LECTURE 5

Introduction to Econometrics

Hypothesis testing

October 18, 2016

(ロ) (日) (日) (日) (日) (日) 1 / 26

ON TODAY'S LECTURE

 \triangleright We are going to discuss how hypotheses about coefficients can be tested in regression models

 \triangleright We will explain what significance of coefficients means

- \triangleright We will learn how to read regression output
- \blacktriangleright Readings for this week:
	- ► Studenmund, Chapter 5.1 5.4
	- \triangleright Wooldridge, Chapter 4

QUESTIONS WE ASK

- \triangleright What conclusions can we draw from our regression?
- \triangleright What can we learn about the real world from a sample?
- \triangleright Is it likely that our results could have been obtained by chance?
- \triangleright If our theory is correct, what are the odds that this particular outcome would have been observed?

HYPOTHESIS TESTING

- \triangleright We cannot prove that a given hypothesis is "correct" using hypothesis testing
- \blacktriangleright All that can be done is to state that a particular sample conforms to a particular hypothesis
- \triangleright We can often reject a given hypothesis with a certain degree of confidence
- \blacktriangleright In such a case, we conclude that it is very unlikely the sample result would have been observed if the hypothesized theory were correct

NULL AND ALTERNATIVE HYPOTHESES

- \triangleright First step in hypothesis testing: state explicitly the hypothesis to be tested
- *Null hypothesis:* statement of the range of values of the regression coefficient that would be expected to occur if the researcher's theory were *not* correct
- ▶ *Alternative hypothesis:* specification of the range of values of the coefficient that would be expected to occur if the researcher's theory were correct
- \triangleright In other words: we define the null hypothesis as the result we do not expect

NULL AND ALTERNATIVE HYPOTHESES

- \triangleright Notation:
	- \blacktriangleright *H*₀ ... null hypothesis
	- \blacktriangleright *H_A* ... alternative hypothesis
- \blacktriangleright Examples:
	- ► *One-sided test* ► *Two-sided test*
		- *H*₀ : $\beta \leq 0$ $H_A: \beta > 0$ *H*₀ : $\beta = 0$ $H_A: \beta \neq 0$

TYPE I AND TYPE II ERRORS

- \blacktriangleright It would be unrealistic to think that conclusions drawn from regression analysis will always be right
- \triangleright There are two types of errors we can make
	- \triangleright Type I : We reject a true null hypothesis
	- \triangleright Type II : We do not reject a false null hypothesis
- \blacktriangleright Example:
	- \blacktriangleright *H*₀ : $\beta = 0$
	- \blacktriangleright *H_A* : $\beta \neq 0$
	- ► Type I error: it holds that $\beta = 0$, we conclude that $\beta \neq 0$
	- \blacktriangleright Type II error: it holds that $β ≠ 0$, we conclude that $β = 0$

TYPE I AND TYPE II ERRORS

- \blacktriangleright Example:
	- \blacktriangleright *H*₀ : The defendant is innocent
	- \blacktriangleright *H_A* : The defendant is guilty
	- \triangleright Type I error = Sending an innocent person to jail
	- \triangleright Type II error = Freeing a guilty person
- \triangleright Obviously, lowering the probability of Type I error means increasing the probability of Type II error
- \blacktriangleright In hypothesis testing, we focus on Type I error and we ensure that its probability is not unreasonably large

DECISION RULE

- 1. Calculate sample statistic
- 2. Compare sample statistic with the *critical value* (from the statistical tables)
- \triangleright The critical value divides the range of possible values of the statistic into two regions: *acceptance region* and *rejection region*
	- \triangleright If the sample statistic falls into the rejection region, we reject *H*⁰
	- \blacktriangleright If the sample statistic falls into the acceptance region, we do not reject H₀
- \triangleright The idea is that if the value of the coefficient does not support H_0 , the sample statistic should fall into the rejection region

ONE-SIDED REJECTION REGION

- \blacktriangleright *H*₀ : $\beta \le 0$ vs *H_A* : $\beta > 0$
- ► Distribution of $\hat{\beta}$:

TWO-SIDED REJECTION REGION

- \blacktriangleright *H*₀ : $\beta = 0$ vs *H_A* : $\beta \neq 0$
- ► Distribution of $\hat{\beta}$:

- ► We use *t*-test to test hypothesis about individual regression slope coefficients
- \triangleright Test of more than one coefficient at a time (joint hypotheses) are typically done with the *F*-test (see next lecture)
- ▶ The *t*-test is appropriate to use when the stochastic error term is normally distributed and when the variance of that distribution is unknown
	- \triangleright These are the usual assumptions in regression analyses
- ► The *t*-test accounts for differences in the units of measurement of the variables

 \triangleright Consider the model

$$
y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon
$$

 \triangleright Suppose we want to test (*b* is some constant)

$$
H_0: \ \beta_1 = b \quad \text{vs} \quad H_A: \ \beta_1 \neq b
$$

 \sim

 \triangleright We know that

$$
\widehat{\beta}_1 \sim N\left(\beta_1, Var(\widehat{\beta}_1)\right) \Rightarrow \frac{\widehat{\beta}_1 - \beta_1}{\sqrt{Var(\widehat{\beta}_1)}} \sim N(0, 1)
$$

- **Problem:** $Var(\beta_1)$ depends on the variance of error term σ^2 , which is unobservable and therefore unknown
- \blacktriangleright It has to be estimated as

$$
\hat{\sigma}^2 := s^2 = \frac{\mathbf{e}'\mathbf{e}}{n-k} ,
$$

k is the number of regression coefficients (here $k = 3$) **e** is the vector of residuals

► We denote *standard error* of β_1 (sample counterpart of standard deviation $\sigma_{\widehat{\beta}_1}$) as *s.e*. $(\widehat{\beta}_1)$

 \blacktriangleright We define the *t*-statistic

$$
t := \frac{\widehat{\beta}_1 - \beta_1}{s.e. \left(\widehat{\beta}_1\right)} \sim t_{n-k}
$$

where β_1 is the estimated coefficient and β_1 is the value of the coefficient that is stated in our hypothesis

In This statistic depends only on the estimate β_1 , our hypothesis about β_1 , and it has a known distribution

TWO-SIDED *t*-TEST

 \triangleright Our hypothesis is

$$
H_0: \ \beta_1 = b \quad \text{vs} \quad H_A: \ \beta_1 \neq b
$$

► Hence, our *t*-statistic is

$$
t = \frac{\widehat{\beta}_1 - b}{s.e. \left(\widehat{\beta}_1\right)}
$$

- \blacktriangleright where $\widehat{\beta}_1$ is the estimated regression coefficient of β_1
- \rightarrow *b* is the constant from our null hypothesis
- \blacktriangleright *s.e.* $(\widehat{\beta}_1)$ is the estimated standard error of $\widehat{\beta}_1$

TWO-SIDED *t*-TEST

How to determine the *critical value* for this test statistic?

- \triangleright The critical value is the value that distinguishes the acceptance region from the rejection region
- 1. We set the probability of Type I error
	- \blacktriangleright Let's set the Type I. error to 5%
	- \triangleright We say the *p*-value of the test is 5% or that we have a test at 95% confidence level
- 2. We find the critical values in the statistical tables: *tn*−*k*,0.⁹⁷⁵ and *tn*−*k*,0.⁰²⁵
	- \triangleright The critical value depends on the chosen level of Type I error and $n - k$

17 / 26

K ロンス (日) - X ミンス ミンニミン

 \blacktriangleright Note that $t_{n-k,0.975} = -t_{n-k,0.025}$

TWO-SIDED *t*-TEST

 \blacktriangleright We reject *H*⁰ if $|t| > t_{n-k,0.975}$

ONE-SIDED *t*-TEST

 \triangleright Suppose our hypothesis is

$$
H_0: \ \beta_1 \leq b \quad \text{vs} \quad H_A: \ \beta_1 > b
$$

► Our *t*-statistic still is

$$
t = \frac{\widehat{\beta}_1 - b}{s.e. \left(\widehat{\beta}_1\right)}
$$

- \triangleright We set the probability of Type I error to 5%
- ► We compare our statistic to the critical value $t_{n-k,0.95}$

ONE-SIDED *t*-TEST

 \blacktriangleright We reject *H*⁰ if *t* > *t*_{*n*−*k*,0.95}

SIGNIFICANCE OF THE COEFFICIENT

 \triangleright The most common test performed in regression is

$$
H_0: \ \beta = 0 \quad \text{vs} \quad H_A: \ \beta \neq 0
$$

with the *t*-statistic

$$
t = \frac{\widehat{\beta}}{s.e. \left(\widehat{\beta}\right)} \sim t_{n-k}
$$

- If we reject $H_0: \beta = 0$, we say the coefficient β is *significant*
- \blacktriangleright This *t*-statistic is displayed in most regression outputs

THE *p*-VALUE

- \triangleright Classical approach to hypothesis testing: first choose the significance level, then test the hypothesis at the given level of significance (e.g. 5%)
	- \blacktriangleright However, there is no "correct" significance level.
- \triangleright Or we can ask a more informative question:
	- ► What is the smallest significance level at which the null **hypothesis would still be rejected?**
	- \blacktriangleright This level of significance is known as the *p*-value.
	- \blacktriangleright Remember that the significance level describes the probability of type I. error. The smaller the *p*-value, the smaller the probability of rejecting the true null hypothesis (the bigger the confidence the null hypothesis is indeed correctly rejected).
	- **Figure 1** The *p*-value for $H_0: \beta = 0$ is displayed in most regression outputs

EXAMPLE

 \blacktriangleright Let us study the impact of years of education on wages:

 $wage = \beta_0 + \beta_1$ *education* + β_2 *experience* + ε

\triangleright Output from Gretl: $\frac{1}{2}$

Model 3: OLS, using observations 1-526 Dependent variable: wage

CONFIDENCE INTERVAL

A 95% confidence interval of β is an interval centered around $\widehat{\beta}$ such that β falls into this interval with probability 95%

$$
P\left(\widehat{\beta} - c < \beta < \widehat{\beta} + c\right) =
$$
\n
$$
= P\left(-\frac{c}{s.e. \left(\widehat{\beta}\right)} < \frac{\widehat{\beta} - \beta}{s.e. \left(\widehat{\beta}\right)} < \frac{c}{s.e. \left(\widehat{\beta}\right)}\right) = 0.95
$$

 \triangleright Since $\frac{\beta-\beta}{\beta}$ $\frac{\beta - \beta}{\beta s.e.(\beta)} \sim t_{n-k}$, we derive the confidence interval:

$$
\widehat{\beta} \pm t_{n-k,0.975} \cdot s.e. (\widehat{\beta})
$$

 $\mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{B} \otimes \mathbf{B} \otimes \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf$ 24 / 26

CONFIDENCE INTERVAL

• Output from Gretl (wage regression): \sim σ σ \sim \sim

Model 3: OLS, using observations 1-526 Dependent variable: wage

- \triangleright Confidence interval for coefficient on education: $\widehat{\beta} \pm t_{n-k,0.975} \cdot s.e. \left(\widehat{\beta} \right) = 0.644 \pm 1.960 \cdot 0.054$
- $\widehat{\beta} \in [0.538; 0.750]$ with 95% probability

SUMMARY

- \triangleright We discussed the principle of hypothesis testing
- ► We derived the *t*-statistic
- \triangleright We defined the concept of the *p*-value
- \triangleright We explained what significance of a coefficient means
- \triangleright We observed a regression output on an example