LECTURE 6

Introduction to Econometrics

Hypothesis testing & Goodness of fit

October 25, 2016

◆□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ 少 Q @ 1/23

ON TODAY'S LECTURE

- We will explain how multiple hypotheses are tested in a regression model
- We will define the notion of the overall significance of a regression
- ► We will introduce a measure of the goodness of fit of a regression (*R*²)
- Readings for this week:
 - ► Studenmund, Chapters 5.5 & 2.4
 - Wooldridge, Chapters 4 & 3

TESTING MULTIPLE HYPOTHESES

Suppose we have a model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

- Suppose we want to test multiple linear hypotheses in this model
- For example, we want to see if the following restrictions on coefficients hold jointly:

$$\beta_1 + \beta_2 = 1$$
 and $\beta_3 = 0$

- We cannot use a *t*-test in this case (*t*-test can be used only for one hypothesis at a time)
- ► We will use an *F*-test

Restricted vs. unrestricted model

- ► We can reformulate the model by plugging the restrictions as if they were true (model under H₀)
- We call this model *restricted model* as opposed to the unrestricted model
- The unrestricted model is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

• We derive (on the lecture) the restricted model:

$$y_i^* = \beta_0 + \beta_1 x_i^* + \varepsilon_i$$
,
where $y_i^* = y_i - x_{i2}$ and $x_i^* = x_{i1} - x_{i2}$

4/23

IDEA OF THE *F*-TEST

- If the restrictions are true, then the restricted model fits the data in the same way as the unrestricted model
 - residuals are nearly the same
- If the restrictions are false, then the restricted model fits the data poorly
 - residuals from the restricted model are much larger than those from the unrestricted model
- The idea is thus to compare the residuals from the two models

IDEA OF THE *F*-TEST

- ► How to compare residuals in the two models?
 - ► Calculate the sum of squared residuals in the two models
 - Test if the difference between the two sums is equal to zero (statistically)
 - ► *H*₀: the difference is zero (residuals in the two models are the same, restrictions hold)
 - ► H_A: the difference is positive (residuals in the restricted model are bigger, restrictions do not hold)
- Sum of squared residuals

•
$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$$

F-test

The test statistic is defined as

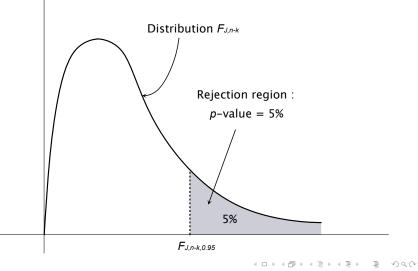
$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(n-k)} \sim F_{J,n-k} \ ,$$

where:

I

- SSE_R ... sum of squared residuals from the restricted model
- SSE_U ... sum of squared residuals from the unrestricted model
 - ... number of restrictions
- *n* ... number of observations
- *k* ... number of estimated coefficients (including intercept)

F-test



8 / 23

EXAMPLE

We had the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$

We wanted to test

$$H_0: \begin{cases} \beta_1 + \beta_2 = 1\\ \beta_3 = 0 \end{cases} \text{ vs. } H_A: \begin{cases} \beta_1 + \beta_2 \neq 1\\ \beta_3 \neq 0 \end{cases}$$

► Under *H*₀, we obtained the restricted model

$$y_i^* = \beta_0 + \beta_1 x_i^* + \varepsilon_i \;\;,$$

where $y_i^* = y_i - x_{i2}$ and $x_i^* = x_{i1} - x_{i2}$

・ロト・西ト・ヨト・ヨー シへぐ

9 / 23

EXAMPLE

- ► We run the regression on the unrestricted model, we obtain *SSE*_U
- ► We run the regression on the restricted model, we obtain *SSE*_{*R*}
- ▶ We have *k* = 4 and *J* = 2
- We construct the *F*-statistic $F = \frac{(SSE_R SSE_U)/2}{SSE_U/(n-4)}$
- ► We find the critical value of the *F* distribution with 2 and *n* − 4 degrees of freedom at the 95% confidence level
- If $F > F_{2,n-4,0.95}$, we reject the null hypothesis
 - we reject that the restrictions hold jointly

OVERALL SIGNIFICANCE OF THE REGRESSION

- Usually, we are interested in knowing if the model has some explanatory power, i.e. if the independent variables indeed "explain" the dependent variable
- ► We test this using the *F*-test of the joint significance of all (*k* − 1) slope coefficients:

$$H_0: \begin{cases} \beta_1 = 0 \\ \beta_2 = 0 \\ \vdots \\ \beta_{k-1} = 0 \end{cases} \text{ vs. } H_A: \begin{cases} \beta_j \neq 0 \\ \text{for at least one } j = 1, \dots, k-1 \end{cases}$$

OVERALL SIGNIFICANCE OF THE REGRESSION

Unrestricted model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_{k-1} x_{ik-1} + \varepsilon_i$$

Restricted model:

$$y_i = \beta_0 + \varepsilon_i$$

► *F*-statistic:

$$F = \frac{(SSE_R - SSE_U)/(k-1)}{SSE_U/(n-k)} \sim F_{k-1,n-k}$$

- Number of restrictions = k 1
- This *F*-statistic and the corresponding *p*-value are part of the regression output

Model 3: OLS, using observations 1-526 Dependent variable: wage

	coeffic	cient	std.	error	t-ratio	p-value
const educ exper	-3.3905 0.6442 0.0700	272		6566 38061 09776	-4.423 11.97 6.385	1.18e-05 *** 2.28e-29 *** 3.78e-10 ***
Mean depend Sum squared R-squared F(2, 523) Log-likelih Schwarz cri	resid ood	5.896 5548. 0.225 75.98 -1365. 2750.	160 162 998 969	S.E. o [.] Adjuste P-value	criterion	on 3.257044

GOODNESS OF FIT MEASURE

- We know that education and experience have a significant influence on wages
- But how important are they in determining wages?
- How much of difference in wages between people is explained by differences in education and in experience?
- How well variation in the independent variable(s) explains variation in the dependent variable?
- ► This are the questions answered by the goodness of fit measure R²

TOTAL AND EXPLAINED VARIATION

• Total variation in the dependent variable:

$$\sum_{i=1}^{n} (y_i - \overline{y}_n)^2$$

Predicted value of the dependent variable = part that is explained by independent variables:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$$

(case of regression line - for simplicity of notation)

• **Explained variation** in the dependent variable:

$$\sum_{i=1}^{n} (\widehat{y}_i - \overline{y}_n)^2$$

GOODNESS OF FIT - R^2

► Denote:

Define the measure of the goodness of fit:

$$R^{2} = \frac{SSR}{SST} = \frac{\text{Explained variation in } y}{\text{Total variation in } y}$$

GOODNESS OF FIT - R^2

- In all models: $0 \le R^2 \le 1$
- *R*² tells us what percentage of the total variation in the dependent variable is explained by the variation in the independent variable(s)
 - $R^2 = 0.3$ means that the independent variables can explain 30% of the variation in the dependent variable
- Higher R² means better fit of the regression model (not necessarily a better model!)

DECOMPOSING THE VARIANCE

- ► For models with intercept, *R*² can be rewritten using the decomposition of variance.
- Variance decomposition:

$$\sum_{i=1}^{n} (y_i - \overline{y}_n)^2 = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y}_n)^2 + \sum_{i=1}^{n} e_i^2$$

VARIANCE DECOMPOSITION AND R^2

- Variance decomposition: SST = SSR + SSE
- Intuition: total variation can be divided between the explained variation and the unexplained variation
 - ► the true value y is a sum of estimated (explained) ŷ and the residual e_i (unexplained part)

•
$$y_i = \widehat{y}_i + e_i$$

• We can rewrite R^2 :

$$R^{2} = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST}$$

Adjusted R^2

- ► The sum of squared residuals (*SSE*) decreases when additional explanatory variables are introduced in the model, whereas total sum of squares (*SST*) remains the same
 - $R^2 = 1 \frac{SSE}{SST}$ increases if we add explanatory variables
 - Models with more variables automatically have better fit.
- ► To deal with this problem, we define the *adjusted* R²:

$$R_{adj}^2 = 1 - \frac{\frac{SSE}{n-k}}{\frac{SST}{n-1}} \quad (\le R^2)$$

(k is the number of coefficients including intercept)

 This measure introduces a "punishment" for including more explanatory variables Model 3: OLS, using observations 1-526 Dependent variable: wage

	coeffic	cient	std.	error	t-ratio	p-value
const educ exper	-3.3905 0.6442 0.0700	272		6566 38061 09776	-4.423 11.97 6.385	1.18e-05 *** 2.28e-29 *** 3.78e-10 ***
Mean depend Sum squared R-squared F(2, 523) Log-likelih Schwarz cri	resid ood	5.896 5548. 0.225 75.98 -1365. 2750.	160 162 998 969	S.E. o [.] Adjuste P-value	criterion	on 3.257044

F-TEST - REVISITED

Let us recall the *F*-statistic:

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(n-k)} \sim F_{J,n-k}$$

• We can use the formula $R^2 = 1 - \frac{SSE}{SST}$ to rewrite the *F*-statistic in R^2 form:

$$F = \frac{(R_U^2 - R_R^2)/J}{(1 - R_U^2)/(n - k)} \sim F_{J,n-k}$$

► We can use this R² form of *F*-statistic under the condition that SST_U = SST_R (the dependent variables in restricted and unrestricted models are the same)

SUMMARY

- We showed how restrictions are incorporated in regression models
- We explained the idea of the *F*-test
- ► We defined the notion of the overall significance of a regression
- We introduced the measure or the goodness of fit R^2
- We learned how total variation in the dependent variable can be decomposed