Sample exam

You have 80 minutes to complete this setup. The exam is worth 60 points in total, exact amount of points is indicated for each exercise.

- 1. (10 points) Describe the heteroskedasticity problem: explain briefly what it is and how it affects the estimation. Give the name of at least one of the tests for heteroskedasticity and state its null hypothesis. Provide at least one solution of the heteroskedasticity problem.
- 2. (6 points) Describe the two properties a valid instrumental variable must satisfy.
- 3. (5 points) Decide if the following claim is true or false (and explain why): "I run a regression of y on x and I save the residuals $e = y \hat{y}$. If I find that Cov(x, e) = 0, I have the right to conclude that the variable x was exogenous in my regression."
- 4. Suppose a sample of adults is classified into groups 1, 2 and 3 on the basis of whether their education stopped at the end of elementary school, high school, or university, respectively. The relationship

$$y = \beta_1 + \beta_2 D_2 + \beta_3 D_3 + \varepsilon$$

is specified, where y is income, $D_i = 1$ for those in group i and zero for all others.

- (a) (3 points) Explain why D_1 is not included in the regression.
- (b) (4 points) In terms of the parameters of the model, what is the expected income of people whose education stopped at the end of university? What is the expected income of people whose education stopped at the end of elementary school?
- (c) (6 points) Suppose some respondents who only finished the elementary school were embarrassed about their lack of education and lied, claiming that they graduated from high school. What would be the impact of this lie on the estimates of β_2 and β_3 ?

- 5. (26 points) You have data for 732 student-athletes from a large university for fall semester. Your primary question of interest is this: Do athletes perform more poorly in school during the semester when their sport is in season?
 - (a) You run a regression with the following variables:

trmgpa	 the student's GPA (grade point average) for the semester
season	 dummy, equal to 1 if the student's sport is in season
	that semester, 0 otherwise
hsrank	 the student's performance at high school, measured as
	the rank among his/her classmates
crsgpa	 the course GPA (average GPA over all students taking the course)
	for the semester

You obtain the following result:

Source	SS	df	df M			Number of obs F(3, 728)		
Model Residual	69.996157 350.300799	3 728	23.3320 .481182			Prob > F R-squared Adj R-squared	= 0.0000= 0.1665	
Total	420.296956	731	.574961636			Root MSE	= .69367	
trmgpa	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]	
season hsrank crsgpa _cons	1091708 0021305 .9246755 0829782	.0546 .0002 .1165 .327	344 · 595	-2.00 -9.09 7.93 -0.25	0.046 0.000 0.000 0.800	2163952 0025907 .6958426 725737	0019463 0016703 1.153508 .5597806	

- i. Interpret the coefficient on season. Is it significant at 95% confidence level?
- ii. Test if the coefficient on crspga is significantly different from 1 at 95% confidence level¹. Interpret your finding.
- iii. Explain what *hsrank* controls for in the regression. (*Hint*: the lower *hsrank*, the better the high school performance of the student).

 $^{^1 \}mathrm{for}$ critical values, see Appendix on p.3

(b) Most of the athletes who play their sport in the fall are football players. You suppose the academic performance of football players differ systematically from those of other athletes.

You include in you regression a new variable *football*, which is a dummy equal to one if the student is football player, zero otherwise. You get the following result:

Source	SS	df		MS		Number of obs = F(4, 727) = Prob > F = R-squared = Adj R-squared = Root MSE =			
Model Residual	99.9162975 320.380658	4 727		0790744 0688664				0.0000 0.2377 0.2335	
Total	420.296956	731	.574	961636				.66384	
trmgpa	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]	
season hsrank crsgpa football _cons	.0018219 001966 .8978952 4479337 .1937855	.0539 .0002 .1115 .0543 .3151	252 946 623	0.03 -8.73 8.05 -8.24 0.61	0.973 0.000 0.000 0.000 0.539	1041449 0024081 .6788091 5546595 4248594	 1 	1077886 0015238 .116981 3412078 8124303	

Is the coefficient on *season* significant at 95% confidence level now? Does this confirm there was a bias in part (a)? If yes, explain how this bias was created and what was its sign (intuitive explanation is sufficient).

Appendix:

Extract from statistical table of Student t-distribution (area under right-hand tail)

d.f.	0.05	0.025	0.01
40	1.684	2.021	2.423
60	1.671	2.000	2.390
120	1.658	1.980	2.358
∞	1.645	1.960	2.326