LECTURE 11

Introduction to Econometrics

Autocorrelation

November 29, 2016

4 ロ ト 4 部 ト 4 語 ト 4 語 ト 語 の 4 で
1/24

ON PREVIOUS LECTURES

- ► We discussed the specification of a regression equation
- **Specification** consists of choosing:
 - 1. correct independent variables
 - 2. correct functional form
 - 3. correct form of the stochastic error term
- We talked about the choice of independent variables and their functional form
- We started to talk about the form of the error term we discussed heteroskedasticity

ON TODAY'S LECTURE

- We will finish the discussion of the form of the error term by talking about autocorrelation (or serial correlation)
- We will learn
 - what is the nature of the problem
 - what are its consequences
 - how it is diagnosed
 - what are the remedies available

NATURE OF AUTOCORRELATION

 Observations of the error term are correlated with each other

$$Cov(\varepsilon_i, \varepsilon_j) \neq 0$$
, $i \neq j$

- Violation of one of the classical assumptions
- Can exist in any data in which the order of the observations has some meaning - most frequently in time-series data
- ► Particular form of autocorrelation *AR*(*p*) process:

$$\varepsilon_t = \rho_1 \varepsilon_{t-1} + \rho_2 \varepsilon_{t-2} + \ldots + \rho_p \varepsilon_{t-p} + u_t$$

- ► *u*^{*t*} is a classical (not autocorrelated) error term
- ρ_k are autocorrelation coefficients (between -1 and 1)

EXAMPLES OF PURE AUTOCORRELATION

- Distribution of the error term has autocorrelation nature
- First order autocorrelation

$$\varepsilon_t = \rho_1 \varepsilon_{t-1} + u_t$$

- positive serial correlation: ρ_1 is positive
- negative serial correlation: *ρ*₁ is negative
- no serial correlation: ρ_1 is zero
- positive autocorrelation very common in time series data
- e.g.: a shock to GDP persists for more than one period
- Seasonal autocorrelation (in quarterly data)

$$\varepsilon_t = \rho_4 \varepsilon_{t-4} + u_t$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 令
5 / 24

EXAMPLES OF IMPURE AUTOCORRELATION

- Autocorrelation caused by specification error in the equation:
 - omitted variable
 - incorrect functional form
- How can misspecification cause autocorrelation in the error term?
 - Recall that the error term includes the omitted variables, nonlinearities, measurement error, and the classical error term.
 - If we omit a serially correlated variable, it is included in the error term, causing the autocorrelation problem.
- Impure autocorrelation can be corrected by better choice of specification (as opposed to pure autocorrelation).

AUTOCORRELATION

CONSEQUENCES OF AUTOCORRELATION

- 1. Estimated coefficients $(\hat{\beta})$ remain unbiased and consistent
- 2. Standard errors of coefficients $(s.e.(\hat{\beta}))$ are biased (inference is incorrect)
 - serially correlated error term causes the dependent variable to fluctuate in a way that the OLS estimation procedure attributes to the independent variable
 - Serial correlation typically makes OLS underestimate the standard errors of coefficients
 - therefore we find *t* scores that are incorrectly too high
- \Rightarrow The same consequences as for the heteroskedasticity

DURBIN-WATSON TEST FOR AUTOCORRELATION

- Used to determine if there is a first-order serial correlation by examining the residuals of the equation
- Assumptions (criteria for using this test):
 - The regression includes the intercept
 - ► If autocorrelation is present, it is of *AR*(1) type:

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

The regression does not include a lagged dependent variable

DURBIN-WATSON TEST FOR AUTOCORRELATION

• Durbin-Watson *d* statistic (for *T* observations):

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2} \approx 2(1 - \hat{\rho})$$

where $\widehat{\rho}$ is the autocorrelation coefficient

- ► Values:
 - 1. Extreme positive serial correlation: $d \approx 0$
 - 2. Extreme negative serial correlation: $d \approx 4$
 - 3. No serial correlation: $d \approx 2$

USING THE DURBIN-WATSON TEST

- 1. Estimate the equation by OLS, save the residuals
- 2. Calculate the *d* statistic
- 3. Determine the sample size *T* and the number of explanatory variables (excluding the intercept!) *k*'
- 4. Find the upper critical value d_U and the lower critical value d_L for *T* and *k'* in statistical tables
- 5. Evaluate the test as one-sided or two-sided (see next slides)

ONE-SIDED DURBIN-WATSON TEST

- For cases when we consider only positive serial correlation as an option
- Hypothesis:

 $H_0: \rho \le 0$ (no positive serial correlation) $H_A: \rho > 0$ (positive serial correlation)

- Decision rule:
 - if $d < d_L$ reject H_0
 - if $d > d_U$ do not reject H_0
 - if $d_L \le d \le d_U$ inconclusive

DURBIN-WATSON CRITICAL VALUES FOR ONE-SIDED TEST

<□ > < 部 > < 臣 > < 臣 > < 臣 > 臣 の Q (?) 13 / 24

TWO-SIDED DURBIN-WATSON TEST

- ► For cases when we consider both signs of serial correlation
- Hypothesis:

 $H_0: \rho = 0$ (no serial correlation) $H_A: \rho \neq 0$ (serial correlation)

- Decision rule:
 - if $d < d_L$ reject H_0
 - if $d > 4 d_L$ reject H_0
 - if $d > d_U$
 - if $d < 4 d_U$
 - ► otherwise

do not reject H_0 do not reject H_0 inconclusive

DURBIN-WATSON CRITICAL VALUES FOR TWO-SIDED TEST

EXAMPLE

- Estimating housing prices in the UK
- Quarterly time series data on prices of a representative house in UK (in £)
- ► Explanatory variable: GDP (in billions of *£*)
- ► Time span: 1975 Q1 2011 Q2
- All series are seasonally adjusted and in real prices (i.e. adjusted for inflation)

EXAMPLE

(ロ) (部) (主) (主) (主) (2) (2) (17 / 24
)
)
 (17 / 24

Model 1: OLS, using observations 1975:1-2011:2 (T = 146) Dependent variable: house_price

	coeffi	cient	std.	error	t-ratio	p-v	alue	
const gdp	-38409 737	.8 .065	6675 31	.01 .4846	-5.754 23.41	5.0 6.0	4e-08 9e-51	*** ***
Mean depende Sum squared R-squared F(1, 144) Log-likeliho Schwarz crit	ent var resid pod erion	11307 5.65e 0.791 548.0 -1650. 3311.	2.8 +10 921 434 595 158	S.D. S.E. Adjus P-val Akaik Hanna	dependent v of regressi ted R-squar ue(F) e criterion n-Quinn	ar on ed	43254. 19799. 0.7904 6.09e- 3305.1 3307.6	80 38 76 51 91 515

EXAMPLE

• We test for positive serial correlation:

 $H_0: \rho \le 0$ (no positive serial correlation) $H_A: \rho > 0$ (positive serial correlation)

► One-sided DW critical values at 95% confidence for T = 146 and k' = 1 are:

$$d_L = 1.72$$
 and $d_U = 1.74$

- Decision rule:
 - if d < 1.72 reject H_0
 - if d > 1.74 do not reject H_0
 - if $1.72 \le d \le 1.74$ inconclusive
- Since d = 0.02 < 1.72, we reject the null hypothesis of no positive serial correlation

ALTERNATIVE APPROACH TO AUTOCORRELATION TESTING

► Suppose we suspect the stochastic error term to be *AR*(*p*)

$$\varepsilon_t = \rho_1 \varepsilon_{t-1} + \rho_2 \varepsilon_{t-2} + \ldots + \rho_p \varepsilon_{t-p} + u_t$$

- Since OLS is consistent even under autocorrelation, the residuals are consistent estimates of the stochastic error term
- ► Hence, it is sufficient to:
 - 1. Estimate the original model by OLS, save the residuals e_t
 - 2. Regress $e_t = \rho_1 e_{t-1} + \rho_2 e_{t-2} + \ldots + \rho_p e_{t-p} + u_t$
 - 3. Test if $\rho_1 = \rho_2 = \ldots = \rho_p = 0$ using the standard *F*-test

BACK TO EXAMPLE

Model 1: OLS, using observations 1975:1-2011:2 (T = 146) Dependent variable: house_price

coeffi	cient s	td. erro	r t-rati	o p-value	
const -38409 gdp 737	.8 60 .065	675.01 31.4846	-5.754 23.41	5.04e-0 6.09e-5	- 8 *** 1 ***
Mean dependent var	113072.	8 S.D.	dependent	var 4325	4.80
Sum squared resid	5.65e+1	0 S.E.	of regres	sion 1979	9.38
R-squared	0.79192	1 Adju	sted R-squ	ared 0.79	0476
F(1, 144)	548.043	4 P-va	lue(F)	6.09	e-51
Log-likelihood	-1650.59	5 Akail	ke criteri	on 3305	.191
Schwarz criterion	3311.15	8 Hanna	an-Quinn	3307	.615
rho		0 Durb:	in-Watson	0.02	3930

BACK TO EXAMPLE

Model 2: OLS, using observations 1976:1-2011:2 (T = 142) Dependent variable: e

	coeffi	cient	std.	error	t-ratio	p-val	ue
e 1	1.75237		0.08	43401	20.78	2.53e	-44 ***
e ⁻ 2	-1.05	900	0.16	8179	-6.297	3.79e	-09 ***
e_3	0.47	7195	0.16	8362	2.834	0.005	3 ***
e_4	-0.19	9822	0.084	48111	-2.250	0.026	0 **
Mean depende Sum squared R-squared F(4, 138) Log-likeliho Schwarz crit	ent var resid pod cerion	-443.8 7.226 0.986 2613. -1297. 2615.	8153 9408 973 852 869 562	S.D. de S.E. of Adjuste P-value Akaike Hannan	ependent va f regressio ed R-square e(F) criterion -Quinn	ar 19 on 22 ed 0. 5. 26 26	823.71 87.633 986690 8e-129 03.739 08.543
rho		0.006	5283	Durbin	-Watson	1.	967108

22 / 24

Remedy: White Robust Standard Errors

- Note that autocorrelation does not lead to inconsistent estimates, only to incorrect inference - similar to heteroskedasticity problem
- We can keep the estimated coefficients, and only adjust the standard errors
- The White robust standard errors solve not only heteroskedasticity, but also serial correlation
- ► Note also that all derived results hold if the assumption Cov(x, ε) = 0 is not violated
 - First make sure the specification of the model is correct, only then try to correct for the form of an error term!

SUMMARY

- Autocorrelation does not lead to inconsistent estimates, but it makes the inference wrong (estimated coefficients are correct, but their standard errors are not)
- It can be diagnosed using
 - Durbin-Watson test
 - Analysis of residuals
- It can be remedied by
 - White robust standard errors
- ► Readings:
 - Studenmund, Chapter 9
 - Wooldridge, Chapter 12