LECTURE 7

Introduction to Econometrics

Nonlinear specifications and dummy variables

November 1, 2016

(ロ) (個) (目) (目) (目) 目 のQQ 1 / 25

ON THE PREVIOUS LECTURE

- \triangleright We showed how restrictions are incorporated in regression models
- ► We explained the idea of the *F*-test
- \triangleright We defined the notion of the overall significance of a regression
- \blacktriangleright We introduced the measure or the goodness of fit R^2
- \blacktriangleright We showed how the *F*-test and the R^2 are related

ON TODAY'S LECTURE

 \triangleright We will discuss different specifications nonlinear in dependent and independent variables and their interpretation

 \triangleright We will define the notion of a dummy variable and we will show its different uses in linear regression models

NONLINEAR SPECIFICATION

- \triangleright There is not always a linear relationship between dependent variable and explanatory variables
	- \triangleright The use of OLS requires that the equation be linear in coefficients
	- \blacktriangleright However, there is a wide variety of functional forms that are linear in coefficients while being nonlinear in variables!
- \triangleright We have to choose carefully the functional form of the relationship between the dependent variable and each explanatory variable
	- \triangleright The choice of a functional form should be based on the underlying economic theory and/or intuition
	- \triangleright Do we expect a curve instead of a straight line? Does the effect of a variable peak at some point and then start to decline? K ロ ▶ K (母) K (ヨ) K (ヨ) → [ヨ)

LINEAR FORM

$$
y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon
$$

 \triangleright Assumes that the effect of the explanatory variable on the dependent variable is constant:

$$
\frac{\partial y}{\partial x_k} = \beta_k \qquad k = 1, 2
$$

- Interpretation: if x_k increases by 1 **unit** (in which x_k is measured), then *y* will change by β_k **units** (in which *y* is measured)
- \blacktriangleright Linear form is used as default functional form until strong evidence that it is inappropriate is found

DOUBLE-LOG FORM

 $\ln y = \beta_0 + \beta_1 \ln x_1 + \beta_2 \ln x_2 + \varepsilon$

 \triangleright Assumes that the elasticity of the dependent variable with respect to the explanatory variable is constant:

$$
\frac{\partial \ln y}{\partial \ln x_k} = \frac{\partial y/y}{\partial x_k / x_k} = \beta_k \qquad k = 1, 2
$$

- Interpretation: if x_k increases by 1 **percent**, then *y* will change by β*^k* **percents**
- \triangleright Before using a double-log model, make sure that there are no negative or zero observations in the data set

EXAMPLE

 \triangleright Estimating the production function of Indian sugar industry:

$$
\widehat{\ln Q} = 2.70 + 0.59 \ln L + 0.33 \ln K
$$

(0.14) (0.17)

- *Q* . . . output *L* ... labor *K* ... capital employed
- Interpretation: if we increase the amount of labor by 1% , the production of sugar will increase by 0.59%, ceteris paribus.
- \triangleright Ceteris paribus is a Latin phrase meaning 'other things being equal'.

SEMILOG FORMS

 \blacktriangleright Linear-log form:

$$
y = \beta_0 + \beta_1 \ln x_1 + \beta_2 \ln x_2 + \varepsilon
$$

- Interpretation: if x_k increases by 1 **percent**, then *y* will change by $(\beta_k/100)$ units $(k = 1, 2)$
- Log-linear form:

$$
\ln y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon
$$

Interpretation: if x_k increases by 1 **unit**, then *y* will change by (β*^k* ∗ 100) **percent** (*k* = 1, 2)

EXAMPLES OF SEMILOG FORMS

 \triangleright Estimating demand for chicken meat:

$$
\widehat{Y} = -6.94 - 0.57 \, PC + 0.25 \, PB + 12.2 \, \ln YD \tag{0.19} \tag{2.81}
$$

- *Y* ... annual chicken consumption (kg.)
- *PC* ... price of chicken
- *PB* ... price of beef
- *YD* ... annual disposable income
- \triangleright Interpretation: An increase in the annual disposable income by 1% increases chicken consumption by 0.12 kg per year, ceteris paribus.

EXAMPLES OF SEMILOG FORMS

 \triangleright Estimating the influence of education and experience on wages:

$$
\widehat{\ln wage} = 0.217 + 0.098 \text{ educ} + 0.010 \text{ exper}
$$

(0.008) (0.002)
wage ... annual wage (USD)
educ ... years of education
exper ... years of experience

 \blacktriangleright Interpretation: An increase in education by one year increases annual wage by 9.8%, ceteris paribus. An increase in experience by one year increases annual wage by 1%, ceteris paribus.

POLYNOMIAL FORM

$$
y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \varepsilon
$$

 \triangleright To determine the effect of x_1 on y , we need to calculate the derivative:

$$
\frac{\partial y}{\partial x_1} = \beta_1 + 2 \cdot \beta_2 \cdot x_1
$$

- \triangleright Clearly, the effect of x_1 on y is not constant, but changes with the level of x_1
- \triangleright We might also have higher order polynomials, e.g.:

$$
y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_1^3 + \beta_4 x_1^4 + \varepsilon
$$

EXAMPLE OF POLYNOMIAL FORM

 \triangleright The impact of the number of hours of studying on the grade from Introductory Econometrics:

$$
\widehat{grade} = 30 + 1.4 \cdot hours - 0.009 \cdot hours^2
$$

 \triangleright To determine the effect of hours on grade, calculate the derivative:

$$
\frac{\partial y}{\partial x} = \frac{\partial grade}{\partial hours} = 1.4 - 2 \cdot 0.009 \cdot hours = 1.4 - 0.018 \cdot hours
$$

 \triangleright Decreasing returns to hours of studying: more hours implies higher grade, but the positive effect of additional hour of studying decreases with more hours

CHOICE OF CORRECT FUNCTIONAL FORM

- \triangleright The functional form has to be correctly specified in order to avoid biased and inconsistent estimates
	- \triangleright Remember that one of the OLS assumptions is that the model is correctly specified
- \blacktriangleright Ideally: the specification is given by underlying theory of the equation
- \blacktriangleright In reality: underlying theory does not give precise functional form
- \triangleright In most cases, either linear form is adequate, or common sense will point out an easy choice from among the alternatives

CHOICE OF CORRECT FUNCTIONAL FORM

- \triangleright Nonlinearity of explanatory variables
	- \triangleright often approximated by polynomial form
	- \triangleright missing higher powers of a variable can be detected as omitted variables (see next lecture)
- \triangleright Nonlinearity of dependent variable
	- \triangleright harder to detect based on statistical fit of the regression
	- \blacktriangleright R^2 is incomparable across models where the *y* is transformed
	- \rightarrow dependent variables are often transformed to log-form in order to make their distribution closer to the normal distribution

DUMMY VARIABLES

- \triangleright Dummy variable takes on the values of 0 or 1, depending on a qualitative attribute
- \blacktriangleright Examples of dummy variables:

$$
Male = \begin{cases} 1 & \text{if the person is male} \\ 0 & \text{if the person is female} \end{cases}
$$

Weekend =
$$
\begin{cases} 1 & \text{if the day is on weekend} \\ 0 & \text{if the day is a work day} \end{cases}
$$

$$
hu = \begin{cases} 0 & \text{if the day is a work day} \end{cases}
$$

 $NewStadium = \begin{cases} 1 & \text{if the team plays on new stadium} \\ 0 & \text{if the team player on old ordinary.} \end{cases}$ 0 if the team plays on old stadium

INTERCEPT DUMMY

- \triangleright Dummy variable included in a regression alone (not interacted with other variables) is an intercept dummy
- \triangleright It changes the intercept for the subset of data defined by a dummy variable condition:

$$
y_i = \beta_0 + \beta_1 D_i + \beta_2 x_i + \varepsilon_i
$$

where

$$
D_i = \begin{cases} 1 & \text{if the } i\text{-th observation meets a particular condition} \\ 0 & \text{otherwise} \end{cases}
$$

 \triangleright We have

$$
y_i = (\beta_0 + \beta_1) + \beta_2 x_i + \varepsilon_i \text{ if } D_i = 1
$$

$$
y_i = \beta_0 + \beta_2 x_i + \varepsilon_i \text{ if } D_i = 0
$$

イロト (個) イミトイミト・ミ 16 / 25

INTERCEPT DUMMY

EXAMPLE

 \blacktriangleright Estimating the determinants of wages:

$$
\widehat{wage_i} = -3.890 + 2.156 M_i + 0.603 \; \text{educ}_i + 0.010 \; \text{exper}_i
$$
\n
$$
(0.270) \quad (0.051) \quad (0.064)
$$

where
$$
M_i = \begin{cases} 1 & \text{if the } i\text{-th person is male} \\ 0 & \text{if the } i\text{-th person is female} \end{cases}
$$

wage ... average hourly wage in USD

Interpretation of the dummy variable M : men earn on average \$2.156 per hour more than women, ceteris paribus

SLOPE DUMMY

- If a dummy variable is interacted with another variable (x) , it is a slope dummy.
- It changes the relationship between x and y for a subset of data defined by a dummy variable condition:

$$
y_i = \beta_0 + \beta_1 x_i + \beta_2 (x_i \cdot D_i) + \varepsilon_i
$$

where

$$
D_i = \begin{cases} 1 & \text{if the } i\text{-th observation meets a particular condition} \\ 0 & \text{otherwise} \end{cases}
$$

 \triangleright We have

$$
y_i = \beta_0 + (\beta_1 + \beta_2)x_i + \varepsilon_i \text{ if } D_i = 1
$$

$$
y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \text{ if } D_i = 0
$$

イロト (倒) イミトイミト 一毛 19 / 25

SLOPE DUMMY

イロトイ団 トイミトイモト 一毛 $\mathcal{O}\cup\mathcal{O}$ 20 / 25

EXAMPLE

 \triangleright Estimating the determinants of wages:

 $\widehat{wage}_i = -2.620 +$ $\left($ 0.450 0.054) *educi*+ $\left($ 0.170 0.021) M_i ·*educ_i*+ $\left($ 0.010 0.065) *experⁱ*

where
$$
M_i = \begin{cases} 1 & \text{if the } i\text{-th person is male} \\ 0 & \text{if the } i\text{-th person is female} \end{cases}
$$

wage ... average hourly wage in USD

 \triangleright Interpretation: men gain on average 17 cents per hour more than women for each additional year of education, ceteris paribus

SLOPE AND INTERCEPT DUMMIES

 \blacktriangleright Allow both for different slope and intercept for two subsets of data distinguished by a qualitative condition:

$$
y_i = \beta_0 + \beta_1 D_i + \beta_2 x_i + \beta_3 (x_i \cdot D_i) + \varepsilon_i
$$

where

 $D_i = \begin{cases} 1 & \text{if the } i\text{-th observation meets a particular condition} \\ 0 & \text{otherwise} \end{cases}$ 0 otherwise

 \blacktriangleright We have

$$
y_i = (\beta_0 + \beta_1) + (\beta_2 + \beta_3)x_i + \varepsilon_i \text{ if } D_i = 1
$$

$$
y_i = \beta_0 + \beta_2x_i + \varepsilon_i \text{ if } D_i = 0
$$

SLOPE AND INTERCEPT DUMMIES

イロト イタト イミト イミト OQ \equiv 23 / 25

DUMMY VARIABLES - EXTENSION

- \triangleright What if a variable defines three or more qualitative attributes?
- \triangleright Example: level of education elementary school, high school, and college
- \triangleright Define and use a set of dummy variables:

$$
H = \begin{cases} 1 & \text{if high school} \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad C = \begin{cases} 1 & \text{if college} \\ 0 & \text{otherwise} \end{cases}
$$

- \triangleright Should we include also a third dummy in the regression, which is equal to 1 for people with elementary education?
	- \triangleright No, unless we exclude the intercept!
	- \triangleright Using full set of dummies leads to perfect multicollinearity (dummy variable trap, see next lectures)

SUMMARY

- \triangleright We discussed different nonlinear specifications of a regression equation and their interpretation
- \triangleright We defined the concept of a dummy variable and we showed its use

25 / 25

イロト イ部 トイミト イモト・モ

- \blacktriangleright Further readings:
	- \triangleright Studenmund, Chapter 7
	- \blacktriangleright Wooldridge, Chapters 6 & 7