LECTURE 7

Introduction to Econometrics

Nonlinear specifications and dummy variables

November 1, 2016

<□ > < @ > < E > < E > E のQ (~ 1/25)

ON THE PREVIOUS LECTURE

- We showed how restrictions are incorporated in regression models
- We explained the idea of the *F*-test
- ► We defined the notion of the overall significance of a regression
- We introduced the measure or the goodness of fit R^2
- ► We showed how the *F*-test and the *R*² are related

ON TODAY'S LECTURE

 We will discuss different specifications nonlinear in dependent and independent variables and their interpretation

► We will define the notion of a dummy variable and we will show its different uses in linear regression models

NONLINEAR SPECIFICATION

- There is not always a linear relationship between dependent variable and explanatory variables
 - The use of OLS requires that the equation be linear in coefficients
 - However, there is a wide variety of functional forms that are linear in coefficients while being nonlinear in variables!
- We have to choose carefully the functional form of the relationship between the dependent variable and each explanatory variable
 - The choice of a functional form should be based on the underlying economic theory and/or intuition
 - Do we expect a curve instead of a straight line? Does the effect of a variable peak at some point and then start to decline?

LINEAR FORM

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

Assumes that the effect of the explanatory variable on the dependent variable is constant:

$$rac{\partial y}{\partial x_k} = eta_k \qquad \qquad k = 1,2$$

- Interpretation: if x_k increases by 1 unit (in which x_k is measured), then y will change by β_k units (in which y is measured)
- Linear form is used as default functional form until strong evidence that it is inappropriate is found

Double-log form

 $\ln y = \beta_0 + \beta_1 \ln x_1 + \beta_2 \ln x_2 + \varepsilon$

Assumes that the elasticity of the dependent variable with respect to the explanatory variable is constant:

$$\frac{\partial \ln y}{\partial \ln x_k} = \frac{\partial y/y}{\partial x_k/x_k} = \beta_k \qquad \qquad k = 1,2$$

- Interpretation: if x_k increases by 1 percent, then y will change by β_k percents
- Before using a double-log model, make sure that there are no negative or zero observations in the data set

EXAMPLE

Estimating the production function of Indian sugar industry:

$$\widehat{\ln Q} = 2.70 + \begin{array}{c} 0.59 \\ (0.14) \end{array} \ln L + \begin{array}{c} 0.33 \\ (0.17) \end{array} \ln K$$

- Q ... output L ... labor K ... capital employed
- ► Interpretation: if we increase the amount of labor by 1%, the production of sugar will increase by 0.59%, ceteris paribus.
- Ceteris paribus is a Latin phrase meaning 'other things being equal'.

SEMILOG FORMS

► Linear-log form:

$$y = \beta_0 + \beta_1 \ln x_1 + \beta_2 \ln x_2 + \varepsilon$$

- ► Interpretation: if x_k increases by 1 percent, then y will change by (β_k/100) units (k = 1, 2)
- ► Log-linear form:

$$\ln y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

 Interpretation: if x_k increases by 1 unit, then y will change by (β_k * 100) percent (k = 1, 2)

EXAMPLES OF SEMILOG FORMS

• Estimating demand for chicken meat:

$$\widehat{Y} = -6.94 - \underbrace{0.57}_{(0.19)} \frac{PC}{PC} + \underbrace{0.25}_{(0.11)} \frac{PB}{PB} + \underbrace{12.2}_{(2.81)} \ln YD$$

- Y ... annual chicken consumption (kg.)
- PC ... price of chicken
- *PB* ... price of beef
- YD ... annual disposable income
- Interpretation: An increase in the annual disposable income by 1% increases chicken consumption by 0.12 kg per year, ceteris paribus.

EXAMPLES OF SEMILOG FORMS

 Estimating the influence of education and experience on wages:

$$\widehat{n wage} = 0.217 + \begin{array}{c} 0.098 \ educ + \ 0.010 \ exper \\ (0.008) \end{array} + \begin{array}{c} 0.010 \ exper \\ (0.002) \end{array}$$

educ	• • •	years of education
exper		years of experience

 Interpretation: An increase in education by one year increases annual wage by 9.8%, ceteris paribus. An increase in experience by one year increases annual wage by 1%, ceteris paribus.

POLYNOMIAL FORM

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \varepsilon$$

► To determine the effect of x₁ on y, we need to calculate the derivative:

$$\frac{\partial y}{\partial x_1} = \beta_1 + 2 \cdot \beta_2 \cdot x_1$$

- Clearly, the effect of x₁ on y is not constant, but changes with the level of x₁
- We might also have higher order polynomials, e.g.:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_1^3 + \beta_4 x_1^4 + \varepsilon$$

EXAMPLE OF POLYNOMIAL FORM

The impact of the number of hours of studying on the grade from Introductory Econometrics:

$$\widehat{grade} = 30 + 1.4 \cdot hours - 0.009 \cdot hours^2$$

To determine the effect of hours on grade, calculate the derivative:

$$\frac{\partial y}{\partial x} = \frac{\partial grade}{\partial hours} = 1.4 - 2 \cdot 0.009 \cdot hours = 1.4 - 0.018 \cdot hours$$

 Decreasing returns to hours of studying: more hours implies higher grade, but the positive effect of additional hour of studying decreases with more hours

CHOICE OF CORRECT FUNCTIONAL FORM

- The functional form has to be correctly specified in order to avoid biased and inconsistent estimates
 - Remember that one of the OLS assumptions is that the model is correctly specified
- Ideally: the specification is given by underlying theory of the equation
- In reality: underlying theory does not give precise functional form
- In most cases, either linear form is adequate, or common sense will point out an easy choice from among the alternatives

CHOICE OF CORRECT FUNCTIONAL FORM

- Nonlinearity of explanatory variables
 - often approximated by polynomial form
 - missing higher powers of a variable can be detected as omitted variables (see next lecture)
- Nonlinearity of dependent variable
 - harder to detect based on statistical fit of the regression
 - ► *R*² is incomparable across models where the *y* is transformed
 - dependent variables are often transformed to log-form in order to make their distribution closer to the normal distribution

DUMMY VARIABLES

- Dummy variable takes on the values of 0 or 1, depending on a qualitative attribute
- Examples of dummy variables:

$$Male = \begin{cases} 1 & \text{if the person is male} \\ 0 & \text{if the person is female} \end{cases}$$
$$Weekend = \begin{cases} 1 & \text{if the day is on weekend} \\ 0 & \text{if the day is a work day} \end{cases}$$

NewStadium =
$$\begin{cases} 1 & \text{if the team plays on new stadium} \\ 0 & \text{if the team plays on old stadium} \end{cases}$$

INTERCEPT DUMMY

- Dummy variable included in a regression alone (not interacted with other variables) is an intercept dummy
- It changes the intercept for the subset of data defined by a dummy variable condition:

$$y_i = \beta_0 + \beta_1 D_i + \beta_2 x_i + \varepsilon_i$$

where

$$D_i = \begin{cases} 1 & \text{if the } i\text{-th observation meets a particular condition} \\ 0 & \text{otherwise} \end{cases}$$

We have

$$y_i = (\beta_0 + \beta_1) + \beta_2 x_i + \varepsilon_i \text{ if } D_i = 1$$

$$y_i = \beta_0 + \beta_2 x_i + \varepsilon_i \text{ if } D_i = 0$$

<□ > < @ > < E > < E > E のQ (~ 16 / 25)

INTERCEPT DUMMY

EXAMPLE

Estimating the determinants of wages:

$$\widehat{wage_i} = -3.890 + \begin{array}{c} 2.156 \\ (0.270) \end{array} M_i + \begin{array}{c} 0.603 \\ (0.051) \end{array} educ_i + \begin{array}{c} 0.010 \\ (0.064) \end{array}$$

where
$$M_i = \begin{cases} 1 & \text{if the } i\text{-th person is male} \\ 0 & \text{if the } i\text{-th person is female} \end{cases}$$

wage ... average hourly wage in USD

 Interpretation of the dummy variable M: men earn on average \$2.156 per hour more than women, ceteris paribus

SLOPE DUMMY

- ► If a dummy variable is interacted with another variable (*x*), it is a slope dummy.
- ► It changes the relationship between *x* and *y* for a subset of data defined by a dummy variable condition:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 (x_i \cdot D_i) + \varepsilon_i$$

where

$$D_i = \begin{cases} 1 & \text{if the } i\text{-th observation meets a particular condition} \\ 0 & \text{otherwise} \end{cases}$$

We have

$$y_i = \beta_0 + (\beta_1 + \beta_2)x_i + \varepsilon_i \text{ if } D_i = 1$$

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \text{ if } D_i = 0$$

<□ ト < □ ト < □ ト < 亘 ト < 亘 ト < 亘 ト < 亘 の Q (~ 19 / 25)

Slope dummy

EXAMPLE

• Estimating the determinants of wages:

 $\widehat{wage_i} = -2.620 + \begin{array}{c} 0.450 \ educ_i + \ 0.170 \ M_i \cdot educ_i + \ 0.010 \ exper_i \\ (0.054) \ (0.021) \ (0.065) \end{array}$

where
$$M_i = \begin{cases} 1 & \text{if the } i\text{-th person is male} \\ 0 & \text{if the } i\text{-th person is female} \end{cases}$$

wage ... average hourly wage in USD

 Interpretation: men gain on average 17 cents per hour more than women for each additional year of education, ceteris paribus

SLOPE AND INTERCEPT DUMMIES

 Allow both for different slope and intercept for two subsets of data distinguished by a qualitative condition:

$$y_i = \beta_0 + \beta_1 D_i + \beta_2 x_i + \beta_3 (x_i \cdot D_i) + \varepsilon_i$$

where

 $D_i = \begin{cases} 1 & \text{if the } i\text{-th observation meets a particular condition} \\ 0 & \text{otherwise} \end{cases}$

► We have

$$y_i = (\beta_0 + \beta_1) + (\beta_2 + \beta_3)x_i + \varepsilon_i \text{ if } D_i = 1$$

$$y_i = \beta_0 + \beta_2 x_i + \varepsilon_i \text{ if } D_i = 0$$

SLOPE AND INTERCEPT DUMMIES

<□ ト < @ ト < 注 ト < 注 ト 注 の Q (~ 23 / 25

DUMMY VARIABLES - EXTENSION

- ► What if a variable defines three or more qualitative attributes?
- Example: level of education elementary school, high school, and college
- Define and use a set of dummy variables:

$$H = \begin{cases} 1 & \text{if high school} \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad C = \begin{cases} 1 & \text{if college} \\ 0 & \text{otherwise} \end{cases}$$

- Should we include also a third dummy in the regression, which is equal to 1 for people with elementary education?
 - ► No, unless we exclude the intercept!
 - Using full set of dummies leads to perfect multicollinearity (dummy variable trap, see next lectures)

SUMMARY

- ► We discussed different nonlinear specifications of a regression equation and their interpretation
- We defined the concept of a dummy variable and we showed its use
- ► Further readings:
 - Studenmund, Chapter 7
 - Wooldridge, Chapters 6 & 7