lead to
changes in Y, as there may be an underlying variable whose changes lead to
changes in both X and Y simultaneously.
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X and Y are not related; in such a case, R2 would be 0.

0 X

Figure 2.6

A set of data for X and Y that can be “explained” quite well with a regression line (R? = .95).

Figure 2.7

A perfect fit: all the data points are on the regression line, and the resulting R? is 1.
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Figure 2.7 shows a perfect fit of R2 = 1. Such a fit implies that no estima-
tion is required. The relationship is completely deterministic, and the slope
and intercept can be calculated from the coordinates of any two points. In
fact, reported equations with R2s equal to (or very near) one should be
viewed with suspicion; they very likely do not explain the movements of the
dependent variable Y in terms of the causal proposition advanced, even
though they explain them empirically.

2.4.2 R2 The Adjusted R

A major problem with R2 is that adding another independent variable to a
particular equation can never decrease R2. That is, if you compare two identi-
cal regressions (same dependent variable and independent variables), except
that one has an additional independent variable, the equation with the
greater number of independent variables will always have a better (or equal)
fit as measured by R2. To see this, recall the equation for R2, Equation 2.16:

. 2
R2=1—%=1————2ﬁ—:—5 (2.16)
| 2 -V

Since the dependent variable has not changed, TSS is still the same. Also,
since OLS ensures that adding a variable will not increase the summed
squared residuals, RSS will only decrease or stay the same.® If RSS decreases,
RSS/TSS will also decrease and 1 — RSS/TSS will increase. Thus, adding a
variable to an equation virtually guarantees that R? will increase.

Perhaps an example will make this clear. Let's return to our weight guess-
ing regression, Equation 1.21:

Estimated weight = 103.40 + 6.38 - Height (over five feet)

The R2 for this equation is .74. If we now add a completely nonsensical
variable to the equation (say, the campus post office box number of each in-
dividual in question), then it turns out that the results become:

Estimated weight = 102.35 + 6.36 (height > five feet) + 0.02 (box#)

but the R2 for this equation is .75! Thus, an individual using R2 alone as the
measure of the quality of the fit of the regression would choose the second
version as better fitting.

6. You know that RSS will never increase because the OLS program could always set the coefficient
of the added variable equal to zero, thus giving the same fit as the previous equation. The coefficient
of the newly added variable being zero is the only circumstance in which R? will stay the same when
avariable is added. Otherwise, R2 will always increase when a variable is added to an equation.
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The inclusion of the campus post office box variable not only adds a non-
sensical variable to the equation, but it also requires the estimation of an-
other coefficient. This lessens the degrees of freedom, or the excess of the
number of observations (n) over the number of coefficients (including the
intercept) estimated (K + 1). For instance, when the campus box number
variable is added to the weight/height example, the number of observations
stays constant at 20, but the number of estimated coefficients increases from
2 to 3, so the number of degrees of freedom falls from 18 to 17. This decrease
has a cost, since the lower the degrees of freedom, the less reliable the esti-
mates are likely to be.” Thus, the increase in the quality of the fit caused by
the addition of a variable needs to be compared to the decrease in the de-
grees of freedom before a decision can be made with respect to the statistical
impact of the added variable.

In essence, R? is of little help if we're trying to decide whether adding a
variable to an equation improves our ability to meaningfully explain the de-
pendent variable. Because of this problem, econometricians have developed
another measure of the quality of the fit of an equation. That measure is R?
(pronounced R-bar-squared), which is R? adjusted for degrees of freedom:

CRSS/(n-K-1) 2el/(n -K-1)
WS/(n-1) S -9)YEe -

R = (2.18)

Notice that the only difference between R? and R? is that the latter has been
adjusted to take account of the K degrees of freedom that were lost in the cal-
culations of the estimated slope coefficients. As a result, it’s no surprise to
learn that one can be expressed in terms of the other. If we substitute Equa-
tion 2.16 into Equation 2.18, it turns out that R? can be expressed as a func-
tion of R?:
RZ=1-(1-R?)- (2.19)
(n -

R2 will increase, decrease, or stay the same when a variable is added to an
equation, depending on whether the improvement in fit caused by the addi-
tion of the new variable outweighs the loss of the degree of freedom. Indeed,

the R? for the weight-guessing equation decreases to .72 when the mail box
variable is added. The mail box variable, since it has no theoretical relation to

7. For more on degrees of freedom, see Section 3.1.4.
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weight, should never have been included in the equation, and the R? mea-
sure supports this conclusion.

The highest possible RZ is 1.00, the same as for RZ. The lowest possible R?,
however, is not .00; if R? is extremely low, R? can be slightly negative. To see
this, substitute 0 for R? into Equation 2.19.

R2 can be used to compare the fits of equations with the same dependent
variable and different numbers of independent variables. Because of this
property, most researchers automatically use R? instead of RZ when evaluat-
ing the fit of their estimated regression equations. In fact, R? has become so
popular that it replaces R? in most reported regression results.

Finally, a warning is in order. Always remember that the quality of fit of an
estimated equation is only one measure of the overall quality of that regres-
sion. As mentioned above, the degree to which the estimated coefficients
conform to economic theory and the researcher’s previous expectations
about those coefficients are just as important as the fit itself. For instance, an
estimated equation with a good fit but with an implausible sign for an esti-
mated coefficient might give implausible predictions and thus not be a very
useful equation. Other factors, such as theoretical relevance and usefulness,
also come into play. Let’s look at an example of these factors.

2.5 An Example of the Misuse of R?

Section 2.4 implies that the higher the overall fit of a given equation, the bet-
ter. Unfortunately, many beginning researchers assume that if a high R? (or
R?) is good, then maximizing R? is the best way to maximize the quality of
an equation. Such an assumption is dangerous because a good overall fit is
only one measure of the quality of an equation.

Perhaps the best way to visualize the dangers inherent in maximizing R?
without regard to the economic meaning or statistical significance of an
equation is to look at an example of such misuse. This is important because it
is one thing for a researcher to agree in theory that “R? maximizing” is bad,
and it is another thing entirely for that researcher to avoid subconsciously
maximizing R? on projects. It is easy to agree that the goal of regression is not
to maximize R?, but many researchers find it hard to resist that temptation.

As an example, assume that you've been hired by the State of California to
help the legislature evaluate a bill to provide more water to Southern Califor-
nia.8 This issue is important because a decision must be made whether or not

8. The principle involved in this section is the same one that was discussed during the actual re-
search, but these coefficients are hypothetical because the complexities of the real equation are
irrelevant to our points.
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to ruin, through a system of dams, one of the state’s best trout fishing areas.
On one side of the issue are Southern Californians who claim that their
desert-like environment requires more water; on the other side are outdoors
lovers and environmentalists who want to retain the natural beauty for
which California is famous. Your job is to forecast the amount of water de-
manded in Los Angeles County, the biggest user of water in the state.

Because the bill is about to come before the state legislature, you are
forced to choose between two regressions that have already been run for you,
one by the state econometrician and the other by an independent consultant,
You will base your forecast on one of these two equations. The state econo-
metrician’s equation:

W = 24,000 + 48,000PR + 0.40P — 370RF (2.20)
R? = 859 DF = 25

The independent consultant’s equation:
W = 30,000 + 0.62P — 400RF (2.21)
R? = .847 DF = 26 |

where: W = the total amount of water consumed in Los Angeles County

in a given year (measured in millions of gallons)

PR = the price of a gallon of water that year (measured in real
dollars)

P = the population in Los Angeles County that year

RF = the amount of rainfall that year (measured in inches)

DF = degrees of freedom, which equal the number of observa-
tions (n = 29, since the years in the sample are 1970
through 1998) minus the number of coefficients estimated

Review these two equations carefully before going on with the rest of the sec-
tion. What do you think the arguments of the state econometrician were for using
his equation? What case did the independent econometrician make for her work?

The question is whether or not the increased R? is worth the unexpected
sign in the price of water coefficient in Equation 2.20. The state econometri-
cian argued that given the better fit of his equation, it would do a better job
of forecasting water demand. The independent consultant argued that it did
not make sense to expect that an increase in price in the future would, hold-
ing the other variables in the equation constant, increase the quantity of wa-
ter demanded in Los Angeles. Furthermore, given the unexpected sign of the
coefficient, it seemed much more likely that the demand for water was unre-
lated to price during the sample period or that some important variable
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(such as real per capita income) had been left out of both equations. Since
the amount of money spent on water was fairly low compared with other ex-
penditures during the sample years, the consultant pointed out, it was possi-
ble that the demand for water was fairly price inelastic. The economic argu-
ment for the positive sign observed by the state econometrician is difficult to
justify; it implies that as the price of water goes up, so does the quantity of
water demanded.

Was this argument simply academic? The answer, unfortunately, is no. If a
forecast is made with Equation 2.20, it will tend to overforecast water de-
mand in scenarios that foresee rising prices and underforecast water demand
with lower price scenarios. In essence, the equation with the better fit would
do a worse job of forecasting.”

Thus, a researcher who uses R? as the sole measure of the quality of an
equation (at the expense of economic theory or statistical significance) in-
creases the chances of having unrepresentative or misleading results. This
practice should be avoided at all costs. No simple rule of econometric esti-
mation is likely to work in all cases. Instead, a combination of technical
competence, theoretical judgment, and common sense makes for a good
econometrician.

To help avoid the natural urge to maximize R? without regard to the rest of
the equation, you might find it useful to imagine the following conversation:

You: Sometimes, it seems like the best way to choose between two models
is to pick the one that gives the highest R.

Your Conscience: But that would be wrong.

You: 1 know that the goal of regression analysis is to obtain dependable es-
timates of the true population coefficients and not to get a high R?, but my
results “look better” if my fit is good.

Your Conscience: Look better to whom? It's not at all unusual to get a high
R? but find that some of the regression coefficients have signs that are con-
trary to theoretical expectations.

You: Well, I guess I should be more concerned with the logical relevance of
the explanatory variables than with the fit, huh?

Your Conscience: Right! If in this process we obtain a high R?, well and
good, but if R? is high, it doesn't mean that the model is good.

You: Amen.

9. A couple of caveats to this example are in order. First, the purpose of the rainfall variable in
both equations was to explain past behavior. For forecasting purposes, average rainfall figures
would likely be used because future rainfall would not be known. Second, the income variable
suggested by the independent consultant turned out to have a relatively small coefficient. This
is because water expenditure is so minor in relation to the overall budget that the demand for
water turned out to be fairly income inelastic as well as fairly price inelastic.
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2.6 Summary |

Ordinary Least Squares (OLS) is the most frequently used method of
obtaining estimates of the regression coefficients from a set of data.
OLS chooses those Bs that minimize the summed squared residuals
(X e?) for a particular sample.

The coefficient of determination, R?, is the simplest measure of the
degree of statistical fit of an estimated equation. It can be thought of
as the percentage of the variation of Y around its mean that has been
explained by a particular regression equation and is defined as the ex-
plained sum of squares (ESS) divided by the total sum of squares
(TSS). A major fault of R? is that it always increases (technically, never
decreases) when a variable is added to an equation.

R-bar-squared (R2) is the coefficient of determination (R?) adjusted
for degrees of freedom. R? increases when a variable is added to an
equation only if the improvement in fit caused by the addition of the
new variable more than offsets the loss of the degree of freedom that
is used up in estimating the coefficient of the new variable. As a result,
most researchers will automatically use R? instead of R? when evalu-
ating the fit of their estimated regression equations.

Always remember that the quality of fit of an estimated equation is
only one of the measures of the overall quality of that regression. The
degree to which the estimated coefficients conform to economic the-
ory and expectations developed by the researcher before the data were
collected is at least as important as the size of R? itself.

Exercises ’

(Answers to even-numbered exercises are in Appendix A.)

1.

Write the meaning of each of the following terms without referring to
the book (or your notes), and compare your definition with the ver-
sion in the text for each:

ordinary least squares

. the meaning of a multivariate regression coefficient

total, explained, and residual sums of squares

. coefficient of determination

degrees of freedom

R2

e AN T

el
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To get more practice in the use of summation notation, use the data
in question 4 below on Income (Y) and Percent of the labor force
on farms (X) to answer the following questions. (Hint: Before start-
ing this exercise, reread footnote 1 in this chapter which defines
SX=X; + X, + 00 +X,)
. Calculate 2 X. (Hint: Note thatn = 10.)
. Calculate D)Y.

Calculate D.3X. Does it equal 3 >, X?
. Calculate >, (X + Y). Does it equal 2 X + 2Y?

aen T

)

. In a single-independent variable model, what is the relationship be-
tween BO and Bl? More specifically, if Bl is known to be “too high”
in a given equation, would you expect Bo to be too high, too low, or
unaffected? Why?

b. Suppose you estimate equations A and B on the same data and

find that §; = &;. What values for B, &g, and/or &, does this re-

sult imply?

AY; =By + B1Xy; t+ €y

B: Yi = Qg + (Xlxli + OLZXZi + €hi

Just as you are about to estimate a regression (due tomorrow), mas-
sive sunspots cause magnetic interference that ruins all electrically
powered machines (e.g., computers). Instead of giving up and
flunking, you decide to calculate estimates from your data (on per
capita income in thousands of U.S. dollars as a function of the per-
cent of the labor force in agriculture in 10 developed countries) us-
ing methods like those used in Section 2.1.4 without a computer.
Your data are:

Country A B C D E F G H 1 J

Income 6 8 8 7 7 12 9 8 9 10
Percent
onfams 9 10 8 7 10 4 5 5 6 7.

a. Calculate By and B;.

b. Calculate R? and R2.

c. If the percentage of the labor force in agriculture in another devel-
oped country was 8 percent, what level of per capita income (in
thousands of U.S. dollars) would you guess that country had?

e S B kB e i
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5. Consider the following two least-squares estimates'” of the relationship
between interest rates and the federal budget deficit in the United States:

Model A:Y; = 0.103 — 0.079X,  R2? = .00

where: Y, = the interest rate on Aaa corporate bonds
X; = the federal budget deficit as a percentage of GNP
(quarterly model: n = 56)

Model T: ¥, = 0.089 + 0.369X, + 0.887X;  RZ = 40

where : Y, = the interest rate on 3-month Treasury bills
X, = the federal budget deficit in billions of dollars
X3 = the rate of inflation (in percent)
(quarterly model: n = 38)

a. What does “least-squares estimates” mean? What is being estimated?
What is being squared? In what sense are the squares “least”?

b. What does it mean to have an R? of .00? Is it possible for an R2 to
be negative? ‘

c. Calculate R? for both equations. Is it possible for R? to be negative?

d. Compare the two equations. Which model has estimated signs that
correspond to your prior expectations? Is Model T automatically
better because it has a higher R?? If not, which model do you prefer
and why?

6. Inan effort to determine whether going to class improved student aca-
demic performance, David Romer!! developed the following equation:

Gi = f(ATTl, PSI) + Ei

where:  G; = the grade of the ith student in Romer’s class
(A=4,B =3, etc)
ATT; = the fraction of class lectures that the ith student at-
_ tended
PS; = the fraction of the problem sets that the ith student
‘ completed

10. These estimates are simplified versions of results presented in the June/July 1984 issue of
the Review of the Federal Reserve Bank of St. Louis (Model A) and the Summer 1983 issue of
the Review of the Federal Bank of San Francisco (Model T).

11. David Romer, “Do Students Go to Class? Should They?” Journal of Economic Perspectives,
Summer 1993, pp. 167-174.
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a.

b.

-

What signs do you expect for the coefficients of the independent
variables in this equation? Explain your reasoning.
Romer then estimated the equation:
G; = 1.07 + 1.74ATT; + 0.60PS;
n=195 R?=.33

Do the estimated results agree with your expectations?

It's usually easier to develop expectations about the signs of coeffi-
cients than about the size of those coefficients. To get an insight
into the size of the coefficients, let’s assume that there are 25 hours
of lectures in a semester and that it takes the average student ap-
proximately 50 hours to complete all the problem sets in a semes-
ter. If a student in one of Romer’s classes had only one more hour
to devote to class and wanted to maximize the impact on his or her
grade, should the student go to class for an extra hour or work on
problem sets for an extra hour? (Hint: Convert the extra hour to
percentage terms and then multiply those percentages by the esti-
mated coefficients.)

. From the above, it'd be easy to draw the conclusion that the bigger

a variable’s coefficient, the greater its impact on the dependent
variable. To test this conclusion, what would your answer to part ¢
have been if there had been 50 hours of lecture in a semester and if
it had taken 10 hours for the average student to complete the prob-
lem sets? Were we right to conclude that the larger the estimated
coefficient, the more important the variable?

. What's the real-world meaning of having R? = .33? For this specific

equation, does .33 seem high, low, or just about right? .
Is it reasonable to think that only class attendance and problem-set
completion affect your grade in a class? If you could add just one
more variable to the equation, what would it be? Explain your rea-
soning. What should adding your variable to the equation do to
R2?to R%?

Suppose that you have been asked to estimate an econometric model
to explain the number of people jogging a mile or more on the school
track to help decide whether to build a second track to handle all the
joggers. You collect data by living in a press box for the spring semes-
ter, and you run two possible explanatory equations.

A'Y = 1250 — 15.0X, — 1.0X, + 1.5X;  R?=.75
B:Y = 123.0 — 14.0X; + 55X, — 3.7X, R?=.73
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where: Y = the number of joggers on a givenday
X; = inches of rain that day
X, = hours of sunshine that day
X3 = the high temperature for that day (in degrees F)
X, = the number of classes with term papers due the next
day

a. Which of the two (admittedly hypothetical} equations do you pre-
) E fer? Why?
b. How is it possible to get different estimated signs for the coefficient
of the same variable using the same data?

8. David Katz'? studied faculty salaries as a function of their “productiv-
ity” and estimated a regression equation with the following coefficients:

S; = 11,155 + 230B; + 18A; + 102E; + 489D; + 189Y; + - - -

where:  §; = the salary of the ith professor in dollars per year
B; = the number of books published, lifetime
A; = the number of articles published, lifetime
E; = the number of “excellent” articles published, lifetime
D; = the number of dissertations supervised
Y; = the number of years teaching experience

a. Do the signs of the coefficients match your prior expectations?

b. Do the relative sizes of the coefficients seem reasonable?

c. Suppose a professor had just enough time (after teaching, etc.) to
write a book, write two excellent articles, or supervise three disser-
tations. Which would you recommend? Why?

d. Would you like to reconsider your answer to part b above? Which
coefficient seems out of line? What explanation can you give for
that result? Is the equation in some sense invalid? Why or why not?

9. What's wrong with the following kind of thinking: “I understand that
R? is not a perfect measure of the quality of a regression equation be-
cause it always increases when a variable is added to the equation.
Once we adjust for degrees of freedom by using R?, though, it seems
to me that the higher the R?, the better the equation.”

12. David A. Katz, “Faculty Salaries, Promotions, and Productivity at a Large University,” Amer-
ican Economic Review, June 1973, pp. 469-477. Katz's equation included other variables, as
well, as indicated by the “+ - - - ” at the end of the equation.
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10. In 1985 Charles Lave!? published a study of driver fatality rates. His
overall conclusion was that the variance of driving speed (the extent
to which vehicles sharing the same highway drive at dramatically dif-
ferent speeds) is important in determining fatality rates. As part of his
analysis, he estimated an equation with cross-state data from two dif-
ferent years: s

1981: F, = B, + 0.176V; + 0.0136C; — 7.75H;
R?2 = 624 n = 41

1982: F = By + 0.190V; + 0.0071C; — 5.29H;
R? = 532 n = 44

where:  F; = the fatalities on rural interstate highways (per 100
) million vehicle miles traveled) in the ith state
By = an unspecified estimated intercept
V, = the driving speed variance in the ith state
C; = driving citations per driver in the ith state
H; = hospitals per square mile (adjusted) in the ith state

a. Think through the theory behind each variable, and develop ex-
pected signs for each coefficient. (Hint: Be careful with C.) Do
Lave's estimates support your expectations?

b. Should we attach much meaning to the differences between the esti-
mated coefficients from the two years? Why or why not? Under what
circumstances might you be concerned about such differences?

¢. The 1981 equation has the higher R?, but which equation has the
higher R?? (Hint: You can calculate the R?s given the information
above, or you can attempt to figure the answer theoretically.)

11. In Exercise 5 in Chapter 1, we estimated a height/weight equation on
a new data set of 29 male customers, Equation 1.24:

-

¥, = 125.1 + 4.03%; | (1.24)

where:  Y; = the weight (in pounds) of the ith person
X; = the height (in inches above five feet) of the ith person

13. Charles A. Lave, “Speeding, Coordination, and the 55 MPH Limit,” American Economic Re-
view, December 1985, pp. 1159-1164.
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12.

13.

Suppose that a friend now suggests adding F;, the percent body fat
of the ith person, to the equation.

a. What is the theory behind adding F; to the equation? How does the
meaning of the coefficient of X change when you add F?

b. Assume you now collect data on the percent body fat of the 29
males and estimate:

¥, = 120.8 + 4.11X; + 0.28F, - (2.22)

Do you prefer Equation 2.22 or Equation 1.24? Why?

c. Suppose you learn that the R? of Equation 1.24 is .75 and the R2 of
Equation 2.22 is .72. Which equation do you prefer now? Explain
your answetr.

d. Suppose that you learn that the mean of F for your sample is 12.0.
Which equation do you prefer now? Explain your answer.

For students with a background in calculus, the derivation of Equa-

tions 2.6 and 2.7 is useful. Derive these two equations by carrying out

the following steps. (Hint: Be sure to write out each step of the proof;

if you get stuck, compare your answer to that in the back of the book.)

a. Differentiate Equation 2.5 with respect to [30 and then with respect
to By.

b. Set these two derivatives equal to zero, thus creating what are called
the “normal equations.” X :

c. Solve the normal equations for 3, obtaining Equation 2.6.
d. Solve the normal equations for B, obtaining Equation 2.7.

To get more practice in using EViews or your computer’s regression
program, estimate Equation 2.10 using the data from Table 2.2 (or the
BEEF2 datafile on the website or the EViews disk). Can you replicate
the results in the text? What are R? and R??




CHAPTER 3

Learning to Use Regression Analysis

3.1 Steps in Applied Regression Analysis

3.2 Using Regression Analysis to Pick Restaurant Locations

3.3  Summary and Exercises

From a quick reading of Chapter 2, it'd be easy to conclude that regression
analysis is littie more than the mechanical application of a set of equations to
a sample of data. Such a notion would be similar to deciding that all there is
to golf is hitting the ball well. Golfers will tell you that it does little good to
hit the ball well if you've used the wrong club or have hit the ball toward a
trap, tree, or pond. Similarly, experienced econometricians spend much less
time thinking about the OLS estimation of an equation than they do about a
number of other factors. Our goal in this chapter is to introduce some of
these “real world” concerns.

The first section, an overview of the six steps typically taken in applied re-
gression analysis, is the most important in the chapter. We believe that the
ability to learn and understand a specific topic, like OLS estimation, is en-
hanced if the reader has a clear vision of the role that specific topic plays in
the overall framework of regression analysis. In addition, the six steps make it
hard to miss the crucial function of theory in the development of sound
econometric research.

This is followed by a complete example of how to use the six steps in ap-
plied regression, a location analysis for the “Woody’s” restaurant chain that is
based on actual company data and to which we will return in future chapters
to apply new ideas and tests.

3.1 Steps in Applied Regression Analysis

Although there are no hard and fast rules for conducting econometric re-
search, most investigators commonly follow a standard method for applied
regression analysis. The relative emphasis and effort expended on each step
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may vary, but normally all the steps are considered necessary for successful
research. Note that we don't discuss the selection of the dependent variable;
this choice is determined by the purpose of the research. After that, it is logi-
cal to follow this sequence:

1. Review the literature and develop the theoretical model.

N

Specify the model: Select the independent variables and the func-
tional form.

Hypothesize the expected signs of the coefficients.
Collect the data.
Estimate and evaluate the equation.

o v s w

Document the results.

The purpose of suggesting these steps is not to discourage the use of inno-
vative or unusual approaches but rather to develop in the reader a sense of
how regression ordinarily is done by professional economists and business
analysts.

3.1.1 Ste|‘)i 1|: Review the Literature and Develop the Theoretical
Mode

The first step in any applied research is to get a good theoretical grasp of the
topic to be studied. That's right, the best data analysts don’t start with data;
they start with theory. This is because many econometric decisions, ranging
from which variables to use to which functional form to employ, are deter-
mined by the underlying theoretical model. It’s virtually impossible to build
a good econometric model without a solid understanding of the topic you're
studying.

For most topics, this means that it’s smart to review the scholarly literature
before doing anything else. If a professor has investigated the theory behind
your topic, you want to know about it. If other researchers have estimated
equations for your dependent variable, you might want to apply one of their
models to your data set. On the other hand, if you disagree with the ap-
proach of previous authors, you might want to head off in a new direction. In
either case, you shouldn't have to “reinvent the wheel”; you should start your
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investigation where earlier researchers left off. Any academic paper on an em-
pirical topic should begin with a summary of the extent and quality of previ-
ous research.

The most convenient approaches to reviewing the literature are to obtain
several recent issues of the Journal of Economic Literature or a business-ori-
ented publication of abstracts, or to run an Internet search on your topic. Us-
ing these resources, find and read several recent articles on your topic. Pay at-
tention to the bibliographies of these articles. If an older article is cited by a
number of current authors, or if its title hits your topic on the head, trace
back through the literature and find this article as well. We'll have more ad-
vice on reviewing the literature in Chapter 11.

In some cases, a topic will be so new or so obscure that you won't be able
to find any articles on it. What then? We recommend two possible strategies.
First, try to transfer theory from a similar topic to yours. For example, if
you're trying to build a model of the demand for a new product, read articles
that analyze the demand for similar, existing products. Second, if all else
fails, pick up the telephone and call someone who works in the field you're
investigating. For example, if you're building a model of housing in an unfa-
miliar city, call a real estate agent who works there.

3.1.2 Step 2: Specify the Model: Select the Independent Variables and
the Functional Form

The most important step in applied regression analysis is the specification of
the theoretical regression model. After selecting the dependent variable, the
following components should be specified:

1. the independent variables and how they should be measured,
2. the functional (mathematical) form of the variables, and

3. the type of stochastic error term.

A regression equation is specified when each of these elements has been
treated appropriately. We'll discuss the details of these specification decisions
in Chapters 6, 7, and 4, respectively.

Each of the elements of specification is determined primarily on the basis
of economic theory, rather than on the results of an estimated regression
equation. A mistake in any of the three elements results in a specification er-
ror. Of all the kinds of mistakes that can be made in applied regression
analysis, specification error is usually the most disastrous to the validity of
the estimated equation. Thus, the more attention paid to economic theory at
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the beginning of a project, the more satisfying the regression results are likely
to be.

The emphasis in this text is on estimating behavioral equations, those that
describe the behavior of economic entities. We focus on selecting indepen-
dent variables based on the economic theory concerning that behavior. An
explanatory variable is chosen because it is a theoretical determinant of the
dependent variable; it is expected to explain at least part of the variation in
the dependent variable. Recall that regression gives evidence but does not
prove economic causality. Just as an example does not prove the rule, a re-
gression result does not prove the theory.

There are dangers in specifying the wrong independent variables. Our goal
should be to specify only relevant explanatory variables, those expected theo-
retically to assert a “significant” influence on the dependent variable. Vari-
ables suspected of having little effect should be excluded unless their possi-
ble impact on the dependent variable is of some particular (e.g., policy)
interest.

For example, an equation that explains the quantity demanded of a con-
sumption good might use the price of the product and consumer income or
wealth as likely variables. Theory also indicates that complementary and sub-
stitute goods are important. Therefore, you might decide to include the prices
of complements and substitutes, but which complements and substitutes? Of
course, selection of the closest complements and/or substitutes is appropri-
ate, but how far should you go? The choice must be based on theoretical
judgment.

When researchers decide that, for example, the prices of only two other
goods need to be included, they are said to impose their priors (i.e., previous
theoretical belief) or their working hypotheses on the regression equation.
Imposition of such priors is a common practice that determines the number
and kind of hypotheses that the regression equation has to test. The danger is
that a prior may be wrong and could diminish the usefulness of the esti-
mated regression equation. Each of the priors therefore should be explained
and justified in detail.

Some concepts (for example, gender) might seem impossible to include in
an equation because they're inherently qualitative in nature and can't be
quantified. These variables can be quantified by using dummy (or binary)
variables. A dummy variable takes on the values of one or zero depending
on whether a specified condition holds. We'll discuss dummy variables in de-
tail in Chapters 7 and 13.

As an illustration, suppose that Y; represents the salary of the ith high
school teacher, and that the salary level depends primarily on the type of de-
gree earned and the experience of the teacher. All teachers have a B.A,, but
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some also have an M.A. An equation representing the relationship between
earnings and the type of degree might be:

. _ 1 iftheith teacher has an M.A.
where: Xy = 0 otherwise

X,; = the number of years of teaching experience of the ith teacher

The variable X; only takes on values of zero or one, so X, is called a dummy
variable, or just a “dummy.” Needless to say, the term has generated many a
pun. In this case, the dummy variable represents the condition of having a
master’s degree. The coefficient B, indicates the additional salary that can be
attributed to having an M.A., holding teaching experience constant.

3.1.3 Step 3: Hypothesize the Expected Signs of the Coefficients

Once the variables are selected, it is important to carefully hypothesize the
signs you expect their regression coefficients to have based on the underlying
theory. For example, in the demand equation for a final consumption good,
the quantity demanded (Qg) is expected to be inversely related to its price
(P) and the price of a complementary good (P_), and positively related to
consumer income (Y) and the price of a substitute good (P;). The first step in
the written development of a regression model usually is to express the equa-
tion as a general function:

. - 4+ - + : .
Q4 =f(P Y. P, P) +e _ (3.2)

The signs above the variables indicate the hypothesized sign of the respective
regression coefficient in a linear model.

In many cases, the basic theory is general knowledge, so that the reasons
for each sign need not be discussed. However, if any doubt surrounds the se-
lection of an expected sign, you should document the opposing forces at
work and the reasons for hypothesizing a positive or negative coefficient.

3.1.4 Step 4: Collect the Data

Data collection may begin after the specification of the regression model.
This step entails more than a mechanical recording of data, though, because
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the type and size of the sample must also be chosen. Often, analysis begins as
researchers examine the data and look for typographical, conceptual, or defi-
nitional errors. For more on the details of data collection, see Section 11.4.

A general rule regarding sample size is the more observations the better as
long as the observations are from the same general population. Ordinarily,
researchers take all the roughly comparable observations that are readily
available. In regression analysis, all the variables must have the same number
of observations. They also should have the same frequency (monthly, quar-
terly, annual, etc.) and time period. Often, the frequency selected is deter-
mined by the availability of data.

The reason there should be as many observations as possible concerns the
statistical concept of degrees of freedom first mentioned in Section 2.4.2. Con-
sider fitting a straight line to two points on an X, Y coordinate system, as in
Figure 3.1. Such an exercise can be done mathematically without error. Both
points lie on the line, so there is no estimation of the coefficients involved.
The two points determine the two parameters, the intercept and the slope,
precisely. Estimation takes place only when a straight line is fitted to three or
more points that were generated by some process that is not exact. The excess
of the number of observations (three) over the number of coefficients to be
estimated (in this case two, the intercept and slope) is called the degrees of
freedom.! All that is necessary for estimation is a single degree of freedom, as
in Figure 3.2, but the more degrees of freedom there are, the less likely it is
that the stochastic or purely random component of the equation (the error
term) will affect inferences about the deterministic portion, the portion of
primary interest. This is because when the number of degrees of freedom is
large, every positive error is likely to be balanced by a large negative error.
With only a few points, the random element is likely to fail to provide such
offsetting observations. For example, the more a coin is flipped, the more
likely it is that the observed proportion of heads will reflect the true underly-
ing probability (namely, 0.5).

Another area of concern has to do with the units of measurement of the vari-
ables. Does it matter if an independent variable is measured in dollars or
thousands of dollars? Does it matter if the measured variable differs consis-
tently from the true variable by ten units? Interestingly, such changes don't
matter in terms of regression analysis except in interpreting the scale of the

1. Throughout the text, we will calculate the number of degrees of freedom (d.f.) in a regression
equation as d.f. = (n — K — 1), where K is the number of independent variables in the equa-
tion. Equivalently, some authors will set K' = K + 1 and define d.f. = (n — K'). Since K’
equals the number of independent variables plus one (for the constant), it equals the number
of coefficients to be estimated in the regression.




CHAPTER 3 = LEARNING TO USE REGRESSION ANALYSIS

0 X

Figure 3.1 Mathematical Fit of a Line to Two Points

If there are only two points in a data set, as in Figure 3.1, a straight line can be fitted to
those points mathematically without error, because two points completely determine a
straight line.

0 X

Figure 3.2 Statistical Fit of a Line to Three Points

If there are three (or more) points in a data set, as in Figure 3.2, then the line must almost
always be fitted to the points statistically, using the estimation procedures of Section 2.1.

coefficients. All conclusions about signs, signiﬁcance, and economic theory
are independent of units of measurement.?

That is, it makes little difference whether an 1ndependent variable is mea-
sured in dollars or thousands of dollars. The constant term and measures of
overall fit remain unchanged. Such a multiplicative factor does change the

2. The units of measurement of the dependent variable also do not alter the interpretation of
the regression equation (except, as above, in interpreting the magnitude of the regression coef-
ficients), hypothesis testing, or measures of fit such as R2.

69



70

PART I = THE BASIC REGRESSION MODEL

slope coefficient, but only by the exact amount necessary to compensate for
the change in the units of measurement of the independent variable. Simi-
larly, a constant factor added to a variable alters only the intercept term with-
out changing the slope coefficient itself.

As an example, recall the weight/height regression of Section 1.4. The ex-
planatory variable was measured as inches above 5 feet, so that 5 feet, or 60
inches, was a constant factor that was subtracted from each observation. If we
reestimate the equation with the absolute height in inches (Z) as the inde-
pendent variable, we get:

Y; = —279.2 + 6.38%; .. (33)

Since the original equation was

~

¥, = 1034 + 638X, (3.4)

only the constant term has changed, and for each height we would obtain the
same estimated weight. To see this, substitute 60 for Z and 0 for X; Y = 103.4
in both cases! The essential relationship between Y and Z is the same as be-
tween Y and X. That is, adding a constant to a variable will not change the
slope coefficients of a linear equation (but it will in most equations that are
nonlinear in the coefficients).

3.1.5 Step 5: Estimate and Evaluate the Equation

The Ordinary Least Squares (OLS) technique, discussed in Section 2.1, is the
method typically used to estimate econometric equations. Where alternative
techniques might be appropriate, estimates from the alternatives should be
compared to OLS estimates. The alternatively estimated equations must be
evaluated carefully and judgment applied before a choice is made.

Once the model has been estimated, the results should be checked for er-
rors. Data transformations and coefficient estimation are usually done in the
same computer program, so it is wise to obtain a printout of the data set ex-
actly as it was used in the regression estimation. Check one or two values of
any variables that were transformed. If these values are correct, it may be as-
sumed that the computer did not make any mistakes transforming the rest of
the observations. Also obtain a printout or a plot of the data and look for
outliers. An outlier is an observation that lies outside the range of the rest of
the observations. Looking for outliers is a very economical way to look for
data entry or transcription errors. It's also a good habit to make sure that the
mean, maximum, and minimum of each variable seem reasonable.

?
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After checking for data errors, examine the signs, magnitudes, and signifi-
cance of the coefficients and the overall measures of fit. Regression results are
rarely what one expects. Usually, additional model development is required or
alternative estimating techniques are called for. Be sure to reevaluate the
model and make any necessary changes before jumping into fancy regression
“fix-up” routines. Sometimes these routines improve the overall measures of
goodness of fit or some other statistic while playing havoc with the reliability
of estimates of the model's parameters. A famous econometrician, Zvi
Griliches, warned that errors in the data coming from their measurement, usu-
ally computed from samples or estimates, imply that the fancier estimating
techniques should be avoided because they are more sensitive to data errors
than is OLS.3 Such errors in the variables are dealt with in Section 14.6. Also,
when faced with unexpected regression results (which happen all too often), a
reexamination of the theoretical basis of the model is in order. However, one
should avoid adjusting the theory merely to fit the data, thus introducing re-
searcher bias. The researcher has to walk the fine line between making appro-
priate and inappropriate adjustments to the model. Choosing proper modifi-
cations is one of the artistic elements in applied regression analysis.

3.1.6 Step 6: Document the Results

A standard format usually is used to present estimated regression results:

-~

Yi = 103.40 + 638X1
(0.88)
t=722
n=20 R2=.73

(3.5)

The number in parentheses is the estimated standard error of the estimated
coefficient, and the t-value is the one used to test the hypothesis that the true
value of the coefficient is different from zero. These and other measures of
the quality of the regression will be discussed in later chapters. What is im-
portant to note is that the documentation of regression results using an easily
understood format is considered part of the analysis itself. For time-series
data sets, the documentation also includes the frequency (e.g., quarterly or
annual) and the time period of the data.

Most computer programs present statistics to eight or more digits, but it is
important to recognize the difference between the number of digits computed
and the number of significant figures, which may be as low as two or three.

3. Zvi Griliches, “Data and Econometricians—The Uneasy Alliance,” American Economic Review,
May 1985, p. 199. See also, B. D. McCullough and H. D. Vinod, “The Numerical Reliability of
Econometric Software,” Journal of Economic Literature, June 1999, pp. 633-665.
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One of the important parts of the documentation is the explanation of the
model, the assumptions, and the procedures and data used. The written docu-
mentation must contain enough information so that the entire study could be
replicated* exactly (except for rounding errors) by others. Unless the variables
have been defined in a glossary or table, short definitions should be presented
along with the equations. If there is a series of estimated regression equations,
then tables should provide the relevant information for each equation. All
data manipulations as well as data sources should be documented fully. When
there is much to explain, this documentation usually is relegated to a data ap-
pendix. If the data are not available generally or are available only after com-
putation, the data set itself might be included in this appendix.

3.2 Using Regression Analysis to Pick Restaurant Locations

To solidify our understanding of the six basic steps of applied regression
analysis, let’s work through a complete regression example. Suppose that
you've been hired to determine the best location for the next Woody's restau-
rant, where Woody’s is a moderately priced, 24-hour, family restaurant
chain.” You decide to build a regression model to explain the gross sales vol-
ume at each of the restaurants in the chain as a function of various descrip-
tors of the location of that branch. If you can come up with a sound equation
to explain gross sales as a function of location, then you can use this equa-
tion to help Woody's decide where to build their newest eatery. Given data
on land costs, building costs, and local building and restaurant municipal
codes, the owners of Woody's will be able to make an informed decision.

1. Review the literature. You do some reading about the restaurant industry,
but your review of the literature consists mainly of talking to various
experts within the firm to get their hypotheses, based on experience, as
to the particular attributes of a location that contribute to success at
selling food at Woody’s. The experts tell you that all of the chain’s
restaurants are identical (indeed, this is sometimes a criticism of the
chain) and that all the locations are in what might be called “subur-

4. For example, the Journal of Money, Credit, and Banking has requested authors to submit their
actual data sets so that regression results can be verified. See W. G. Dewald et al., “Replication
in Empirical Economics,” American Economic Review, September 1986, pp. 587-603.

5. The data in this example are real (they're from a sample of 33 Denny's restaurants in south-
ern California), but the number of independent variables considered is much smaller than was
used in the actual research.
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ban, retail, or residential” environments (as distinguished from central
cities or rural areas, for example). Because of this, you realize that many
of the reasons that might help explain differences in sales volume in
other chains do not apply in this case because all the Woody's locations
are similar. (If you were comparing Woody's to another chain, such
variables might be appropriate.)

In addition, discussions with the people in the Woody's strategic
planning department convince you that price differentials and con-
sumption differences between locations are not as important as is the
number of customers a particular location attracts. This causes you to
be concerned for a while because the variable you had planned to
study originally, gross sales volume, would vary as prices changed be-
tween locations. Since your company controls these prices, you feel
that you would rather have an estimate of the “potential” for such
sales. As a result, you decide to specify your dependent variable as the
number of customers served (measured by the number of checks or
bills that the waiters and waitresses handed out) in a given location in
the most recent year for which complete data are available.

. Specify the model: Select the independent variables and the functional form.
Your discussions and personal investigations lead to a number of sug-
gested variables that should help explain the attractiveness of a particu-
lar site to potential customers. After a while, you realize that there are
three major determinants of sales (customers) on which virtually every-
one agrees. These are the number of people who live near the location,
the general income level of the location, and the number of direct com-
petitors close to the location. In addition, there are two other good sug-
gestions for potential explanatory variables. These are the number of
cars passing the location per day and the number of months that the
particular restaurant has been open. After some serious consideration of
your alternatives, you decide not to include the last possibilities. All the
locations have been open long enough to have achieved a stable clien-
tele, so the number of months open would not be likely to be impor-
tant. In addition, data are not available for the number of passing cars
for all the locations. Should population prove to be a poor measure of
the available customers in a location, you'll have to decide whether to
ask your boss for the money to collect complete traffic data.

The exact definitions of the independent variables you decide to in-
clude are:

N = Competition:  the number of direct market competitors within
a two-mile radius of the Woody's location
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P = Population: the number of people living within a three-
mile radius of the Woody's location

I = Income: the average household income of the popula-
tion measured in variable P

Since you have no reason to suspect anything other than a linear functional
form and a typical stochastic error term, that’s what you decide to use.

. 3. Hypothesize the expected signs of the coefficients. After thinking about
which variables to include, you expect hypothesizing signs will be
easy. For two of the variables, you're right. Everyone expects that the
more competition, the fewer customers (holding constant the popula-
tion and income of an area), and also that the more people that live
near a particular restaurant, the more customers {holding constant the
competition and income). You expect that the greater the income in a
particular area, the more people will choose to eat away from home
and the more people will choose to eat in a family restaurant instead
of in the lower-priced fast-food chains. However, people in especially
high-income areas might want to eat in a restaurant that has more “at-
mosphere” than a family restaurant. Some investigation reveals that it
is virtually impossible to get zoning clearance to build a 24-hour facil-
ity in a “ritzy” residential neighborhood. You remain slightly worried
that the income variable might not be as unambiguous a measure of
the appeal of a location as you had thought. To sum, you expect:

-+ + '
Y; = f(Ny, Py L) + ¢ =Bg + BN; + B,Py + Bili + ¢ (3.6)

where the signs above the variables indicate the expected impact of that
particular independent variable on the dependent variable, holding
constant the other two explanatory variables, and ¢; is a typical stochas-
tic error term.

4. Collect the data. You want to include every local restaurant in the
Woody’s chain in your study, and, after some effort, you come up with
data for your dependent variable and all your independent variables
for all 33 locations. You're confident that the quality of your data is ex-
cellent for three reasons: each manager measured each variable identi-
cally, you've included each restaurant in the sample, and all the infor-
mation is from the same year. [The data set is included in this section
(Table 3.1), along with a sample computer output for the regression es-
timated (Table 3.2).]
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5. Estimate and evaluate the equation. You take the data set and enter it into
the computer. You then run an OLS regression on the data, but you do
so only after thinking through your model once again to see if there are
hints that you've made theoretical mistakes. You end up admitting that
although you cannot be sure you are right, you've done the best you
can, and so you estimate the equation, obtaining:

Y; = 102,192 — 9075N; + 0.355P; + 1.288I; (3.7)

(2053) (0.073)  (0.543)
t=-442 488 237

n=33 RZ=.579

This equation satisfies your needs in the short run. In particular, the es-
timated coefficients in the equation have the signs you expected. The
overall fit, although not outstanding, seems reasonable for such a di-
verse group of locations. To predict sales at potential locations, you ob-
tain the values of N, P, and I for each location and then plug them into
Equation 3.7. Other things being equal, the higher the predicted Y, the
better the location from Woody's point of view.

6. Document the results. The results summarized in Equation 3.7 meet our
documentation requirements. (Note that we include the standard er-
rors of the estimated coefficients and t-values® for completeness even
though we won't make use of them until Chapter 5.) However, it's not
easy for a beginning researcher to wade through a computer’s regres-
sion output to find all the numbers required for documentation. You'll
probably have an easier time reading your own computer system'’s
printout if you take the time to “walk through” the sample computer
output for the Woody’s model on the previous two pages. This sample
output was produced by the EViews computer program, but it's similar
to those produced by SAS, SHAZAM, TSP, and others.

Page one of the computer output summarizes the input data. The first
items listed are the actual data. These are followed by a table of the sim-
ple correlation coefficients between all pairs of variables in the data set.

The second page summarizes the OLS estimates generated from the
data. It starts with a listing of the estimated coefficients, their estimated

6. Throughout the text, the number in parentheses below a coefficient estimate will be the stan-
dard error of that estimated coefficient. Some authors put the t-value in parentheses, though, so
be alert when reading journal articles or other books.
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TABLE 3.1

DATA FOR THE OODY’S RESTAURANTS EXAMPLE

obs Y N P |
1 107919.0 3.000000 65044 .00 13240.00
2 118866.0 5.000000 101376.0 22554 .00
3 98579.00 7.000000 124989.0 16916.00
4 122015.0 2.000000 55249.00 20967.00
5 152827.0 3.000000 73775.00 19576.00
6 91259.00 5.000000 48484.00 15039.00
7 123550.0 8.000000 138809.0 21857.00
8 160931.0 2.000000 50244.00 26435.00
9 98496.00 6.000000 104300.0 24024 .00
10 108052.0 2.000000 37852.00 14987.00
11 144788.0 3.000000 66921.00 30902.00
12 164571.0 4.000000 166332.0 31573.00
13 105564.0 3.000000 61951.00 19001.00
14 102568.0 5.000000 100441.0 20058.00
15 103342.0 2.000000 39462.00 16194.00
16 127030.0 5.000000 139800.0 21384.00
17 166755.0 6.000000 171740.0 18800.00
18 125343.0 6.000000 149894.0 15289.00
19 121886.0 3.000000 57386.00 16702.00
20 134594 .0 6.000000 185105.0 19093.00
21 152937.0 3.000000 114520.0 26502.00
22 109622.0 3.0600000 52933.00 18760.00
23 149884.0 5.000000 203500.0 33242.00
24 98388.00 4.000000 39334.00 14988.00
25 140791.0 3.000000 95120.00 18505.00
26 101260.0 3.000000 49200.00 16839.00
27 139517.0 4.000000 113566.0 28915.00
28 115236.0 9.000000 194125.0 19033.00
29 136749.0 7.000000 233844.0 19200.00
30 105067.0 7.000000 83416.00 22833.00
31 136872.0 6.000000 183953.0 14408.00
32 117146.0 3.000000 60457.00 20307.00
33 163538.0 2.000000 65065.00 20111.00
Correlation Matrix
Y N P 1
Y 1.000000 -0.144225 0.392568 0.537022
N -0.144225 1.000000 0.726251 -0.031534
P 0.392568 0.726251 1.000000 0.245198
| 0.537022 -0.031534 0.245198 1.000000
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TABLE 3.2 ACTUAL COMPUTER OUTPUT (USING THE EVIEWS PRGRAM)
FROM THE WOODY’S REGRESSION

Dependent Variable: Y
Method: Least Squares
Date: 02/29/00 Time: 14:55

Sample: 133
included observations: 33
Variable Coefficient  Std. Error t-Statistic Prob.
c 102192 .4 12799.83 7.983891 0.0000
N -9074.674  2052.674 -4.420904 0.0001
P 0.354668 0.072681 4.879810 0.0000
| 1.287923  0.543294 2.370584 0.0246
R-squared 0.618154 Mean dependent var 125634.6
Adjusted R-squared 0.578653 S.D. dependent var 22404.09
S.E. of regression 1454278 Akaike info criterion 2212079
Sum squared resid 6.13E+09 Schwarz criterion 22.30218
Log likelihood -360.9930 F-statistic 15.64894
Durbin-Watson stat 1.758193 Prob(F-statistic) 0.000003
obs Actual Fitted  Residual Residual Plot
1 107919. 115090. -7170.56 I |
2 118866. 121822. -2955.74 ! !
3 98579.0 104786. -6206.86 i ;
4 122015. 130642. -8627.04 ' 1
5 152827, 126346, 26480.5 . >~
6 91259.0 033839 -2124.88 ! ® 1
7 123550, 106976. 16573.7 '
8 160931. 135809. 25021.7 !
9 98496.0 115677. -17181.4 < '
10 108052. 116770. -8718.09 l 1
11 144788. 138503. 628543 [ >0 |
12 164571. 165550. -979.034 ' ]
13 105564. 121412. -15848.3 1
14 102568. 118275. -15707.5 1
15 103342. 118896. -15553.6 1
16 127030. 133978. -6948.11 ! |
17 166755. 132868, 33886.9 t I
18  125343. 120598. 474490 1 i
19 121886. 116832. 5053.70 ! I
20 134504, 137986. -3391.59 1« |
21 152037. 149718. 321943 ( De
22 109622. 117904. -8281.51 1 i
23 149884. 171807. -21923.2 ! !
24 98388.0 991477 -759.651 1 1
25 140791. 132537. 8253.52 ] >0 !
26 101260. 114105, -128454 !
27 139517. 143412. -3885.30 1 ]
28 115236. 113883. 1352.60 ' 1
29 136749. 146335. -9585.%1 ! l
30 105067. 97661.9 7405.12 I 7 t
31 136872. 131544, 5327.62 1 1
32 117146. 122564. -5418.45 . {
33 163538. 133021. 30517.0 ' B

UB Freiburg i.Br.
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standard errors, and the associated t-values, and follows with R2, R?,
the standard error of the regression, RSS, and the F-ratio. This is fol-
lowed by a listing of the observed Ys, the predicted Ys, and the residu-
als for each observation. Numbers followed by “E+06" or “E-01" are
expressed in a scientific notation indicating that the printed decimal
point should be moved six places to the right or one place to the left,
respectively.

In future chapters, we'll return to this example in order to apply var-
ious tests and ideas as we learn them.

Six steps typically taken in applied regression analysis are:
a. Review the literature and develop the theoretical model. _
b. Specify the model: Select the independent variables and the func-

tional form.

Hypothesize the expected signs of the coefficients.
. Collect the data.

Estimate and evaluate the equation.

Document the results.

e oan

A dummy variable takes on only the values of one or zero, depending
on whether or not some condition is met. An example of a dummy
variable would be X equals 1 if a particular individual is female and 0
if the person is male.

(Answers to even-numbered exercises are in Appendix A.)

1.

Write the meaning of each of the following terms without referring to
the book (or your notes), and compare your definition with the ver-
sion in the text for each:

a. the six steps in applied regression analysis

b. dummy variable

c. cross-sectional data set

d. specification error

e. degrees of freedom

Contrary to their name, dummy variables are not easy to understand
without a little bit of practice:
a. Specify a dummy variable that would allow you to distinguish be-

Nt
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tween undergraduate students and graduate students in your econo-
metrics class.

b. Specify a regression equation to explain the grade (measured on a
scale of 4.0 for an A) each student in your class received on his or
her first econometrics test (Y) as a function of the student’s grade in
a previous course in statistics (G), the number of hours the student
studied for the test (H), and the dummy variable you created above
(D). Are there other variables you would want to add? Explain your
answer.

¢. What is the hypothesized sign of the coefficient of D2 Does the sign
depend on the exact way in which you defined D? (Hint: In partic-
ular, suppose that you had reversed the definitions of one and zero
in your answer to part a.) How?

d. Suppose that you collected the data and ran the regression and
found an estimated coefficient for D that had the expected sign and
an absolute value of 0.5. What would this mean in real-world
terms? By the way, what would have happened if you had only un-
dergraduates or only graduate students in your class?

3. Do liberal arts colleges pay economists more than they pay other pro-
fessors? To find out, we looked at a sample of 2,929 small-college fac-
ulty members and built a model of their salaries that included a num-
ber of variables, four of which were (standard errors in parentheses):

8 = 36,721 + B17M; + 426A; + 406R; + 3539T; + ---  (3.8)
(259)  (456)  (24)  (458)
R? = .77 n = 2929

where:  S; = the salary of the ith college professor

M; = a dummy variable equal to 1 if the ith professor is a
male and 0 otherwise

A; = a dummy variable equal to 1 if the ith professor is
African American and 0 otherwise

R, = the years in rank of the ith professor

T, = a dummy variable equal to 1 if the ith professor
teaches economics and 0 otherwise

a. Carefully explain the meaning of the estimated coefficient of M.

b. The equation indicates that African Americans earn $426 more
than members of other ethnic groups, holding constant the other
variables in the equation. Does this coefficient have the sign you
expected? Why or why not?
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¢. Is R a dummy variable? If not, what is it? Carefully explain the
meaning of the coefficient of R.

d. What's your conclusion? Do economists earn more than other pro-
fessors at liberal arts colleges? Explain.

e. Assume that your professor is a white, male economist who has
been an assistant professor at your college for three years. How
much money does the equation predict that he is earning? (Hint:
As tempting as it might be, please don't ask your professor how
much he or she earns.)

4. Return to the Woody's regression example of Section 3.2.

a. In any applied regression project there is the distinct possibility
that an important explanatory variable has been omitted. Reread
the discussion of the selection of independent variables and come
up with a suggestion for an independent variable that has not been
included in the model (other than the variables already men-
tioned). Why do you think this variable was not included?

b. What other kinds of criticisms would you have of the sample or
independent variables chosen in this model?

5. Suppose you were told that, while data on traffic for Equation 3.7 are
still too expensive to obtain, a variable on traffic, called T;, is available
that is defined as 1 if more than 15,000 cars per day pass the restau-
rant and 0 otherwise. Further suppose that when the new variable (T;)
is added to the equation the results are:

¥; = 95,236 — 7307N; + 0.320P, + 1.28I; + 10,994T;  (3.9)
(2153) (0.073) (0.51) (5577)
t= —-3.39 4.24 2.47 1.97
n = 33 R2 = 617

a. What is the expected sign of the coefficient of the new variable?

b. Would you prefer this equation to the original one? Why?

c. Does the fact that R? is higher in Equation 3.9 mean that it is neces-
sarily better than Equation 3.77?

6. Suppose that the population variable in Section 3.2 had been defined
in different units as in:

P = Population: thousands of people liviﬁg within a three-mile
radius of the Woody’s location

a. Given this definition of P, what would the estimated slope coeffi-
cients in Equation 3.7 have been?
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b. Given this definition of P, what would the estimated slope coeffi-
cients in the equation in question 5 above have been?
c. Are any other coefficients affected by this change?

7. Use EViews or your own computer regression software to estimate
Equation 3.7 using the data in Table 3.1.

8. The Graduate Record Examination (GRE) subject test in economics is
a multiple-choice measure of knowledge and analytical ability in eco-
nomics that's used mainly as an entrance criterion for students apply-
ing to Ph.D. programs in the “dismal science.” For years, critics have
claimed that the GRE, like the Scholastic Aptitude Test (SAT), is bi-
ased against women and some ethnic groups. To test the possibility
that the GRE subject test in economics is biased against women, Mary
Hirschfeld, Robert Moore, and Eleanor Brown’ estimated the follow-
ing equation (standard errors in parentheses):

NN
GRE; = 172.4 + 39.7G; + 78.9GPA; + 0.203SATM; + 0.110SATV;
(10.9) (10.4) _ (0.071) (0.058)
=149 R?= 46 (3.10)

where:  GRE; = the score of the ith student in the Graduate
Record Examination subject test in economics
= a dummy variable equal to 1 if the ith student
was a male, 0 otherwise
GPA; = the GPA in economics classes of the ith student
(4=A 3=B,etc)
SATM; = the score of the ith student on the mathematics
portion of the Scholastic Aptitude Test
SATV; = the score of the ith student on the verbal portion ,
of the Scholastic Aptitude Test , "

G:

1

a. Carefully explain the meaning of the cpefficient of G in this equa-
tion. (Hint: Be sure to specify what 39.7 stands for.)

b. Does this result prove that the GRE is biased against women? Why
or why not?

c. If you were going to add one variable to Equation 3.10, what would
it be? Explain your reasoning.

d. Suppose that the authors had defined their gender variables as
G; = a dummy variable equal to 1 if the ith student was a female, 0

7. Mary Hirschfeld, Robert L. Moore, and Eleanor Brown, “Exploring the Gender Gap on the
GRE Subject Test in Economics,” Journal of Economic Education, Winter 1995, p. 13.
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otherwise. What would the estimated Equation 3.10 have been in
that case? (Hint: Only the intercept and the coefficient of the
dummy variable change.)

9. Michael Lovell® estimated the following model of the gasoline
mileage of various models of cars (standard errors in parentheses):

G; = 22.008 — 0.002W; — 2.76A; + 3.28D; + 0.415E;
(0.001)  (0.71) (1.41) (0.097)
: RZ = 82

where:  G; = miles per gallon of the ith model as reported by

Consumers’ Union based on actual road tests

W; = the gross weight (in pounds) of the ith model

A; = a dummy variable equal to 1 if the ith model has an
automatic transmission and 0 otherwise

D; = a dummy variable equal to 1 if the ith model has a
diesel engine and 0 otherwise

E; = the U.S. Environmental Protection Agency’s estimate
of the miles per gallon of the ith model

a. Hypothesize signs for the slope coefficients of W and E. Which if
any, of the signs of the estimated coefficients are different from
your expectations?

b. Carefully interpret the meanings of the estimated coefficients of A; -
and D;,

c. Lovell included one of the variables in the model to test a specific
hypothesis, but that variable wouldn’t necessarily be in another re-
searcher’s gas mileage model. What variable do you think Lovell
added? What hypothesis do you think Lovell wanted to test?

10. Your boss is about to start production of her newest box office
smash-to-be, Invasion of the Economists, Part II, when she calls you in -
and tells you to build a model of the gross receipts of all the movies
produced in the last five years. Your regression is’ (standard errors in
parentheses):

~

G; = 781 + 15.4T; — 992F; + 1770J; + 3027S; — 3160B; + - - -
(5.9) (674) (800) (1006) (2381)
RZ = 485 n = 254

8. Michael C. Lovell, “Tests of the Rational Expectations Hypothesis,” American Economic Re-
view, March 1986, pp. 110-124.
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4

where:  G; = the final gross receipts of the ith motion picture (in

thousands of dollars)

T; = the number of screens (theaters) on which the ith
film was shown in its first week

F; = a dummy variable equal to 1 if the star of the ith film
is a female and 0 otherwise

J; = a dummy variable equal to 1 if the ith movie was re-
leased in June or July and 0 otherwise

S; = a dummy variable equal to 1 if the star of the ith film is
a superstar (like Tom Cruise or Milton) and 0 otherwise
B; = a dummy variable equal to 1 if at least one member

of the supporting cast of the ith film is a superstar
and 0 otherwise

a. Hypothesize signs for each of the slope coefficients in the equa-
tion. Which, if any, of the signs of the estimated coefficients are dif-
ferent from your expectations?

b. Milton, the star of the original Invasion of the Economists, is de-
manding $4 million from your boss to appear in the sequel. If your
estimates are trustworthy, should she say “yes” or hire Arnold (a
nobody) for $500,000? :

¢. Your boss wants to keep costs low, and it would cost $1.2 million
to release the movie on an additional 200 screens. Assuming your
estimates are trustworthy, should she spring for the extra screens?

d. The movie is scheduled for release in September, and it would cost
$1 million to speed up production enough to allow a July release
without hurting quality. Assuming your estimates are trustworthy,
is it worth the rush?

e. You've been assuming that your estimates are trustworthy. Do you
have any evidence that this is not the case? Explain your answer.
(Hint: Assume that the equation contains no specification errors.)

9. This estimated equation (but not the question) comes from a final exam in managerial eco-
nomics given at the Harvard Business School in February 1982, pp. 18-30.




CHAPTER 4

The Classical Model

4.1 The Classical AssuMptions
4.2 The Normal Distribution of the Error Term
4.3  The Sampling Distribution of

4.4 The Gauss—Markov Theorem and the
Properties of OLS Estimators

4,5 Standard Econometric Notation

4.6 Summary and Exercises

The classical model of econometrics has nothing to do with ancient Greece
or even the classical economic thinking of Adam Smith. Instead, the term
classical refers to a set of fairly basic assumptions required to hold in order for
OLS to be considered the “best” estimator available for regression models.
When one or more of these assumptions do not hold, other estimation tech-
niques sometimes may be better than OLS. _

As a result, one of the most important jobs in regression analysis is to decide
whether the classical assumptions hold for a particular equation. If so, the OLS
estimation technique is the best available. Otherwise, the pros and cons of al-
ternative estimation techniques must be weighed. These alternatives are usually
adjustments to OLS that take account of the particular assumption that has
been violated. In a sense, most of the rest of this book deals in one way or an-
other with the question of what to do when one of the classical assumptions is
not met. Since econometricians spend so much time analyzing violations of
them, it is crucial that they know and understand these assumptions.

4.1 The Classical Assumptions 7

The Classical Assumptions must be met in order for OLS estimators to be
the best available. Because of their importance in regression analysis, the as-
sumptions are presented here in tabular form as well as in words. Subsequent
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chapters will investigate major violations of the assumptions and introduce
estimation techniques that may provide better estimates in such cases.

The Classical Assumptions
I. The regression model is linear in the coefficients, is correctly speci-
fied, and has an additive error term.
II. The error term has a zero population mean.
1i. All explanatory variables are uncorrelated with the error term.
IV. Observations of the error term are uncorrelated with each other
(no serial correlation).
V. The error term has a constant variance (no heteroskedasticity).
VI. No explanatory variable is a perfect linear function of any other
explanatory variable(s) (no perfect multicollinearity).
VIL. The exror term is normally distributed (this assumption is op-
tional but usually is invoked).

An error term satisfying Assumptions I through V is called a classical error
term, and if Assumption VII is added, the error term is called a classical nor-
mal error term.

1. The regression model is linear in the coefficients, is correctly specified, and
has an additive error term. The regression model is assumed to be linear in
the coefficients:

Yi=Bo+ B Xt B2Xoit - ¥ Bk T & (4.1)

On the other hand, the regression model does not have to be linear in the
variables because OLS can be applied to equations that are nonlinear in the
variables. The good properties of OLS estimators hold regardless of the func-
tional form of the variables as long as the form of the equation to be esti-
mated is linear in the coefficients. For example, an exponential function:

Y, = eBOXiBleei (4.2)

where e is the base of the natural log, can be transformed by takihg the nat-
ural log of both sides of the equation:

In(Y;) = Bo + B In(X;) + & (4.3)
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b

The variables can be relabeled as Y# = In(Y;) and X} = In(X,), and the
form of the equation is linear in the coefficients:

Y =B + BiX{ + ¢ oo B8

In Equation 4.4, the properties of the OLS estimator of the Bs still hold be-
cause the equation is linear in the coefficients. Equations that are nonlinear
in the variables will be discussed in Chapter 7.

Two additional properties also must hold.! First, we assume that the equa-
tion is correctly specified. If an equation has an omitted variable or an incor-
rect functional form, the odds are against that equation working well. Sec-
ond, we assume that a stochastic error term has been added to the equation.
This error term must be an additive one and cannot be multiplied by or di-
vided into any of the variables in the equation.

Il. The error term has a zero population mean. As was pointed out in Sec-
tion 1.2.3, econometricians add a stochastic (random) error term to regres-
sion equations to account for variation in the dependent variable that is not
explained by the model. The specific value of the error term for each observa-
tion is determined purely by chance. Probably the best way to picture this
concept is to think of each observation of the error term as being drawn from
a random variable distribution such as the one illustrated in Figure 4.1.

Classical Assumption II says that the mean of this distribution is zero. That
is, when the entire population of possible values for the stochastic error term
is considered, the average value of that population is zero. For a small sam-
ple, it is not likely that the mean is exactly zero, but as the size of the sample
approaches infinity, the mean of the sample approaches zero.

To compensate for the chance that the mean of the population € might not
equal zero, the mean of ¢; for any regression is forced to be zero by the exis-
tence of the constant term in the equation. If the mean of the error term is
not equal 1o zero, then this nonzero amount is implicitly (because error
terms are unobservable) subtracted from each error term and added instead
to the constant term. This leaves the equation unchanged except that the new
error term has a zero mean (and thus conforms to Assumption II). In addi-
tion, the constant term has been changed by the difference between the sam-
ple mean of the error term and zero. Partially because of this difference, it is
risky to place much importance on the estimated magnitude of the constant
term. In essence, the constant term equals the fixed portion of Y that cannot

1. Many authors make these two assumptions implicitly rather than explicitly, but the two
properties must hold nonetheless.
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Figure 4.1 An Error Term Distribution with a Mean of Zero

Observations of stochastic error terms are assumed to be drawn from a random variable
distribution with a mean of zero. If Classical Assumption II is met, the expected value
{the mean) of the error term is zero.

be explained by the independent variables, whereas the error term represents
the stochastic portion of the unexplained value of Y.

Although it's true that the error term can never be observed, it's instructive
to pretend that we can do so to see how the existence of a constant term
forces the mean of the error term to be zero in a sample. Consider a typical
regression equation:

Y; = Bg + B1X; + € (4.5)

For example, if the mean of ¢; is 3 instead of 0, then? E(¢; — 3) = 0. If we
add 3 to the constant term and subtract it from the error term, we obtain:

Yi = (Bo +3) + BiXi + (¢ — 3) (4.6)

Since equations 4.5 and 4.6 are equivalent (do you see why?), and since
E(g; — 3) = 0, then Equation 4.6 can be written in a form that has a zero
mean for the error term:

Yi =B85 + BiX + € (4.7)

2. Here, as in Chapter 1, the “E” refers to the expected value (mean) of the item in parentheses after
it. Thus E(g; — 3) equals the expected value of the stochastic error term epsilon minus 3. In this
specific example, since we've defined E(g;) = 3, we know that E(¢; — 3) = 0. One way to think
about expected value is as our best guess of the long-run average value a specific item will have.
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where B§ = By + 3 and €} = ¢ — 3. As can be seen, Equation 4.7 conforms
to Assumption II. This form is always assumed to apply for the true model.
Therefore, the second classical assumption is assured as long as there is a
constant term included in the equation. This statement is correct as long as
all other classical assumptions are met.

1. All explanatory variables are uncorrelated with the error term. 1t is as-
sumed that the observed values of the explanatory variables are determined
independently of the values of the error term. Explanatory variables (Xs) are
considered to be determined outside the context of the regression equation
in question. ,

If an explanatory variable and the error term were instead correlated
with each other, the OLS estimates would be likely to attribute to the X
some of the variation in Y that actually came from the error term. If the er-
ror term and X were positively correlated, for example, then the estimated
coefficient would probably be higher than it would otherwise have been
(biased upward), because the OLS program would mistakenly attribute the
variation in Y caused by € to have been caused by X instead. As a result, it's
important to ensure that the explanatory variables are uncorrelated with
the error term. :

An important economic application that violates this assumption is any
model that is simultaneous in nature. In most economic applications, there
are several related propositions that, when taken as a group, suggest a system
of regression equations. In most situations, interrelated equations should be
considered simultaneously instead of separately. Unfortunately, such simul-
taneous systems violate Classical Assumption III.

To see why, let’s look at an example. In a simple Keynesian macroeco-
nomic model, an increase in consumption (caused perhaps by an unex-
pected change in tastes) will increase aggregate demand and therefore
aggregate income. An inecrease in income, however, will also increase con-
sumption; so, income and consumption are interdependent. Note, however,
that the error term in the consumption function (which is where an unex-
pected change in tastes would appear) and an explanatory variable in the
consumption function (income) have now moved together. As a result,
Classical Assumption III has been violated; the error term is no longer un-
correlated with all the explanatory variables. This will be considered in more
detail in Chapter 14.

IV. Observations of the error term are uncorrelated with each other. The ob-
servations of the error term are drawn independently from each other. If a
systematic correlation exists between one observation of the error term and
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another, then it will be more difficult for OLS to get precise estimates of the
coefficients of the explanatory variables. For example, if the fact that the €
from one observation is positive increases the probability that the € from an-
other observation also is positive, then the two observations of the error term
are positively correlated. Such a correlation would violate Classical Assump-
tion IV.

In economic applications, this assumption is most important in time-
series models. In such a context, Assumption IV says that an increase in
the error term in one time period (a random shock, for example) does not
show up in or affect in any way the error term in another time period. In
some cases, though, this assumption is unrealistic, since the effects of a
random shock sometimes last for a number of time periods. If, over all the
observations of the sample, €, ; is correlated with ¢, then the error term is
said to be serially correlated (or autocorrelated), and this assumption is vi-
olated. Violations of this assumption are considered in more detail in
Chapter 9.

V. The error term has a constant variance. The variance (or dispersion) of
the distribution from which the observations of the error term are drawn is
constant. That is, the observations of the error term are assumed to be
drawn continually from identical distributions (for example, the one pic-
tured in Figure 4.1). The alternative would be for the variance of the distrib-
ution of the error term to change for each observation or range of observa-
tions. In Figure 4.2, for example, the variance of the error term is shown to
increase as the variable Z increases; such a pattern violates Classical As-
sumption V. This type of violation makes precise estimation difficult, be-
cause a particular deviation from a mean (in this case an error term) can be
called a statistically large or small deviation only when it is compared with
the standard deviation (which is the square root of the variance) of the dis-
tribution in question. If you assume that all error term observations are
drawn from a distribution with a constant variance when in reality they are
drawn from distributions with different variances, then the relative impor-
tance of changes in Y is very hard to judge. Even though the actual values of
the error term are not directly observable, the lack of a constant variance for
the distribution of the error term causes OLS to generate imprecise estimates
of the coefficients of the independent variables.

In economic applications, Assumption V is most important in cross-sec-
tional data sets. For example, in a cross-sectional analysis of household con-
sumption patterns, the variance (or dispersion) of the consumption of cer-
tain goods might be greater for higher-income households because they have
more discretionary income than do lower-income households. Thus the ab-
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Large es Associated ' .
with Large Zs .

E(YIX) = B+ B,Z

Small es
Associated with
Small Zs

0 Z

Figure 4.2 An Error Term Whose Variance Increase as Z Increases
(Heteroskedasticity)

One example of Classical Assumption V not being met is when the variance of the error
term increases as Z increases. In such a situation (called heteroskedasticity), the observa-
tions are on average farther from the true regression line for large values of Z than they
are for small values of Z.

solute amount of the dispersion is greater even though the percentage disper-
sion is the same. The violation of Assumption V is referred to as het-
eroskedasticity and will be discussed in more detail in Chapter 10.

VI. No explanatory variable is a perfect linear function of any other ex-
planatory variable(s). Perfect collinearity between two independent vari-
ables implies that they are really the same variable, or that one is a multiple
of the other, and/or that a constant has been added to one of the variables.
That is, the relative movements of one explanatory variable will be matched
exactly by the relative movements of the other even though the absolute size
of the movements might differ. Because every movement of one of the vari-
ables is matched exactly by a relative movement in the other, the OLS esti-
mation procedure will be incapable of distinguishing one variable from the
other.

Many instances of perfect collinearity (or multicollinearity if more than
two independent variables are involved) are the result of the researcher not
accounting for identities (definitional equivalences) among the independent
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variables. This problem can be corrected easily by dropping one of the per-
fectly collinear variables from the equation.

Suppose you were attempting to explain home purchases and had in-
cluded both real and nominal interest rates as explanatory variables in your
equation for a time period in which inflation (and expected inflation) was
constant. In such an instance, real and nominal interest rates would differ by
a constant amount, and the OLS procedure would not be able to distinguish
between them. Note that perfect multicollinearity can be caused by an acci-
dent in the sample at hand. While real and nominal interest rates would be
perfectly multicollinear if inflation were constant in a given sample, they
would not be perfectly multicollinear in samples where there was some
change in inflation.

Perfect multicollinearity also can occur when two independent variables
always sum to a third. For example, the explanatory variables “games won”
and “games lost” for a sports team that has a constant number of games
played and no ties will always sum to that constant, and perfect multi-
collinearity will exist. In such cases, the OLS computer program (or any other
estimation technique) will be unable to estimate the coefficients unless there
is a rounding error. The remedy is easy in the case of perfect multicollinearity:
just delete one of the two perfectly correlated variables.

Finally, it’s also possible to violate Assumption VI if one of the explanatory
variables has a variance of zero. In this case, the variable will be perfectly
collinear with the constant term, and OLS estimation will be impossible.
Luckily, it's quite unusual to encounter perfect multicollinearity, but, as we
shall see in Chapter 8, even imperfect multicollinearity can cause problems
for estimation. :

VII. The error term is normally distributed. Although we have already as-
sumed that observations of the error term are drawn independently (As-
sumption IV) from a distribution that has a zero mean (Assumption II) and
that has a constant variance (Assumption V), we have said little about the
shape of that distribution. Assumption VII states that the observations of the
error term are drawn from a distribution that is normal (that is, bell shaped,
and generally following the symmetrical pattern portrayed in Figure 4.1).

This assumption of normality is not required for OLS estimation. Its ma-
jor use is in hypothesis testing, which uses the estimated regression statis-
tics to accept or reject hypotheses about economic behavior. One example
of such a test is deciding whether a particular demand curve is elastic or in-
elastic in a particular range. Hypothesis testing is the subject of Chapter 5,
and, without the normality assumption, most of the tests in that chapter
would be invalid.

91




92

PART 1 = THE BASIC REGRESSION MODEL

4.2 The Normal Distribution of the Error Term

In this section we briefly introduce the concept of the normal distribution
and explain why the Central Limit Theorem tends to justify the assumption
of normality for a stochastic error term. '

The only assumption that is optional to the definition of the classical
model is that the error term is normally distributed. It is usually advisable to
add the assumption of normality to the other six assumptions for two reasons:

1. The error term ¢; can be thought of as the composite of a number of
minor influences or errors. As the number of these minor influences
gets larger, the distribution of the error term tends to approach the nor-
mal distribution. This tendency is called the Central Limit Theorem.

2. The t-statistic and the F-statistic, which will be developed in Chapter 5,
are not truly applicable unless the error term is normally distributed.

4.2.1 The Normal Distribution

The normal distribution is a symmetrical, continuous, bell-shaped curve. The
parameters that describe normal distributions and allow us to differentiate be-
tween various normal distributions are the mean (p., the measure of central ten-
dency), and the variance (o2, the measure of dispersion). Two such normal dis-
tributions are shown in Figure 4.3. In normal distribution I, the mean is 0 and
the variance is 1; in normal distribution II, the mean is 2, and the variance is 0.5.

A quick look at Figure 4.3 shows how normal distributions differ when the
means and variances are different. When the mean is different, the entire dis-
tribution shifts. For example, distribution II is to the right of distribution I
because its mean, 2, is greater than the mean of distribution I. When the vari-
ance is different, the distribution becomes fatter or skinnier. For example,
distribution II is distributed more compactly around its mean than is distrib-
ution I because distribution II has a smaller variance. Observations drawn at
random from distribution II will tend to be closer to the mean than those
drawn from distribution I, while distribution [ will tend to have a higher like-
lihood of observations quite far from its mean.

In Figure 4.3, distribution I represents what is called the standard normal
distribution because it is a normal distribution with a mean equal to zero
and a variance equal to one. This is the usual distribution given in statistical
tables, such as Table B-7 in the back of this book. Often the parameters of a
normal distribution will be listed in a compact summary form: N(, 6). For
distribution 1, this notation would be N(0,1) and would stand for a normal
distribution with mean zero and variance one.
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Figure 4.3 Normal Distributions

Although all normal distributions are symmetrical and bell shaped, they do not necessar-
ily have the same mean and variance. Distribution I has a mean of 0 and a variance of 1,
whereas distribution Il has a mean of 2 and a variance of 0.5. As can be seen, the whole
distribution shifts when the mean changes, and the distribution gets fatter as the variance
increases.

4.2.2 The Central Limit Theorem and the Normality of the
Error Term

As mentioned in Chapter 1, the error term in a regression equation is as-
sumed to be caused in part by the omission of a number of variables from
the equation. These variables are expected to have relatively small individual
effects on the hypothesized regression equation, and it is not advisable to in-
clude them as independent variables. The error term represents the combined
effects of these omitted variables. This component of the error term is usually
cited as the justification for the assumption of normality of the error term. In
general, a random variable generated by the combined effects of a number of
omitted, individually unimportant variables will be normally distributed ac-
cording to the Central Limit Theorem, which states:

The mean (or sum) of a number of independent, identically distributed
random variables will tend to be normally distributed, regardless of their
distribution, if the number of different random variables is large enough.

The Central Limit Theorem becomes more valid as the number of omitted
variables approaches infinity, but even a few are sufficient to show the tendency
toward the normal bell-shaped distribution. The more variables omitted, the
more quickly the distribution of the error term approaches the normal distri-
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Figure 4.4 Relative Frequency of the Error Term as an Average of 2 Omitted
Variables: 10 Observations
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Figure 4.5 Relative Frequency of the Error Term as an Average of 10 Omit-
ted Variables: 10 Observations

As the number of different omitted variables increases, the distribution of the sum of
those variables approaches the normal distribution. This tendency (called the Central
Limit Theorem) can be seen in Figures 4.4 and 4.5. As the number of omitted variables
increases from 2 to 10, the distribution of their average does indeed become more sym-
metrical and bell shaped.

bution because the various omitted variables are more likely to cancel out
extreme observations. As a result, it is good econometric practice to assume
a normally distributed stochastic error term in a regression that must
omit a number of minor unrelated influences. Purposely omitting a few vari-
ables to help achieve normality for the error term, however, should never be
considered. _ -

Let’s look at an example of the Central Limit Theorem and how the error
term tends to be normally distributed if the number of omitted variables is
large enough. First, suppose that only two potentially relevant variables are
so minor that they are not included in an equation. Figure 4.4 shows 10 com-
puter-generated observations of a stochastic error term that is the sum of two
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identically distributed variables.3 Note that although the observations of the
error term are near zero, their distribution is hardly normal looking.

Suppose that we now increase the number of omitted variables from 2 to
10. Figure 4.5 shows 10 computer-generated observations of a stochastic error
term that is the sum of 10 identically distributed variables. As we'd expect
from the Central Limit Theorem, the resulting distribution is much more bell
shaped (normal) than is Figure 4.4. If we were to continue to add variables,
the distribution would tend to look more and more like the normal distribu-
tion.

These figures show the tendency of errors to cancel each other out as the
number of omitted variables increases. Why does this occur? Averaging the
Xs, each of which is distributed according to the uniform distribution,
bunches the observations toward the middle (because extreme values of any
X tend to be offset by the others) resulting in a fairly normal distribution.
The more Xs to be averaged, the more normal this distribution becomes.

By the way, the omitted variables do not have to conform to the uniform

distribution to produce this result; they can follow any probability distribu-
tion. Indeed, if the omitted variables were normally distributed, the error
term would be normally distributed by definition, since the sum (or average)
of normally distributed variables is also a normally distributed variable.

4.3 The Sampling Distribution of B

Just as the error term follows a probability distribution, so too do the esti-
mates of the true slope Bs (the Bs, or “B-hats”) follow such a probability dis-
tribution. In fact, each different sample of data typically produces a different
set of Bs. These Bs usually are assumed to be normally distributed because
the normality of the error term implies that the OLS estimator of the Bs in
the simple linear regression model is normally distributed as well. The prob-
ability distribution of the Bs is called a sampling distribution because it is
based on a number of sample drawings of the error term. To show this, we
will discuss the general idea of the sampling distribution of the Bs and then
use a computer-generated example to demonstrate that such distributions do
indeed tend to be normally distributed.

3. In generating these figures, we assumed that all variables were uniformly distributed (every
value equally and uniformly likely), that the other components of the error term were small in
size compared with the omitted variables, and that the coefficients of the omitted variables
were 1.0. These assumptions made the computations easier; the property shown holds even
without them.
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4.3.1 Sampling Distributions of Estimators

Recall that an estimator is a formula, such as the OLS formula in Equation
2.13, that tells you how to compute Bk, and an estimate is the value of Bk
computed by that formula. We have noted that the purpose of regression
analysis is to obtain good estimates of the true (or population) coefficients of
an equation from a sample of that population. In other words, given an
equation like:

Y; = Bo + BiXyi + BoXyi + € o (4.8)

we want to estimate (3s by taking a sample of the population and calculating
those estimates (typically by OLS if the classical assumptions are met). Since re-
searchers usually have only one sample, beginning econometricians often as-
sume that regression analysis can produce only one estimate of the Bs. In reality,
each different sample from a given population will produce a different set of es-
timates of the Bs. For example, one sample might produce an estimate consider-
ably higher than the true B whereas another might come up with a § that is
lower. We need to discuss the properties of the distribution of these Bs, even
though in most real applications we will encounter only a single draw from it.
A simplified example will help clarify this point. Suppose you were at-
tempting to estimate the average age of your class from a sample of the class;
let’s say that you were trying to use a sample of 5 to estimate the average age
of a class of 30. Your estimate would obviously depend on the exact sample
you picked. If your random sample accidentally included the five youngest or
the five oldest people in the class, then your estimated age would be dramat-
ically different from the one you would get if your random sample were more
centered. In essence, then, there is a distribution of all the possible estimates
that will have a mean and a variance just as the distribution of error terms
does. To illustrate this concept, assume that the population is distributed
uniformly between 19 and 23. Here are three samples from this population:

sample 1: 19, 19, 20, 22, 23; mean = 20.6
sample 2: 20, 21, 21, 22, 22; mean = 21.2
sample 3: 19, 20, 22, 23, 23; mean = 21.4

Each sample yields an estimate of the true population mean (which is 21),
and the distribution of the means of all the possible samples has its own
mean and variance. For a “good” estimation technique, we would want the
mean of the distribution of sample estimates to be equal to the true popula-
tion mean. This is called unbiasedness. Although the mean of our three sam-
ples is a little over 21, it seems likely that if we took enough samples, the
mean of our group of samples would eventually equal 21.0.
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In a similar way, the Bs estimated by OLS for Equation 4.8 form a distribu-
tion of their own. Each sample of observations of Y and the Xs will produce
different Bs, but the distribution of these estimates for all possible samples
has a mean and a variance like any distribution. When we discuss the proper-
ties of estimators in the next section, it will be important to remember that
we are discussing the properties of the distribution of estimates generated
from a number of samples (a sampling distribution).

Properties of the Mean

A desirable property of a distribution of estimates is that its mean equals the
true mean of the variable being estimated. An estimator that yields such esti-
mates is called an unbiased estimator.

An unbiased estimator is an estimator whose sampling distribution
has as its expected value the true value of B.

E(B) = By (4.9)

Only one value of B is obtained in practice, but the property of unbiasedness
is useful because a single estimate drawn from an unbiased distribution is
more likely to be near the true value (assuming identical variances of the ﬁs)
than one taken from a distribution not centered around the true value. If an
estimator produces Bs that are not centered around the true B, the estimator
is referred to as a biased estimator.

We cannot ensure that every estimate from an unbiased estimator is better
than every estimate from a biased one because a particular unbiased esti-
mate? could, by chance, be farther from the true value than a biased estimate
might be. This could happen by chance, for example, or because the biased
estimator had a smaller variance. Without any other information about the
distribution of the estimates, however, we would always rather have an unbi-
ased estimate than a biased one.

Properties of the Variance

Just as we would like the distribution of the Bs to be centered around the true
population B, so too would we like that distribution to be as narrow (or pre-

4. Technically, since an estimate has just one value, an estimate cannot be unbiased (or biased}.
On the other hand, the phrase “estimate produced by an unbiased estimator” is cumbersome,
especially if repeated 10 times on a page. As a result, many econometricians use “unbiased esti-
mate” as shorthand for “a single estimate produced by an unbiased estimator.”
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Figure 4.6 Distributions of B

Different distributions of G can have different means and variances. Distributions I and
I, for example, are both unbiased, but distribution I has a larger variance than does dis-
tribution II. Distribution III has a smaller variance than distribution I, but it is biased.

cise) as possible. A distribution centered around the truth but with an ex-
tremely large variance might be of very little use because any given estimate
would quite likely be far from the true 8 value. For a B distribution with a
small variance, the estimates are likely to be close to the mean of the sam-
pling distribution. To see this more clearly, compare distributions I and Il
(both of which are unbiased) in Figure 4.6. Distribution I, which has a larger
variance than distribution 1I, is less precise than distribution II. For compari-
son purposes, a biased distribution (distribution III) is also pictured; note
that bias implies that the expected value of the distribution is to the right or
left of the true B.

The variance of the distribution of the Bs can be decreased by increasing
the size of the sample. This also increases the degrees of freedom, since the
number of degrees of freedom equals the sample size minus the number of
coefficients or parameters estimated. As the number of observations in-
creases, other things held constant, the distribution of Bs becomes more cen-
tered around its sample mean, and the variance of the sampling distribution
tends to decrease. Although it is not true that a sample of 15 will always pro-
duce estimates closer to the true B than a sample of 5, it is quite likely to do
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Probability

Figure 4.7 Sampling Distribution of B for Various Observations (n)

As the size of the sample increases, the variance of the distribution of Bs calculated from
that sample tends to decrease. In the extreme case (not shown} a sample equal to the popu-
lation would yield only an estimate equal to the mean of that distribution, which (for unbi-
ased estimators) would equal the true B, and the variance of the estimates would be zero.

s0; such larger samples should be sought. Figure 4.7 presents illustrative sam-
pling distributions of Bs for 15 and 5 observations for OLS estimators of B
when the true B equals 1. The larger sample indeed produces a sampling dis-
tribution that is more closely centered around B.

In econometrics, general tendencies must be relied on. The element of
chance, a random occurrence, is always present in estimating regression coef-
ficients, and some estimates may be far from the true value no matter how
good the estimating technique. However, if the distribution is centered
around the true value and has as small a variance as possible, the element of
chance is less likely to induce a poor estimate. If the sampling distribution is
centered around a value other than the true B (that is, if B is biased) then a
lower variance implies that most of the sampling distribution of B is concen-
trated on the wrong value. However, if this value is not very different from
the true value, which is usually not known in practice, then the greater preci-
sion will still be valuable.

A final item of importance is that as the variance of the error term in-
creases, so too does the variance of the distribution of B. The reason for the
increased variance of B is that with the larger variance of ¢;, the more extreme

f
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values of €; are observed with more frequency, and the error term becomes
more important in determining the values of Y;. Thus, the relative portion of
the movements of Y; explained by the deterministic component BX; is less,
and there are more unexplained changes in Y; caused by the stochastic ele-
ment ;. This implies that empirical inferences about the value of § are more
tenuous. The R? of the equation will tend to decrease as the variance of the
error term increases, symptomatic of this tendency.

Properties of the Standard Error

Since the standard error of the estimated coefficient, SE( ﬁ), is the square root
of the estimated variance of the Bs, it too is affected by the size of the sample
and other factors. To see this, let’s look at an equation for SE(QI), the stan-
dard error of the estimated slope coefficient from a model with two indepen-
dent variables:

. Se?/(n - 3) | .
(Ba) = Sx - X)X -1d) (#.10)

Take a look® at Equation 4.10. What happens if the sample size, n, increases?

As n increases, so too will Xe? and > (X;; — X;)?. The denominator of

Equation 4.10 will rise unambiguously, but the numerator will not, because

the increase in e will tend to be offset by the increase in n. As a result, an

increase in sample size will cause SE(B) to fall; the larger the sample, the
more precise our coefficient estimates will be.

How about when X e? increases, holding the sample size constant? In this
case, SE(B;) will increase. Because estimates of VAR[¢;] (the variance of the
error term) increase as >,ef increases, such a relationship makes sense be-
cause a more widely varying error term will make it harder for us to obtain
precise coefficient estimates. The more € varies, the less precise the coefficient
estimate will be.

Finally, what about that >, (X; — X)? term? When X, (X; — X)? increases,
holding the sample size constant, SE( Bl) decreases. Thus, the more X varies
around its mean, the more precise the coefficient estimate will be. This makes
sense, since a wider range of X will provide more information on which to base
the B As a result, the Bs will be more accurate, and SE(B1) will fall. Although
we've used an equation from a three-variable model to show these properties,
they also hold for SE(B)s from equations with any number of variables.

5. 17, in Equation 4.10 is the simple correlation coefficient between X; and X,. For more on r,
see Section 5.3.3.
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4.3.2 A Demonstration that the s Are Normally Distributed

One of the properties of the normal distribution is that any linear function of
normally distributed variables is itself normally distributed. Given this property,
it is not difficult to prove mathematically that the assumption of the normality
of the error terms implies that the Bs are themselves normally distributed. This
proof is not as important as an understanding of the meaning of such a conclu-
sion, so this section presents a simplified demonstration of that property.

To demonstrate that normal error terms imply normally distributed Bs,
we'll use a number of computer-generated samples and then calculate Bs
from these samples in much the same manner as mean ages were calculated
in the previous section. All the samples generated will conform to the same
arbitrarily chosen true model, and the error term distribution used to gener-
ate the samples will be assumed to be normally distributed as is implied by
the Central Limit Theorem. An examination of the distribution of Bs gener-
ated by this experiment not only shows its normality, but is also a good re-
view of the discussion of the sampling distribution of s.

For this demonstration, assume that the following model is true:

Yi = BO + B].XI + Gi =0+ le + €i » (411)

This is the same as stating that, on average, Y = X. If we now assume that
the error term is (independently) normally distributed with mean 0 and
variance of 0.25, and if we further choose a sample size of 5 and a given set
of fixed Xs, we can use the computer to generate a large number of random
samples (data sets) conforming to the various assumptions listed above. We
then can apply OLS and calculate a B for each sample, resulting in a distrib-
ution of {3s as discussed in this section. The sampling distribution for 5,000
such computer-generated data sets and OLS-calculated Bs is shown in Fig-
ure 4.8.
Two conclusions can be drawn from an examination of Figure 4.8:

1. The distribution of Bs appears to be a symmetrical, bell-shaped distri-
bution that is approaching a continuous normal distribution as the
number of samples of Bs increases.

2. The distribution of the [A%s is unbiased but shows surprising variations.
Bs from —2.5 to +4.5 can be observed even though the true value of B
is 1.0. Such a result implies that any researcher who bases an impor-
tant conclusion on a single regression result runs the risk of overstat-
ing the case. This danger depends on the variance of the estimated co-
efficients, which decreases with the size of the sample. Note from
Figure 4.7 that as the sample size increases from 5 to 15, the chance of
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Figure 4.8 Sampling Distribution of the OLS Estimate Bforp =1
and ¢ = 0.25

To demonstrate that the distribution of Bs is indeed normal, we calculated 5,000 esti-
mates of B from 5,000 samples where the true B was known to be 1.0. As can be seen, the
resulting distribution of the s is not only centered around 1.0, the true B, but it is also
symmetrical and bell shaped, as is the normal distribution.

observing a single B far from its true value falls; this demonstrates the
desirability of larger samples.

Computer-generated simulations of this kind are usually referred to as
Monte Carlo experiments. Monte Carlo experiments typically have seven steps:

1.

Assume a “true” model with specific coefficient values (for example,
Y = 3.0 + 1.2X; — 5.3X,) and an error term distribution (for exam-
ple, N[0,1.0]).

Select values for the independent variables.
Select an estimating technique (usually OLS).

4. Create various samples of values of the dependent variable, using the

assumed model, by randomly generating error terms from the as-
sumed distribution.

. Compute the estimates of the Bs from the various samples using the

estimating technique.
Evaluate the results.

7. Return to step 1 and choose other values for the coefficients, indepen-

dent variables, or error term variance; compare these results with the
first set. (This step, which is optional, is called sensitivity analysis and is
discussed in more detail in Section 6.4.5).




CHAPTER 4 = THE CLASSICAL MODEL

4.4 The Gauss—Markov Theorem and the Properties of OLS
Estimators

The Gauss—Markov Theorem proves two important properties of OLS estima-
tors. This theorem is proven in all advanced econometrics textbooks and
readers interested in the proof should see Exercise 8 and its answer in Appen-
dix A. For a regression user, however, it's more important to know what the
theorem implies than to be able to prove it. The Gauss-Markov Theorem
states that:

Given Classical Assumptions I through VI (Assumption VII, normality,
is not needed for this theorem), the Ordinary Least Squares estimator
of By, is the minimum variance estimator from among the set of all lin-
ear unbiased estimators of By, fork=0,1,2,..., K

The Gauss—Markov Theorem is perhaps most easily remembered by stat-
ing that “OLS is BLUE” where BLUE stands for “Best (meaning minimum
variance) Linear Unbiased Estimator.” Students who might forget that “best”
stands for minimum variance might be better served by remembering “OLS is
MvVLUE,” but such a phrase is hardly catchy or easy to remember.

If an equation’s coefficient estimation is unbiased (that is, if each of the es-
timated coefficients is produced by an unbiased estimator of the true popula-
tion coefficient), then:

EB =Bk (k=01,2...,K

Best, as mentioned above, means that each é’k has the smallest variance pos-
sible (in this case, out of all the linear unbiased estimators of B ). An unbi-
ased estimator with the smallest variance is called efficient, and that estima-
tor is said to have the property of efficiency.

The Gauss—Markov Theorem requires that just the first six of the seven clas-
sical assumptions be met. What happens if we add in the seventh assump-
tion, the assumption that the error term is normally distributed? In this case,
the result of the Gauss—Markov Theorem is strengthened because the OLS es-
timator can be shown to be the best (minimum variance) unbiased estimator
out of all the possible estimators, not just out of the linear estimators. In
other words, if all seven assumptions are met, OLS is “BUE.” It also turns out
that the OLS estimator is equivalent to another estimation technique, the
maximum likelihood estimator (which we will discuss in Chapter 13).
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Given all seven classical assuriiptions, the OLS coefficient estimators can
be shown to have the following properties:

1. They are unbiased. That is, E(G) is B. This means that the OLS estimates
of the coefficients are centered around the true population values of
the parameters being estimated.

2. They are minimum variance. The distribution of the coefficient estimates
around the true parameter values is as tightly or narrowly distributed
as is possible for an unbiased distribution. No other unbiased estima-
tor has a lower variance for each estimated coefficient than OLS.

3. They are consistent. As the sample size approaches infinity, the esti-
mates converge on the true population parameters. Put differently, as
the sample size gets larger, the variance gets smaller, and each estimate
approaches the true value of the coefficient being estimated.

4. They are normally distributed. The Bs are N (B, VAR[E]). Thus various
statistical tests based on the normal distribution may indeed be ap-
plied to these estimates, as will be done in Chapter 5.

If the seven classical assumptions are met and if OLS is used to calculate
the Bs, then it can be stated that an estimated regression coefficient is an un-
biased, minimum variance estimate of the impact on the dependent variable
of a one-unit increase in a given independent variable, holding constant all
other independent variables in the equation. Such an estimate is drawn from
a distribution of estimates that is centered around the true population coeffi-
cient and has the smallest possible variance for such unbiased distributions.

4.5 Standard Econometric Notation

Whereas Section 4.3 portrayed graphically the notions of central tendency
and dispersion, this section presents the standard notation used throughout
the econometrics literature for these concepts.

The measure of the central tendency of the sampling distribution of B,
which can be thought of as the mean of the Bs, is denoted as E(P), read as

“the expected value of beta-hat.” The expected value of a random variable is
the population mean of that variable (with observations weighted by the
probability of observation).

The variance of B is the typical measure of dispersion of the sampling dlS-
tribution of B. The variance has several alternative notational representa-
tions, including VAR(B) and o2(B). Each of these is read as the “variance of
beta-hat” and represents the degree of dispersion of the sampling distribu-
tion of B.
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that the variance of the true B, 62(B), is zero, since there is only one true By
with no distribution around it. Thus, the estimated variance of the estimated
coefficient is defined and observed, the true variance of the estimated coeffi-
cient is unobservable, and the true variance of the true coefficient is zero. The
square root of the estimated variance, or the coefficient estimate, is the stan-
dard error of B, SE(Ek), which we will use extensively in hypothesis testing.

4.6 Summary »

1. The seven Classical Assumptions state that the regression model is
linear with an error term that has a mean of zero, is uncorrelated with
the explanatory variables and other observations of the error term,
has a constant variance, and is normally distributed (optional). In ad-
dition, explanatory variables must not be perfect linear functions of
each other.

2. The two most important properties of an estimator are unbiasedness
and minimum variance. An estimator is unbiased when the expected
value of the estimated coefficient is equal to the true value. Minimum
variance holds when the estimating distribution has the smallest vari-
ance of all the estimators.

3. Given the Classical Assumptions, OLS can be shown to be the mini-
mum variance, linear, unbiased estimator (or BLUE, for best linear
unbiased estimator) of the regression coefficients. This is the
Gauss-Markov Theorem. When one or more of the classical proper-
ties do not hold (excluding normality), OLS is no longer BLUE, al-
though it still may provide better estimates in some cases than the al-
ternative estimation techniques discussed in subsequent chapters.

4. Because the sampling distribution of the OLS estimator of @, is BLUE,
it has desirable properties. Moreover, the variance, or the degree of
dispersion of the sampling distribution of ﬁk, decreases as the num-
ber of observations increases.

5. An OLS-estimated regression coefficient from a model that meets the
classical assumptions is an unbiased, minimum variance estimate of
the impact on the dependent variable of a one-unit increase in the in-
dependent variable in question, holding constant the other indepen-
dent variables in the equation.

6. There is a standard notation used in the econometric literature. Table
4.1 presents this fairly complex set of notational conventions for use
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in régression analysis. This table should be reviewed periodically as a
refresher.

(Answers to even-numbered exercises are in Appendix A.)

1.

Write the meaning of each of the following terms without referring to

the book (or to your notes), and compare your definition with the

version in the text for each:

a. the Classical Assumptions

b. classical error term

¢. standard normal distribution

d. the Central Limit Theorem

e. unbiased estimator

f. BLUE

g. sampling distribution

Which of the following pairs of independent variables would violate

Assumption VI? (That is, which pairs of variables are perfect linear

functions of each other?)

a. right shoe size and left shoe size (of students in your class)

b. consumption and disposable income (in the United States over the
last 30 years)

¢. X; and 2X;

d. Xi and (Xi)z

Consider the following estimated regression equation (standard er-
rors in parentheses):

¥, = —120 + 0.10F + 533R,  R?=.50
(0.05) (1.00)

where: Y, = the corn yield (bushels/acre) in year t
F, = fertilizer intensity (pounds/acre) in year t
R, = rainfall (inches) in year t

a. Carefully state the meaning of the coefficients 0.10 and 5.33 in this
equation in terms of the impact of Fand Ron Y.

b. Does the constant term of —120 really mean that negative amounts
of corn are possible? If not, what is the meaning of that estimate?

¢. Suppose you were told that the true value of By is known to be 0.20.
Does this show that the estimate is biased? Why or why not?
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d. Suppose you were told that the equation does not meet all the clas-
sical assumptions and, therefore, is not BLUE. Does this mean that
the true By, is definitely not equal to 5.33? Why or why not?

4. The Gauss-Markov Theorem shows that OLS is BLUE, so we, of
course, hope and expect that our coefficient estimates will be unbi-
ased and minimum variance. Suppose, however, that you had to
choose one or the other.

a. If you had to pick one, would you rather have an unbiased non-
minimum variance estimate or a biased minimum variance one?
Explain your reasoning.

b. Are there circumstances in which you might change your answer to
part a? (Hint: Does it matter how biased or less-than-minimum
variance the estimates are?)

¢. Can you think of a way to systematically choose between estimates
that have varying amounts of bias and less-than-minimum variance?

5. In 1993 Edward Saunders published an article that tested the possibil-
ity that the stock market is affected by the weather on Wall Street. Us-
ing daily data from 1962 through 1989, he estimated an equation with
the following significant variables (standard errors in parentheses):°

DJ, = By + 0.10R,_; + 0.0010], — 0.017M, + 0.0005C,
(0.01) (0.0006) (0.004)  (0.0002)

n = 6,911 (daily) R? = .02

where:  DJ, = the percentage change in the Dow Jones industrial

average on day t

R; = the daily index capital gain or loss for day t

J; = adummy variable equal to 1 if the ith day was in
January and equal to 0 otherwise

M, = a dummy variable equal to 1 if the ith day was a
Monday and equal to 0 otherwise

C; = avariable equal to 1 if the cloud cover was 20 per- -
cent or less, equal to -1 if the cloud cover was 100
percent and equal to 0 otherwise

6. Edward M. Saunders, Jr., “Stock Prices and Wall Street Weather,” American Economic Review,
December 1993, pp. 1337-1346. Saunders also estimated equations for the New York and
American Stock Exchange indices, both of which had much higher R%s than did this equation.
R,_, was included in the equation “to account for nonsynchronous trading effects” (p. 1341).




CHAPTER 4 = THE CLASSICAL MODEL

-

‘ a. Saunders did not include an estimate of the constant term in his
published regression results. Which of the Classical Assumptions
supports the conclusion that you shouldn’t spend much time ana-
lyzing estimates of the constant term? Explain.

b. Which of the Classical Assumptions would be violated if you de-
cided to add a dummy variable to the equation that was equal to 1
if the ith day was a Tuesday, Wednesday, Thursday, or Friday, and
equal to 0 otherwise? (Hint: The stock market is not open on week-
ends.)

c. Carefully state the meaning of the coefficients of R and M, being
sure to take into account the fact the R is lagged in this equation
(for valid theoretical reasons).

d. The variable C is a measure of the percentage of cloud cover from
sunrise to sunset on the ith day and reflects the fact that approxi-
mately 85 percent of all New York’s rain falls on days with 100 per-
cent cloud cover. Is C a dummy variable? What assumptions (or
conclusions) did the author have to make to use this variable?
What constraints does it place on the equation?

e. Saunders concludes that these findings cast doubt on the hypothe-
sis that security markets are entirely rational. Based just on the
small portion of the author’s work that we include in this question,
would you agree or disagree? Why?

6. Consider a random variable that is distributed N(0,0.5), that is, nor-
mally distributed with a mean of zero and a variance of 0.5. What is
the probability that a single observation drawn from this distribution
would be greater than one or less than minus one? [Hint: To answer
this question, you will need to convert this distribution to a standard
normal one (with mean equal to zero and standard deviation equal
to one) and then refer to Table B-7 in the back of the book. The table
includes a description of how to make such a transformation. ]

7. 'W. Bowen and T. Finegan’ estimated the following regression equa-
tion for 78 cities (standard errors in parentheses):

L, = 94.2 — 0.24U; + 0.20E; — 0.69]; — 0.06S; + 0.002C; — 0.80D;
(0.08) (0.06) (0.16) (0.18) (0.03) (0.53)
=78 R?=.51
¢
7. W. G. Bowen and T. A. Finegan, “Labor Force Participation and Unemployment,” in Arthur

M. Ross (ed.), Employment Policy and Labor Markets (Berkeley: University of California Press,
1965), Table 4-2.

109



110  PARTI = THE BASIC REGRESSION MODEL

- [T o

* where: L; = percent labor force participation (males ages 25 to
54) in the ith city
U; = percent unemployment rate in the ith city
E. = average earnings (hundreds of dollars/year) in the ith
city
average other income (hundreds of dollars/year) in
the ith city
S; = average schooling completed (years) in the ith city
C; = percent of the labor force that is nonwhite in the ith
city
D; = a dummy equal to 1 if the city is in the South and 0
otherwise

._‘
ll

. Interpret the estimated coefficients of C and D. What do they mean?

. How likely is perfect collinearity in this equation? Explain your answer.

c. Suppose that you were told that the data for this regression were
from one decade and that estimates on data from another decade
yielded a much different coefficient of the dummy variable. Would
this imply that one of the estimates was biased? If not, why not? If
so, how would you determine which year's estimate was biased?

d. Comment on the following statement. “I know that these results

are not BLUE because the average participation rate of 94.2 percent

is way too high.” Do you agree or disagree? Why?

o e

8. A typical exam question in a more advanced econometrics class is to
prove the Gauss—Markov Theorem. How might you go about starting
such a proof? What is the importance of such a proof? (Hint: If
you're having trouble getting started answering this question, see Ap-
pendix A.)

9, For your first econometrics project you decide to model sales at the
frozen yogurt store nearest your school. The owner of the store is glad
to help you with data collection because she believes that students
from your school make up the bulk of her business. After countless
hours of data collection and an endless supply of tutti-frutti frozen
yogurt, you estimate the following regression equation (standard er-
rors in parentheses):

¥, = 262.5 + 3.9T, — 46.94P, + 134.3A, — 152.1C;
(0.7) (20.0)  (108.0) (138.3)

n=29 RZ=.78
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where: Y, = the total number of frozen yogurts sold during the tth

two-week time period

T; = average high temperature (in degrees F) during period t

P; = the price of frozen yogurt (in dollars) at the store in
period t

A; = a dummy variable equal to 1 if the owner places an ad
in the school newspaper during period t, 0 otherwise

C, = a dummy variable equal to 1 if your school is in regu-
lar session in period t (eatly September through early
December and early January through late May), 0
otherwise

a. This is a demand equation without any supply equation specified.
Does this violate any of the Classical Assumptions? What kind of
judgments do you have to make to answer this question?

b. What is the real-world economic meaning of the fact that the esti-
mated coefficient of A, is 134.3? Be specific.

¢. You and the owner are surprised at the sign of the coefficient of C,.
Can you think of any reason for this sign? (Hint: Assume that your
school has no summer session.)

d. If you could add one variable to this equation, what would it be?
Be specific.

10. The middle third of this text (Chapters 6 through 11) concentrates on
analyzing violations of the six Classical Assumptions required to
prove the Gauss-Markov Theorem. If you're going to understand
these chapters, it's good advice to know the Classical Assumptions
cold before you start them. (It turns out to be fairly difficult to make
sense of a whole chapter about the violation of a particular assump-
tion if you're not really sure what that assumption is all about!) To
help accomplish this task, complete the following exercises:

a. Write out the Classical Assumptions without looking at your book
' or notes. (Hint: Don’t just say them to yourself in your head—put
pen or pencil to paper!)
b. After you've completed writing out all six assumptions, compare your
version with the text’s. What differences are there? Are they important?
¢. Get together with a classmate and take turns explaining the as-
sumptions to each other. In this exercise, try to go beyond the defi-
nition of the assumption to give your classmate a feeling for the
real-world meaning of each assumption.
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Hypothesis Testing ¢

5.1 What Is Hypothesis Testing?
5.2 The t-Test

5.3 Examples of £-Tests
5.4 Limitations of the t-Test
5.5 The F-Test of Overall Significance

5.6 Summary and Exercises

The most important use of econometrics for many researchers is in testing
their theories with data from the real world, so hypothesis testing is more
meaningful to them than are the other major uses of econometrics (descrip-
tion and forecasting). This chapter starts with a brief introduction to the
topic of hypothesis testing. We then examine the t-test, the statistical tool typ-
ically used for hypothesis tests of individual regression coefficients, and the
F-test of overall significance.

We are merely returning to the essence of econometrics—an effort to
quantify economic relationships by analyzing sample data—and asking what
conclusions we can draw from this quantification. Hypothesis testing goes
beyond calculating estimates of the true population parameters to a much
more complex set of questions. Hypothesis testing determines what we can
learn about the real world from a sample. Is it likely that our result could
have been obtained by chance? Can our theories be rejected using the results
generated by our sample? If our theory is correct, what are the odds that this
particular sample would have been observed? _

Hypothesis testing and the t-test should be familiar topics to readers with
strong backgrounds in statistics, who are encouraged to skim this chapter
and focus only on those applications that seem somewhat new. The develop-
ment of hypothesis testing procedures is explained here in terms of the re-
gression model, however, so parts of the chapter may be instructive even to
those already skilled in statistics. Students with a weak background in statis-

. tics are encouraged to read Chapter 16 before beginning Chapter 5.
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Our approach will be classical in nature, since we assume that the sample
data are our best and only information about the population. An alternative,
Bayesian statistics, adds prior information to the sample to draw statistical

inferences.1 p

5.1 = What Is Hypothesis Testing?

Hypothesis testing is used in a variety of settings. The Food and Drug Admin-
istration (FDA), for example, tests new products before allowing their sale. If
the sample of people exposed to the new product shows some side effect sig-
nificantly more frequently than would be expected to occur by chance, the
FDA is likely to withhold approval of marketing that product. Similarly,
economists have been statistically testing various relationships between con-
sumption and income for half a century; theories developed by John May-
nard Keynes and Milton Friedman, among others, have been tested on
macroeconomic and microeconomic data sets.

Although researchers are always interested in learning whether the theory
in question is supported by estimates generated from a sample of real-world
observations, it’s almost impossible to prove that a given hypothesis is correct.
All that can be done is to state that a particular sample conforms to a particu-
lar hypothesis. Even though we cannot prove that a given theory is “correct”
using hypothesis testing, we can often reject a given hypothesis with a certain
degree of confidence. In such a case, the researcher concludes that it is very
unlikely the sample result would have been observed if the hypothesized the-
ory were correct. If there is conflicting evidence on the validity of a theory,
the question is often put aside until additional data or a new approach shed
more light on the issue.

Let's begin by investigating three topics that are central to the application
of hypothesis testing to regression analysis:

1. the specification of the hypothesis to be tested,

1. Bayesian econometrics combines estimates generated from samples with estimates based on
prior theory or research. For example, suppose you attempt to estimate the marginal propensity
to consume {MPC) with the coefficient of income in an appropriately specified consumption
regression equation. If your prior belief is that the MPC is 0.9 and if the estimated coefficient
from your sample is 0.8, then a Bayesian estimate of the MPC would be somewhere between
the two, depending on the strength of your belief. Bayesians, by being forced to state explicitly
their prior expectations, tend to do most of their thinking before estimation, which is a good
habit for a number of important reasons. For more on this approach, see Dale Poirier, Interme-
diate Statisics and Econometrics: A Comparative Approach (Cambridge, MA: MIT Press, 1995).
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2. the decision rule to use in deciding whether to reject the hypothesis in
question, and

3. the kinds of errors that might be encountered if the application of the
decision rule to the appropriate statistics yields an incorrect inference.

5.1.1 Classical Null and Alternative Hypotheses

The first step in hypothesis testing is to state explicitly the hypothesis to be
tested. To ensure fairness, the researcher should specify the hypothesis before
the equation is estimated. The purpose of prior theoretical work is to match
the hypothesis to the underlying theory as completely as possible. Hypothe-
ses formulated after generation of the estimates are at times justifications of
particular results rather than tests of their validity. As a result, most econome-
tricians take pains to specify hypotheses before estimation.

In making a hypothesis, you must state carefully what you think is not true
and what you think is true. These reflections of the researcher’s expectations
about a particular regression coefficient (or coefficients) are summarized in
the null and alternative hypotheses. The null hypothesis is typically a state-
ment of the range of values of the regression coefficient that would be ex-
pected to occur if the researcher’s theory were not correct. The alternative hy-
pothesis is used to specify the range of values of the coefficient that would be
expected to occur if the researcher’s theory were correct. The word null also
means “zero,” and the null hypothesis can be thought of as the hypothesis
that the researcher does not believe.? The reason it’s called a null or zero hy-
pothesis is that a variable would not be included in an equation if its ex-
pected coefficient were zero.

We set up the null and alternative hypotheses in this way so we can make
rather strong statements when we reject the null hypothesis. It is only when
we define the null hypothesis as the result we do not expect that we can con-
trol the probability of rejecting the null hypothesis accidentally when it is in
fact true. The converse does not hold. That is, we can never actually know the
probability of agreeing accidentally that the null hypothesis is correct when it

2. Researchers occasionally will have to switch the null and alternative hypotheses. For in-
stance, some tests of rational expectations theory have put the preferred hypothesis as the null
hypothesis in order to make the null hypothesis a specific value. In such cases of tests of spe-
cific nonzero values, the reversal of the null and alternative hypotheses is regrettable but un-
avoidable. An example of this kind of reversal is a two-sided null hypothesis involving a non-
zero value, as in the second example in Section 5.3.2. Except for these rare cases, all null
hypotheses in this text will be the result we expect not to occur.
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is in fact false. As a result, we can never say that we accept the null hypothesis;
we always must say that we cannot reject the null hypothesis, or we put the
word “accept” in quotes.

Hypotheses in econometrics usually do not specify particular values, but
instead they state the particular signs that the researcher expects the esti-
mated coefficients to take. We typically hypothesize that a particular coeffi-
cient will be positive (or negative). In such cases, the null hypothesis repre-
sents what is expected not to occur, but that expectation is now a range; the

. same is true for the alternative hypothesis.

The notation used to refer to a null hypothesis is “Hy:,” and this notation
is followed by a statement of the value or range of values you do not expect
the particular parameter to take. If, for example, you expect a negative coeffi-
cient, then the correct null hypothesis is:

Hy:B=0 (the values you do not expect)

The alternative hypothesis is expressed by “H,:” followed by the parameter
value or values you expect to observe:

HyB <0 (the values you expect to be true)

Another way to state the null and alternative hypotheses is to test the null
hypothesis that B is not significantly different from zero in either direction. ‘
In this second approach, the null and alternative hypotheses would be: ' 8

HO:B=O
Hp: B # 0

Since the alternative hypothesis has values on both sides of the null hypothe-
sis, this approach is called a two-sided test (or two-tailed test) to distinguish it
from the one-sided test of the previous example (in which the alternative hy-
pothesis was only on one side of the null hypothesis).>

3. Some researchers prefer to use a two-tailed test around zero for this hypothesis because they i
feel that the dassical approach requires the null hypothesis to contain a single value. We feel that )
the use of a two-tailed test in such a circumstance is a mistake. However, we have no quarrel with
using B = 0 as the null hypothesis as long as the alternative hypothesis remains the same. These
two versions of the null hypothesis give identical answers because to test a null hypothesis that is
a range like B =< 0, you must focus on the value in that range that is closest to the range implied
by the alternative hypothesis. If you can reject that value, you can reject values that are farther
away as well. Truncating the range of the null hypothesis in this way has no practical importance.
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5.1.2 Type | and Type 11 Exrors

The typical testing technique in econometrics 1s t0 hypothesize an expected
sign (or value) for each regression coefficient {except the constant term) and
then to determine whether to reject the null hypothesis. Since the regression
coefficients are only estimates of the true population parameters, it would be
unrealistic to think that conclusions drawn from regression analysis will al-
ways be right.

There are two kinds of errors we can make in such hypothesis testing:

Type L. We reject a true null hypothesis.
Type 1. We do not reject a false null hypothesis.

We will refer to these errors as Type I and Type 11 Errors, respectively.4
Suppose we have the following null and alternative hypotheses:

HO:BSO
HAZB>0

There are two distinct possibilities. The first is that the true B in the popu-
lation is equal to or less than zero, as specified by the null hypothesis. When
the true B is not positive, unbiased estimates of B will be distributed around
Zero Of some negative number, but any given estimate is very unlikely to be
exactly equal to that number. Any single sample (and therefore any estimate
of B calculated from that sample) might be quite different from the mean of
the distribution. As 2 result, even if the true parameter is not positive, the
particular estimate obtained by 2 researcher may be sufficiently positive to
lead to the rejection of the null hypothesis that @ < 0. This is a Type | Error;
we have rejected the truth! A Type 1 Error is graphed in Figure 5.1.

The second possibility is that the true B is greater than 0, as stated in the
alternative hypothesis. Depending on the specific value of the population B
(and other factors), it's possible to obtain an estimate of B that is close
enough to zero (or negative) to be considered “not significantly positive.”
This occurs because the sampling distribution of B, even if unbiased, has a
portion of its area in the region of B =0 Such a result may lead the re-
searcher to “accept” the hypothesis that p = 0 when ‘o truth > 0. Thisisa
Type Il Error; we have failed to rejecta false null hypothesis! A Type Il Error is
graphed in Figure 5.2 on page 118. (The gpecific value of p = 1 was selected
as the true value in that figure purely for illustrative purposes.)

-

4. Some authors refer to these as « and { errors, respectively.
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Figure 5.1 Rejecting a True Null Hypothesis Is a Type I Error

If B = 0, but you observe a B that is very positive, you might reject a true null hypothe-
sis, Hy B =< 0, and conclude incorrectly that the alternative hypothesis Hy: B > Ois true.

As an example of Type I and Type II Errors, let’s suppose that you're on a
jury in a murder case.’ In such a situation, the presumption of “innocent un-
til proven guilty” implies that:

H,: The defendant is innocent.
H,: The defendant is guilty.
What would a Type I Error be? Rejecting the null hypothesis would mean

sending the defendant to jail, so a Type I Error, tejecting a true null hypothe-
sis, would mean:

Type I Error = Sending an innocent defendant to jail.
Similarly,
Type 11 Error = Freeing a guilty defendant.

Most reasonable jury members would want both levels of error to be quite
small, but such certainty is almost impossible. After all, couldn’t there be a mis-
taken identification or a lying witness? In the real world, decreasing the proba-
bility of a Type I Error (sending an innocent defendant to jail) means increas-

5. This example comes from and is discussed in much more detail in Edward E. Leamer, Specifi-
cation Searches (New York: John Wiley and Sons, 1978), pp. 93-98.
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Distribution of [:%s
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Figure 5.2 Failure to Reject a False Null Hypothesis Is a Type 11 Error

If B = 1, but you observe a é that is negative or close to zero, you might fail to reject a
false null hypothesis, Hy: B = 0, and incorrectly ignore that the alternative hypothesis,
Hy: B > 0, is true.

ing the probability of a Type I Error (freeing a guilty defendant). If we never
sent an innocent defendant to jail, we'd be freeing quite a few murderers!

5.1.3 Decision Rules of Hypothesis Testing

In testing a hypothesis, a sample statistic must be calculated that allows the null
hypothesis to be “accepted” or rejected depending on the magnitude of that
sample statistic compared with a preselected critical value found in tables such
as those at the end of this text; this procedure is referred to as a decision rule.

A decision rule is formulated before regression estimates are obtained. The
range of possible values of B is divided into two regions, an “acceptance” re-
gion and a rejection region, where the terms are expressed relative to the null
hypothesis. To define these regions, we must determine a critical value (or, for
a two-tailed test, two critical values) of B. Thus, a critical value is a value that
divides the “acceptance” region from the rejection region when testing a null
hypothesis. Graphs of these “acceptance” and rejection regions are presented
in Figures 5.3 and 5.4.

To use a decision rule, we need to select a critical value. Let's suppose that the
critical value is 1.8. If the observed B is greater than 1.8, we can reject the null
hypothesis that B is zero or negative. To see this, take a look at the one-sided
test in Figure 5.3. Any B above 1.8 can be seen to fall into the rejection region,
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Figure 5.3 “Acceptance” and Rejection Regions for a One-Sided Test of 3

For a one-sided test of Hy: p = 0'vs. Hy: B > 0, the critical value divides the distribution
of B (centered around zero on the assumption that Hy, is true) into “acceptance” and re-
jection regions.

whereas any B below 1.8 can be seen to fall into the “acceptance” Tegion.

The rejection region measures the probability of a Type I Error if the null
hypothesis is true. Take another look at Figure 5.3. Note that we've labeled
the rejection region as the probability of a Type I Error. why? If the null hy-
pothesis is true and we reject it, we've made a Type I Error, but the only time
we can reject the truth is when B falls in the rejection region.

Some students react to the news that the rejection region measures the
probability of a Type I Error by suggesting that we make the rejection region
as small as possible. Unfortunately, decreasing the chance of a Type I Error
means increasing the chance of a Type II Error (not rejecting a false null hy-
pothesis). This is because if you make the rejection region so small that you
almost never reject a true null hypothesis, then you're going to “accept” al-
most every null hypothesis, whether they're true or not! As a result, the prob-
ability of a Type II Error will rise.

As an example of the trade-off between the probability of a Type I Error
and the probability of a Type II Error, think back to the murder case example
of the previous section:

Type 1 Error = Sending an innocent defendant to jail.
Type II Error = Freeing a guilty defendant.
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Figure 5.4 “Acceptance” and Rejection Regions for a Two-Sided Test of B

For a two-sided test of Hy: B = 0vs. Hy: B # 0, we divided the distribution of B into an
“acceptance” region and two rejection regions.

The only way to ensure a low probability of Type I Error is to free almost
every defendant, but that would mean freeing quite a few guilty ones. Thus
decreasing the probability of a Type I Error does, indeed, increase the proba-
bility of a Type II Error.

Given that, how do you choose between Type I and Type 11 Errors? Is it
worse to send an innocent defendant to jail or to free a murderer? The answer
is easiest if you know that the cost (to society or the decision maker) of mak-
ing one kind of error is dramatically larger than the cost of making the other.
If you worked for the FDA, for example, you'd want to be very sure that you
hadn't released a product that had horrible side effects. Without such infor-
mation about costs, however, most econometricians focus on Type I Error
while choosing a critical value that keeps the probability of either kind of er-
ror from getting unreasonably large. In Section 5.2.3, we’ll discuss our spe-
cific solution to this dilemma for the t-test. :

5.2 The t-Test

The t-test is the test that econometricians usually use to test hypotheses about
individual regression slope coefficients. Tests of more than one coefficient at
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a time (joint hypotheses) are typically done with the F-test, presented in Sec-
tions 5.5 and 7.7.

The t-test is easy to use because it accounts for differences in the units of
measurement of the variables and in the standard deviations of the estimated
coefficients (both of which would affect the shape of the distribution of [§
and the location of the critical value). More important, the t-statistic is the
appropriate test to use when the stochastic error term is normally distributed
and when the variance of that distribution must be estimated. Since these
usually are the case, the use of the t-test for hypothesis testing has become
standard practice in econometrics.

5.2.1 The t-Statistic

For a typical multiple regression equation:
Yi=Bo t B Xy +BXy t & (5.1)

we can calculate t-values for each of the estimated coefficients in the equa-
tion. For reasons that will be explained in Section 7.1.2, t-tests are usually
done only on the slope coefficients; for these, the relevant general form of the
t-statistic for the kth coefficient is

(Bk - BH )
f=——2"  (k=12...,K (5.2)
SE(Bi)
where: By = the estimated regression coefficient of the kth variable

By, = theborder value (usually zero) implied by the null hy-
. pothesis for By
i SE(Bk) = the estimated standard error of Bk (that is, the square
root of the estimated variance of the distribution of the
Bi; note that there is no “hat” attached to SE because SE
is already defined as an estimate)

How do you decide what border is implied by the null hypothesis? Some null
hypotheses specify a particular value. For these, By is simply that value; if
Hy: B = S, then By = S. Other null hypotheses involve ranges, but we are
concerned only with the value in the null hypothesis that is closest to the
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border between the “acceptance” region and the rejection region. This border
value then becomes the By, For example, if Hy: B = 0and Hy: B < 0, then
the value in the null hypothesw closest to the border is zero, and By = 0.
Since most regression hypotheses test whether a particular regression coef-
ficient is significantly different from zero, By is typically zero, and the most-
used form of the t-statistic becomes

B, — 0
tk=(k—A~) k=1,2...,K)
SE(Bx)
which simplifies to
By ) ~
= =% (k=1,2,...,K) (5.3)
SE(Bx)

or the estimated coefficient divided by the estimate of its standard error. This
is the t-statistic formula used by most computer programs.

For an example of this calculation, let’s consider the equation for the
check volume at Woody's restaurants from Section 3.2:

Y, = 102,192 — 9075N; + 0.3547P; + 1.288]; (5.4)

(2053)  (0.0727) (0.543)
t=—442 4.88 237

n=33 R2 = 579

In Equation 5.4, the numbers in parentheses underneath the estimated re-
gression coefficients are the estimated standard errors of the estimated Bs,
and the numbers below them are t-values calculated according to Equation
5.3. The format used to document Equation 5.4 above is the one we'll use
whenever possible throughout this text. Note that the sign of the t-value is al-
ways the same as that of the estimated regression coefficient, while the stan-
dard error is always positive.

Using the regression results in Equation 5.4, let's calculate the t-value for
the estimated coefficient of P, the population variable. Given the values in
Equation 5.4 of 0.3547 for fp and 0.0727 for SE(Bp), and given Hy: Bp = 0,
the relevant t-value is indeed 4.88, as specified in Equation 5.4:

Pr 03547

tp= —— = — 488
SE(BP) 0.0727

The larger in absolute value this t-value is, the greater the likelihood that the
estimated regression coefficient is significantly different from zero.
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5.2.2 The Critical t-Value and the t-Test Decision Rule

To decide whether to reject or not to reject a null hypothesis based on a calcu-
lated t-value, we use a critical t-value. A critical t-value is the value that distin-
guishes the “acceptance” region from the rejection region. The critical t-value,
t., is selected from a t-table (see Statistical Table B-1 in the back of the book)
depending on whether the test is one sided or two sided, on the level of Type I
Error you specify and on the degrees of freedom, which we have defined as the
number of observations minus the number of coefficients estimated (includ-
ing the constant) orn — K — 1. The level of Type I Error in a hypothesis test is
also called the level of significance of that test and will be discussed in more de-
tail later in this section. The t-table was created to save time during research; it
consists of critical t-values given specific areas underneath curves such as those
in Figure 5.3 for Type I Errors. A critical t-value is thus a function of the proba-
bility of Type I Error that the researcher wants to specify.

Once you have obtained a calculated t-value and a critical t-value, you reject
the null hypothesis if the calculated t-value is greater in absolute value than
the critical t-value and if the calculated t-value has the sign implied by Hy.

Thus, the rule to apply when testing a single regression coefficient is that
you should:

Reject Hy if |t ] > t. and if t, also has the sign implied by H,.
Do Not Reject H, otherwise. :

This decision rule works for calculated t-values and critical t-values for one-
sided hypotheses around zero:

HO: Bks 0
Hy: By > 0

Hoi BkZ 0
HAI Bk< 0

for two-sided hypotheses around zero:

H,: By # 0
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for one-sided hypotheses based on hypothesized values other than zero:

HAI Bk> S

Hol Bkz S

and for two-sided hypotheses based on hypothesized values other than zero:

Ho: Bk‘: S
Hy: By # S

The decision rule is the same: Reject the null hypothesis if the appropriately
calculated t-value, t, is greater in absolute value than the critical t-value, t., as
long as the sign of t s the same as the sign of the coefficient implied in Ha.
Otherwise, “accept” Hy. Always use Equation 5.2 whenever the hypothesized
value is not zero.

Statistical Table B-1 contains the critical values t, for varying degrees of
freedom and levels of significance. The columns indicate the levels of signifi-
cance according to whether the test is one sided or two sided, and the rows
indicate the degrees of freedom. For an example of the use of this table and
the decision rule, let's return once again to the estimated model of gross
check volume at Woody's restaurants and, in particular, to the t-value for BP
calculated in Section 5.2.1. Recall that we hypothesized that population’s co-
efficient would be positive, 80 this is a one-sided test: '

HO: Bp_<- 0
HAZ Bp >0

There are 29 degrees of freedom (equal to n — K — ,or33-3—-1)in
this regression, so the appropriate t-value with which to test the calculated
t-value is a one-tailed critical t-value with 29 degrees of freedom. To find this
value, pick a level of significance, say 5 percent, and turn to Statistical Table
B-1. The number there is 1.699; should you reject the null hypothesis?

The decision Tule is to reject Ho if |ty | > tc and if i has the sign implied by
H,. Since the 5 percent, one-sided, 29 degrees of freedom critical t-value is

1.699, and since the sign implied by Hy is positive, the decision rule (for this
specific case) becomes:

Reject H if [tp| > 1.699 and if tp is positive
or, combining the two conditions:

Reject Hy if tp > 1.699
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What is tp? In the previous section, we found that t, was +4.88, so we would
reject the null hypothesis and conclude that population does indeed tend to
have a positive relationship with Woody's check volume (holding the other
variables in the equation constant).

This decision rule is based on the fact that since both @ and SE(B) have
known sampling distributions, so does their ratio, the t-statistic. The sam-
pling distribution of B was shown in Chapter 4 and is based on the assump-
tion of the normality of the error term ¢; and on the other Classical Assump-
tions. Consequently, the sampling distribution of the t-statistic is also based
on the same assumption of the normality of the error term and the Classical
Assumptions. If any of these assumptions are violated, t. will not necessarily
follow the t-distribution detailed in Statistical Table B-1. In many cases, how-
ever, the t-table is used as a reasonable approximation of the true distribution
of the t-statistic even when some of these assumptions do not hold.

In addition, as was mentioned above, the critical t-value depends on the
number of degrees of freedom, on the level of Type I Error (referred to as the
level of statistical significance), and on whether the hypothesis is a one-tailed
or two-tailed one. Figure 5.5 illustrates the dependence of the critical t. on
two of these factors. For the simple regression model with 30 observations
and two coefficients to estimate (the slope and the intercept), there are 28
degrees of freedom. The “acceptance” and rejection regions are stated in
terms of the decision rule for several levels of statistical significance and for
one-sided (Hy: B > 0) and two-sided (Hy: B # 0) alternatives.

Note from Statistical Table B-1 that the critical t-value for a one-tailed test
at a given level of significance is exactly equal to the critical t-value for a two-
tailed test at twice the level of significance as the one-tailed test. This property
arises because the t-statistic is symmetrical. For example, if 5 percent of the
area under the curve is to the right of t, then 5 percent will also be to the left
of —t, and the two tails will sum to 10 percent. This relationship between
one-sided and two-sided tests is illustrated in Figure 5.5. The critical value
t. = 1.701 is for a one-sided, 10 percent level of significance, but it also repre-
sents a two-sided, 10 percent level of significance because if one tail repre-
sents 5 percent, then both tails added together represent 10 percent.

5.2.3 Choosing a Level of Significance

To complete the previous example, it was necessary to pick a level of signifi-
cance before a critical t-value could be found in Statistical Table B-1. The
words “significantly positive” usually carry the statistical interpretation that
H, (B = 0) was rejected in favor of H, (B > 0) according to the preestab-
lished decision rule, which was set up with a given level of significance. The
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One-Sided Rejection Regions

(Ho: B =0)
(Hp: B> 0

10% Level of
Significance

- 5%

N2
1 \

—2.048 —1.701 0 1.313 1.701 2.048

| < 10% Two-Sided Level of Significance—>!
«—— 5% Two-Sided Level of Significance —>

Two-Sided “Acceptance” Regions

Figure 5.5 One-Sided and Two-Sided t-Tests for Various Levels of Signifi-
cance and 28 Degrees of Freedom

The critical t-value depends on whether the t-test is two sided or one sided and on the
chosen level of significance. In particular, the t. for a one-sided test at a given level of sig-
nificance is equal exactly to the t for a two-sided test with twice the level of significance
of the one-sided test. For example, t. = 1.701 for a 10 percent two-sided and as a 5 per-
cent one-sided test.

level of significance indicates the probability of observing an estimated
t-value greater than the critical t-value if the null hypothesis were correct. It
measures the amount of Type I Error implied by a particular critical t-value. If
the level of significance is 10 percent and we reject the null hypothesis at that
level, then this result would have occurred only 10 percent of the time that
the null hypothesis was indeed correct.

How should you choose a level of significance? Most beginning econome-
tricians (and many published ones too) assume that the lower the level of
significance, the better. After all, they say, doesn’t a low level of significance
guarantee a low probability of making a Type I Error? Unfortunately, an ex-
tremely low level of significance also dramatically increases the probability of
making a Type II Error. Therefore, unless you're in the unusual situation of
not caring about mistakenly “accepting” a false null hypothesis, minimizing
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the level of significance is not good standard practice.

Instead, we recommend using a 5 percent level of significance except in
those circumstances when you know something unusual about the relative
costs of making Type I and Type 1I Errors. If we can reject a null hypothesis at
the 5 percent level of significance, we can summarize our results by saying
that the coefficient is “statistically significant” at the 5 percent level. Since the
5 percent level is arbitrary, we shouldn’t jump to conclusions about the value
of a variable simply because its coefficient misses being significant by a small
amount; if a different level of significance had been chosen, the result might
have been different.

Some researchers avoid choosing a level of significance by simply stating
the lowest level of significance possible for each estimated regression coeffi-
cient. Such a use of the t-value should be regarded as a descriptive rather than
a hypothesis-testing use of statistics.

Now and then researchers will use the phrase “degree of confidence” or
“level of confidence” when they test hypotheses. What do they mean? The
level of confidence is nothing more than 100 percent minus the level of signifi-
cance. Thus a t-test for which we use a 5 percent level of significance can also
be said to have a 95 percent level of confidence. Since the two terms have
identical meanings, for all intents and purposes, we will tend to use level of
significance throughout this text. Another reason we prefer the term level of
significance to level of confidence is to avoid any possible confusion with the
related concept of confidence intervals.

5.2.4 Confidence Intervals

A confidence interval is a range within which the true value of an item is
likely to fall a specified percentage of the time.® This percentage is the level of
confidence associated with the level of significance used to choose the critical
t-value in the interval. For an estimated regression coefficient, the confidence
interval can be calculated using the two-sided critical t-value and the stan-
dard error of the estimated coefficient:

Confidence interval = § * 1. - SE(B) - (5.5)

As an example, let’s return to Equation 5.4 and our t-test of the significance
of the estimate of the coefficient of population in that equation:

6. Although it is common usage to call this interval a “confidence interval,” it technically is a
_ “prediction interval.”
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¥, = 102,192 — 9075N; + 0.3547P; + 1.288]; (5.4)
(2053)  (0.0727)  (0.543)
t=—442  4.88 2.37

n =33 R? = .579

What would a 90 percent confidence interval for Qp look like? Well,
Bp = 0.3547 and SE(B,) = 0.0727, so all we need is a 90 percent two-sided
critical t-value for 29 degrees of freedom. As can be seen in Statistical Table
B-1, this t. = 1.699. Substituting these values into Equation 5.5, we get:

90 percent confidence interval around |§p = 0.3547 * 1.699 + 0.0727
= 0.3547 * 0.1235

In other words, we expect that 90 percent of the time the true coefficient will
fall between 0.2312 and 0.4782.

There’s an interesting relationship between confidence intervals and two-
sided hypothesis testing. It turns out that if a hypothesized border value, By,
falls within the 90 percent confidence interval for an estimated coefficient,
then we will not be able to reject the null hypothesis at the 10 percent level of
significance in a two-sided test. If, on the other hand, By, falls outside the 90
percent confidence interval, then we can reject the null hypothesis.

Perhaps the most important econometric use of confidence intervals is in
forecasting. Many decision makers find it practical to be given a forecast of a
range of values into which the forecasted item is likely to fall some percentage
of the time. In contrast, decision makers find that a specific point forecast pro-
vides them with little information about the reliability or variability of the fore-
cast. For more on this application of confidence intervals, see Section 15.2.3.

5.3 Examples of t-Tests

5.3.1 Examples of One-Sided t-Tests

The most common use of the one-sided t-test is to determine whether a re-
gression coefficient has the sign predicted by theory. Let’s face it, if you expect
a positive sign for a coefficient and you get a negative B, it’s hard to reject the
possibility that the true B might be negative (or zero). On the other hand, if
you expect a positive sign and get a positive [3, things get a bit tricky. If B is
positive, but fairly close to zero, then a one-sided t-test should be used to de-
termine whether the 8 is different enough from zero to allow the rejection of
the null hypothesis. Recall that in order to be able to control the amount of

Type 1 Error we make, such a theory implies an alternative hypothesis of
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Hp: B > 0 (the expected sign) and a null hypothesis of Hy: B =< 0. Let’s look
at some complete examples of these kinds of one-sided t-tests.

Consider a simple model of the aggregate retail sales of new cars that
hypothesizes that sales of new cars (Y) are a function of real disposable in-
come (X;) and the average retail price of a new car adjusted by the consumer
price index (X;). Suppose you spend some time reviewing the literature on
the automobile industry and are inspired to test a new theory. You decide to
add a third independent variable, the number of sports utility vehicles sold
(X3), to take account of the fact that some potential new car buyers now buy
car-like trucks instead. You therefore hypothesize the following model:

+ —_— —
Y=f(X), X, X3) +e | (5.6)

B, is expected to be positive and B, and B3, negative. This makes sense, since
you'd expect higher incomes, lower prices, or lower numbers of sports utility
vehicles sold to increase new cars sales, holding the other variables in the equa-
tion constant. Although in theory a single test for all three slope coefficients
could be applied here, nearly every researcher examines each coefficient sepa-
rately with the t-test. The four steps to use when working with the t-test are:

1. Set up the null and alternative hypotheses.

2. Choose a level of significance and therefore a critical t-value.

3. Run the regression and obtain an estimated t-value (or t-score).

4. Apply the decision rule by comparing the calculated t-value with the
critical t-value in order to reject or “accept” the null hypothesis.

1. Set up the null and alternative hypotheses.” From Equation 5.6, the one-
sided hypotheses are set up as:

1. Hy: B; = 0
HA: Bl >0

2.Hy B, = 0
HAZ Bz <0

7. Recall from footnote 3 that a one-sided hypothesis can be stated either as Hy: 8 < 0 or
Hg: B = 0 because the value used to test Hy: < 0 is the value in the null hypothesis closest to
the border between the acceptance and the rejection regions. When the amount of Type I Error
is calculated, this border value of B is the one that is used because, over the whole range of
B = 0, the value B = 0 gives the maximum amount of Type I Error. The classical approach lim-
its this maximum amount to a preassigned level, the chosen level of significance.
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Remember that a t-test typitally is not run on the estimate of the con-
stant term (3.

2. Choose a level of significance and therefore a critical t-value. Assume that
you have considered the various costs involved in making Type I and
Type 11 Errors and have chosen 5 percent as the level of significance
with which you want to test. There are 10 observations in the data set
that is going to be used to test these hypotheses, and so there are
10 — 3 — 1 = 6 degrees of freedom. At a 5 percent level of signifi-
cance (or a 95 percent level of confidence), the critical t-value, t, can
be found in Statistical Table B-1 to be 1.943. Note that the level of sig-
nificance does not have to be the same for all the coefficients in the
same regression equation. It could well be that the costs involved in an
incorrectly rejected null hypothesis for one coefficient are much higher
than for another, and so lower levels of significance would be used. In
this equation, though, for all three variables:

t. = 1.943

3. Run the regression and obtain an estimated t-value. You now use the data
(annual from 1990 to 1999) to run the regression on your computer’s
OLS package, getting:

Y, = 1.30 + 4.91X;, + 0.00123X, — 7.14Xs, (5.7)
(2.38)  (0.00022) (71.38)
t=21 5.6 - 0.1

where: Y = new car sales (in hundreds of thousands of units) in
year t
X, = real U.S. disposable income (in hundreds of billions
of dollars)
X, = the average retail price of a new car in year t (in dollars)
X, = the number of sports utility vehicles sold in year t (in
millions)

Once again, we use our standard documentation notation, $o the
figures in parentheses are the estimated standard errors of the Bs. The
t-values to be used in these hypothesis tests are printed out by most
standard OLS programs, because the programs are written to test the
null hypothesis that = 0 (or, equivalently, = or = 0). If the pro-
gram does not calculate the t-scores automatically, one may plug the
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Bs and their estimated standard errors into Equation 5.3, repeated
here:

-

SE(By)

t (k=1,2...,K) (5.3)

For example, the estimated coefficient of X5 divided by its estimated
standard error is —7.14/71.38 = —0.1. Note that since standard errors
are always positive, a negative estimated coefficient implies a negative
t-value.

4. Apply the decision rule by comparing the calculated t-value with the critical
t-value in order to reject or “accept” the null hypothesis. As stated in Section
5.2, the decision rule for the t-test is to

Reject Hy if |t | > t. and if t, also has the sign implied by H,.
Do not reject Hy otherwise.

What would these decision rules be for the three hypotheses, given the rele-
vant critical t-value (1.943), and the calculated t-values?

For B;: Reject Hy if |2.1] > 1.943 and if 2.1 is positive.

In the case of disposable income, you reject the null hypothesis that §; = 0
with 95 percent confidence since 2.1 is indeed greater than 1.943. The result
f (thatis, Hy: B; > 0) is as you expected on the basis of theory since the more
income in the country, the more new car sales you'd expect.

For 3,: Reject Hy: if |5.6] > 1.943 and if 5.6 is negative.

For prices, the t-statistic is large in absolute value (being greater than 1.943)
but has a sign that is contrary to our expectations, since the alternative hy-
pothesis implies a negative sign. Since both conditions in the decision rule
must be met before we can reject Hy, you cannot reject the null hypothesis
that 3, = 0. That is, you cannot reject the hypothesis that prices have a zero
or positive effect on new car sales! This is an extremely small data set that |
covers a time period of dramatic economic swings, but even so, you're sur-
prised by this result. Despite your surprise, you stick with your contention
that prices belong in the equation and that their expected impact should be
negative.

Notice that the coefficient of X, is quite small, 0.00123, but that this size
has no effect on the t-calculation other than its relationship to the standard




132

PART I = THE BASIC REGRESSION MODEL /

error of the estimated coefficient. In other words, the absolute magnitude of
any B is of no particular importance in determining statistical significance
because a change in the units of measurement of X, will change both
B, and SE(f,) in exactly the same way, so the calculated t-value (the ratio of
the two) is unchanged.

For B3: Reject Hy if [-0.1] > 1.943 and if —0.1 is negative.

For sales of sports utility vehicles, the coefficient f’,3 is not statistically differ-
ent from zero since | —0.1| < 1.943, and you cannot reject the null hypothesis
that § = 0 even though the estimated coefficient has the sign implied by the
alternative hypothesis. After thinking this model over again, you come to the
conclusion that you were hasty in adding the variable to the equation.

Figure 5.6 illustrates all three of these outcomes by plotting the critical
t-value and the calculated t-values for all three null hypotheses on a t-distrib-
ution that is centered around zero (the value in the null hypothesis closest to
the border between the acceptance and rejection regions). Students are urged
to analyze the results of tests on the estimated coefficients of Equation 5.7 as-
suming different numbers of observations and different levels of significance.
Exercise 4 has a number of such specific combinations, with answers in the
back of the book.

Researchers sometimes note in their results the maximum level of confi-
dence achieved by an estimated coefficient. For example, in Figure 5.6, the
area under the t-statistic curve to the right of 2.1 for B, is the level of signifi-
cance (about 4 percent in this case). Since the level of significance chosen is
subjective, such an approach allows readers to form their own conclusions
about the acceptance or rejection of hypotheses. It also conveys the informa-
tion that the null hypothesis can be rejected with more confidence for some
estimated coefficients than for others. Computer programs often give such
probabilities of significance, P-values, for t-values, and if the probability given
is less than or equal to the preselected level of significance, then the null hy-
pothesis can be rejected. The availability of such probabilities should not de-
ceive beginning researchers into waiting to state the levels of significance to be
used until after the regressions are run, however, because the researchers run
the risk of adapting their desired significance levels to the results.

The purpose of this example is to provide practice in testing hypotheses,
and the results of such a poorly thought-through equation for such a small
number of observations should not be taken too seriously. Given all that, how-
ever, it's still instructive to note that you did not react the same way to your in-
ability to reject the null hypotheses for the price and sports utility vehicle vari-
ables. That is, the failure of the sports utility vehicle variable's coefficient to be
significantly negative caused you to realize that perhaps the addition of this
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Figure 5.6 One-Sided t-Tests of the Coefficients of the New Car Sales Model

Given the estimates in Equation 5.7 and the critical t-value of 1.943 for a 5 percent level
gf significance, gne-siAded, 6 degrees of freedom t-test, we can reject the null hypothesis for
B;. but not for B, or B.

variable was ill advised. The failure of the price variable’s coefficient to be sig-
nificantly negative did not cause you to consider the possibility that price has
no effect on new car sales. Put differently, estimation results should never be
allowed to cause you to want to adjust theoretically sound variables or hy-
potheses, but if they make you realize you have made a serious mistake, then it
would be foolhardy to ignore that mistake. What to do about the positive coef-
ficient of price, on the other hand, is what the “art” of econometrics is all
about. Surely a positive coefficient is unsatisfactory, but throwing the price
variable out of the equation seems even more so. Possible answers to such is-
sues are addressed more than once in the chapters that follow. -
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5.3.2 Examples of Two-Sided t-Tests

Although most hypotheses in regression analysis can be tested with one-
sided t-tests, two-sided t-tests are appropriate in particular situations. Re-
searchers sometimes encounter hypotheses that should be rejected if esti-
mated coefficients are significantly different from zero, or a specific nonzero
value, in either direction. This situation requires a two-sided t-test. The kinds
of circumstances that call for a two-sided test fall into two categories:

1. Two-sided tests of whether an estimated coefficient is significantly dif-
ferent from zero, and

5 Two-sided tests of whether an estimated coefficient is significantly dif-
ferent from a specific nonzero value.

1. Testing whether a @ is statistically different from zero. The first case
for a two-sided test of B arises when there are two Or more conflicting
hypotheses about the expected sign of coefficient. For example, in the
Woody's restaurant equation of Section 3.2, the impact of the average
income of an area on the expected number of Woody's customers in
that area is ambiguous. A high-income neighborhood might have more
total customers going out to dinner, but those customers might decide
to eat at a more formal restaurant than Woody's. As a result, you could
run a two-sided t-test around zero to determine whether or not the esti-
mated coefficient of income is significantly different from zero in either
direction. In other words, since there are reasonable cases to be made
for either a positive or a negative coefficient, it is appropriate to test the
p for income with a two-sided t-test:

HO:B=0
HA:B¢0

As Figure 5.7 illustrates, a two-sided test implies two different rejection
regions (one positive and one negative) surrounding the “acceptance”
region. A critical t-value, t,, must be increased in order to achieve the
same level of significance with a two-sided test as can be achieved with
a one-sided test.8 As a result, there is an advantage to testing hypothe-
ses with a one-sided test if the underlying theory allows because, for
the same t-values, the possibility of Type 1 Error is half as much for a
one-sided test as for a two-sided test. In cases where there are powerful

8. See Figure 5.5 in Section 5.2. In that figure, the same critical t-value has double the level of
significance for a two-sided test as for a one-sided test.
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Figure 5.7 Two-Sided t-Test of the Coefficient of Income in the Woody’s
Model

Given the estimates of Equation 5.4 and the critical t-values of +2.045 for a 5 percent
level of significance, two-sided, 29 degrees of freedom t-test, we can reject the null hy-
pothesis that B; = 0.

theoretical arguments on both sides, however, the researcher has no al-
ternative to using a two-sided t-test around zero. To see how this works,
let’s follow through the Woody's income variable example in more de-
tail.

1. Set up the null and alternative hypotheses.

Hoi BI =0

2. Choose a level of significance and therefore a critical t-value. You decide to
keep the level of significance at 5 percent, but now this amount must
be distributed between two rejection regions for 29 degrees of free-
dom. Hence, the correct critical t-value is 2.045 (found in Statistical
Table B-1 for 29 degrees of freedom and a 5 percent, two-sided test).
Note that, technically, there now are two critical t-values, +2.045 and
—2.045.
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3. Run the regression and obtain an estimated t-value. Since the value implied -
by the null hypothesis is still zero, the estimated t-value of +2.37 given \
in Equation 5.4 is applicable.

4. Apply the decision rule by comparing the calculated t-value with the critical
t-value in order to reject or “accept” the null hypothesis. We once again use
the decision rule stated in Section 5.2, but since the alternative hypoth-
esis specifies either sign, the decision rule simplifies to:

ForB; Reject Hyif |2.37| > 2.045

In this case, you reject the null hypothesis that 3 equals zero because
2.37 is greater than 2.045 (see Figure 5.7). Note that the positive sign
implies that, at least for Woody's restaurants, income increases cus-
tomer volume (holding constant population and competition). Given
this result, we might well choose to run a one-sided t-test on the next
year's Woody's data set. For more practice with two-sided t-tests, see Ex-
ercise 6.

2. Two-sided t-tests of a specific nonzero coefficient value. The second
case for a two-sided t-test arises when there is reason to expect a specific
nonzero value for an estimated coefficient. For example, if a previous
researcher has stated that the true value of some coefficient almost
surely equals a particular number, By, then that number would be the
one to test by creating a two-sided -test around the hypothesized
value, By . To the extent that you feel that the hypothesized value is
theoretically correct, you also violate the normal practice of using the
null hypothesis to state the nhypothesis you expect 10 veject .

In such a case, the null and alternative hypotheses become:

Ho: By = By,
Hy: By # Br,

where By is the specific nonzero value hypothesized.

9. Instead of being able to reject an incorrect theory based on the evidence, the researcher who
violates the normal practice is reduced to “not rejecting” the p value expected to be true. This
makes a big difference because to “accept” Hg is merely to say that Hy is not rejected by the
data. However, there are many theories that are not rejected by the data, and the researcher is
left with a regrettably weak conclusion. One way to accommodate such violations is to increase
the level of significance, thereby increasing the likelihood of a Type | Erior.
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Since the hypothesized B value is no longer zero, the formula with
which to calculate the estimated t-value is Equation 5.2, repeated here:

. |

(Bk - BHO)
y=—"— (k=1,2,...,K) (5.2)

SE(B)
This t-statistic is still distributed around zero if the null hypothesis is
correct, because we have subtracted By from the estimated regression
coefficient whose expected value is supposed to be By when Hy, is
true. Since the t-statistic is still centered around zero, the decision rules
developed earlier are still applicable. In other words, the techniques
used above are precisely the same as for a two-sided t-test of a specific
nonzero coefficient. For practice with this kind of t-test, see Exercise 6.

5.3.3 The t-Test of the Simple Correlation Coefficient, r

From the previous sections, it'd be easy to get the impression that the t-test
is used only for tests of regression coefficients, but that’s hardly the case. It
turns out that there is a variety of applications for the t-test that don't in-
volve ﬁs.

The most immediately useful of these applications is a t-test of the simple
correlation coefficient. The simple correlation coefficient, r, is a measure of
the strength and direction of the linear relationship between two variables.
The simple correlation coefficient between X; and X is:

2[(X11 - )_(1)()(21 - i2)]

— — (5.8)
\/E(Xli - X)? 2 (Xa - Xp)°

Iy =

If two variables are perfectly positively correlated, then r = +1. To see this,
assume that X;; = X,; and substitute into Equation 5.8:

2y - X)Xy — X))
Vi - X)? 3Ky - X))

20Xy - X))

S - X2

(5.9)

Iy

+1
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-

If two variables are perfectly negatively correlated, then r = —1. To see this,
substitute X,; = —X;; into Equation 5.8:

2[(X11 - il)(_xli + i1)] /
VE X~ X1)? Z(Ki + X))’

_ _E[(Xli - il)Z} _
S — X))
If two variables are totally uncorrelated, then r = 0.

One of the major uses of the simple correlation coefficient 1 is to test the
hypothesis that two explanatory variables are correlated in a less than perfect
but still significant (multicollinear) way. For imperfect multicollinearity to
occur in this two-variable case, the simple correlation coefficient must be

fairly large in the direction indicated by theory. In order to test this hypothe-
sis, r can be converted into a t-statistic using:

(5.10)

o=

g=Yn-2 (5.11)

where n is the size of the sample. The statistic defined in Equation 5.11 fol-
lows the t-distribution with n — 2 degrees of freedom. Since t is directly re-
lated to 1, a large positive r will convert into a large positive t, and so on.

Tests of hypotheses about t (and therefore about r) can be undertaken us-
ing the critical t-values and decision rules outlined in Section 5.2 and Statisti-
cal Table B-1. For example, suppose you encounter a simple correlation coef-
ficient of 0.946 between two variables you expect to be positively correlated
in a data set with 28 observations. In this case,

ACTEIRIE LT R e L
Ho:r=0
HAI r>0

and we can reject the null hypothesis of no positive correlation if the calcu-
lated t-score is larger in absolute value than the critical t-value of 1.706 (for
26 degrees of freedom at the 5 percent, one-sided level of significance) and if
t has the positive sign implied by the alternative hypothesis. If we substitute
r = 0.946 and n = 28 into Equation 5.11, we obtain 14.880, and the null hy-
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pothesis of no positive collinearity can be rejected. (If theory provides no ex-
pected direction, a two-sided test should be used.) For practice in hypothesis
tests of simple correlation coefficients, see Exercise 10.

\ |
5.4 Limitations of the t-Test

A problem with the t-test is that it is easy to misuse; t-scores are so frequently
printed out by computer regression packages and the t-test seems so easy to
work with that beginning researchers sometimes attempt to use the t-test to
“prove” things that it was never intended to even test. For that reason, it's
probably just as important to know the limitations of the t-test as it is to
know the applications of that test. Perhaps the most important of these limi-
tations, that the usefulness of the t-test diminishes rapidly as more and more
specifications are estimated and tested, is the subject of Section 6.4. The pur-
pose of the present section is to give additional examples of how the t-test
should not be used.

5.4.1 The t-Test Does Not Test Theoretical Validity

Recall that the purpose of the t-test is to help the researcher make inferences
about a particular population coefficient based on an estimate obtained from
a sample of that population. Some beginning researchers conclude that any
statistically significant result is also a theoretically correct one. This is danger-
ous because such a conclusion confuses statistical significance with theoreti-
cal validity.

Consider for instance, the following estimated regression that explains the
consumer price index in the United Kingdom:1°

P =109 —-32C+039C2 (5.12)
(0.23) (0.02)
t=-139 195
RZ = 982 n =21

Apply the t-test to these estimates. Do you agree that the two slope coeffi-
cients are statistically significant? As a quick check of Statistical Table B-1
shows, the critical t-value for 18 degrees of freedom and a 5 percent two-

10. These results, and others similar to them, can be found in David F. Hendry, “Economet-
rics—Alchemy or Science?” Economica, November 1980, pp. 383-406.
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tailed level of significance is 2.101, so we can reject the null hypothesis of no
effect in these cases and conclude that C and 2 are indeed statistically signif-
icant variables in explaining P.

The catch is that P is the consumer price index and C is the cumulative
amount of rainfall in the United Kingdom! We havenj\ust shown that rain is
statistically significant in explaining consumer prices; does that also show
that the underlying theory is valid? Of course not. Why is the statistical result
so significant? The answer is that at 5 percent level of significance, there is a
1-in-20 chance of rejecting a true null hypothesis. If we try 20 or more differ-
ent tests, the odds are good that eventually we will be able to reject a correct
null hypothesis. This almost always inappropriate technique (called data
mining) was used to obtain the unrealistic results above. The moral should
be clear: Never conclude that statistical significance, as shown by the t-test, is
the same as theoretical validity.

Occasionally, estimated coefficients will be significant in the direction op-
posite from that hypothesized, and some beginning researchers may be
tempted to change their hypotheses. For example, a student might run a re-
gression in which the hypothesized sign is positive, get a “statistically signifi-
cant” negative sign, and be tempted to change the theoretical expectations to
“expect” a negative sign after “rethinking” the issue. Although it is admirable
to be willing to reexamine incorrect theories on the basis of new evidence,
that evidence should be, for the most part, theoretical in nature. In the case
cited above, the student should have been concerned that the evidence did
not support the theory, but that lack of support should not have caused the
theory itself to change completely. If the evidence causes a researcher to go
back to the theoretical underpinnings of a model and find a mistake, then
the null hypothesis should be changed, but then this new hypothesis should
be tested using a completely different data set. After all, we already know
what the result will be if the hypothesis is tested on the old one.

5.4.2 The t-Test Does Not Test “Importance”

One possible use of a regression equation is to help determine which inde-
pendent variable has the largest relative effect (importance) on the depen-
dent variable. Some beginning researchers draw the unwarranted conclusion
that the most statistically significant variable in their estimated regression is
also the most important in terms of explaining the largest portion of the
movement of the dependent variable. Statistical significance indicates the
likelihood that a particular sample result could have been obtained by
chance, but it says little if anything about which variables determine the ma-
jor portion of the variation in the dependent variable. To determine impor-
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tance, a measure such as the size of the coefficient multiplied by the average
size of the independent variable would make much more sense.!! Consider
the following hypothetical equation:

-~

Y = 300.0 + 10.0X; + 200.0X, | (5.13)
(1.0) (25.0)
t = 10.0 8.0

RZ = 90 n = 30

where: Y = mail-order sales of “O’Henry’s Oyster Recipes”
X; = hundreds of dollars of advertising expenditures in
“Gourmets’ Magazine” »
X, = hundreds of dollars of advertising expenditures on the “Julia
Adult TV Cooking Show”

(Assume that all other factors, including prices, quality, and competition, re-
main constant during the estimation period.)

Where should O'Henry be spending his advertising money? That is, which in-
dependent variable has the biggest impact per dollar on Y? Given that X,'s coef-
ficient is 20 times X;'s coefficient, you'd have to agree that X, is more important
as defined above, and yet which coefficient is more statistically significantly dif-
ferent from zero? With a t-score of 10.0, X, is more statistically significant than
X, and its 8.0, but all that means is that we have more confidence that the coef-
ficient is positive, not that the variable itself is necessarily more important in de-
termining Y. The theoretical underpinnings of a result and the actual result itself .
are at least as important as the statistical significance of that result.

5.4.3 The t-Test Is Not Intended for Tests of the Entire Population

The t-test helps make inferences about the true value of a parameter from an
estimate calculated from a sample of the population (the group from which
the sample is being drawn). As the size of the sample approaches the size of
the population, an unbiased estimated coefficient approaches the true popu-
lation value. If a coefficient is calculated from the entire population, then an
unbiased estimate already measures the population value and a significant |
t-test adds nothing to this knowledge. One might forget this property and at-

11. Some useful statistical measures of “importance” have been developed, but none is fully
satisfactory because of the presence of multicollinearity (to be discussed in Chapter 8). See J. M.
Shanks, “The Importance of Importance” (Berkeley: Survey Research Center, University of Cali-
fornia, 1982).

2 . - “ SRR
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tach too much importance to t-scores that have been obtained from samples
that approximate the population in size. All the t-test does is help decide how
likely it is that a particular small sample will cause a researcher to make a
mistake in rejecting hypotheses about the true population parameters.

This point can perhaps best be seen by remembering that the t-score is the
estimated regression coefficient divided by the standard error of the estimated
regression coefficient. If the sample size is large enough to approach the popu-
lation, then the standard error will fall close to zero because the distribution of
estimates becomes more and more narrowly distributed around the true para-
meter (if this is an unbiased estimate). The standard error will approach zero as
the sample size approaches infinity. Thus, the t-score will eventually become:

The mere existence of a large t-score for a huge sample has no real substan-
tive significance because if the sample size is large enough, you can reject al-
most any null hypothesis! It is true that sample sizes in econometrics can
never approach infinity, but many are quite large; and others, even though
fairly small, are not really samples of a population but contain the entire
population in one data set.12

5.5 The F-Test of Overall Significance

Although the t-test is invaluable for hypotheses about individual regression
coefficients, it can’t be used to test hypotheses about more than one coeffi-
cient at a time. Such a limitation is unfortunate, since it's possible to imagine
quite a few interesting hypotheses that involve more than one coefficient. For
example, suppose you wanted to test the hypothesis that two regression coef-
ficients were equal to each other? In such a situation, most researchers would
use a different statistical test, the F-test. _ ‘

The F-test is a method of testing a null hypothesis that includes more than
one coefficient; it works by determining whether the overall fit of an equa-
tion is significantly reduced by constraining the equation to conform to the
null hypothesis. If the fit is significantly reduced, then we can reject the null
hypothesis. If the fit is not reduced significantly, then we can't reject the null
hypothesis. The F-test is used most frequently in econometrics to test the
overall significance of a regression equation, the topic of this section. We'll
investigate other uses of the F-test in Section 7.7.

12. D. N. McCloskey, “The Loss Function Has Been Mislaid: The Rhetoric of Significance Tests,”
American Economic Review, May 1985, p. 204.
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Although R? and R? measure the overall degree of fit of an equation, they
don’t provide a formal hypothesis test of that overall fit. Such a test is pro-
vided by the F-test. The null hypothesis in an F-test of overall significance is
that all the slope coefficients in the equation equal zero simultaneously. For
an equation with K independent variables, this means that the null and alter-
native hypotheses would be!3:

Ho: By = By =+ = B = 0
Hj: Hy is not true

To show that the overall fit of the estimated equation is statistically signifi-
cant, we must be able to reject this null hypothesis using the F-test. -
The equation for the F-test of overall significance is:
B ESS/K (Y- VK
RSS/(n —K—-1)  Sel/tn-K-1)

(5.14)

This is the ratio of the explained sum of squares (ESS) to the residual sum of
squares (RSS), adjusted for the number of independent variables (K) and the
number of observations in the sample (n). In this case, the “constrained
equation” to which we're comparing the overall fit is:

Y, =B+ ¢ ’ (5.15)

which is nothing more than saying f{i = Y. Thus the F-test of overall signifi-
cance is really testing the null hypothesis that the fit of the equation isn‘t sig-
nificantly better than that provided by using the mean alone.

The decision rule to use in the F-test is to reject the null hypothesis if the
calculated F-value (F) from Equation 5.14 is greater than the appropriate crit-
ical F-value (F):

Reject Hyif F = F,
Do Not Reject Hyif F < F,

The critical F-value, F_ is determined from Statistical Tables B-2 or B-3 de-
pending on a level of significance chosen by the researcher and on the de-

13. Note that we don't hypothesize that B, = 0. This would imply that E(Y) = 0.
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-

grees of freedom. The F-statistic has two types of degrees of freedom: the c=-
grees of freedom for the numerator of Equation 5.14 (K, the number of ¢ --
straints implied by the null hypothesis) and the degrees of freedom for -
denominator of Equation 5.14 (n — K — 1, the degrees of freedom in th< -
gression equation). The underlying principle here is that if the calculz- :
F-value (or F-ratio) is greater than the critical value, then the estimated e.
tion’s fit is significantly better than the constrained equation’s fit (in =
case, just using Y), and we can reject the null hypothesis of no effect.

As an example of the use of the F-test, let’s test the overall significance * §
the Woody's restaurant model of Equation 3.4. Since there are three indef -

dent variables, the null and alternative hypotheses are:

Hop By =Bp =B =0
Hy: Hy is not true

To decide whether to reject or not reject this null hypothesis, we nee’
calculate Equation 5.14 for the Woody's example. There are three «:
straints in the null hypothesis, so K = 3. If we check the EViews comp." -
output for the Woody's equation on page 77, we can see that n = 33 : _
RSS = 6,130,000,000. In addition, it can be calculated!* that ESS eq_.
9,929,450,000. Thus the appropriate F-ratio is:

ESS/K 9,929,450,000/3
~ RSS/(n — K~1)  6,130,000,000/29

= 15.65 (5.

In practice, this calculation is never necessary, since virtually every comp_
regression package routinely provides the computed F-ratto for a test of ¢ -
all significance as a matter of course. On the Woody’s computer output
value of the F-statistic {15.64894) can be found near the bottom of the riz-
hand column.

Our decision rule tells us to reject the null hypothesis if the calculate: -
value is greater than the critical F-value. To determine that critical F-value
need to know the level of significance and the degrees of freedom. If we -
sume a 5 percent level of significance, the appropriate table to use is Star:
cal Table B-2. The numerator degrees of freedom equal 3 (K), and the :
nominator degrees of freedom equal 29 {n — K — 1), so we need to loc
Statistical Table B-2 for the critical F-value for 3 and 29 degrees of freec: -

14. To do this calculation, note that R? = ESS/TSS and that TSS = ESS + RSS. If you subs—.
the second equation into the first and solve for ESS, you obtain ESS = RSS + (R?) (1 - ¢

Since both RSS and R? are included in the EViews computer output on page 77, you cat =
calculate ESS.
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As the reader can verify,!> F. = 2.93 is well below the calculated F-value of
15.65, so we can reject the null hypothesis and conclude that the Woody's
equation does indeed have a significant overall fit.

Two final comments about the F-test of overall significance are in order.
First, if there is only one independent variable, then an F-test and a t-test of
whether the slope coefficient equals zero will always produce the same an-
swer. (Indeed, it can be shown mathematically that the two tests are identi-
cal.) This property does not hold if there are two or more independent vari-
ables. In such a situation, an F-test could determine that the coefficients
jointly are not significantly different from zero even though a t-test on one of
the coefficients might show that individually it is significantly different from
zero (or vice versa).

Finally, the F-statistic can be shown to be a direct function of R2. The larger
R2 is, the larger the F-ratio. Thus the F-test of overall significance is a test of
the significance of R? itself. For more on this property, see Exercise 8.

1. Hypothesis testing makes inferences about the validity of specific eco-
nomic (or other) theories from a sample of the population for which
the theories are supposed to be true. The four basic steps of hypothe-
sis testing (using a t-test as an example) are:

a. Set up the null and alternative hypotheses.

b. Choose a level of significance and, therefore, a critical t-value.

c. Run the regression and obtain an estimated t-value.

d. Apply the decision rule by comparing the calculated t-value with
the critical t-value in order to reject or “accept” the null hypothesis.

2. The null hypothesis states the range of values that the regression coef-
ficient is expected to take on if the researcher’s theory is not correct.
The alternative hypothesis is a statement of the range of values that
the regression coefficient is expected to take if the researcher’s theory
is correct.

3. The two kinds of errors we can make in such hypothesis testing are:

Type I: We reject a null hypothesis that is true.

15. Note that this critical F-value must be interpolated. The critical value for 30 denominator
degrees of freedom is 2.92, and the critical value for 25 denominator degrees of freedom is
2.99_ Since both numbers are well below the calculated F-value of 15.65, however, the interpo-
lation isn’t necessary to reject the null hypothesis. As a result, many researchers don't bother
with such interpolations unless the calculated F-value is inside the range of the interpolation.
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Type 1I: We do not reject a null hypothesis that is false.

4. A decision rule states critical t-values above or below which observed
sample t-values will lead to the rejection or “acceptance” of hypothe-
ses concerning population parameters. Critical values are selected
from a t-distribution table, depending on the chosen level of signifi-
cance, the degrees of freedom involved, and the specifics of the partic-
ular hypothesis.

5. The t-test tests hypotheses about individual coefficients from regres-
sion equations. The general form for the t-statistic is

(Bk - BH())
tk=—S'E—,—— (k=1,2,...,K)
L (Bx)
In many regression applications, By, is zero. Once you have calcu-
lated a t-value and chosen a critical t-value, you reject the null hypoth-

esis if the t-value is greater in absolute value than the critical t-value
and if the t-value has the sign implied by the alternative hypothesis.

6. The t-test is easy to use for a number of reasons, but care should be
taken when using the t-test to avoid confusing statistical significance
with theoretical validity or empirical importance.

7. The F-test is a method of testing a null hypothesis that includes more
than one coefficient. The F-test is used most frequently in economet-
rics to test the overall significance of a regression equation with the
following equation:

. ESS/K _ ZH -V “
TRSS/(n - K- 1) Sef/(n - K- 1)

Once you've calculated an F and chosen a critical F-value, F,, then you
can reject the null hypothesis that implies that the overall fit of an
equation is not significant if F = F.

(Answers to even-numbered exercises are in Appendix A.)

1. Write the meaning of each of the following terms without referring to
the book (or your notes), and compare your definition with the ver-
sion in the text for each.

a. null hypothesis
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a

b. alternative hypothesis
Type I Error
. level of significance
two-sided test
decision rule
. critical value
. t-statistic
t-test of the simple correlation coefficient
F-test _
. confidence intérval

AT oD e AN

2. Create null and alternative hypotheses for the following coefficients:

a. the impact of height on weight (Section 1.4)

b. all the coefficients in Equation A in Exercise 7, Chapter 2

c. all the coefficients in Y = f(X;, X,, and X3) where Y is total gasoline
used on a particular trip, X; is miles traveled, X, is the weight of the
car, and Xj; is the average speed traveled

d. the impact of the decibel level of the grunt of a shot-putter on the
length of the throw involved (shot-putters are known to make loud
noises when they throw, but there is little theory about the impact
of this yelling on the length of the put). Assume all relevant “non-
grunt” variables are included in the equation.

3. Think of examples other than the ones in this chapter in which:
a. It would be more important to keep Type I Error low than to keep
Type II Error low.
b. It would be more important to keep Type II Error low than to keep
Type I Error low.

4. Return to Section 5.3 and test the hypotheses implied by Equation 5.6
with the results in Equation 5.7 for all three coefficients under the fol-
lowing circumstances:

a. 10 percent significance and 15 observations
b. 90 percent confidence and 28 observations
c. 99 percent confidence and 10 observations

5. Return to Section 5.2 and test the appropriate hypotheses with the re-
sults in Equation 5.4 for all three coefficients under the following cir-
cumstances:

a. 5 percent significance and 6 degrees of freedom
b. 90 percent confidence and 29 degrees of freedom
c. 99 percent confidence and 2 degrees of freedom

6. Using the techniques of Section 5.3, test the following two-sided hy-
potheses:
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10.

a. For Equation 5.13, test the hypothesis that:

Hy: B, = 160.0
HA: Bz # 160.0

at the 5 percent level of significance.
b. For Equation 5.4, test the hypothesis that:

at the 99 percent level of confidence.
¢. For Equation 5.7, test the hypotheses that:

H0: Bz =0
HA: BZ # 0

at the 5 percent level of significance.

For all three tests in Exercise 6, under what circumstances would you
worry about possible violations of the principle that the null hypoth-
esis contains that which you do not expect to be true? In particular,
what would your theoretical expectations have to be in order to avoid
violating this principle in Exercise 6a?

It turns out that the F-ratio can be expressed as a function of R%.

a. As an exercise, substitute Equation 2.16 into Equations 5.14 to de-
rive the exact relationship between F and R2.

b. If one can be expressed as a function of the other, why do we need
both? What reason is there for computer regression packages to
typically print out both R? and the F-ratio?

Test the overall significance of equations that have the following
F-values (Using Statistical Table B-2):
a. F = 5.63 with 4 degrees of freedom in the numerator and
30 degrees of freedom in the denominator
b. F = 1.53 with 3 degrees of freedom in the numerator and
24 degrees of freedom in the denominator
c. F=57.84with 5 degrees of freedom in the numerator and
60 degrees of freedom in the denominator

Given the following simple correlation coefficients between two ex-
planatory variables, use the t-test (and Equation 5.11) to test the pos-
sibility of significant collinearity in the specified circumstances:

a. r = .905,n = 18, 5 percent level, positive expected relationship
b. r = .958, n = 27, 2.5 percent level, positive expected relationship
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c. r =.821,n = 7, 1 percent level, positive ei(petted relationship _
d. r = —.753, n = 42, 10 percent level, negative expected relationship
e. r =.519, n = 30, 5 percent level, ambiguous expected relationship

11. Consider the following hypothetical equation for a sample of di-
vorced men who failed to make at least one child support payment in
the last four years.(standard errors in parentheses):

P, = 2.0 + 0.50M; + 25.0Y; + 0.80A; + 3.0B; — 0.15C;
(0.10)  (20.0) (1.00) (3.0) (0.05)

where:  P; = the number of monthly child support payments that
the ith man missed in the last four years

M, = the number of months the ith man was unemployed
in the last four years ‘

Y; = the ratio of the dollar value of the average child sup-
port payment to average monthly disposable income
for the ith man

A; = the age in years of the ith man

B; = the religious beliefs of the ith man (a scale of 1 to 4,
with 4 being the most religious)

C; = the number of children the ith man has fathered -

a. Your friend expects the coefficients of M and Y to be positive. Test
these hypotheses. (Use the 95 percent level and n = 20.)

b. Test the hypothesis that the coefficient of A is different from zero.
(Use the 1 percent level and n = 25.)

c. Develop and test hypotheses for the coefficients of B and C. (Use
the 90 percent level and n = 17.)

12. Test the overall significance of the Magic Hill weight/height estimated
question in Section 1.4 by using the F ratio and Statistical Table B-2 in
the back of the book. (Hint: The first step is to calculate the F-ratio
from the information given in Table 2.1.)

13. Thomas Bruggink and David Rose!® estimated a regression for the an-
nual team revenue for Major League Baseball franchises:

R, = —1522.5 + 53.1P; + 1469.4M; + 1322.75; — 7376.3T;
(9.1)  (233.6) (1363.6) (2255.7)
t=58 6.3 1.0 -3.3
R2= 682 n =78(1984—1986) F =422

16. Thomas H. Bruggink and David R. Rose, Jr., “Financial Restraint in the Free Agent Labor
Market for Major League Baseball: Players Look at Strike Three,” Southern Economic Journal,
April 1990, pp. 1029-1043.

e A Lt
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where:  R; = team revenue from attendance, broadcasting, and
concessions (in thousands of dollars)
= the ith team’s winning rate (their winning percentage
multiplied by a thousand, 1000 = high)
M; = the population of the ith team’s metropolitan area
(in millions)
S; = a dummy equal to 1 if the ith team’s stadium was
built before 1940, 0 otherwise
T; = a dummy equal to 1 if the ith team’s city has two
Major League Baseball teams, 0 otherwise

P.

1

~a. Develop and test appropriate hypotheses about the individual co-
3 efficients and the overall fit at the 5 percent level. (Hint: You do not
have to be a sports fan to do this question correctly.)

b. The authors originally expected a negative coefficient for S. Their
explanation for the unexpected positive sign was that teams in
older stadiums have greater revenue because theyre better known
and have more faithful fans. Since this B is just one observation
from the sampling distribution of Bs, do you think they should
have changed their expected sign?

c. On the other hand, Keynes reportedly said, “When I'm wrong, I
change my mind; what do you do?” If one B lets you realize an er-
ror, shouldn’t you be allowed to change your expectation? How
would you go about resolving this difficulty?

d. Assume that your team is in last place with P = 350. According to

‘ this regression equation, would it be profitable to pay $4 million a
n year to a free agent who would raise the team's winning rate (P) to
5002 Be specific.

_ 14. Develop appropriate hypotheses for each slope coefficient in each of

I the following equations, and then calculate t-scores and test each null

b hypothesis at the 5 percent level:

Lo a. Exercise 9 in Chapter 4

b. Exercise 9 in Chapter 3 (Hint: Assume 28 degrees of freedom. Would
your answer change if there were only 5 degrees of freedom? How?)

c. Exercise 10 in Chapter 3

Lo 15. Consider the following equation estimated by Fred McChesney!7 to
determine whether the Washington Post’s Pulitzer Prize winning cover-

17. Fred S. McChesney, “Sensationalism, Newspaper Profits, and the Marginal Value of Water-
gate,” Economic Inquiry, January 1987, pp. 135-144. (n is hypothetical )
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age of the Watergate political crisis of the 1970s had an effect on the
newspaper's circulation (t-scores in parentheses):

&, = 29010 + 0.761J, + 0.325S, + 0.058W,
B (14.27)  (6.07)  (1.31)
R? = 97 n =26 (annual) F = 168.05

where:  C; = circulation of the Post in year t
J; = circulation of the Wall Street Journal in year t
S; = the number of months during year t that the Wash-
ington Star, the Post’s main local competitor at the
time, did not publish _
’ W, = a dummy variable equal to 1 during years of Water-
gate coverage and 0 otherwise

a. Develop appropriate hypotheses about the slope coefficients of
this equation. (Hint: The Wall Street Journal had little coverage of
Watergate and serves a much different market than does the Post.
As a result, McChesney considered the journal's circulation to be a
measure of the non-Watergate demand for newspapers.)

b. Test these hypotheses at the 5 percent level. (Hint: Note that
t-scores, not standard errors, are given in parentheses. As men-
tioned in the chapter, not all published regression results follow
our documentation format.)

c. Test the overall significance of the equation using the F-test (at the
1 percent level).

d. What economic conclusion can you draw about the effect of Water-
gate on the Post’s circulation?

16. In 1986 Frederick Schut and Peter VanBergeijk!® published an article
in which they attempted to see if the pharmaceutical industry prac-
ticed international price discrimination by estimating a model of the
prices of pharmaceuticals in a cross section of 32 countries. The au-
thors felt that if price discrimination existed, then the coefficient of
per capita income in a properly specified price equation would be
strongly positive. The reason they felt that the coefficient of per capita
income would measure price discrimination went as follows: the
higher the ability to pay, the lower (in absolute value) the price elas-

18. Frederick T. Schut and Peter A. G. VanBergeijk, “International Price Discrimination: The
Pharmaceutical Industry,” World Development, 1986, pp. 1141-1150. The estimated coefficients
we list are those produced by EViews using the original data and differ slightly from those in
the original article.
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ticity of demand for pharmaceuticals and the higher the price a price
discriminator could charge. In addition, the authors expected that
prices would be higher if pharmaceutical patents were allowed and
that prices would be lower if price controls existed, if competition was
encouraged, or if the pharmaceutical market in a country was rela-
tively large. Their estimates were (standard errors in parentheses):

P, = 38.22 + 1.43GDPN; — 0.6CVN; + 7.31PP, (5.17)
' (0.21) (0.22) (6.12)
t= 6.69 —2.66 1.19

— 15.63DPC; — 11.38IPC;
(6.93) (7.16)
t=  —225 ~1.59 —

n = 32 (national 1975 data) R? = .775 F = 22.35

where: P = the pharmaceutical price level in the ith country
divided by that of the United States
GDPN; = per capita domestic product in the ith country
divided by that of the United States
CVN; = per capita volume of consumption of pharma-
ceuticals in the ith country divided by that of
the United States
PP; = a dummy variable equal to 1 if patents for phar-
maceutical products are recognized in the ith
country and equal to 0 otherwise
DPC; = a dummy variable equal to 1 if the ith country
applied strict price controls and 0 otherwise
= a dummy variable equal to 1 if the ith country
encouraged price competition and 0 otherwise

IPC,

1

a. Develop and test appropriate hypotheses concerning the regression
coefficients using the t-test at the 5 percent level.

b. Test the overall significance of the estimated equation using the
F-test at the 5 percent level.

. Set up 90 percent confidence intervals for each of the estimated
slope coefficients.

d. Do you think Schut and VanBergeijk concluded that international
price discrimination exists? Why or why not?

e. How would the estimated results have differed if the authors had
not divided each country’s prices, per capita income, and per capita
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pharmaceutical consumption by that of the United States? Explain
your answer.

f. Reproduce their regression results by using the EViews computer
program (datafile DRUGS5) or your own computer program and
the data from Table 5.1.

TABLE 5.1 DATA FOR THE PHARMACEUTICAL PRICE DISCRIMINATION

_ EXERCISE
Country P GDPN cv N CVN PP IPC DPC
Malawi 60.83 4.9 0.014 2.36 0.6 1 0 0
Kenya 50.63 6.56 0.07 6.27 1.1 1 0 0
India . 31.71 6.56 18.66 282.76 66 O 0 1
Pakistan 38.76 8.23 3.42 32.9 104 O 1 1
Sri Lanka 15.22 9.3 0.42 6.32 6.7 1 1 1
Zambia 96.58 10.3 0.05 2.33 2.2 1 0 0
Thailand 48.01 13.0 2.21 19.60 113 O 0 0
Philippines 51.14 13.2 0.77 19.70 39 1 0 0
South Korea /§5.10 20.7 2.20 16.52 133 O 0 0
Malaysia - 70.74 21.5 0.50 5.58 89 1 0 O
Colombia 48.07 22.4 1.56 11.09 14.1 0 1 0
Jamaica 46.13 24.0 0.21 0.96 220 1 0 0
Brazil - 63.83 252 10.48 50.17 216 0 1 0
Mexico 69.68 34.7 7.77 28.16 276 0 0] 0
Yugoslavia 48.24 36.1 3.83 942 406 0 1 1
Iran 70.42 37.7 3.27 15.33 213 0 0 0
i Uruguay 65.95 39.6 0.44 1.30 338 O 0 0
ﬂ Ireland 73.58 42.5 0.57 1.49 38.0 1 0 0
Hungary 57.25 49.6 2.36 494 478 0 1 1
Poland 53.98 50.1 8.08 15.93 507 O 1 1
Italy 69.01 53.8 12.02 26.14 459 O 0 1
Spain 69.68 55.9 9.01 16.63 54.2 0 0 0
United Kingdom 71.19 63.9 9.96 26.21 38.0 1 1 1
Japan 81.88 68.4 28.58 52.24 547 O 0 1
Austria 139.53 69.6 1.24 3.52 35.2 0 0 0
Netherlands 137.29 75.2 1.54 6.40 241 1 0 0
Belgium 101.73 77.7 3.49 4.59 76.0 1 0 1
France 91.56 81.9 25.14 2470 1018 1 0 1
Luxembourg 100.27 82.0 0.10 0.17 60.5 1 0 1
Denmark 157.56 82.4 0.70 2.35 29.5 1 0 0
Germany, West 152.52 83.0 2429 28.95 839 1 0 0
United States 100.00 100.0 100.00 100.00 100.0 1 1 0

Source: Frederick T. Schut and Peter A.G. VanBergeijk, “International Price Discrimination: The
Pharmaceutical Industry,” World Development, 1986, p. 1144.

Note: filename = DRUGS5
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CHAPTER 6

Specification: Choosing the
Independent Variables

6.1 Omitted Variables

6.2 Irrelevant Variables

6.3  An lllustration of the Misuse of Specification Criteria

6.4  Specification Searches

6.5 Lagged Independent Variables

6.6  An Example of Choosing Independent Variables

6.7 Summary and Exercises

6.8  Appendix: Additional Specification Criteria

Before any equation can be estimated, it must be completely specified. Speci-
fying an econometric equation consists of three parts: choosing the correct
independent variables, the correct functional form, and the correct form of
the stochastic error term.

A specification error results when any one of these choices is made incor-
rectly. This chapter is concerned with only the first of these, choosing the
variables; the second and third will be taken up in later chapters.

That researchers can decide which independent variables to include in re-
gression equations is a source of both strength and weakness in economet-
rics. The strength is that the equations can be formulated to fit individual
needs, but the weakness is that researchers can estimate many different speci-
fications until they find the one that “proves” their point, even if many other
results disprove it. A major goal of this chapter is to help you understand
how to choose variables for your regressions without falling prey to the vari-
ous errors that result from misusing the ability to choose.

The primary consideration in deciding if an independent variable belongs
in an equation is whether the variable is essential to the regression on the ba-
sis of theory. If the answer is an unambiguous yes, then the variable definitely
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should be included in the equation, even if it seems to be lacking in statisti-
cal significance. If theory is ambivalent or less emphatic, a dilemma arises.
Leaving a relevant variable out of an equation is likely to bias the remaining
estimates, but including an irrelevant variable leads to higher variances of the
estimated coefficients. Although we'll develop statistical tools to help us deal
with this decision, it’s difficult in practice to be sure that a variable is rele-
vant, and so the problem often remains unresolved.

We devote the fourth section of the chapter to specification searches and
the pros and cons of various approaches to such searches. For example, tech-
niques like stepwise regression procedures and sequential specification
searches often cause bias or make the usual tests of significance inapplicable,
and we do not recommend them. Instead, we suggest trying to minimize the
number of regressions estimated and relying as much as possible on theory
rather than statistical fit when choosing variables. There are no pat answers,
however, and so the final decisions must be left to each individual researcher.

6.1  Omitted Variables

Suppose that you forget to include all the relevant independent variables
when you first specify an equation (after all, no one’s perfect!). Or suppose
that you can't get data for one of the variables that you do think of. The result
in both these situations is an omitted variable, defined as an important ex-
planatory variable that has been left out of a regression equation.

Whenever you have an omitted (or left-out) variable, the interpretation and
use of your estimated equation become suspect. Leaving out a relevant vari-
able, like price from a demand equation, not only prevents you from getting
an estimate of the coefficient of price but also usually causes bias in the esti-
mated coefficients of the variables that are in the equation.

The bias caused by leaving a variable out of an equation is called omitted
variable bias (or, more generally, specification bias.) In an equation with
more than one independent variable, the coefficient B represents the change
in the dependent variable Y caused by a one-unit increase in the independent
variable Xy, holding constant the other independent variables in the equa-
tion. If a variable is omitted, then it is not included as an independent vari-
able, and it is not held constant for the calculation and interpretation of .
This omission can cause bias: It can force the expected value of the estimated
coefficient away from the true value of the population coefficient.

Thus, omitting a relevant variable is usually evidence that the entire esti-
mated equation is suspect because of the likely bias in the coefficients of the
variables that remain in the equation. Let’s look at this issue in more detail.

157
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6.1.1 The Consequences of an Omitted Variable

What happens if you omit an important variable from your equation (per-
haps because you can’t get the data for the variable or didn’t even think of the
variable in the first place)? The major consequence of omitting a relevant in-
dependent variable from an equation is to cause bias in the regression coeffi-
cients that remain in the equation. Suppose that the true regression model is

Y = Bo + BiXy; + BoXy t+ g (6.1)

where ¢; is a classical error term. If you omit X, from the equation then the
equation becomes:

Y; = Bo + BiXy; t+ ¢ - (62)
where € equals

because the stochastic error term includes the effects of any omitted variables,
as mentioned in Section 1.2.3. From Equations 6.2 and 6.3, it might seem as
though we could get unbiased estimates of 34 and B, even if we left X, out of
the equation. Unfortunately, this is not the case,! because the included coeffi-
cients almost surely pick up some of the effect of the omitted variable and
therefore will change, causing bias. To see why, take another look at Equations
6.2 and 6.3. The error term € is not independent of the explanatory variable
X;i» as long as X;; and X,; are correlated because if X,; changes, both X;; and
¢ will change. In other words, if we leave an important variable out of an
equation, we violate Classical Assumption III (that the explanatory variables
are independent of the error term), unless the omitted variable is uncorrelated
with all the included independent variables (which is extremely unlikely). Re-
call that the correlation between X; and X, can be measured by the simple
correlation coefficient between the two variables (r,,) using Equation 5.8.

In general, when there is a violation of one of the Classical Assumptions,
the Gauss-Markov Theorem does not hold, and the OLS estimates are not
BLUE. Given linear estimators, this means that the estimated coefficients are
no longer unbiased or are no longer minimum variance (for all linear unbi-
ased estimators), or both. In such a circumstance, econometricians first deter-

1. For this to be true, X; and X, must be perfectly uncorrelated and E(B,X,;) must equal zero,
both of which are extremely unlikely.

O
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mine the exact property (unbiasedness or minimum variance) that no longer
holds and then suggest an alternative estimation technique that might, in
some sense, be better than OLS.

An omitted variable causes Classical Assumption III to be violated in a way
that causes bias. The estimation of Equation 6.2 when Equation 6.1 is the
truth will cause bias in the estimates of Equation 6.2. This means that:

E(BD) #B; (6.4)

Instead of having an expected value equal to the true B, the estimate will
compensate for the fact that X, is missing from the equation. If X, and X, are
correlated and X, is omitted from the equation, then the OLS program will
attribute to X, variations in Y actually caused by X,, and a biased estimate
will result.

To see how a left-out variable can cause bias, picture a production function
that states that output (Y) depends on the amount of labor (X;) and capital
(X,) used. What would happen if data on capital were unavailable for some
reason and X, was omitted from the equation? In this case, we would be leav-
ing out the impact of capital on output in our model. This omission would
almost surely bias the estimate of the coefficient of labor because it is likely
that capital and labor are positively correlated (an increase in capital usually
requires at least some labor to utilize it and vice versa). As a result, the OLS
program would attribute to labor the increase in output actually caused by
capital to the extent that labor and capital were correlated. Thus the bias
would be a function of the impact of capital on output (B,) and the correla-
tion between capital and labor.

To generalize for a model with two independent variables, the expected
value of the coefficient of an included variable (X;) when a relevant variable
(X,) is omitted from the equation equals:

EB)) =Byt Barar ‘ (6.5)
where o is the slope coefficient of the secondary regression that relates X, to X;:

where u; is a classical error term. a; can be expressed as a function of the cor-
relation between X; and X,, the included and excluded variables, or f(r{,)-
Let's take a look at Equation 6.5. It states that the expected value of the
included variable’s coefficient is equal to its true value plus the omitted vari-
able’s true coefficient times a function of the correlation between the in-




160

o

PART 1II = VIOLATIONS OF THE CLASSICAL ASSUMPTIONS

-

cluded (in) and omitted (om) variables.? Since the expected value of an un-
biased estimate equals the true value, the right-hand term in Equation 6.5
measures the omitted variable bias in the equation:

Bias = Bya; or Bias = By, * f(1i, om) - (6.7)

In general terms, the bias thus equals B, the coefficient of the omitted vari-
able, times f(ry, o), a function of the correlation between the included and
omitted variables.

This bias exists unless:

1. the true coefficient equals zero or
2. the included and omitted variables are uncorrelated.

The term B, f(1;, om) is the amount of specification bias introduced into
the estimate of the coefficient of the included variable by leaving out the
omitted variable. Although it's true that there is no bias if the included and
excluded variables are uncorrelated, there almost always is some correlation
between any two variables in the real world (even if it’s just random), and so
bias is almost always caused by the omission of a relevant variable.

6.1.2 An Example of Specification Bias

Consider the following equation for the annual consumption of chicken in
the United States. (The data for this example are included in Exercise 5;
t-scores differ because of rounding.)

-~

Y, = 31.5 — 0.73PC, + 0.11PB, + 0.23YD, (6.8)
(0.08)  (0.05)  (0.02) |
t= —9.12 250 14.22

R?Z = 986 n = 44 (annual 1951-1994)

2. Equation 6.5 is a conditional expectation that holds when there are exactly two independent
variables, but the more general equation is quite similar.

3. Although the omission of a relevant variable almost always produces bias in the estimators
of the coefficients of the included variables, the variances of these estimators are generally
lower than they otherwise would be. One method of deciding whether this decreased variance
in the distribution of the Bs is valuable enough to offset the bias is to compare different estima-
tion techniques with a measure called Mean Square Error (MSE). MSE is equal to the variance
plus the square of the bias. The lower the MSE, the better.
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where: Y, = per capita chicken consumption (in pounds) in year t
PC, = the price of chicken (in cents per pound) in year t
PB; = the price of beef (in cents per pound) in year t
YD, = U.S. per capita disposable income (in hundreds of dollars)
in year t

This equation is a simple demand for chicken equation that includes the
prices of chicken and a close substitute (beef) and an income variable. Note
that the signs of the estimated coefficients agree with the signs you would
have hypothesized before seeing any regression results.

If we estimate this equation without the price of the substitute, we obtain:

Y, = 32.9 — 0.70PC, + 0.27YD, (6.9)
(0.08)  (0.01)
t= —833 4591

R? = 984  n = 44 (annual 1951-1994)

Let’s compare Equations 6.8 and 6.9 to see if dropping the beef price variable
had an impact on the estimated equations. If you compare the overall fit, for
example, you can see that R? fell slightly from .986 to .984 when PB was
dropped, exactly what we’d expect to occur when a relevant variable is omitted.

More important, from the point of view of showing that an omitted vari-
able causes bias, let’s see if the coefficient estimates of the remaining vari-
ables changed. Sure enough, dropping PB caused BPC to go from —0.73 to
—0.70 and caused f%YD to go from 0.23 to 0.27. The direction of this bias, by
the way, is considered positive because the biased coefficient of PC (—0.70)
is more positive (less negative) than the suspected unbiased one (—0.73)
and the biased coefficient of YD (0.27) is more positive than the suspected
unbiased one of (0.23).

The fact that the bias is positive could have been guessed before any regres-
sions were run if Equation 6.7 had been used. The specification bias caused
by omitting the price of beef is expected? to be positive because the expected
sign of the coefficient of PB is positive and because the expected correlation
between the price of beef and the price of chicken itself is positive:

4. It is important to note the distinction between expected bias and any actual observed differ-
ences between coefficient estimates. Because of the random nature of the error term (and hence
the Bs), the change in an estimated coefficient brought about by dropping a relevant variable
from the equation will not necessarily be in the expected direction. Biasedness refers to the central
tendency of the sampling distribution of the s, not to every single drawing from that distribu-
tion. However, we usually (and justifiably) rely on these general tendencies. Note also that Equa-
tion 6.8 has three independent variables whereas Equation 6.7 was derived for use with equations
with exactly two. However, Equation 6.7 represents a general tendency that is still applicable.
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Expected bias in fpc = Bpg - f(tpc,pp) = (+) * (+) = (+)

Similarly for YD:

Expected bias in Byp = Bpp * f(ryp,pg) = (+) * (+) = (+)

Note that both correlation coefficients are anticipated to be (and actually
are) positive. To see this, think of the impact of an increase in the price of
chicken on the price of beef and then follow through the impact of any in-
crease in income on the price of beef.

To sum, if a relevant variable is left out of a regression equation

1. there is no longer an estimate of the coefficient of that variable in the
equation, and

2. the coefficients of the remaining variables are likely to be biased.

Although the amount of the bias might not be very large in some cases
(when, for instance, there is little correlation between the included and ex-
cluded variables), it is extremely likely that at least a small amount of specifi-
cation bias will be present in all such situations.

6.1.3 Correcting for an Omitted Variable

In theory, the solution to a problem of specification bias seems easy: Simply
add the omitted variable to the equation. Unfortunately, that's more easily
said than done, for a couple of reasons.

First, omitted variable bias is hard to detect. As mentioned above, the
amount of bias introduced can be small and not immediately detectable.
This is especially true when there is no reason to believe that you have mis-
specified the model. Some indications of specification bias are obvious (such
as an estimated coefficient that is significant in the direction opposite from
that expected), but others are not so clear. Could you tell from Equation 6.9
alone that a variable was missing? The best indicators of an omitted relevant
variable are the theoretical underpinnings of the model itself. What variables
must be included? What signs do you expect? Do you have any notions about
the range into which the coefficient values should fall? Have you accidentally
left out a variable that most researchers would agree is important? The best
way to avoid omitting an important variable is to invest the time to think
carefully through the equation before the data are entered into the computer.

A second source of complexity is the problem of choosing which variable
to add to an equation once you decide that it is suffering from omitted vari-
able bias. That is, a researcher faced with a clear case of specification bias




CHAPTER 6 = SPECIFICATION: CHOOSING THE INDEPENDENT VARIABLES

-

(like tan estimated f that is significantly different from zero in the unexpected
direction) will often have no clue as to what variable could be causing the
problem. Some beginning researchers, when faced with this dilemma, will
add all the possible relevant variables to the equation at once, but this
process leads to less precise estimates, as will be discussed in the next section.
Other beginning researchers will test a number of different variables and
keep the one in the equation that does the best statistical job of appearing to
reduce the bias (by giving plausible signs and satisfactory t-values). This tech-
nique, adding a “left-out” variable to “fix” a strange-looking regression result,
is invalid because the variable that best corrects a case of specification bias
might do so only by chance rather than by being the true solution to the
problem. In such an instance, the “fixed” equation may give superb statistical
results for the sample at hand but then do terribly when applied to other
samples because it does not describe the characteristics of the true popula-
tion.

Dropping a variable will not help cure omitted variable bias. If the sign of
an estimated coefficient is different from expected, it cannot be changed to
the expected direction by dropping a variable that has a t-score lower (in ab-
solute value) than the t-score of the coefficient estimate that has the unex-
pected sign. Furthermore, the sign in general will not likely change even if the
variable to be deleted has a large t-score.”

If the estimated coefficient is significantly different from our expectations
(either in sign or magnitude), then it is extremely likely that some sort of
specification bias exists in our model. Although it is true that a poor sample
of data or a poorly theorized expectation may also yield statistically signifi-
cant unexpected signs or magnitudes, these possibilities sometimes can be
eliminated.

If an unexpected result leads you to believe that you have an omitted vari-
able, one way to decide which variable to add to the equation is to use ex-
pected bias analysis. Expected bias is the likely bias that omitting a particular
variable would have caused in the estimated coefficient of one of the in-
cluded variables. It can be estimated with Equation 6.7:

Expected bias = B, * f(Tin om) (6.7)

If the sign of the expected bias is the same as the sign of your unexpected re-
sult, then the variable might be the source of the apparent bias. If the sign of
the expected bias is not the same as the sign of your unexpected result, how-

5. Ignazio Visco, “On Obtaining the Right Sign of a Coefficient Estimate by Omitting a Variable
from the Regression,” Journal of Econometrics, February 1978, pp. 115-117.
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ever, then the variable is extremely unlikely to have caused your unexpected
result. Expected bias analysis should be used only when an equation has ob-
vious bias (like a coefficient that is significant in an unexpected direction)
and only when you're choosing between theoretically sound potential vari-
ables.

As an example of expected bias analysis, let’s return to Equation 6.9, the
chicken demand equation without the beef price variable. Let's assume that

- you had expected the coefficient of Bpc to be in the range of —1.0 and that

you were surprised by the unexpectedly positive coefficient of PC in Equation
6.9. (As you can see by comparing Equations 6.8 and 6.9, your expectation
was reasonable, but you can never be sure of this fact in practice.)

This unexpectedly positive result could not have been caused by an omit-
ted variable with negative expected bias but could have been caused by an
omitted variable with positive expected bias. One such variable is the price of
beef. The expected bias in f%pc due to leaving out PB is positive since both the

expected coefficient of PB and the expected correlation between PC and PB
are positive:

Expected bias in fpe = Bpp * f(rpcpp) = (+) * (+) = (+)

Hence the price of beef is a reasonable candidate to be omitted variable in
Equation 6.9.

Although you can never actually observe bias (since you don't know the
true B), the use of this technique to screen potential causes of specification
bias should reduce the number of regressions run and therefore increase the
statistical validity of the results. This technique will work best when only one
(or one kind of) variable is omitted from the equation in question. With a
number of different kinds of variables omitted simultaneously, the impact on
the equation’s coefficients is quite hard to specify.

A brief warning: It may be tempting to conduct what might be called
“residual analysis” by examining a plot of the residuals in an attempt to find
patterns that suggest variables that have been accidentally omitted. A major
problem with this approach is that the coefficients of the estimated equation
will possibly have some of the effects of the left-out variable already altering

their estimated values. Thus, residuals may show a pattern that only vaguely
resembles the pattern of the actual omitted variable. The chances are high
that the pattern shown in the residuals may lead to the selection of an incor-
rect variable. In addition, care should be taken to use residual analysis only

to choose between theoretically sound candidate variables rather than to
generate those candidates.

|
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6.2 lIrrelevant Variables

What happens if you include a variable in an equation that doesn't belong
there? This case, irrelevant variables, is the converse of omitted variables and
can be analyzed using the model we developed in Section 6.1. Whereas the
omitted variable model has more independent variables in the true model
than in the estimated equation, the irrelevant variable model has more inde-

‘ pendent variables in the estimated equation than in the true one.

; The addition of a variable to an equation where it doesn't belong does not
i cause bias, but it does increase the variances of the estimated coefficients of
1 the included variables.

6.2.1 Impact of Irrelevant Variables

If the true regression specification is
%& Yi = Bo + BiXyi t+ . (6.10)
| but the researcher for some reason includes an extra variable,
Yi = Bo + B1Xy; + ByXy; + € 7 (6.11)
the misspecified equation’s error term can be seen to be:
€7 = ¢ — BrXy (6.12)

Such a mistake will not cause bias if the true coefficient of the extra (or irrele-
vant) variable is zero. In that case, ¢; = ¢ *. That is, B, in Equation 6.11 is
unbiased when B3, = 0.

However, the inclusion of an irrelevant variable will increase the variance
‘ of the estimated coefficients, and this increased variance will tend to decrease
4 the absolute magnitude of their t-scores. Also, an irrelevant variable usually
- will decrease the R? (but not the R2). In a model of Y on X; and X,, the vari-

i ance of the OLS estimator of B is:

A « e
~ VAR(B)) = - (6.13)
il ‘ (1-1h) - 3(X - X,)?
If the irrelevant variable is not in the equation (orifr;, = 0), then:
R o2
VAR(B,) = (6.14)

S - Xp)?
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Thus, although the irrelevant variable causes no bias, it causes problems for
the regression because it reduces the precision of the regression.

To see why this is so, try plugging a nonzero value (between +1.0 and
—1.0) for 1y, into Equation 6.13 and note that VAR(B;) has increased when
compared to Equation 6.14. The equation with an included variable that does
not belong in the equation usually has lower t-scores and a lower R? than it
otherwise would. The property holds, by the way, only when r;, # 0, but
since this is the case in virtually every sample, the conclusion of increased vari-
ance due to irrelevant variables is a valid one. Table 6.1 summarizes the conse-
quences of the omitted variable and the included irrelevant variable cases:

TABLE 6.1 EFFECT OF OMITTED VARIABLES AND IRRELEVANT VARIABLES ON

THE COEFFICIENT ESTIMATES

Effect on

Coefficient Estimates Onmitted Variable Irrelevant Variable
Bias Yes* No
Variance Decreases* Increases*

*Unlessr; = 0.

6.2.2 An Example of an Irrelevant Variable

Let’s return to the equation from Section 6.1 for the annual consumption of
chicken and see what happens when we add an irrelevant variable to the
equation. The original equation was:

¥, = 31.5 — 0.73PC, + 0.11PB, + 0.23YD, (6.8)
(0.08)  (0.05)  (0.02)
t= -9.12 250 14.22

R? = 986 n = 44 (annual 1951-1994)

Suppose you hypothesize that the demand for chicken also depends on R,
the interest rate (which, perhaps, confuses the demand for a nondurable
good with an equation you saw for a consumer durable). If you now estimate
the equation with the interest rate included, you obtain:

-

Y, = 30.0 — 0.73PC, + 0.12PB, + 0.22YD, + 0.17R,  (6.15)
(0.08)  (0.06)  (0.02)  (0.21)
t= -9.10 2.08 11.05 0.82
R? = 985 n = 44 (annual 1951-1994)
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A comparison of Equations 6.8 and 6.15 will make the theory in Section
6.2.1 come to life. First of all, R? has fallen slightly, indicating the reduction
in fit adjusted for degrees of freedom. Second, none of the regression coeffi-
cients from the original equation changed significantly; compare these re-
sults with the larger differences between Equations 6.8 and 6.9. Further,
slight increases in the standard errors of the estimated coefficients took place.
Finally, the t-score for the potential variable (the interest rate) is very small,
indicating that it is not significantly different from zero. Given the theoretical
shakiness of the new variable, these results indicate that it is irrelevant and
never should have been included in the regression.

6.2.3 Four Important Specification Criteria

We have now discussed at least four valid criteria to help decide whether a
given variable belongs in the equation. We think these criteria are so impor-
tant that we urge beginning researchers to work through them every time a
variable is added or subtracted.

1. Theory: Is the variable’s place in the equation unambiguous and
theoretically sound?

2. t-Test: Is the variable’s estimated coefficient significant in the ex-
pected direction?

3. R?: Does the overall fit of the equation (adjusted for degrees of
freedom) improve when the variable is added to the equation?

4. Bias: Do other variables’ coefficients change significantly when
the variable is added to the equation?

If all these conditions hold, the variable belongs in the equation; if none of
them do, the variable is irrelevant and can be safely excluded from the equa-
tion. When a typical omitted relevant variable is included in the equation, its
inclusion probably will increase R? and change other coefficients. If an irrele-
vant variable, on the other hand, is included, it will reduce R?, have an in-
significant t-score, and have little impact on the other variables’ coefficients.

In many cases, all four criteria do not agree. It is possible for a variable to
have an insignificant t-score that is greater than one, for example. In such a
case, it can be shown that R? will go up when the variable is added to the
equation and yet the t-score will still be insignificant.
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Whenever the four criteria for whether a variable should be included in an
equation disagree, the econometrician must use careful judgment and should
not rely on a single criterion like R? to determine the specification. Re-
searchers should not misuse this freedom by testing various combinations of
variables until they find the results that appear to statistically support the
point they want to make. All such decisions are a bit easier when you realize
that the single most important determinant of a variable’s relevance is its the-
oretical justification. No amount of statistical evidence should make a theo-
retical necessity into an “irrelevant” variable. Once in a while, a researcher is
forced to leave a theoretically important variable out of an equation for lack
of a better alternative; in such cases, the usefulness of the equation is limited.

6.3 An lllustration of the Misuse of Specification Criteria

At times, the four specification criteria outlined in the previous section will
lead the researcher to an incorrect conclusion if those criteria are applied
blindly to a problem without the proper concern for economic principles or

- common sense. In particular, a t-score can often be insignificant for reasons

other than the presence of an irrelevant variable. Since economic theory is
the most important test for including a variable, an example of why a vari-
able should not be dropped from an equation simply because it has an in-
significant t-score is in order.

Suppose you believe that the demand for Brazilian coffee in the United
States is a negative function of the real price of Brazilian coffee (P, ) and a
positive function of both the real price of tea (P,) and real disposable income
in the United States (Y4).® Suppose further that you obtain the data, run the
implied regression, and observe the following results:

—
COFFEE = 9.1 + 7.8Pp. + 2.4P, + 0.0035Y4 (6.16)
(15.6)  (1.2) (0.0010)
t=205 2.0 3.5

R2= 60 n=25

The coefficients of the second and third variables, P, and Yy, appear to be
fairly significant in the direction you hypothesized, but the first variable, P},
appears to have an insignificant coefficient with an unexpected sign. If you

6. This example was inspired by a similar one concerning Ceylonese tea published in Potluri
Rao and Roger LeRoy Miller, Applied Econometrics (Belmont, California: Wadsworth, 1971), pp.
38-40. This book is now out of print.

Loveer sy 0
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think there is a possibility that the demand for Brazilian coffee is perfectly
price inelastic (that is, its coefficient is zero), you might decide to run the
same equation without the price variable, obtaining;

—
COFFEE = 9.3 + 2.6P, + 0.0036Y, (6.17)
(1.0)  (0.0009)
t=26 4.0

R2=61 n=25

By comparing Equations 6.16 and 6.17, we can apply our four specification
criteria for the inclusion of a variable in an equation that were outlined in
the previous section:

1. Theory: Since the demand for coffee could possibly be perfectly price
inelastic, the theory behind dropping the variable seems plausible.

2. t-Test: The t-score of the possibly irrelevant variable is 0.5, insignificant
at any level.

3. R% R? increases when the variable is dropped, indicating that the variable
is irrelevant. (Since the t-score is less than one, this is to be expected.)

4. Bias: The remaining coefficients change only a small amount when Py,
is dropped, suggesting that there is little if any bias caused by exclud-
ing the variable.

Based upon this analysis, you might conclude that the demand for Brazilian
coffee is indeed perfectly price inelastic and that the variable is therefore irrele-
vant and should be dropped from the model. As it turns out, this conclusion
would be unwarranted. Although the elasticity of demand for coffee in general
might be fairly low (actually, the evidence suggests that it is inelastic only over
a particular range of prices), it is hard to believe that Brazilian coffee is im-
mune to price competition from other kinds of coffee. Indeed, one would ex-
pect quite a bit of sensitivity in the demand for Brazilian coffee with respect to
the price of, for example, Colombian coffee. To test this hypothesis, the price
of Colombian coffee (P..) should be added to the original Equation 6.16:

61@ =10.0 + 8.0P. — 5.6Py, + 2.6P, + 0.0030Y, (6.18)
(40)  (20) (1.3) (0.0010)
t=20 -—-28 2.0 3.0
RZ= 65 n =25

By comparing Equations 6.16 and 6.18, we can once again apply the four
criteria:
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1. Theory: Both prices should alwdys have been included in the model;
their logical justification is quite strong.

2. t-Test: The t-score of the new variable, the price of Colombian coffee, is
2.0, significant at most levels.

3. R2: R? increases with the addition of the variable, indicating that the
variable was an omitted variable.

4. Bias: Although two of the coefficients remain virtually unchanged, indi-
cating that the correlations between these variables and the price of
Colombian coffee variable are low, the coefficient for the price of Brazil-
ian coffee does change significantly, indicating bias in the original result.

An examination of the bias question will also help us understand Equation
6.7, the equation for bias. Since the expected sign of the coefficient of the
omitted variable (P_.) is positive and since the simple correlation coefficient
between the two competitive prices (Ipe phc) is also positive, the direction of
the expected bias in Bpp, in the estimation of Equation 6.16 is positive. If you
compare Equations 6.16 and 6.18, that positive bias can be seen because the
coefficient of Py is +7.8 instead of —5.6. The increase from ~5.6 to +7.8
may be due to the positive bias that results from leaving out P..

The moral to be drawn from this example is that theoretical considera-
tions should never be discarded, even in the face of statistical insignificance.
If a variable known to be extremely important from a theoretical point of
view turns out to be statistically insignificant in a particular sample, that vari-
able should be left in the equation despite the fact that it makes the results
look bad.

Don't conclude that the particular path outlined in this example is the cor-
rect way to specify an equation. Trying a long string of possible variables un-
til you get the particular one that makes Py turn negative and significant is
not the way to obtain a result that will stand up well to other samples or al-
ternative hypotheses. The original equation should never have been run with-
out the Colombian coffee variable. Instead, the problem should have been
analyzed enough so that such errors of omission were unlikely before any re-
gressions were attempted at all. The more thinking that’s done before the first
regression is run, and the fewer alternative specifications that are estimated,
the better the regression results are likely to be.

6.4 Specification Searches

One of the weaknesses of econometrics is that a researcher can potentially
manipulate a data set to produce almost any results by specifying different re-
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gressions until estimates with the desired properties are obtained. Thus, the
integrity of all empirical work is potentially open to question.

Although the problem is a difficult one, it makes sense to attempt to mini-
mize the number of equations estimated and to rely on theory rather than
statistical fit as much as possible when choosing variables. Theory, not statis-
tical fit, should be the most important criterion for the inclusion of a variable
in a regression equation. To do otherwise runs the risk of producing incorrect
and/or disbelieved results. We'll try to illustrate this by discussing three of the
most commonly used incorrect techniques for specifying a regression equa-
tion. These techniques produce the best specification only by chance. At
worst, they are possibly unethical in that they misrepresent the methods used
to obtain the regression results and the significance of those results.

6.4.1 Data Mining

Almost surely the worst way to choose a specification is to simultaneously try
a whole series of possible regression formulations and then choose the equa-
tion that conforms the most to what the researcher wants the results to look
like. In such a situation, the researcher would estimate virtually every possi-
ble combination of the various alternative independent variables, and the
choice between them would be made on the basis of the results. This practice
of simultaneously estimating a number of combinations of independent
variables and selecting the best from them ignores the fact that a number of
specifications have been examined before the final one. To oversimplify, if
you are 95 percent confident that a regression result didn't occur by chance
and you run more than 20 regressions, how much confidence can you have
in your result? Since you'll tend to keep regressions with high t-scores and
discard ones with low t-scores, the reported t-scores overstate the degree of
statistical significance of the estimated coefficients.

Furthermore, such “data mining” and “fishing expeditions” to obtain de-
sired statistics for the final regression equation are potentially unethical
methods of empirical research. These procedures include using not only
many alternative combinations of independent variables but also many func-
tional forms, lag structures, and what are offered as “sophisticated” or “ad-
vanced” estimating techniques. “If you just torture the data long enough, they
will confess.”” In other words, if enough alternatives are tried, the chances of

7. Thomas Mayer, “Economics as a Hard Science: Realistic Goal or Wishful Thinking?” Economic
Inguiry, April 1980, p. 175.
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obtaining the results desired by the researcher are increased tremendously,
but the final result is essentially worthless. The researcher hasn't found any

scientific evidence to support the original hypothesis; rather, prior expecta-
tions were imposed on the data in a way that is essentially misleading.

6.4.2 Stepwise Regression Procedures

A stepwise regression involves the use of a computer program to choose the
independent variables to be included in the estimation of a particular equa-
tion. The computer program is given a “shopping list” of possible indepen-
dent variables, and then it builds the equation in steps. It chooses as the first
explanatory variable the one that by itself explains the largest amount of the
variation of the dependent variable around its mean. It chooses as the second
variable the one that adds the most to R?, given that the first variable is al-
ready in the equation. The stepwise procedure continues until the next vari-
able to be added fails to achieve some researcher-specified increase in R? (or
all the variables are added). The measure of the supposed contribution of
each independent variable is the increase in R? (which is sometimes called
the “R? delete”) caused by the addition of the variable.

Unfortunately, any correlation among the independent variables (called
multicollinearity, which we will take up in more detail in Chapter 8) causes
this procedure to be deficient. To the extent that the variables are related, it
becomes difficult to tell the impact of one variable from another. As a result,
in the presence of multicollinearity, it's impossible to determine unambigu-
ously the individual contribution of each variable enough to say which one is
more important and thus should be included first.2 Even worse, there is no
necessity that the particular combination of variables chosen has any theoret-
ical justification or that the coefficients have the expected signs.

Because of these problems, most econometricians avoid stepwise proce-
dures. The major pitfalls are that the coefficients may be biased, the calculated
t-values no longer follow the t-distribution, relevant variables may be ex-
cluded because of the arbitrary order in which the selection takes place, and

8. Some programs compute standardized beta coefficients, which are the estimated coefficients
for an equation in which all variables have been standardized by subtracting their means from
them and by dividing them by their own standard deviations. The higher the beta of an inde-
pendent variable is in absolute value, the more important it is thought to be in explaining the
movements in the dependent variable. Unfortunately, beta coefficients are deficient in the pres-
ence of multicollinearity, as are partial correlation coefficients, which measure the correlation
between the dependent variable and a given independent variable holding all other indepen-
dent variables constant.
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the signs of the estimated coefficients at intermediate or final stages of the
routine may be different from the expected signs. Using a stepwise procedure
is an admission of ignorance concerning which variables should be entered.

6.4.3 Sequential Specification Searches

To their credit, most econometricians avoid data mining and stepwise regres-
sions. Instead, they tend to specify equations by estimating an initial equa-
tion and then sequentially dropping or adding variables (or changing func-
tional forms) until a plausible equation is found with “good statistics.” Faced
with knowing that a few variables are relevant (on the basis of theory) but
not knowing whether other additional variables are relevant, inspecting R?
and t-tests for all variables for each specification appears to be the generally
accepted practice. Indeed, it would be easy to draw from a casual reading of
the previous sections the impression that such a sequential specification
search is the best way to go about finding the “truth.” Instead, as we shall see,
there is a vast difference in approach between a sequential specification
search and our recommended approach.

The sequential specification search technique allows a researcher to esti-
mate an undisclosed number of regressions and then present a final choice
(which is based upon an unspecified set of expectations about the signs and
significance of the coefficients) as if it were the only specification estimated.
Such a method misstates the statistical validity of the regression results for
two reasons:

1. The statistical significance of the results is overestimated because the
estimations of the previous regressions are ignored.

2. The set of expectations used by the researcher to choose between vari-
ous regression results is rarely if ever disclosed.? Thus the reader has no
way of knowing whether or not all the other regression results had op-
posite signs or insignificant coefficients for the important variables.

Unfortunately, there is no universally accepted way of conducting sequen-
tial searches, primarily because the appropriate test at one stage in the proce-
dure depends on which tests were previously conducted, and also because
the tests have been very difficult to invent. One possibility is to reduce the de-
grees of freedom in the “final” equation by one for each alternative specifica-

9. As mentioned in Chapter 5, Bayesian regression is a technique for dealing systematically
with these prior expectations. For more on this issue, see Edward E. Leamer, Specification
Searches (New York: Wiley), 1978.
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tion attempted. This procedure is far from exact, but it does impose an ex-
plicit penalty for specification searches.

More generally, we recommend trying to keep the number of regressions
estimated as low as possible; to focus on theoretical considerations when
choosing variables, functional forms, and the like; and to document all the
various specifications investigated. That is, we recommend combining parsi-
mony (using theory and analysis to limit the number of specifications esti-
mated) with disclosure (reporting all the equations estimated).

There is another side to the story, however. Some researchers feel that the
true model will show through if given the chance and that the best statistical
results (including signs of coefficients, etc.) are most likely to have come
from the true specification. The problem with this philosophy is that the ele-
ment of chance is ordinarily quite strong in any given application. In addi-
tion, reasonable people often disagree as to what the “true” model should
look like. As a result, different researchers can look at the same data set and
come up with very different “best” equations. Because this can happen, the
distinction between good and bad econometrics is not always as clear cut as
is implied by the previous paragraphs. As long as researchers have a healthy
respect for the dangers inherent in specification searches, they are very likely
to proceed in a reasonable way. ‘

The lesson to be learned from this section should be quite clear. Most of
the work of specifying an equation should be done before even attempting to
estimate the equation on the computer. Since it is unreasonable to expect re-
searchers to be perfect, there will be times when additional specifications
must be estimated; however, these new estimates should be thoroughly
grounded in theory and explicitly taken into account when testing for signifi-
cance or summarizing results. In this way, the danger of misleading the
reader about the statistical properties of estimates is reduced.

6.4.4 Bias Caused by Relying on the t-Test to Choose Variables

In the previous section, we stated that sequential specification searches are
likely to mislead researchers about the statistical properties of their results. In
particular, the practice of dropping a potential independent variable simply
because its t-score indicates that its estimated coefficient is insignificantly dif-
ferent from zero will cause systematic bias in the estimated coefficients (and
their t-scores) of the remaining variables.1°

10. For a number of better techniques, including sequential or “pretest” estimators and “Stein-
rule” estimators, see George G. Judge, W. E. Griffiths, R. Carter Hill, Helmut Lutkepohl, and
Tsoung-Chao Lee, The Theory and Practice of Econometrics (New York: Wiley, 1985).
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Say the hypothesized model for a particular dependent variable is: f
Y; = Bo + BiXyi + BoXyi + (6.19)

Assume further that, on the basis of theory, we are certain that X; belongs in
the equation but that we are not as certain that X, belongs. Even though we
have stressed four criteria to determine whether X, should be included, many
inexperienced researchers just use the t-test on Bz to determine whether X,
should be included. If this preliminary t-test indicates that Bz is significantly
different from zero, then these researchers leave X, in the equation, and they
choose Equation 6.19 as their final model. If, however, the t-test does not in-
dicate that [32 is significantly different from zero, then such researchers drop
X, from the equation and consider Y as a function of X;.

Two kinds of mistakes can be made using such a system. First, X, can some-
times be left in the equation when it does not belong there, but such a mistake
does not change the expected value of ;. Second, X, can sometimes be
dropped from equation when it belongs, and then the estimated coefficient of
X, will be biased by the value of the true 3, to the extent that X; and X, are cor-
related. In other words, B; will be biased every time X, belongs in the equation
and is left out, and X, will be left out every time that its estimated coefficient is
not significantly different from zero. That is, the expected value of B, will not
equal the true 3, and we will have systematic bias in our equation

E(B1) = By + B2 " f(ix,x,) * P # By (6.20)

where P indicates the probability of an insignificant t-score. It is also the case
that the t-score of Bl no longer follows the t-distribution. In other words, the
t-test is biased by sequential specification searches.

Since most researchers consider a number of different variables before set-
tling on the final model, someone who relies on the t-test alone is likely to
encounter this problem systematically.

6.4.5 Scanning and Sensitivity Analysis

Throughout this text, we’ve encouraged you to estimate as few specifications
as possible and to avoid depending on fit alone to choose between those
specifications. If you read the current economics literature, however, it won't
take you long to find well-known researchers who have estimated five or
more specifications and then have listed all their results in an academic jour-
nal article. What's going on?

In almost every case, these authors have employed one of the two follow-
ing techniques:
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1. Scanning to develop a testable theory
2. Sensitivity analysis

Scanning involves analyzing a data set not for the purpose of testing a hy-
pothesis but for the purpose of developing a testable theory or hypothesis. A
researcher who is scanning will run quite a few different specifications, will
select the specifications that fit best, and then will analyze these results in the
hopes that they will provide clues to a new theory or hypothesis. As a means
for stimulating fresh thinking or influencing thinking about substantive is-
sues, scanning may have even more potential than does classical hypothesis
testing. ! ) ,

Be careful, however; before you can “accept” a theory or hypothesis, it
should be tested on a different data set (or in another context) using the hy-
pothesis testing techniques of this text. A new data set must be used because
our typical statistical tests have little meaning if the new hypotheses are
tested on the old data set; after all, the researcher knows ahead of time what
the results will be! The use of such dual data sets is easiest when there is
a plethora of data. This sometimes is the case in cross-sectional research
projects but rarely is the case for time-series research.

Sensitivity analysis consists of purposely running a number of alternative
specifications to determine whether particular results are robust (not statisti-
cal flukes). In essence, we're trying to determine how sensitive a particular re-
sult is to a change in specification. Researchers who use sensitivity analysis
run (and report on) a number of different specifications and tend to discount
a result that appears significant in some specifications and insignificant in
others. Indeed, the whole purpose of sensitivity analysis is to gain confidence
that a particular result is significant in a variety of alternative specifications
and is not based on a single specification that has been estimated on only
one data set. For a simple example of sensitivity analysis, see Exercise 15 at
the end of the chapter.

6.5 Lagged Independent Variables )

Virtually all the regressions we've studied so far have been “instantaneous” in
nature. In other words, they have included independent and dependent vari-
ables from the same time period, as in:

11. For an excellent presentation of this argument, see Lawrence H. Summers, “The Scientific I
lusion in Empirical Macroeconomics,” Scandinavian Journal of Economics, 1991, pp. 129-148.
For a number of related points of view, see David F. Hendry, Edward E. Leamer, and Dale J.
Poirer, A Conversation on Econometric Methodology, Institute of Statistics and Decision Sciences,
Duke University, 1989, 144 pages.
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Y, = Bo + B1Xye T B2Xye T & ‘ (6.21)

where the subscript t is used to refer to a particular point in time. If all vari-
ables have the same subscript, then the equation is instantaneous.

Some beginning researchers, when choosing their independent variables,
jump to the mistaken conclusion that all regressions should follow the pat-
tern of Equation 6.21 and contain only variables that come from the same
time period. Such a conclusion ignores the fact that not all economic or busi-
ness situations imply such instantaneous relationships between the depen-
dent and independent variables. In many cases we must allow for the possi-
bility that time might elapse between a change in the independent variable
and the resulting change in the dependent variable. The length of this time
between cause and effect is called a lag. Many econometric equations include
one or more lagged independent variables like X;,_1, where the subscript t — 1
indicates that the observation of X; is from the time period previous to time
period t, as in the following equation:

Y, = Bg + B1Xi—1 T BXor T & ' (6.22)

In this equation, X; has been lagged by one time period, but the relationship
between Y and X, is still instantaneous.

For example, think about the process by which the supply of an agricultural
product is determined. Since agricultural goods take time to grow, decisions
on how many acres to plant or how many eggs to let hatch into egg-producing
hens (instead of selling them immediately) must be made months if not years
before the product is actually supplied to the consumer. Any change in an
agricultural market, such as an increase in the price that the farmer can earn
for providing cotton, has a lagged effect on the supply of that product:

+ —
Ct = f(PCt—l’ PFI) + € = BO + Bll’Ct_l + BZPFt + Et (623)

where: G = the quantity of cotton supplied in year t
PC,_; = the price of cotton in yeart — 1
PF, = the price of farm labor in year t

Note that this equation hypothesizes a lag between the price of cotton and
the production of cotton, but not between the price of farm labor and the
production of cotton. It's reasonable to think that if cotton prices change,
farmers won't be able to react immediately because it takes a while for cotton
to be planted and to grow.

The meaning of the regression coefficient of a lagged variable is not the
same as the meaning of the coefficient of an unlagged variable. The estimated

t
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coefficient of a lagged X measures the change in this year’s Y attributed to a
one-unit increase in last year’s X (holding constant the other Xs in the equa-
tion). Thus B, in Equation 6.23 measures the extra number of units of cotton
that would be produced this year as a result of a one-unit increase in last
year's price of cotton, holding this year's price of farm labor constant.

If the lag structure is hypothesized to take place over more than one time
period, or if a lagged dependent variable is included on the right-hand side
of an equation, the question becomes significantly more complex. Such
cases, called distributed lags, will be dealt with in Chapter 12.

6.6  An Example of Choosing Independent Variables

It's time to get some experience choosing independent variables. After all,
every equation so far in the text has come with the specification already de-
termined, but once you've finished this course you'll have to make all such
specification decisions on your own. In future chapters, we'll use a technique
called “interactive regression learning exercises” to allow you to make your
own actual specification choices and get feedback on your choices. To start,
though, let’s work through a specification together.

To keep things as simple as possible, we'll begin with a topic near and dear
to your heart, your GPA! Suppose a friend who attends a small liberal arts
college surveys all 25 members of her econometrics class, obtains data on the
variables listed below, and asks for your help in choosing a specification:

GPA; = the cumulative college grade point average on the ith student
on a four-point scale

HGPA; = the cumulative high school grade point average of the ith stu-
dent on a four-point scale

MSAT; = the highest score earned by the ith student on the math section
of the SAT test (800 maximum)

VSAT; = the highest score earned by the ith student on the verbal section
of the SAT test (800 maximum)

SAT, = MSAT; + VSAT;

GREK; = a dummy variable equal to 1 if the ith student is a member of a

fraternity or sorority, 0 otherwise

the ith student’s estimate of the average number of hours spent

studying per course per week in college

PRIV; = a dummy variable equal to 1 if the ith student graduated from a
private high school, 0 otherwise

HRS;




¥
'

©

CHAPTER 6 * SPECIFICATION: CHOOSING THE INDEPENDENT VARIABLES 179

-

JOCK; = a dummy variable equal to 1 if the ith student is or was a mem-
ber of a varsity intercollegiate athletic team for at least one sea-
son, 0 otherwise

InEX; = the natural log of the number of full courses that the ith student
has completed in college.

Assuming that GPA; is the dependent variable, which independent vari-
ables would you choose? Before you answer, think through the possibilities
carefully. What are the expected signs of each of the coefficients? How strong
is the theory behind each variable? Which variables seem obviously impor-
tant? Which variables seem potentially irrelevant or redundant? Are there any
other variables that you wish your friend had collected?

To get the most out of this example, you should take the time to write down
the exact specification that you would run:

GPA; =f(2,2,2,2, %) +e | |

It's hard for most beginning econometricians to avoid the temptation of in-
cluding all the above variables in a GPA equation and then dropping any
variables that have insignificant t-scores. Even though we mentioned in the
previous section that such a specification search procedure will result in bi-
ased coefficient estimates, most beginners don't trust their own judgment
and tend to include too many variables. With this warning in mind, do you
want to make any changes in our proposed specification?

No? OK, let's compare notes. We believe that grades are a function of a stu-
dent’s ability, how hard the student works, and the student’s experience tak-
ing college courses. Consequently, our specification would be:

o+ + o+
GPA, = f(HGPA, HRS;, InEX;) + €

We can already hear you complaining! What about SATs, you say? Everyone
knows they're important. How about jocks and Greeks? Don't they have
lower GPAs? Don't prep schools grade harder and prepare students better
than public high schools?

Before we answer, it's important to note that we think of specification
choice as choosing which variables to include, not which variables to exclude. f
That is, we don’t assume automatically that a given variable should be in-
cluded in an equation simply because we can't think of a good reason for
dropping it.

Given that, however, why did we choose the variables we did? First, we
think that the best predictor of a student’s college GPA is his or her high
school GPA. We have a hunch that once you know HGPA, SATs are redun-
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dant, at least at a liberal arts college where there are few multiple choice tests.
In addition, we're concerned that possible racial and gender bias in the SAT
test makes it a questionable measure of academic potential, but we recognize
that we could be wrong on this issue.

As for the other variables, we're more confident. For example, we feel
that once we know how many hours a week a student spends studying, we
couldn't care less what that student does with the rest of his or her time, so
JOCK and GREK are superfluous once HRS is included. Finally, while we rec-
ognize that some private schools are superb and that some public schools are
not, we'd guess that PRIV is irrelevant; it probably has only a minor effect.

If we estimate this specification on the 25 students, we obtain:

Eﬁi = —0.26 + 0.49HGPA; + 0.06HRS; + 0.42InEX; (6.24)
(0.21) (0.02) (0.14)
t = 2.33 3.00 3.00
n=25 R?®= 585 F=123

Since we prefer this specification on theoretical grounds, since the overall fit
seems reasonable, and since each coefficient meets our expectations in terms
of sign, size, and significance, we consider this an acceptable equation. The
only circumstance under which we’d consider estimating a second specifica-
tion would be if we had theoretical reasons to believe that we had omitted a
relevant variable. The only variable that might meet this description is SAT,;
(which we prefer to the individual MSAT and VSAT):

TN
GPA; = — 0.92 + 0.47HGPA; + 0.05HRS, (6.25)
(0.22) (0.02)
t=212 2.50
+ 0.44InEX; + 0.000G0SAT;
(0.14) (0.00064)
t=3.12 0.93

n=25 RZ=583 F=094

Let's use our four specification criteria to compare Equations 6.24 and 6.25:

1. Theory: As discussed above, the theoretical validity of SAT tests is a
matter of some academic controversy, but they still are one of the
most-cited measures of academic potential in this country.

2. t-Test: The coefficient of SAT is positive, as we'd expect, but it's not sig-
nificantly different from zero.

*
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3. R% Asyou'd expect (since SAT's t-score is under one), R? falls slightly
when SAT is added.

4. Bias: None of the estimated slope coefficients changes significantly
when SAT is added, though some of the t-scores do change because of
the increase in the SE(B)s caused by the addition of SAT.

Thus, the statistical criteria support our theoretical contention that SAT is ir-
relevant.

Finally, it's important to recognize that different researchers could come
up with different final equations on this topic. A researcher whose prior ex-
pectation was that SAT unambiguously belonged in the equation would have
estimated Equation 6.25 and accepted that equation without bothering to es-
timate Equation 6.24.

6.7 Summary

1. The omission of a variable from an equation will cause bias in the es-
timates of the remaining coefficients to the extent that the omitted
variable is correlated with included variables.

2. The bias to be expected from leaving a variable out of an equation
equals the coefficient of the excluded variable times a function of the
simple correlation coefficient between the excluded variable and the
included variable in question.

3. Including a variable in an equation in which it is actually irrelevant
does not cause bias, but it will usually increase the variances of the in-
cluded variables’ estimated coefficients, thus lowering their t-values
and lowering R?.

4. Four useful criteria for the inclusion of a variable in an equation are:
a. Theory
b. t-Test
c. R?
d. Bias

5. Theory, not statistical fit, should be the most important criterion for
the inclusion of a variable in a regression equation. To do otherwise
runs the risk of producing incorrect and/or disbelieved results. For ex-
ample, stepwise regression routines will generally give biased esti-

“
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1.

-

mates and will almost always have test statistics that will not follow
the distribution necessary to use standard t-tables.

Exercises

(Answers to even-numbered questions are in Appendix A.)

Write the meaning of each of the following terms without referring to
the book (or your notes), and compare your definition with the ver-
sion in the text for each:

. stepwise regression

D@ e AN TR

omitted variable

. irrelevant variable

specification bias
sequential specification search
specification error

. the four specification criteria
. expected bias

lagged independent variable

For each of the following situations, determine the sign (and if possi-
ble comment on the likely size) of the expected bias introduced by
omitting a variable:

a.

b.

In an equation for the demand for peanut butter, the impact on the
coefficient of disposable income of omitting the price of peanut
butter variable. (Hint: Start by hypothesizing signs.)

In an earnings equation for workers, the impact on the coefficient
of experience of omitting the variable for age.

In a production function for airplanes, the impact on the coeffi-
cient of labor of omitting the capital variable.

. In an equation for daily attendance at outdoor concerts, the impact

on the coefficient of the weekend dummy variable (1 = weekend)
of omitting a variable that measures the probability of precipita-
tion at concert time.

Consider the following annual model of the death rate (per million
population) due to coronary heart disease in the United States (Y,):

~

Y, = 140 + 10.0C; + 4.0E, — 1.0M,
(2.5) (1.0) (0.5)
t=4.0 40 =20

n = 31 (1950—1980) R? = .678
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where:  C, = per capita cigarette consumption (pounds of to-
bacco) in year t
- “E, = per capita consumption of edible saturated fats
(pounds of butter, margarine, and lard) in year t
M, = per capita consumption of meat (pounds} in year t

a. Create and test appropriate null hypotheses at the 10 percent level.
What, if anything, seems to be wrong with the estimated coefficient
of M?

b. The most likely cause of a coefficient that is significant in the unex-
pected direction is omitted variable bias. Which of the following
variables could possibly be an omitted variable that is causing ﬁM's
unexpected sign? Explain.

B, = per capita consumption of hard liquor (gallons) in year t

F, = the average fat content (percentage) of the meat that was
consumed in year t

W, = per capita consumption of wine and beer (gallons) in year t

R, = per capita number of miles run in year t

H, = per capita open-heart surgeries in year t

O, = per capita amount of oat bran eaten in year t

c. If you had to choose one variable to add to the equation, what
would it be? Explain your answer. (Hint: You're not limited to the
variables listed in part b above.)

4. Assume that you've been hired by the surgeon general of the United
States to study the determinants of smoking behavior and that you es-
timate the following cross-sectional model based on data from 1988
for all 50 states (standard errors in parentheses)'?:

N

C; = 100 — 9.0F; + 1.0; ~ 0.04T; — 3.0V; + 1.5R; (6.26)
(3.0) (1.0) (0.04) (1.0) (0.5)
t=-30 10 -10 —-30 30

RZ2 = .50 n = 50 (states)

i where:  C; = the number of cigarettes consumed per day per per-

i son in the ith state
% 12. This question is generalized from a number of similar studies, including John A. Bishop
4 and Jang H. Yoo, “The Impact of the Health Scare, Excise Taxes, and Advertising on Cigarette

Demand and Supply,” Southern Economic Journal, January 1988, pp. 402-411.
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™

; = the average years of education for persons over 21 in
the ith state

I; = the average income in the ith state (thousands of
dollars)

T, = the tax per package of cigarettes in the ith state
(cents) ’

V; = the number of video ads against smoking aired on
the three major networks in the ith state.

R; = the number of radio ads against smoking aired on

the five largest radio networks in the ith state

<7

a. Develop and test (at the 5 percent level) appropriate hypotheses
for the coefficients of the variables in this equation.

b. Do you appear to have any irrelevant variables? Do you appear to
have any omitted variables? Explain your answer.

c. Let's assume that your answer to part b was yes to both. Which
problem is more important to solve first, irrelevant variables or
omitted variables? Why?

d. One of the purposes of running the equation was to determine the
effectiveness of antismoking advertising on television and radio.
What is your conclusion?

e. The surgeon general decides that tax rates are irrelevant to cigarette
smoking and orders you to drop them from your equation. Given
the following results, use our four specification criteria to decide
whether you agree with her conclusion. Carefully explain your rea-
soning (standard errors in parentheses).

-

& =101 — 9.1E; + 1.0l — 3.5V, + 1.6R,  (6.27)
~ (30) (09) (10) (0.5)
R? = .50 n = 50 (states)

5. The data set in Table 6.2 is the one that was used to estimate the

chicken demand examples of Sections 6.1.2 and 6.2.2.

a. Use these data to reproduce the specifications in the chapter. (file-
name CHICK®6)

b. Find data for the price of another substitute for chicken and add
that variable to your version of Equation 6.8. Analyze your results.
In particular, apply the four criteria for the inclusion of a variable
to determine whether the price of the substitute is an irrelevant or
previously was an omitted variable.

6. You have been retained by the “Expressive Expresso” company to help
them decide where to build their next “Expressive Expresso” store.




a

TABLE 6.2 DATA FOR THE CHICKEN DEMAND EQUATION

Year Y PC PB YD
1951 21.8 25.0 28.7 14.86
1952 22.1 22.1 24.3 15.39
1953 21.9 22.1 16.3 16.11
1954 22.8 16.8 16.0 16.19
1955 213 18.6 15.6 17.04
1956 24.4 16.0 14.9 17.87
1957 25.4 13.7 17.2 18.51
1958 28.0 14.0 21.9 18.84
1959 28.7 11.0 22.6 19.68
1960 28.0 12.2 20.4 20.14
1961 30.0 10.1 20.2 20.67
1962 30.0 10.2 213 21.56
1963 30.7 10.0 19.9 22.30
1964 31.1 9.2 18.0 23.89
1965 33.4 8.9 19.9 25.47
1966 35.5 9.7 222 27.20
1967 36.3 7.9 22.3 28.83
1968 36.4 8.2 23.4 \ 31.02
1969 © 381 9.7 26.2 33.03
1970 40.1 9.1 27.1 35,51
1971 40.1 7.7 29.0 38.12
1972 415 9.0 33.5 40.82
1973 39.7 15.1 - 428 45.63
1974 39.6 9.7 35.6 49.42
1975 388 9.9 32.3 53.83
1976 41.9 12.9 33.7 58.57
1977 42.7 12.0 34.5 63.84
1978 44.8 12.4 48.5 - 71.24
1979 48.3 13.9 66.1 78.90
1980 48.4 : 11.0 62.4 86.97
1981 50.4 11.1 : 58.6 96.03
1982 51.5 10.3 56.7 101.33
1983 526 12.7 55.5 107.77
1984 _ 54.5 15.9 57.3 119.14
1985 56.3 14.8 53.7 125.94
1986 58.1 ) 125 52.6 132.13
1987 61.9 11.0 ~ 61.1 138.53
1988 63.8 9.2 66.6 148.84
1989 67.5 14.9 69.5 157.74
1990 70.4 9.3 74.6 166.89
1991 © 735 7.1 72.7 171.82
{ 1992 76.8 8.6 71.3 180.32
; 1993 78.9 10.0 72.6 185.64
@ ‘ 1994 80.5 7.6 66.7 192.59

Sources: U.S. Department of Agriculture. Agricultural Statistics; U.S. Bureau of the Census. Historical
Statistics of the United States, U.S. Bureau of the Census. Statistical Abstract of the United States.
Note: filename CHICK6

185
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You decide to run a regression on the sales of the 30 existing “Expres-
sive Expresso” stores as a function of the characteristics of the loca-
tions they are in and then use the equation to predict the sales at the
various locations you are considering for the newest store. You end up
estimating (standard errors in parentheses):

Y, = 30 + 0.1X;; + 0.01Xy; + 10.0X5; + 3.0Xy
(0.02) (0.01) (1.0) (1.0

where: Y; = average daily sales (in hundreds of dollars) of the ith
' store ,
X,; = the number of cars that pass the ith location per hour
X,; = average income in the area of the ith store
X3; = the number of tables in the ith store
X4; = the number of competing shops in the area of the
ith store

a. Hypothesize expected signs, calculate the correct t-scores, and test
the significance at the 1 percent level for each of the coefficients.

b. What problems appear to exist in the equation? What evidence of
these problems do you have?

c. What suggestions would you make for a possible second run of this
admittedly hypothetical equation? (Hint: Before recommending
the inclusion of a potentially left-out variable, consider whether
the exclusion of the variable could possibly have caused any ob-
served bias.)

7. Discuss the topic of specification searches with various members of
your econometrics class. What is so wrong with not mentioning previ-
ous (probably incorrect) estimates? Why should readers be suspicious
when researchers attempt to find results that support their hypothe-
ses? Who would try to do the opposite? Do these concerns have any
meaning in the world of business? In particular, if you're not trying to
publish a paper, couldn’t you use any specification search techniques
you want to find the best equation?

8. Suppose you run a regression explaining the number of hamburgers
that the campus fast-food store (let’s call it “The Cooler”) sells per day
as a function of the price of their hamburgers (in dollars), the weather
(in degrees F), the price of hamburgers at a national chain nearby
(also in dollars), and the number of students (in thousands) on cam-
pus that day. Assume that The Cooler stays open whether or not
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school is in session (for staff, etc.). Unfortunately, a lightning bolt
strikes the computer and wipes out all the memory and you cannot
tell which independent variable is which! Given the following regres-
sion results (standard errors in parentheses):

~

¥, = 10.6 + 28.4X,; + 12.7X,; + 0.61X5; — 5.9X;
(2.6)  (63) (0.61)  (5.9)

RZ= .63 n=35

a. Attempt to identify which result corresponds to which variable.

b. Explain your reasoning for part a above.

¢. Develop and test hypotheses about the coefficients assuming that
your answer to part a is correct. What suggestions would you have
for changes in the equation for a rerun when the computer is back
up again?

9, Most of the examples in the text so far have been demand-side equa- ‘
tions or production functions, but economists often also have to l
quantify supply-side equations that are not true production func- ‘“
tions. These equations attempt to explain the production of a product
(for example, Brazilian coffee) as a function of the price of the prod-
uct and various other attributes of the market that might have an im- ,
pact on the total output of growers. ‘
a. What sign would you expect the coefficient of price to have in a '

supply-side equation? Why?

b. What other variables can you think of that might be important in a
supply-side equation?

c. Many agricultural decisions are made months (if not a full year or
more) before the results of those decisions appear in the market.
How would you adjust your hypothesized equation to take account
of these lags?

d. Given all the above, carefully specify the exact equation you would
use to attempt to explain Brazilian coffee production. Be sure to
hypothesize the expected signs, be specific with respect to lags, and
try to make sure you have not omitted an important independent
variable.

10. If you think about the previous question, you'll realize that the same
dependent variable (quantity of Brazilian coffee) can have different
expected signs for the coefficient of the same independent variable
(the price of Brazilian coffee), depending on what other variables are
in the regression.
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a. How is this possible? That is, how is it possible to expect different
signs in demand-side equations from what you would expect in
supply-side ones?

b. Given that we will not discuss how to estimate simultaneous equa-
tions until Chapter 14, what can be done to avoid the “simultane-
ity bias” of getting the price coefficient from the demand equation
in the supply equation and vice versa?

¢. What can you do to systematically ensure that you do not have
supply-side variables in your demand equation or demand-side
variables in your supply equation?

You've been hired by “Indo,” the new Indonesian automobile manu-
facturer, to build a model of U.S. car prices in order to help the com-
pany undercut our prices. Allowing Friedmaniac zeal to overwhelm
any patriotic urges, you build the following model of the price of 35
different American-made 1996 U.S. sedans (standard errors in paren-
theses):

Model A: B, = 3.0 + 0.28W, + 1.2T; + 5.8C; + 0.20L,
(0.07)  (0.4) (2.9) (0.20)
R? = 92

where:  P; = the list price of the ith car (thousands of dollars)
W; = the weight of the ith car (hundreds of pounds)
T; = a dummy equal to 1 if the ith car has an automatic
transmission, 0 otherwise
C; = adummy equal to 1 if the ith car has cruise control,
0 otherwise
L; = thesize of the engine of the ith car (in liters)

a. Your firm’s pricing expert hypothesizes positive signs for all the
slope coefficients in Model A. Test her expectations at the 95 per-
cent level of confidence.

b. What econometric problems appear to exist in Model A? In particu-
lar, does the size of the coefficient of C cause any concern? Why?
What could be the problem?

c. You decide to test the possibility that L is an irrelevant variable by
dropping it and rerunning the equation, obtaining Model T below.
Which model to you prefer? Why? (Hint: Be sure to use our four
specification criteria.)

d. In answering part ¢, you surely noticed that the R? figures were
identical. Did this surprise you? Why or why not?
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Model T: P = 18 + 0.29W; + 1.2T; + 5.9C;
(0.07)  (0.03) (2.9)
R? = .92

Determine the sign {and, if possible, comment on the likely size) of
the bias introduced by leaving a variable out of an equation in each of
the following cases: :

a. In an annual equation for corn yields per acre (in year t), the impact
on the coefficient of rainfall in year t of omitting average temperature
that year. (Hint: Drought and cold weather both hurt corn yields.)

b. In an equation for daily attendance at Los Angeles Lakers’ home
basketball games, the impact on the coefficient of the winning per-
centage of the opponent (as of the game in question) of omitting a
dummy variable that equals 1 if the opponent’s team includes a su-
perstar.

¢. In an equation for annual consumption of apples in the United
States, the impact on the coefficient of the price of bananas of
omitting the price of oranges.

d. In an equation for student grades on the first midterm in this class,
the impact on the coefficient of total hours studied (for the test) of
omitting hours slept the night before the test.

Suppose that you run a regression to determine whether gender or
race has any significant impact on scores on a test of the economic
understanding of children.!® You model the score of the ith student
on the test of elementary economics (S;) as a function of the compos-
ite score on the lowa Tests of Basic Skills of the ith student, a dummy
variable equal to 1 if the ith student is female (0 otherwise), the aver-
age number of years of education of the parents of the ith student,
and a dummy variable equal to 1 if the ith student is nonwhite (0 oth-
erwise). Unfortunately, a rainstorm floods the computer center and
makes it impossible to read the part of the computer output that
identifies which variable is which. All you know is that the regression
results are (standard errors in parentheses):

§; = 5.7 — 0.63X3; — 0.22X,; + 0.16X3; + 0.12Xy;
(0.63)  (0.88)  (0.08)  (0.01)

n=24 RZ= 54

13. These results have been jiggled to meet the needs of this question, but this research actually
was done. See Stephen Buckles and Vera Freeman, “Male-Female Differences in the Stock and
Flow of Economic Knowledge,” Review of Economics and Statistics, May 1983, pp. 355-357.

189
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o

a. Attempt to identify which result corfesponds to which variable. Be
specific.

b. Explain the reasoning behind your answer to part a above.

¢. Assuming that your answer is correct, create and test appropriate hy-
potheses (at the 5 percent level) and come to conclusions about the
effects of gender and race on the test scores of this particular sample.

d. Did you use a one-tailed or two-tailed test in part c above? Why?

William Sander!4 estimated a 50-state cross-sectional model of the farm
divorce rate as part of an effort to determine whether the national trend
toward more divorces could be attributed in part to increases in the
earning ability of women. His equation was (t-scores in parentheses):

~

Y; = —4.1 + 0.003P; + 0.06L; — 0.002A, + 0.76N;
(3.3) (1.5) (—0.6) (13.5)

where:  Y; = the farm divorce rate in the ith state
P; = the population density of the ith state
L; = the labor force participation of farm women in the
ith state
A; = farm assets held by women in the ith state
N; = the rural nonfarm divorce rate in that state

a. Develop and test hypotheses about the slope coefficients of
Sander’s equation at the 5 percent level.

b. What (if any) econometric problems (out of omitted variables and
irrelevant variables) appear to exist in this equation? Justify your
answer.

¢. What one specification change in this equation would you suggest?
Be specific.

d. Use our four specification criteria to decide whether you believe L
is an irrelevant variable. The equation without L (t-scores again in
parentheses) was:

Y; = — 2.5 + 0.004P; — 0.004A; + 0.79N;
(4.3) (-13) (14.8)

(Hint: We don’t provide R? for these equations, but you can deter-
mine whether it went up or down anyway. How?)

14. William Sander, “Women, Work, and Divorce,” The American Economic Review, June 1985,
pp- 519-523.
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15. Look back again at Exercise 16 in Chapter 5, the equation on interna-
tional price discrimination in pharmaceuticals. In that cross-sectional
study, Schut and VanBergeijk estimated two equations in addition to
the one cited in the exercise.!® These two equations tested the possi-
bility that CV;, total volume of consumption of pharmaceuticals in
the ith country, and N;, the population of the ith country, belonged in
the original equation, Equation 5.17, repeated here:

P, = 38.22 + 1.43GDPN; — 0.6CVN; + 7.31PP;  (5.17)

(0.21) (022)  (6.12)
t= 6.69 ~2.66 1.19
~15.63DPC; — 11.38IPC;
(6.93) (7.16)
t= —2.25 ~1.59

n = 32 (national 1975 data) R? =.775 F = 2235

where: P;

; = the pharmaceutical price level in the ith country

divided by that of the United States
GDPN; = per capita domestic product in the ith country
divided by that of the United States
CVN; = per capita volume of consumption of pharma-
ceuticals in the ith country divided by that of
the United States
= a dummy variable equal to 1 if patents for phar-
maceutical products are recognized in the ith
country and equal to 0 otherwise
DPC; = a dummy variable equal to 1 if the ith country
applied strict price controls and 0 otherwise
= a dummy variable equal to 1 if the ith country
encouraged price competition and 0 otherwise

PP,

1

IPG;

1

a. Using EViews (or your own computer program) and datafile
DRUGS (or Table 5.1), estimate these two equations. That is, esti-
mate:

i. Equation 5.17 with CV; added, and
ii. Equation 5.17 with N; added

_ 15. Frederick T. Schut and Peter A. G. VanBergeijk, “International Price Discrimination: The
Pharmaceutical Industry,” World Development, 1986, pp. 1141-1150.



192 PARTII = VIOLATIONS OF THE CLASSICAL ASSUMPTIONS

b. Use our four specification criteria to determine whether CV and N
are irrelevant or omitted variables. (Hint: The authors expected that
prices would be lower if market size was larger because of possible
economies of scale and/or enhanced competition.)

c. Why didn't the authors run Equation 5.17 with both CV and N in-
cluded? (Hint: While you can estimate this equation yourself, you
don't have to do so to answer the question.)

d. Why do you think that the authors reported all three estimated

: specifications in their results when they thought that Equation
5.17 was the best?

6.8 Appendix: Additional Specification Criteria

So far in this chapter, we've suggested four criteria for choosing the indepen-
dent variables (economic theory, R?, the -test, and possible bias in the coeffi-
cients). Sometimes, however, these criteria don't provide enough informa-
tion for a researcher to feel confident that a given specification is best. For
instance, there can be two different specifications that both have excellent
theoretical underpinnings. In such a situation, many econometricians use ad-
ditional, often more formal, specification criteria to provide comparisons of
the properties of the alternative estimated equations.

The use of formal specification criteria is not without problems, however.
First, no test, no matter how sophisticated, can “prove” that a particular spec-
ification is the true one. The use of specification criteria, therefore, must be
tempered with a healthy dose of economic theory and common sense. A sec-
ond problem is that more than 20 such criteria have been proposed; how do
we decide which one(s) to use? Because many of these criteria overlap with
one another or have varying levels of complexity, a choice between the alter-
natives is a matter of personal preference.

In this section, we'll describe the use of three of the most popular specifi-
cation criteria, J. B. Ramsey’s RESET test, Akaike's Information Criterion, and
the Schwarz Criterion. Our inclusion of just these techniques does not imply
that other tests and criteria are not appropriate or useful. Indeed, the reader
will find that most other formal specification criteria have quite a bit in com-
mon with at least one of the techniques that we include. We think that you'll
be more able to use and understand other formal specification criteria!® once
you've mastered these three.

16. In particular, the likelihood ratio test, versions of which will be covered in Section 12.2, can
be used as a specification test. For an introductory level summary of six other specification cri-
teria, see Ramu Ramanathan, Introductory Econometrics (Fort Worth: Harcourt Brace Jovanovich,
1998, pp. 164-166).
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6.8.1 Ramsey’s Regression Specification Error Test (RESET)

One of the most-used formal specification tests other than R? is the Ramsey
Regression Specification Test (RESET).!7 The Ramsey RESET test is a general
test that determines the likelihood of an omitted variable or some other spec-
ification error by measuring whether the fit of a given equation can be signif-
icantly improved by the addition of Y2, Y3, and Y4 terms.

What's the intuition behind RESET? The additional terms act as proxies for
any possible (unknown) omitted variables or incorrect functional forms, If
the proxies can be shown by the F-test to have improved the overall fit of the
original equation, then we have evidence that there is some sort of specifica-
tion error in our equation. As we'll learn in Chapter 7, the Y2, Y3, and Y4
terms form a polynomial functional form. Such a polynomial is a powerful
curve-fitting device that has a good chance of acting as a proxy for a specifica-
tion error if one exists. If there is no specification error, then we’'d expect the
coefficients of the added terms to be insignificantly different from zero be-
cause there is nothing for them to act as a proxy for.

The Ramsey RESET test involves three steps:

1. Estimate the equation to be tested using OLS:
Yi = Bo + B1Xyi T B2Xy (6.28)

2, Take the Y; values from Equation 6.28 and create Y2, ¥?, and Y# terms.
Then add these terms to Equation 6.28 as additional explanatory vari-
ables and estimate the new equation with OLS:

Y; = Bo + BiXyi + BXy; + BsY2 + B,Y7 + BV + ¢ (6.29)

3. Compare the fits of Equations 6.28 and 6.29 using the F-test. If the two
equations are significantly different in overall fit, we can conclude that
it’s likely that equation 6.28 is misspecified.

While the Ramsey RESET test is fairly easy to use, it does little more than
signal when a major specification error might exist. If you encounter a signifi-
cant Ramsey RESET test, then you face the daunting task of figuring out ex-
actly what the error is! Thus, the test often ends up being more useful in “sup-
porting” (technically, not refuting) a researcher’s contention that a given

17.]. B. Ramsey, “Tests for Specification Errors in Classical Linear Squares Regression Analysis,”
Journal of the Royal Statistical Society, 1969, pp. 350-371.
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& .
specification has no major specification errors than it is in helping find an
otherwise undiscovered flaw.!®

As an example of the Ramsey RESET test, let’s return to the chicken de-
mand model of this chapter to see if RESET can detect the known specifica-
tion error (omitting the price of beef) in Equation 6.9. Step one involves run-
ning the original equation without PB.

Y, = 32.9 — 0.70PC, + 0.27YD, (6.9)
(0.08)  (0.01)
t= —833 4591

R2 = 984 n = 44 (annual 1951-1994) RSS = 185.66

For step two, we take ¥, from Equation 6.9, calculate ¥2, Y3, and Y4, and then
reestimate Equation 6.9 with the three new terms added in:

Y, = 23.80 — 0.59PC, + 0.36YD, + 0.02Y} (6.30)
(1.71)  (0.71)  (0.08)
t= —034 0.50  + 0.29

~0.007Y? + 0.0000055Y2 + e,
(0.0011) (0.0000054)
t=-068 + 102
RZ = 987 n = 44 (annual 1951-1994) RSS = 138.41

N

In step three, we compare the fits of the two equations by using the F-test.
Specifically, we test the hypothesis that the coefficients of all three of the
added terms are equal to zero:

Hp: B3 =By =Bs =0
H,: otherwise

The appropriate F-statistic to use is one that is presented in more detail in
Section 7.7:

_ (RSS,, — RSS)/M
F= RSS/(n — K — 1)

(6.31)

18. The particular version of the Ramsey RESET test we describe in this section is only one of a
number of possible formulations of the test. For example, some researchers delete the Y4 term
from Equation 6.29. In addition, versions of the Ramsey RESET test are useful in testing for
functional form errors (to be described in Chapter 7) and serial correlation (to be described in
Chapter 9).
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where RSS,; is the residual sum of squares from the restricted equation (Equa-
tion 6.9), RSS is the residual sum of squares from the unrestricted equation
(Equation 6.30), M is the number of restrictions (3), and (n — K — 1) is the
number of degrees of freedom in the unrestricted equation (38):
(185.66 — 138.41)/3
B 138.41/38 B

432

The critical F-value to use, 2.86, is found in Statistical Table B-2 at the 5 percent
level of significance with 3 numerator and 38 denominator!® degrees of free-
dom. Since 4.32 is greater than 2.86, we can reject the null hypothesis that the
coefficients of the added variables are jointly zero, allowing us to conclude
that there is indeed a specification error in Equation 6.9. Such a conclusion is
no surprise, since we know that the price of beef was left out of the equation.
Note, however, that the Ramsey RESET test tells us only that a specification er-
ror is likely to exist in Equation 6.9; it does not specify the details of that error.

6.8.2 Akaike’s Information Criterion and the Schwarz Criterion

A second category of formal specification criteria involves adjusting the
summed squared residuals (RSS) by one factor or another to create an index
of the fit of an equation. The most popular criterion of this type is R?, but a
number of interesting alternatives have been proposed.

Akaike's Information Criterion (AIC) and the Schwarz Criterion (SC) are
methods of comparing alternative specifications by adjusting RSS for the
sample size (n) and the number of independent variables (K).2? These crite-
ria can be used to augment our four basic specification criteria when we try to
decide if the improved fit caused by an additional variable is worth the de-
creased degrees of freedom and increased complexity caused by the addition.
Their equations are:

AIC = Log(RSS/n) + 2(K + 1)/n - (6.32)

SC = Log(RSS/n) + Log(n)(K + 1)/n (6.33)

19. Statistical Table B-2 does not list 38 numerator degrees of freedom, so, as mentioned in
footnote 15 of Chapter 5, you must interpolate between 30 and 40 numerator degrees of free-
dom to get the answer. In this case, some researchers would note that the calculated F-value ex-
ceeds both critical F-values and wouldn’t bother with the interpolation. If you'd like more in-
formation about this kind of F-test, see Section 7.7.

20. H. Akaike, “Likelihcod of a Model and Information Criteria,” Journal of Econometrics, 1981,

pp. 3-14 and G. Schwarz, “Estimating the Dimension of a Model,” The Annals of Statistics,
1978, pp. 461-464.
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To use AIC and SC, estimate two alternative specifications and calculate AIC
and SC for each equation. The lower AIC or SC are, the better the specifica-
tion. Note that even though the two criteria were developed independently to
maximize different object functions, their equations are quite similar. Both
criteria tend to penalize the addition of another explanatory variable more
than R? does. As a result, AIC and SC will quite often?! be minimized by an
equation with fewer independent variables than the ones that maximize RZ.
Let's apply Akaike’s Information Criterion and the Schwarz Criterion to the
same chicken demand example we used for Ramsey’s RESET. To see if AIC
and/or SC can detect the specification error we already know exists in Equation
6.9 (the omission of the price of beef), we need to calculate AIC and SC for
equations with and without the price of beef. The equation with the lower AIC
and SC values will, other things being equal, be our preferred specification.
The original chicken demand model, Equation 6.8, was:

~

¥, = 31.5 — 0.73PC, + 0.11PB, + 0.23YD, (6.8)
(0.08)  (0.05)  (0.02)
t= —9.12 250  14.22

RZ = 986 n = 44 (annual 1951—1994) RSS = 160.59

Plugging the numbers from Equation 6.8 into Equations 6.32 and 6.33, AIC
and PC can be seen to be:

AIC = Log(160.59/44) + 2(4)/44 = 1.48
SC = Log(160.59/44) + Log(44)4/44 = 1.64

Equation 6.9 (repeated in Section 6.8.1), which omits the price of beef, has
an RSS of 185.66 with K = 2. Thus:

AIC = Log(185.66/44) + 2(3)/44 = 1.58
SC = Log(185.66/44) + Log(44)3/44 = 1.70

For AIC, 1.48 < 1.58, and for SC, 1.64 < 1.70, so both Akaike’s Information

21. Using a Monte Carlo study, Judge et al. showed that (given specific simplifying assump-
tions) a specification chosen by maximizing R? is over 50 percent more likely to include an ir-
relevant variable than is one chosen by minimizing AIC or SC. See George C. Judge, R. Carter
Hill, W. E. Griffiths, Helmut Lutkepohl, and Tsoung-Chao Lee, Introduction to the Theory and
Practice of Econometrics (New York: Wiley, 1988), pp. 849-850. At the same time, minimizing
AIC or SC will omit a relevant variable more frequently than will maximizing R?.
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Criterion and the Schwarz Criterion provide evidence that Equation 6.8 is
preferable to Equation 6.9. That is, the price of beef appears to belong in the
equation. In practice, these calculations may not be necessary because AIC
and SC are automatically calculated by some regression software packages,
including EViews.

As it turns out, then, all three new specification criteria indicate the pres-
ence of a specification error when we leave the price of beef out of the equa-
tion. This result is not surprising, since we purposely left out a theoretically
justified variable, but it provides an example of how useful these criteria
could be when we're less than sure about the underlying theory.

Note that AIC and SC require the researcher to come up with a particular
alternative specification, whereas Ramsey’s RESET does not. Such a distinc-
tion makes RESET easier to use, but it makes AIC and SC more informative if
a specification error is found. Thus our additional specification criteria serve
different purposes. RESET is most useful as a general test of the existence of a
specification error, whereas AIC and SC are more useful as means of compar-
ing two or more alternative specifications.
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CHAPTER

Specification: Choosing a
Functional Form

7.1 The Use and Interpretation of the Constant Term

7.2 Alternative Functional Forms

7.3 Problems with Incorrect Functional Forms

7.4 Using Dummy Variables

7.5 Slope Dummy Variables

7.6  Summary and Exercises
7.7 Appendix: More Uses for the F-Test

Even after you've chosen your independent variables, the job of specifying
the equation is not over. The next step is to choose the functional form of the
relationship between each independent variable and the dependent variable.
Should the equation go through the origin? Do you expect a curve instead of
a straight line? Does the effect of a variable peak at some point and then start
to decline? An affirmative answer to any of these questions suggests that an
equation other than the standard “linear in the variables” model of the previ-
ous chapters might be appropriate. Such alternative specifications are impor-
tant for two reasons: a correct explanatory variable may well appear to be in-
significant or to have an unexpected sign if an inappropriate functional form
is used, and the consequences of an incorrect functional form for interpreta-
tion and forecasting can be severe.

Theoretical considerations usually dictate the form of a regression model.
The basic technique involved in deciding on a functional form is to choose the
shape that best exemplifies the expected underlying economic or business prin-
ciples and then to use the mathematical form that produces that shape. To help
with that choice, this chapter contains plots of the most commonly used func-
tional forms along with the mathematical equations that correspond to each.

The chapter begins with a brief discussion of the constant term. In particu-
lar, we suggest that the constant term should be retained in equations even if

ni——
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theory suggests otherwise, and that estimates of the constant term should not
be relied on for inference or analysis. The chapter concludes with a discus-
sion of dummy variables and, in particular, the use of dummy variables to al-
low the coefficients of independent variables to differ for qualitative condi-
tions (slope dummies).

7.1 The Use and Interpretation of the Constant Term

In the linear regression model, B is the intercept or constant term. It is the
expected value of Y when all the explanatory variables (and the error term)
equal zero. At times, B is of theoretical importance. Consider, for example,
the following cost equation:

w

Ci=BotB1Q t &

where C; is the total cost of producing level of output Q;. The term 3, Q; rep-
resents the total variable cost associated with output level Q;, and B, repre-
sents the total fixed cost, defined as the cost when output Q; = 0. Thus, a re-
gression equation might seem useful to a researcher who wanted to
determine the relative magnitudes of fixed and variable costs. This would be
an example of relying on the constant term for inference.

On the other hand, the product involved might be one for which it is
known that there are few if any fixed costs. In such a case, a researcher might
want to eliminate the constant term; to do so would conform to the notion
of zero fixed costs and would conserve a degree of freedom (which would
presumably make the estimate of B; more precise). This would be an exam-
ple of suppressing the constant term.

Neither suppressing the constant term nor relying on it for inference is ad-
visable, however, and reasons for these conclusions are explained in the fol-
lowing sections.

7.1.1 Do Not Suppress the Constant Term

Chapter 4 explained that Assumption II (the error term has an expected value
of zero) requires that the constant term absorb any nonzero mean that the
observations of the error term might have in a given sample. Thus, suppress-
ing the constant term can lead to a violation of this Classical Assumption.
The only time that this assumption would not be violated by leaving out the
intercept term is when the mean effect of the unobserved error term (without
a constant term) is zero over all the observations.
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Figure 7.1 The Harmful Effect of Suppressing the Constant Term

If the constant (or intercept) term is suppressed, the estimated regression will go through
the origin. Such an effect potentially biases the Bs and inflates their t-scores. In this par-
ticular example, the true slope is close to zero in the range of the sample, but forcing the
regression through the origin makes the slope appear to be significantly positive.

The consequence of suppressing the constant term is that the slope coef-
ficient estimates are potentially biased and their t-scores are potentially in-
flated. This is demonstrated in Figure 7.1. Given the pattern of the X and Y
observations, estimating a regression equation with a constant term would
likely produce an estimated regression line very similar to the true regres-
sion line, which has a constant term (B4} quite different from zero. The
slope of this estimated line is very low, and the t-score of the estimated
slope coefficient may be very close to zero, implying that the slope coeffi-
cient is statistically insignificant; that is, it does not differ significantly from
zZero.

However, if the researcher were to suppress the constant term, which im-
plies that the estimated regression line must pass through the origin, then the
estimated regression line shown in Figure 7.1 would result. The slope coeffi-
cient is now large. That is, it is biased upward compared with the true slope
coefficient. Thus, the t-score is biased upward, and it may very well be large
enough to indicate that the estimated slope coefficient is statistically signifi-
cantly positive. Such a conclusion would be incorrect.

It might seem as though it'd make sense to suppress the constant when the
true relationship is nonlinear and passes through the origin. However, if this
nonlinear relationship were to be approximated by a linear regression line, it
would still be important not to suppress the constant term. Over the relevant
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range of the observations (that is, the sample range), the estimated regression
line with the constant suppressed doesn’'t provide an adequate approxima-
tion of the true regression line, compared with an estimated regression equa-
tion that includes the constant term. It is a legitimate exercise in applied
econometrics to use linear approximations of nonlinear functional forms;
suppressing the constant term doesn’t permit an accurate approximation
over the sample range of observations.

Thus, even though some regression packages allow the constant term to be
suppressed (set to zero), the general rule is: Don'’t, even if theory specifically
calls for it.

7.1.2 Do Not Rely on Estimates of the Constant Term

It would seem logical that if it's a bad idea to suppress the constant term,
then the constant term must be an important analytical tool to use in evalu-
ating the results of the regression. Unfortunately, there are at least two rea-
sons that suggest that the intercept should not be relied on for purposes of
analysis or inference.

First, the error term is generated, in part, by the omission of a number of
marginal independent variables, the mean effect of which is placed in the
constant term. The constant term acts as a garbage collector, with an un-

. . | )
known amount of this mean effect being dumped Into 1t "he constant termI s

estimated coei!tllcient may I)e c“pperent prorn wLat lt woulcl I‘lave Leen w1“10u{
performing this task, which is done for the sake of the equation as a whole.
As a result, it's meaningless to run a t-test on B

Second, the constant term is the value of the dependent variable when all
the independent variables and the error term are zero, but the values of vari-
ables used for economic analysis are usually positive. Thus, the origin often
lies outside the range of sample observations (as can be seen in Figure 7.1).
Since the constant term is an estimate of Y when the Xs are outside the range
of the sample observations, estimates of it are tenuous. Estimating the con-
stant term is like forecasting beyond the range of the sample data, a proce-
dure that inherently contains greater error than within-sample forecasts. For
more on this, see Chapter 15.

7.2  Alternative Functional Forms

The choice of a functional form for an equation is a vital part of the specifica-
tion of that equation. The use of OLS requires that the equation be linear in
the coefficients, but there is a wide variety of functional forms that are linear
in the coefficients while being nonlinear in the variables. Indeed, in previous

201



CHAPTER 7 = SPECIFICATION: CHOOSING A FUNCTIONAL FORM

range of the observations (that is, the sample range), the estimated regression
line with the constant suppressed doesn’t provide an adequate approxima-
tion of the true regression line, compared with an estimated regression equa-
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Thus, even though some regression packages allow the constant term to be
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calls for it.

7.1.2 Do Not Rely on Estimates of the Constant Term

It would seem logical that if it's a bad idea to suppress the constant term,
then the constant term must be an important analytical tool to use in evalu-
ating the results of the regression. Unfortunately, there are at least two rea-
sons that suggest that the intercept should not be relied on for purposes of
analysis or inference.

First, the error term is generated, in part, by the omission of a number of
marginal independent variables, the mean effect of which is placed in the
constant term. The constant term acts as a garbage collector, with an un-
known amount of this mean effect being dumped into it. The constant term’s
estimated coefficient may be different from what it would have been without
performing this task, which is done for the sake of the equation as a whole.
As a result, it's meaningless to run a i-test on Bo-

Second, the constant term is the value of the dependent variable when all
the independent variables and the error term are zero, but the values of vari-
ables used for economic analysis are usually positive. Thus, the origin often
lies outside the range of sample observations (as can be seen in Figure 7.1).
Since the constant term is an estimate of Y when the Xs are outside the range
of the sample observations, estimates of it are tenuous. Estimating the con-
stant term is like forecasting beyond the range of the sample data, a proce-
dure that inherently contains greater error than within-sample forecasts. For
more on this, see Chapter 15.

7.2 Alternative Functional Forms

The choice of a functional form for an equation is a vital part of the specifica-
tion of that equation. The use of OLS requires that the equation be linear in
the coefficients, but there is a wide variety of functional forms that are linear
in the coefficients while being nonlinear in the variables. Indeed, in previous
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chapters we've already used several equations that are linear in the coeffi-
cients and nonlinear in the variables, but we've said little about when to use
such nonlinear equations. The purpose of the current section is to present the
details of the most frequently used functional forms to help the reader de-
velop the ability to choose the correct one when specifying an equation.

The choice of a functional form almost always should be based on the un-
derlying economic or business theory and only rarely on which form pro-
vides the best fit. The logical form of the relationship between the dependent
variable and the independent variable in question should be compared with
the properties of various functional forms, and the one that comes closest to
that underlying theory should be chosen. To allow such a comparison, the
paragraphs that follow characterize the most frequently used forms in terms
of graphs, equations, and examples. In some cases, more than one functional
form will be applicable, but usually a choice between alternative functional
forms can be made on the basis of the information we’ll present.

7.2.1 Linear Form

The linear regression model, used almost exclusively in this text thus far, is
based on the assumption that the slope of the relationship between the inde-
pendent variable and the dependent variable is constant:!

AY _ _ '
ax, P k=12...K (7.1)
The slope is constant, so the elasticity of Y with respect to X (the percentage
change in the dependent variable caused by a 1 percent increase in the inde-
pendent variable, holding the other variables in the equation constant) is not

constant:
AY/Y Ay X
AXp/X,  AX, Y

' X
Elasticityy y, = - By (7.2)
If the hypothesized relationship between Y and X is such that the slope of the
relationship can be expected to be constant, then the linear functional form
should be used.
Unfortunately, theory frequently predicts only the sign of a relationship
and not its functional form. When there is little theory on which to base an

1. Throughout this section, the “delta” notation (A) will be used instead of the calculus nota-
tion to make for easier reading. The specific definition of A is “change,” and it implies a small
change in the variable it is attached to. For example, the term AX should be read as “change in
X.” Since a regression coefficient represents the change in the expected value of Y brought about
by a one-unit increase in X (holding constant all other variables in the equation), then
Br = AY/AX,. Those comfortable with calculus should substitute partial derivative signs for As.
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expected functional form, the linear form should be used until strong evi-
dence that it is inappropriate is found. Unless theory, common sense, or ex-
perience justifies using some other functional form, you should use the lin-
ear model. Because, in effect, it's being used by default, this model is
sometimes referred to as the default functional form.

7.2.2 Double-Log Form

The double-log form is the most common functional form that is nonlinear
in the variables while still being linear in the coefficients. Indeed, the double-
log form is so popular that some researchers use it as their default functional
form instead of the linear form. In a double-log functional form, the natural
log of Y is the dependent variable and the natural log of X is the independent
variable:

InY = By + B, InX; + B, InX, + € (7.3)

where InY refers to the natural log of Y, and so on. For a brief review of the
meaning of a log, see the boxed feature on pages 204-205.

The double-log form, sometimes called the log-log form, often is used be-
cause a researcher has specified that the elasticities of the model are constant
and the slopes are not. This is in contrast to the linear model, in which the
slopes are constant but the elasticities are not. If an elasticity is assumed to be
constant, then:

% AY

2 = By = 4
% AX, By = a constant (7.4)

Elasticityy x =
Given the assumption of constant elasticity, the proper form is the expo-
nential functional form:

Y = ePoxBixBrec (7.5)

where e is the base of the natural logarithm. A logarithmic transformation
can be applied to Equation 7.5 by taking the log of both sides of the equation
to make it linear in the coefficients. This transformation converts Equation
7.5 into Equation 7.3, the double-log functional form.

In a double-log equation, an individual regression coefficient, for example
Bi. can be interpreted as an elasticity because:

_A(lY)  AYY
K7 A(InX) — AXi/Xi

= Elasticityy X, (7.6)
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Since regression coefficients are constant, the condition that the model have
a constant elasticity is met by the double-log equation.

The way to interpret B} in a double-log equation is that if Xy increases by 1
percent while the other Xs are held constant, then Y will change by By per-
cent. Since elasticities are constant, the slopes are now no longer constant.

Figure 7.2 is a graph of the double-log function (ignoring the error term).
The panel on the left shows the economic concept of a production function
(or an indifference curve). Isoquants from production functions show the

What the heck is a log? If e (a constant equal to 2.71828) to the “bth
power” produces x, then b is the log of x:

‘bis the log of x to the base e if:

- logarithm) is the expon hich a given
be taken in order to produce a specific number. While logs come in more
than one variety, we'll use only natural logs (logs to the base e) in this text. -
The symbol for a natural log is “In,” so In(x) = b means that (2.71828)P
= x. 01, more simply,

In(1000)
In(10000) = 9210
In(100000) = 11.513
In(1000000) = 13.816
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different combinations of factors X; and X,, probably capital and labor, that
can be used to produce a given level of output Y. The panel on the right of
Figure 7.2 shows the relationship between Y and X; that would exist if X,
were held constant or were not included in the model. Note that the shape of
the curve depends on the sign and magnitude of coefficient B;.

Before using a double-log model, make sure that there are no negative or
zero observations in the data set. Since the log of a nonpositive number is
undefined, a regression cannot be run. Double-log models should be run

Note that as a number goes from 100 to 1,000,000, its natural log goes
from 4.605 to only 13.816! Since logs are exponents, even a small change
in a log can mean a big change in impact. As a result, logs can be used in
econometrics if a researcher wantsto reduce the absolute size of the num-
bers associated with the same actual meaning.
One useful property of natural logs in econo
sier to figure out impacts in percentage terms. If you run a double-log
regression, the meaning of a slope coefficient is the percentage change in
the dependent variable caused by a one percentage point increase in the
independent variable, holding the other independent variables in the
equation constant.? It's because of this percentage change property that
the slope coefficients in a double-log equation are elasticities.
Two other properties-of logs will come in handy. First, the natural log
of a product of two variables equals the sum of the natural logs of those
two variables. Thus,

Second, the natura og of a vanable that has an expo
ponent times the natural log of the variable:

o

In(X?) = 2 - In(X)

These two properties combined are what allow us to move from Equatio
7.5 in the text to Equation 7.3. '

2. This is because the derivative of a natural log of X equals dX/X (or AX/X), whlch is the
& same as percentage change




206

PART I = VIOLATIONS OF THE CLASSICAL ASSUMPTIONS

*

,/
X, Y &
Bi>1
0<py <1
InY = Bo+ B]lnxl + leﬂXz
B; <0
Y,
Y,
0 - X 0 Xi
(Holding X, constant)

Figure 7.2 Double-Log Functions

Depending on the values of the regression coefficients, the double-log functional form
can take on a number of shapes. The left panel shows the use of a double-log function to
depict a shape useful in describing the economic concept of a production function (or an
indifference curve). The right panel shows various shapes that can be achieved with a
double-log function if X, is held constant or is not included in the equation.

only when the logged variables take on positive values. Dummy variables,
which can take on the value of zero, should not be logged but still can be
used in a double-log equation.?

7.2.3 Semilog Form

The semilog functional form is a variant of the double-log equation in
which some but not all of the variables (dependent and independent) are ex-
pressed in terms of their natural logs. For example, you might choose to use

3. If it is necessary to take the log of a dummy variable, that variable needs to be transformed to
avoid the possibility of taking the log of zero. The best way is to redefine the entire dummy
variable so that instead of taking on the values of zero and one, it takes on the values of one
and e (the base of the natural logarithm). The log of this newly defined dummy then takes on
the values of zero and one, and the interpretation of B remains the same as in a linear equation.
Such a transformation changes the coefficient value but not the usefulness or theoretical valid-
ity of the dumiy variable.




CHAPTER 7 = SPECIFICATION: CHOOSING A FUNCTIONAL FORM 207

-

/
v Y
Y = (Bo+ B2Xp)
+ ByInX,
InY=B; + B,X; + ByX,
0 X] 0 Xl
(Holding X, constant) (Holding X, constant)

Figure 7.3 Semilog Functions

The semilog functional form on the right (InX) can be used to depict a situation in which
the impact of X; on Y is expected to increase at a decreasing rate as X; gets bigger as long
as B, is greater than zero (holding X, constant). The semilog functional form on the left
(InY) can be used to depict a situation in which an increase in X; causes Y to increase at
an increasing rate.

as explanatory variables the logarithms of one or more of the original inde-
pendent variables as in:

Y; = Bo + By InXy; + BoXy T & ' (7.7)

In this case, the economic meanings of the two slope coefficients are differ-
ent, since X, is linearly related to Y while X; is nonlinearly related to Y.

The right-hand side of Figure 7.3 shows the relationship between Y and X,
in this kind of semilog equation when X, is held constant. Note that if B, is
greater than zero, the impact of changes in X; on Y decreases as X, gets big-
ger. Thus, the semilog functional form should be used when the relationship
between X; and Y is hypothesized to have this “increasing at a decreasing
rate” form. :

Applications of the semilog form are quite frequent in economics and
business. For example, most consumption functions tend to increase at a de-
creasing rate past some level of income. These Engel curves tend to flatten out
because as incomes get higher, a smaller percentage of income goes to con-
sumption and a greater percentage goes to saving. Consumption thus in-
creases at a decreasing rate. If Y is the consumption of an item and X is dis-
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&

posable income (with X, standing for all the other independent variables),
then the use of the semilog functional form is justified whenever the item's
consumption can be expected to tail off as income increases.

For example, recall the chicken consumption Equation 6.8 from the previ-
ous chapter.

Y, = 31.5 — 0.73PC, + 0.11PB, + 0.23YD, (6.8)
(0.08)  (0.05)  (0.02)
t= -9.12 250  14.22

R%2 = 986 n = 44 (annual 1951-1994)

If we substitute the log of disposable income (LYD) for disposable income in
Equation 6.8, we get:

~

Y= —6.94 — 0.57PC, + 0.25PB, + 12.2LYD, . = (7.8)
(0.19)  (0.11) (2.81)
t= —3.05 2.19 4.35

R?2 = 942 n = 44 (annual 1951-1994)

In Equation 7.8, the independent variables include the two price variables
(PC and PB) and the log of disposable income. Equation 7.8 would be appro-
priate if we hypothesize that as income rises, consumption will increase at a
decreasing rate. For other products, perhaps like yachts or summer homes, no
such decreasing rate could be hypothesized, and the semilog function would
not be appropriate.

Note from Equation 7.7 that various combinations of the functional
forms are possible. Thus the form taken by X; may be different from the
form taken by X,. In addition, Y may assume yet another different functional
form.4

Not all semilog functions have the log on the right-hand side of the equa-
tion, as in Equation 7.7. The alternative semilog form is to have the log on
the left-hand side of the equation. This would mean that the natural log of Y
would be a function of unlogged values of the Xs, as in:

s

4. One example of such a combination functional form is called the translog function. The
translog function combines three different functional forms to come up with an equation for
estimating various kinds of cost functions. For more on the translog function, see Laurits R.
Christensen and William H. Greene, “Economies of Scale in U.S. Electrical Power Generation,”
Journal of Political Economy, August 1976, pp. 655-676.
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This model has neither a constant slope nor a constant elasticity, but the co-
efficients do have a very useful interpretation. If X; increases by one unit,
then Y will change in percentage terms. Specifically, Y will change by B, - 100
percent, holding X, constant, for every unit that X, increases. The left-hand
side of Figure 7.3 shows such a semilog function.

This fact means that the InY semilog function of Equation 7.9 is perfect for
any model in which the dependent variable adjusts in percentage terms to a
unit change in an independent variable. The most common economic and
business application of Equation 7.9 is in a model of salaries of individuals,
where firms often give annual raises in percentage terms. In such a model Y
would be the salary of the ith employee, and X; would be the experience of
the ith worker. Each year X; would increase by one, and B, would measure
the percentage raises given by the firm. For more on this example of a left-
side semilog functional form, see Exercise 4 at the end of the chapter.

Note that we now have two different kinds of semilog functional forms,
creating possible confusion. As a result, many econometricians use phrases
like “right-side semilog” or “lin-log functional form” to refer to Equation 7.7
while using “left-side semilog” or “log-lin functional form” to refer to Equa-
tion 7.9.

7.2.4 Polynomial Form

In most cost functions, the slope of the cost curve changes as output changes.
If the slopes of a relationship are expected to depend on the level of the vari-
able itself (for example, change sign as output increases) then a polynomial
model should be considered. Polynomial functional forms express Y as a
function of independent variables, some of which are raised to powers other
than one. For example, in a second-degree polynomial (also called a qua-
dratic) equation, at least one independent variable is squared:

Y = Bo + B1Xq; + Ba(X11)? + BsXy; + - (7.10)

Such a model can indeed produce slopes that change as the independent
variables change. The slopes of Y with respect to the Xs in Equation 7.10 are: |

AY _ g, + 28X, and

AY .
XS Bs (7.11)

AX,

* Note that the first slope depends on the level of X; and the second slope is
constant. If this were a cost function, with Y being the average cost of produc-
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a

Y Y
B, <0
Y = (B + B3Xp) + (B X; + B,X7) B;>0
B>0
B;<0
?
0 (Holding X, constant) X, 0 (Holding X, constant) X

Figure 7.4 Polynomial Functions

Quadratic functional forms (polynomials with squared terms) take on U or inverted U
shapes, depending on the values of the coefficients (holding X, constant). The left panel
shows the shape of a quadratic function that could be used to show a typical cost curve;
the right panel allows the description of an impact that rises and then falls (like the im-
pact of age on earnings).

tion and X, being the level of output of the firm, then we would expect B, to
be negative and B, to be positive if the firm has the typical U-shaped cost
curve depicted in the left half of Figure 7.4.

For another example, consider a model of annual employee earnings as a
function of the age of each employee and a number of other measures of pro-
ductivity such as education. What is the expected impact of age on earnings?
As a young worker gets older, his or her earnings will typically increase. Be-
yond some point, however, an increase in age will not increase earnings by
very much at all, and around retirement we expect earnings to start to de-
crease with age. As a result, a logical relationship between earnings and age
might look something like the right half of Figure 7.4; earnings would rise,
level off, and then fall as age increased. Such a theoretical relationship could
be modeled with a quadratic equation:

Earnings; = B, + BiAge; + B,Age? + - + ¢ (7.12)

What would the expected signs of B, and B, be? As a worker got older, the
difference between “Age” and “Age?” would increase dramatically, because
“Age?” would become quite large. As a result, the coefficient of “Age” would

)
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be more important at lower ages than it would be at higher ages. Conversely,
the coefficient of “Age?” would be more important at higher ages. Since you
expect the impact of age to rise and fall, you'd thus expect f’»l to be positive
and f%z to be negative (all else being equal). In fact, this is exactly what many
researchers in labor economics have observed.

With polynomial regressions, the interpretation of the individual regres-
sion coefficients becomes difficult, and the equation may produce unwanted
results for particular ranges of X. For example, the slope for a third-degree
polynomial can be positive over some range of X, then negative over the next
range, and then positive again. Unless such a relationship is called for by the-
ory, it would be inappropriate to use a higher-degree polynomial. Even a sec-
ond-degree polynomial, as in Equation 7.10, imposes a particular shape (a U
shape or its inverse) that might be unreasonable in some cases. For example,
review the Tain equation in Section 5.5, where it seems obvious that the
squared term was added solely to provide a better fit to this admittedly
cooked-up equation. To avoid such curve fitting, great care must be taken
when using a polynomial regression equation to ensure that the functional
form will achieve what is intended by the researcher and no more.

7.2.5 Inverse Form

The inverse functional form expresses Y as a function of the reciprocal (or
inverse) of one or more of the independent variables (in this case, X;):

Y; = Bo + B1(1/Xy5) + BXyi + & (7.13)

The inverse (or reciprocal) functional form should be used when the impact
of a particular independent variable is expected to approach zero as that in-
dependent variable increases and eventually approaches infinity. To see this,
note that as X; gets larger, its impact on Y decreases.

In Equation 7.13, X; cannot equal zero, since if X; equaled zero, dividing
it into anything would result in infinite or undefined values. The slopes are:
!

g AY AY
— = d —= 7.14
AX; X3 e ax, B2 (7.14)

The slopes for X fall into two categories, both of which are depicted in Fig-
ure 7.5:

1. When B, is positive, the slope with respect to X; is negative and de-
creases in absolute value as X; increases. As a result, the relationship

211
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B B, >0

Y =(Bo+ B2X2) + B /X

(Bo+ BoXy)

B1<0

0 Xy
(Holding X, constant)

Figure 7.5 Inverse Functions

Inverse (or reciprocal) functional forms allow the impact of an X; on 'Y to approach zero
as Xy increases in size. The inverse function approaches the same value (the asymptote)
from the top or bottom depending on the sign of f;.

between Y and X; holding X, constant approaches B, + B,X, as X;
increases (ignoring the error term).

2. When B, is negative, the relationship intersects the X; axis at
—B1/(Bg *+ B,X;) and slopes upward toward the same horizontal line
(called an asymptote) that it approaches when 3, is positive.

Applications of reciprocals or inverses exist in a number of areas in eco-
nomic theory and the real world. For example, one way to think of the once-
popular Phillips curve, a nonlinear relationship between the rate of unem-
ployment and the percentage change in wages, is to posit that the percentage
change in wages (W) is negatively related to the rate of unemployment (U),
but that past some level of unemployment, further increases in the unem-
ployment rate do not reduce the level of wage increases any further because
of institutional or other reasons. Such a hypothesis could be tested with an
inverse functional form:

W, = By + By(1/U) + ¢ (7.15)

Estimating this equation using OLS gives the following:
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*

W, = 0.00679 + 0.1842(1/U,) ; (7.16)
(0.0590)
t = 3.20
R? = 397

This indicates that W and U are related in a way similar to that hypothesized
(as shown in Figure 7.5 when B, is positive), but it doesn’t provide any evi-
dence that the inverse functional form is the best way to depict this particular
theory. For more on this example, see Exercise 5.

<.3  Problems with Incorrect Functional Forms

The best way to choose a functional form for a regression model is to choose
a specification that matches the underlying theory of the equation. In a ma-
jority of cases, the linear form will be adequate, and for most of the rest,
common sense will point out a fairly easy choice from among the alterna-
tives outlined above. Table 7.1 contains a summary of the properties of the
various alternative functional forms.

Once in a while, however, a circumstance will arise in which the model is
logically nonlinear in the variables, but the exact form of this nonlinearity is
hard to specify. In such a case, the linear form is not correct, and yet a choice
between the various nonlinear forms cannot be made on the basis of eco-
nomic theory. Even in these cases, however, it still pays (in terms of under-
standing the true relationships) to avoid choosing a functional form on the
basis of fit alone.

For example, recall the estimated Phillips curve in Equation 7.16. Al-
though the negative relationship between unemployment and inflation (us-
ing the percentage increase in wages as a proxy) implied by the Phillips curve
suggests a downward-sloping nonlinear curve, there are a number of other
functional forms that could produce such a curve. In addition to the inverse
relationship that was actually used, the double-log form and various semilog
and exponential forms could also give shapes that would fit the hypothesis
fairly well. If all the functional forms are so similar, and if theory does not
specify exactly which form to use, why should we try to avoid using goodness
i of fit over the sample to determine which equation to use? This section will
Q highlight two answers to this question:

1. RZs are difficult to compare if the dependent variable is transformed.

2. An incorrect functional form may provide a reasonable fit within the
i sample but have the potential to make large forecast errors when used
outside the range of the sample.
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TABLE 7.1 SUMMARY OF ALTERNATIVE FUNCTIONAL FORMS

Slope Elasticity
Functional Equation AY AY X
Form (one X only) = <K§) = (R ) V)
Linear Y =Bt BiXi g By 61(7)
Y.
Double-log  InY; = Bg + By InX; + € B1<YI.> B1
1
Semilog 1 1
(InX) Y; = Bo = B1InXi + § B1<%) B1(?>
Semilog l |
(InY) InY; = By + B1X; + €& B BiXi

X X2
Polynomial Yi =80t BiX + BZX% + € B1 + 2B2X; 81(7:) + 2[32(7:)

Inverse Yi=Bg t+ B1(>%> + € ﬂﬁ(é) _31()(—:\(:)'

Note: Slopes and elasticities that include X; or Y; are not constant; they vary from point to point, de-
pending on the value of X; or Y. If general slopes or elasticities are desired, X and Y can be substi-
tuted into the equations.

2.3.1 R2s Are Difficult to Compare WhenY Is Transformed

When the dependent variable is transformed from its linear version, the over-
A1l measure of fit, the R2, cannot be used for comparing the fit of the nonlin-
ear equation with the original linear one. This problem is not especially im-
portant in most cases because the emphasis in applied regression analysis is
usually on the coefficient estimates. However, if R%s are ever used to compare
the fit of two different functional forms, then it becomes crucial that this lack
of comparability be remembered. For example, suppose you were trying to
compare a linear equation

with a semilog version of the same equation (using the version of a semilog
function that takes the log of the dependent variable):

InY = By + B1X; + BoXp + € (7.18)




CHAPTER 7 = SPECIFICATION: CHOOSING A FUNCTIONAL FORM 215

Notice that the only difference between Equations 7.17 and 7.18 is the
functional form of the dependent variable. The reason that the R2s of the re-
spective equations cannot be used to compare overall fits of the two equa-
tions is that the total sum of squares (TSS) of the dependent variable around
its mean is different in the two formulations. That is, the R%s are not compa-
rable because the dependent variables are different. There is no reason to ex-
pect that different dependent variables will have the identical (or easily com-
parable) degrees of dispersion around their means. Since the two TSS are
different, the R%s (or R%s) will not be comparable.’

7.3.2  Incorrect Functional Forms Outside the Range of the Sample

If an incorrect functional form is used, then the probability of mistaken in-
ferences about the true population parameters will increase. Using an incor-
rect functional form is a kind of specification error that is similar to the omit-
ted variable bias discussed in Section 6.1. Although the characteristics of any
specification errors depend on the exact details of the particular situation,
there is no reason to expect that coefficient estimates obtained from an incor-
i rect functional form will necessarily be unbiased and have minimum vari-
ance. Even if an incorrect functional form provides good statistics within a
sample, though, large residuals almost surely will arise when the misspeci-
fied equation is used on data that were not part of the sample used to esti-
mate the coefficients.
In general, the extrapolation of a regression equation to data that are out-
side the range over which the equation was estimated runs increased risks of
large forecasting errors and incorrect conclusions about population values.

At

5. One way to get around this problem is to create a “quasi-R?,” an R? that allows the compari-
son of the overall fits of equations with different functional forms by transforming the pre-
dicted values of one of the dependent variables into the functional form of the other dependent
variable.

This would mean taking the following steps:
S
1. Estimate Equation 7.18 and create a set of InYs for the sample.

2. Transform the InYs by taking their antilogs (an antilog reverses the log function:
antilog [InY] = Y).

3. Calculate quasi-R? (or quasi-R?) by using the newly calculated antilogs as Vs to get the
residuals needed in the R? equation:

20y, - antilog(lnf(i)]2
>y - YP

This quasi-R? for Equation 7.18 is directly comparable to the conventional R2 for Equation 7.17.

quasi-RZ = 1 — (7.19)
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s

This risk is heightened if the regression uses a functional form that is inap-
propriate for the particular variables being studied; nonlinear functional
forms should be used with extreme caution for data outside the range of the
sample because nonlinear functional forms by definition change their slopes.
It is entirely possible that the slope of a particular nonlinear function could
change to an unrealistic value outside the range of the sample even if the
form produced reasonable slopes within the sample. Of course, even a linear
function could be inappropriate in this way. If the true relationship changed
slope outside the sample range, the linear functional form’s constant slope
would be quite likely to lead to large forecasting errors outside the sample
range.

As a result, two functional forms that behave similarly over the range of
the sample may behave quite differently outside that range. If the functional
form is chosen on the basis of theory, then the researcher can take into ac-
count how the equation would act over any range of values, even if some
of those values are outside the range of the sample. If functional forms are
chosen on the basis of fit, then extrapolating outside the sample becomes
tenuous.

Figure 7.6 contains a number of hypothetical examples. As can be seen,
some functional forms have the potential to fit quite poorly outside the sam-
ple range. Others seem less likely to encounter this problem. Such graphs are
meant as examples of what could happen, not as statements of what neces-
sarily will happen, when incorrect functional forms are pushed outside the
range of the sample over which they were estimated. Do not conclude from
these diagrams that nonlinear functions should be avoided completely. If the
true relationship is nonlinear, then the linear functional form will make large
forecasting errors outside the sample. Instead, the researcher must take the
time to think through how the equation will act for values both inside and
outside the sample before choosing a functional form to use to estimate the
equation. If the theoretically appropriate nonlinear equation appears to work
well over the relevant range of possible values, then it should be used with-
out concern over this issue.

7.4 Using Dummy Variables

In Section 3.1 we introduced the concept of a dummy variable, which we de-
fined as one that takes on the values of 0 or 1, depending on a qualitative at-
tribute such as gender. In that section our sole focus was on the use of a
dummy variable as an intercept dummy, a dummy variable that changes the
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Figure 7.6 Incorrect Functional Forms Outside the Sample Range

If an incorrect form is applied to data outside the range of the sample on which it was esti-
mated, the probability of large mistakes increases. In particular, note how the polynomial
functional form can change slope rapidly outside the sample range (panel b) and that
even a linear form can cause mistakes if the true functional form is nonlinear (panel d).

constant or intercept term, depending on whether the qualitative condition
is met. These take the general form:

Y = Bo + BiX; + BoD; + ¢ (7.20)

here D {1 if the ith observation meets a particular condition
where D; = _
! 0 otherwise

h
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As can be seen in Figure 7.7, the intercept dummy does indeed change the
intercept depending on the value of D, but the slopes remain constant no
matter what value D takes.

Note that in this example only one dummy variable is used even though
there were two conditions. This is because one fewer dummy variable is con-
structed than conditions. The event not explicitly represented by a dummy
variable, the omitted condition, forms the basis against which the included
conditions are compared. Thus, for dual situations only one dummy variable
is entered as an independent variable; the coefficient is interpreted as the ef-
fect of the included condition relative to the omitted condition.

For an example of the meaning of the coefficient of a dummy variable, let’s
look at a study of the relationship between fraternity/sorority membership
and grade point average (GPA). Most noneconometricians would approach
this research problem by calculating the mean grades of fraternity/sorority
(so-called Greek) members and comparing them to the mean grades of non-
members. However, such a technique ignores the possibility that differences
in mean grades might be related to characteristics other than Greek member-
ship.

Instead, we'd want to build a regression model that explains college GPA.
Independent variables would include not only Greek membership but also
other predictors of academic performance such as Scholastic Aptitude Test
(SAT) scores and high school grades. Being a member of a social organization
is a qualitative variable, however, so we'd have to create a dummy variable to
represent fraternity or sorority membership quantitatively in a regression
equation:

1 if the ith student is an active member of

G; = a fraternity or sorority

0 otherwise

If we collect data from all the students in our class and estimate the equa-
tion implied above, we obtain:

ey

CG;

0.37 + 0.81HG; + 0.00001S; — 0.38G; (7.21)
R2= .45 n=25

where:  CG; = the cumulative college GPA (4-point scale) of the ith student
HG; = the cumulative high school GPA (4-point scale) of the ith
student
S; = the sum of the highest verbal and mathematics SAT scores
earned by the ith student (1600 maximum)
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*

Yl Y;=Bo + B X+ B:D;

Both Slopes = B,

Figure 7.7 An Intercept Dummy

If an intercept dummy (B,D;) is added to an equation, a graph of the equation will have
different intercepts for the two qualitative conditions specified by the dummy variable.
The difference between the two intercepts is B,. The slopes are constant with respect to
the qualitative condition.

The meaning of the estimated coefficient of G; in Equation 7.21 is very spe-
cific. Stop for a second and figure it for yourself. What is it? The estimate that
Bc = —0.38 means that, for this sample, the GPA of fraternity/sorority mem-
bers is 0.38 lower than for nonmembers, holding SATs and high school GPA
constant. Thus, Greek members are doing about a third of a grade worse than
otherwise might be expected. To understand this example better, try using
Equation 7.21 to predict your own GPA; how close does it come?

Before you rush out and quit whatever social organization you're in, how-
ever, note that this sample is quite small and that we've surely omitted some
important determinants of academic success from the equation. As a result,
we shouldn’t be too quick to conclude that Greeks are dummies.

To this point, we've used dummy variables to represent just those qualita-
tive variables that have exactly two possibilities (such as gender). What about
situations where a qualitative variable has three or more alternatives? For ex-
ample, what if you're trying to measure the impact of education on salaries in
business and you want to distinguish high school graduates from holders of
B.A.s and M.B.A.s? The answer certainly isn't to have MBA = 2, BA =1, and O

s

S g



220

PART IT = VIOLATIONS OF THE CLASSICAL ASSUMPTIONS

otherwise, because we have no reason to think that the impact of having an
M.B.A. is exactly twice that of having a B.A. when compared to having no col-
lege degree at all. If not that, then what?

The answer is to create one less dummy variable than there are alternatives
and to use each dummy to represent just one of the possible conditions. In
the salary case, for example, you'd create two variables, the first equal to 1 if
the employee had an M.B.A. (0 otherwise) and the second equal to 1 if the
employee’s highest degree was a B.A. (and 0 otherwise). As before, the omit-
ted condition is represented by having both dummies equal to zero. This way
you can measure the impact of each degree independently, without having to
link the impacts of having an M.B.A. and a B.A.

A dummy variable that has only a single observation with a value of one
while the rest of the observations are zeroes (or vice versa) is to be avoided
unless the variable is required by theory. Such a “one-time dummy” acts
merely to eliminate that observation from the data set, improving the fit arti-
ficially by setting the dummy’s coefficient equal to the residual for that obser-
vation. One would obtain exactly the same estimates of the other coefficients
if that observation were deleted, but the deletion of an observation is rarely,
if ever, appropriate. Finally, dummy variables can be used as dependent vari-
ables; this possibility is covered in an entire chapter, Chapter 13.

7.5 Slope Dummy Variables

Until now, every independent variable in this text has been multiplied by ex-
actly one other item, the slope coefficient. To see this, take another look at
Equation 7.20:

Yi=Bo + BiXj + B0 t ¢ (7.20)

In this equation X is multiplied only by B;, and D is multiplied only by B,
and there are no other factors involved.

This restriction does not apply to a new kind of variable called an interac-
tion term. An interaction term is an independent variable in a regression
equation that is the multiple of two or more other independent variables.
Each interaction term has its own regression coefficient, so the end result is
that the interaction term has three or more components, as in B;X;D;. Such
interaction terms are used when the change in Y with respect to one indepen-
dent variable (in this case X) depends on the level of another independent
variable (in this case D). For an example of the use of interaction terms that
do not involve dummy variables, see Exercise 14.




CHAPTER 7 = SPECIFICATION: CHOOSING A FUNCTIONAL FORM

The most frequent application of interaction terms is to create slope dum-
mies. Slope dummy variables allow the slope of the relationship between
the dependent variable and an independent variable to be different depend-
ing on whether the condition specified by a dummy variable is met. This is in
contrast to an intercept dummy variable, which changes the intercept, but
does not change the slope, when a particular condition is met.

In practice, slope dummy variables have many realistic uses. Slope dum-

mies can be used whenever the impact of an independent variable on the de-
pendent variable is hypothesized to change if some qualitative condition is
met. For example, consider a consumption function that is estimated over a
time period that includes a major war. Being in a war would surely reduce the
marginal propensity to consume, and such a change can be modeled with a
slope dummy that takes on one value during war years and the other during
nonwar years.

In general, a slope dummy is introduced by adding to the equation a vari-
able that is the multiple of the independent variable that has a slope you
want to change and the dummy variable that you want to cause the changed
slope. The general form of a slope dummy equation is:

Y, = Bo + B1X + B2Dj + B3XiDj + & (7.22)

Note the difference between Equations 7.20 and 7.22. Equation 7.22 is the
same as Equation 7.20 except that we have added an interaction term in
which the dummy variable is multiplied by an independent variable
(B5X;D;). In the case of the consumption function, Y would be consumption,
X would be disposable income, and D would measure if the ith year was a
war year. Let's check to make sure that the slope of Y with respect to X does
indeed change if D changes: :

WhenD =0, AY/AX =,
WhenD = 1, AY/AX = (B; + B3)

In essence, the coefficient of X changes when the condition specified by D is
met. To see this, substitute D = 0and D =1, respectively, into Equation 7.22
and factor out X.

Note that Equation 7.22 includes both a slope dummy and an intercept
dummy. It turns out that whenever a slope dummy is used, it’s vital to also
use an intercept dummy to avoid bias in the estimate of the coefficient of the
slope dummy term. Such a specification should be used in all but highly un-
usual and forced situations. If there are other Xs in an equation, they should
not be multiplied by D unless you hypothesize that their slopes change with
respect to D as well.

221



222  PARTII = VIOLATIONS OF THE CLASSICAL ASSUMPTIONS

S

v ‘ S Y, =B, +(B1Xi + B,D; + B3XD;
D=1
Slope = 81 + B3
B;3>0)

. B2 ﬂ
Bo + B2 d« l |
Bt T Slope = B4

Bo 9 D=0