
Econometrics - Lecture 4

Heteroskedasticity 
and Autocorrelation
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Gauss-Markov Assumptions 

A1 E{εi} = 0 for all i

A2 all εi are independent of all xi (exogeneous xi)

A3 V{εi} = σ2 for all i (homoskedasticity)

A4 Cov{εi, εj} = 0 for all i and j with i ≠ j (no autocorrelation)
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Observation yi is a linear function 

yi = xi'β + εi

of observations xik, k =1, …, K, of the regressor variables and the 
error term εi

for i = 1, …, N; xi' = (xi1, …, xiK); X = (xik)

In matrix notation: E{ε} = 0, V{ε} = σ2 IN



OLS Estimator: Properties

Under assumptions (A1) and (A2):

1. The OLS estimator b is unbiased: E{b} = β

Under assumptions (A1), (A2), (A3) and (A4): 

2. The variance of the OLS estimator is given by

V{b} = σ2(Σi xi xi’)-1 = σ2(X‘ X)-1

3. The sampling variance s2 of the error terms εi, 

s2 = (N – K)-1 Σi ei
2

is unbiased for σ2

4. The OLS estimator b is BLUE (best linear unbiased estimator)
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Violations of V{ε} = σ2IN

Implications of the Gauss-Markov assumptions for ε:
V{ε} = σ2IN

Violations:
� Heteroskedasticity 

V{ε} = diag(σ1
2, …, σN

2) 
with σi

2 ≠ σj
2 for at least one pair i ≠ j, or using σi

2 = σ2 hi
2,

V{ε} = σ2Ψ = σ2 diag(h1
2, …, hN

2)
� Autocorrelation: V{εi, εj} ≠ 0 for at least one pair i ≠ j or 

V{ε} = σ2Ψ
with non-diagonal elements different from zero
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Example: Household Income 
and Expenditures
70 households (HH): 

monthly HH-
income and 
expenditures for 
durable goods
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Household Income and 
Expenditures, cont‘d

Residuals e = y- ŷ from

Ŷ = 44.18 + 0.17 X

X: monthly HH-income 
Y: expenditures for 
durable goods

the larger the income, 
the more scattered are 
the residuals
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Typical Situations for 
Heteroskedasticity
Heteroskedasticity is typically observed 

� in data from cross-sectional surveys, e.g., surveys in 
households or regions

� in data with variance that depends of one or several explanatory 
variables, e.g., variance of the firms’ turnover depends on firm 
size

� in data from financial markets, e.g., exchange rates, stock 
returns
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Example: Household 
Expenditures
Variation of expenditures, increasing with growing income; from 

Verbeek, Fig. 4.1
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Autocorrelation of Economic 
Time-series
� Consumption in actual period is similar to that of the preceding 

period; the actual consumption „depends“ on the consumption of 
the preceding period 

� Consumption, production, investments, etc.: to be expected that 
successive observations of economic variables correlate 
positively 

� Seasonal adjustment: application of smoothing and filtering 
algorithms induces correlation of the smoothed data
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Example: Imports

Scatter-diagram of by 
one period lagged 
imports [MTR(-1)] 
against actual imports 
[MTR] 

Correlation coefficient 
between MTR und 
MTR(-1): 0.9994
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Example: Import Function

MTR: Imports
FDD: Total Demand
(from AWM-database)

100000

200000

300000

400000

500000

600000

400000 8 000001 200000 2000000

FDD

M
T

R

Import function:  MTR = -227320 + 0.36 FDD
R2 = 0.977, tFFD = 74.8
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Import Function, cont‘d

MTR: Imports
FDD: Total Demand
(from AWM-database)

RESID: et = MTR - (-227320 + 0.36 FDD)
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Import Function, cont‘d

Scatter-diagram of by 
one period lagged 
residuals [Resid(-1)] 
against actual residuals 
[Resid] 

Serial correlation!
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Typical Situations for 
Autocorrelation
Autocorrelation is typically observed if

� a relevant regressor with trend or seasonal pattern is not 
included in the model: miss-specified model 

� the functional form of a regressor is incorrectly specified

� the dependent variable is correlated in a way that is not 
appropriately represented in the systematic part of the model

Warning! Omission of a relevant regressor with trend implies 
autocorrelation of the error terms; in econometric analyses, 
autocorrelation of the error terms is always to be suspected! 

� Autocorrelation of the error terms indicates deficiencies of the 
model specification

� Tests for autocorrelation are the most frequently used tool for 
diagnostic checking the model specification
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Import Functions

� Regression of imports (MTR) on total demand (FDD)

MTR = -2.27x109 + 0.357 FDD, tFDD = 74.9, R2 = 0.977

Autocorrelation (of order 1) of residuals: 

Corr(et, et-1) = 0.993 

� Import function with trend (T)

MTR = -4.45x109 + 0.653 FDD – 0.030x109 T

tFDD = 45.8, tT = -21.0, R2 = 0.995

Multicollinearity? Corr(FDD, T) = 0.987!

� Import function with lagged imports as regressor

MTR = -0.124x109 + 0.020 FDD + 0.956 MTR-1

tFDD = 2.89, tMTR(-1) = 50.1, R2 = 0.999
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Consequences of V{ε} ≠ σ2IN
for OLS estimators
OLS estimators b for β
� are unbiased

� are consistent

� have the covariance-matrix

V{b} = σ2 (X'X)-1 X'ΨX (X'X)-1

� are not efficient estimators, not BLUE

� follow – under general conditions – asymptotically the normal 
distribution

The estimator s2 = e'e/(N-K) for σ2 is biased
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Consequences of V{ε} ≠ σ2IN 
for Applications
� OLS estimators b for β are still unbiased

� Routinely computed standard errors are biased; the bias can be 
positive or negative 

� t- and F-tests may be misleading

Remedies

� Alternative estimators

� Corrected standard errors

� Modification of the model 

Tests for identification of heteroskedasticity and for autocorrelation 
are important tools
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Example: Labor Demand

Verbeek’s data set “labour2”: Sample of 569 Belgian companies 
(data from 1996)

� Variables
� labour: total employment (number of employees)

� capital: total fixed assets

� wage: total wage costs per employee (in 1000 EUR)

� output: value added (in million EUR)

� Labour  demand function

labour = β1 + β2*wage + β3*output + β4*capital
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Labor Demand and Potential 
Regressors
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Inference under 
Heteroskedasticity
Covariance matrix of b:

V{b} = σ2 (X'X)-1 X'ΨX (X'X)-1

with Ψ = diag(h1
2, …, hN

2)

Use of σ2 (X'X)-1 (the standard output of econometric software) 
instead of V{b} for inference on β may be misleading 

Remedies

� Use of correct variances and standard errors

� Transformation of the model so that the error terms are 
homoskedastic
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The Correct Variances

� V{εi} = σi
2 = σ2hi

2, i = 1,…,N: each observation has its own 
unknown parameter hi

� N observation for estimating N unknown parameters?

To estimate σ2
i – and V{b}

� Known form of the heteroskedasticity, specific correction
� E.g., hi

2 = zi’α for some variables zi

� Requires estimation of α
� White’s heteroskedasticity-consistent covariance matrix 

estimator (HCCME)

Ṽ{b} = σ2(X'X)-1(Σiĥi
2xixi’) (X'X)-1

with ĥi
2=ei

2

� Denoted as HC0

� Inference based on HC0: “heteroskedasticity-robust inference”
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White’s Standard Errors

White’s standard errors for b

� Square roots of diagonal elements of HCCME 

� Underestimate the true standard errors 

� Various refinements, e.g., HC1 = HC0[N/(N-K)]

In GRETL: HC0 is the default HCCME, HC1 and other modifications 
are available as options
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Labor Demand Function

For Belgian companies, 1996; Verbeek’s “labour2”

labour = β1 + β2*wage + β3*output + β4*capital
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Labor Demand Function, cont’d

Can the error terms be assumed to be homoskedastic?

� They may vary depending on the company size, measured by, 
e.g., size of output or capital 

� Regression of squared residuals on appropriate regressors will 
indicate heteroskedasticity
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Labor Demand Function: 
Residuals vs output
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Labor Demand Function, cont’d

Auxiliary regression of squared residuals, Verbeek

Indicates dependence of error terms on output, capital, not on wage
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Labor Demand Function, cont’d
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With White standard errors: Output from GRETL

Dependent variable : LABOR
Heteroskedastic-robust standard errors, variant HC0, 

coefficient   std. error   t-ratio    p-value
-------------------------------------------------------------
const          287,719 64,8770 4,435     1,11e-05 ***
WAGE -6,7419 1,8516 -3,641      0,0003    ***
CAPITAL -4,59049 1,7133 -2,679     0,0076    *** 
OUTPUT 15,4005 2,4820        6,205      1,06e-09 ***

Mean dependent var 201,024911   S.D. dependent var 611,9959
Sum squared resid 13795027   S.E. of regression   156,2561
R- squared               0,935155   Adjusted R-squared 0,934811
F(2, 129)               225,5597   P-value (F)               3,49e-96
Log-likelihood          455,9302   Akaike criterion       7367,341
Schwarz criterion      -3679,670   Hannan-Quinn 7374,121

Nov 25, 2016



Labor Demand Function, cont’d

Estimated function

labour = β1 + β2*wage + β3*output + β4*capital 

OLS estimates and standard errors: without (s.e.) and with White 
correction (White s.e.) and GLS estimates with wi = 1/(ei

2)

The White standard errors are inflated by factors 3.7 (wage), 6.4 
(capital), 7.0 (output) with respect to the OLS s.e.
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ββββ1 ββββ2 ββββ3 ββββ4
Coeff OLS 287.19 -6.742 15.400 -4.590

s.e. 19.642 0.501 0.356 0.269

White s.e. 64.877 1.852 2.482 1.713

Coeff GLS 321.17 -7.404 15.585 -4.740

s.e. 20.328 0.506 0.349 0.255



An Alternative Estimator for b

Idea of the estimator

1. Transform the model so that it satisfies the Gauss-Markov 
assumptions

2. Apply OLS to the transformed model 

Results in an (at least approximately) BLUE

Transformation often depends upon unknown parameters that 
characterizing heteroskedasticity: two-step procedure

1. Estimate the parameters that characterize heteroskedasticity and 
transform the model

2. Estimate the transformed model

The procedure results in an approximately BLUE
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An Example

Model: 

yi = xi’β + εi with V{εi} = σi
2 = σ2hi

2

Division by hi results in

yi /hi = (xi /hi)’β + εi /hi

with a homoskedastic error term 

V{εi /hi} = σi
2/hi

2 = σ2

OLS applied to the transformed model gives

This estimator is an example of the “generalized least squares” 
(GLS) or “weighted least squares” (WLS) estimator
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Weighted Least Squares 
Estimator
� A GLS or WLS estimator is a least squares estimator where each 

observation is weighted by a non-negative factor wi > 0:

� Weights wi proportional to the inverse of the error term variance 
σ2hi

2: Observations with a higher error term variance have a lower 
weight; they provide less accurate information on β

� Needs knowledge of the hi

� Is seldom available 

� Estimates of hi can be based on assumptions on the form of hi

� E.g., hi
2 = zi’α or hi

2 = exp(zi’α) for some variables zi

� Analogous with general weights wi

� White’s HCCME uses wi = ei
-2
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Labor Demand Function, cont’d
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Regression  of “l_usq1”, i.e., log(ei
2)

Dependent variable : l_usq1

coefficient   std. error   t-ratio    p-value
-------------------------------------------------------------
const 7,24526      0,0987518    73,37     2,68e-291 ***
CAPITAL −0,0210417    0,00375036   −5,611    3,16e-08 *** 
OUTPUT 0,0359122    0,00481392    7,460    3,27e-013 ***

Mean dependent var 7,531559   S.D. dependent var 2,368701
Sum squared resid 2797,660   S.E. of regression   2,223255
R- squared               0,122138   Adjusted R-squared 0,119036
F(2, 129)               39,37427   P-value (F)               9,76e-17
Log-likelihood          −1260,487 Akaike criterion       2526,975
Schwarz criterion      2540,006   Hannan-Quinn 2532,060
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Labor Demand Function, cont’d

Estimated function

labour = β1 + β2*wage + β3*output + β4*capital 

OLS estimates and standard errors: without (s.e.) and with White 
correction (White s.e.); and GLS estimates with wi = ei

-2, with fitted 
values for ei from the regression of  log(ei

2) on capital and output
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ββββ1 wage output capital

OLS coeff 287.19 -6.742 15.400 -4.590

s.e. 19.642 0.501 0.356 0.269

White s.e. 64.877 1.852 2.482 1.713

FGLS coeff 321.17 -7.404 15.585 -4.740

s.e. 20.328 0.506 0.349 0.255
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Tests against 
Heteroskedasticity
Due to unbiasedness of b, residuals are expected to indicate 

heteroskedasticity

Graphical displays of residuals may give useful hints 

Residual-based tests: 

� Breusch-Pagan test

� Koenker test

� Goldfeld-Quandt test

� White test
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Breusch-Pagan Test

For testing whether the error term variance is a function of Z2, …, Zp

Model for heteroskedasticity 

σi
2/σ2 = h(zi‘α)

with function h with h(0)=1, p-vectors zi und α, zi containing an 
intercept and p-1 variables Z2, …, Zp

Null hypothesis 

H0: α = 0

implies σi
2 = σ2 for all i, i.e., homoskedasticity

Auxiliary regression of the squared OLS residuals ei
2 on zi (and 

squares of zi); 

Test statistic: BP = N*R2 with R2 of the auxiliary regression; BP 
follows approximately the Chi-squared distribution with p d.f.
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Breusch-Pagan Test, cont‘d

Typical functions h for h(zi‘α)

� Linear regression: h(zi‘α) = zi‘α
� Exponential function h(zi‘α) = exp{zi‘α}

� Auxiliary regression of the log (ei
2) upon zi

� “Multiplicative heteroskedasticity”

� Variances are non-negative

� Koenker test: variant of the BP test which is robust against non-
normality of the error terms

� GRETL: The output window of OLS estimation allows the execution 
of the Breusch-Pagan test with h(zi‘α) = zi‘α
� OLS output => Tests => Heteroskedasticity => Breusch-Pagan

� Koenker test: OLS output => Tests => Heteroskedasticity => Koenker
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Labor Demand Function, cont’d

Auxiliary regression of squared residuals, Verbeek

Tests of the null hypothesis of homoskedasticity

Breusch-Pagan: BP = NR2 = 5931.82, p-value = 0

Koenker: LM = 331.04, p-value = 2.17E-70
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Goldfeld-Quandt Test

For testing whether the error term variance has values σA
2 and σB

2 for 
observations from regime A and B, respectively, σA

2 ≠ σB
2 

Regimes can be urban vs rural area, economic prosperity vs
stagnation, etc.

Example (in matrix notation):
yA = XAβA + εA,  V{εA} = σA

2INA (regime A)
yB = XBβB + εB,  V{εB} = σB

2INB (regime B) 

Null hypothesis: σA
2 = σB

2

Test statistic: 

with Si: sum of squared residuals for i-th regime; follows under H0

exactly or approximately the F-distribution with NA-K and NB-K d.f.
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Goldfeld-Quandt Test, cont‘d

Test procedure in three steps:

1. Sort the observations with respect to the regimes A and B

2. Separate fittings of the model to the NA and NB observations; 
sum of squared residuals SA and SB

3. Calculate the test statistic F
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White Test

For testing whether the error term variance is a function of the model 
regressors, their squares and their cross-products; generalizes 
the Breusch-Pagan test

Auxiliary regression of the squared OLS residuals upon xi’s, squares 
of xi’s, and cross-products

Test statistic: NR2 with R2 of the auxiliary regression; follows the 
Chi-squared distribution with the number of coefficients in the 
auxiliary regression as d.f.

The number of coefficients in the auxiliary regression may become 
large, maybe conflicting with size of N, resulting in low power of 
the White test
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Labor Demand Function, cont’d

White's test for heteroskedasticity
OLS, using observations 1-569
Dependent variable: uhat^2

coefficient   std. error       t-ratio       p-value 
--------------------------------------------------------------
const         -260,910     18478,5          -0,01412   0,9887   
WAGE        554,352         833,028         0,6655    0,5060   
CAPITAL  2810,43          663,073        4,238      2,63e-05  ***
OUTPUT                    -2573,29         512,179       -5,024      6,81e-07  ***
sq_WAGE -10,0719         9,29022   -1,084      0,2788   
X2_X3          -48,2457       14,0199     -3,441      0,0006    ***
X2_X4           58,5385        8,11748    7,211      1,81e-012 ***
sq_CAPITAL 14,4176        2,01005    7,173      2,34e-012 ***
X3_X4          -40,0294        3,74634 -10,68       2,24e-024 ***
sq_OUTPUT 27,5945        1,83633   15,03      4,09e-043 ***

Unadjusted R-squared = 0,818136

Test statistic: TR^2 = 465,519295,
with p-value = P(Chi-square(9) > 465,519295) = 0
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Transformed Model Satisfying 
Gauss-Markov Assumptions
Model: 

yi = xi’β + εi with V{εi} = σi
2 = σ2hi

2

Division by hi results in

yi /hi = (xi /hi)’β + εi /hi

with a homoskedastic error term 

V{εi /hi} = σi
2/hi

2 = σ2

OLS applied to the transformed model gives

This estimator is an example of the “generalized least squares” 
(GLS) or “weighted least squares” (WLS) estimator

Nov 25, 2016 Hackl,  Econometrics, Lecture 4 46

( ) 1
2 2ˆ
i i i i i ii i
h x x h x yβ

−
− −′= ∑ ∑



Properties of GLS Estimators

The GLS estimator 

is a least squares estimator; standard properties of OLS estimator 
apply

� The covariance matrix of the GLS estimator is

� Unbiased estimator of the error term variance

� Under the assumption of normality of errors, t- and F-tests can be 
used; for large N, these properties hold approximately without 
normality assumption
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Generalized Least Squares 
Estimator
� A GLS or WLS estimator is a least squares estimator where each 

observation is weighted by a non-negative factor
� Example: 

yi = xi’β + εi with V{εi} = σi
2 = σ2hi

2

� Division by hi results in a model with homoskedastic error terms

V{εi /hi} = σi
2/hi

2 = σ2

� OLS applied to the transformed model results in the weighted least 
squares (GLS) estimator with wi = hi

-2:

� Transformation corresponds to the multiplication of each observation 
with the non-negative factor hi

-1

� The GLS estimator is a least squares estimator that weights the i-th
observation with wi = hi

-2, so that the Gauss-Markov assumptions
are satisfied
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Feasible GLS Estimator

Is a GLS estimator with estimated weights wi = hi
-2

� Substitution of the weights wi = hi
-2 by estimates ĥi

-2

� Feasible (or estimated) GLS or FGLS or EGLS estimator

� For consistent estimates ĥi, the FGLS and GLS estimators are 
asymptotically equivalent 

� For small values of N, FGLS estimators are in general not BLUE

� For consistently estimated ĥi, the FGLS estimator is consistent 
and asymptotically efficient with covariance matrix (estimate for 
σ2: based on FGLS residuals)

� Warning: The transformed model is uncentered
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Multiplicative 
Heteroskedasticity
Assume V{εi} = σi

2 = σ2hi
2 = σ2exp{zi‘α}

� The auxiliary regression 

log ei
2 = log σ2 + zi‘α + vi

provides a consistent estimator a for α

� Transform the model yi = xi’β + εi with V{εi} = σi
2 = σ2hi

2 by dividing 
through ĥi from ĥi

2 = exp{zi‘a}
� Error term in this model is (approximately) homoskedastic 

� Applying OLS to the transformed model gives the FGLS estimator 
for β
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FGLS Estimation

In the following steps (yi = xi’β + εi): 

1. Calculate the OLS estimates b for β
2. Compute the OLS residuals ei = yi – xi‘b

3. Regress log(ei
2) on zi and a constant, obtaining estimates a for α

log ei
2 = log σ2 + zi‘α + vi

4. Compute ĥi
2 = exp{zi‘a}, transform all variables and estimate the 

transformed model to obtain the FGLS estimators:

yi /ĥi = (xi /ĥi)’β + εi /ĥi

5. The consistent estimate s² for σ2, based on the FGLS-residuals, 
and the consistently estimated covariance matrix 

are part of the standard output when regressing the transformed 
model
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FGLS Estimation in GRETL

Preparatory steps:

1. Calculate the OLS estimates b for β of yi = xi’β + εi

2. Under the assumption V{εi} = σi
2 = σ2hi

2, conduct an auxiliary 
regression for  ei

2 or log(ei
2) that provides estimates ĥi

2

3. Define wtvar as weight variable with wtvar i = (ĥi
2)-1

FGLS estimation:

4. Model => Other linear models => Weighted least squares

5. Use of variable wtvar as “Weight variable”: both the dependent 
and all independent variables are multiplied with the square roots 
(wtvar)1/2
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Labor Demand Function

For Belgian companies, 1996; Verbeek

Log-transformation is expected to reduce heteroskedasticity
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Labor Demand Function, cont’d

Estimated function

log(labour) = β1 + β2*log(wage) + β3*log(output) + β4*log(capital)

The table shows: OLS estimates and standard errors: without 
(s.e.) and with White correction (White s.e.); FGLS estimates and 
standard errors
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ββββ1 wage output capital

OLS coeff 6.177 -0.928 0.990 -0.0037

s.e. 0.246 0.071 0.026 0.0188

White s.e. 0.293 0.086 0.047 0.0377

FGLS coeff 5.895 -0.856 1.035 -0.0569

s.e. 0.248 0.072 0.027 0.0216



Labor Demand Function, cont’d

For Belgian companies, 1996; Verbeek

Breusch-Pagan test: NR2 = 66.23, p-value: 1,42E-13
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Labor Demand Function, cont’d

For Belgian companies, 1996; Verbeek

Weights estimated assuming multiplicative heteroskedasticity
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Labor Demand Function, cont’d

Estimated function

log(labour) = β1 + β2*log(wage) + β3*log(output) + β4*log(capital)

The table shows: OLS estimates and standard errors: without 
(s.e.) and with White correction (White s.e.); FGLS estimates and 
standard errors
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ββββ1 wage output capital

OLS coeff 6.177 -0.928 0.990 -0.0037

s.e. 0.246 0.071 0.026 0.0188

White s.e. 0.293 0.086 0.047 0.0377

FGLS coeff 5.895 -0.856 1.035 -0.0569

s.e. 0.248 0.072 0.027 0.0216



Labor Demand Function, cont’d

Some comments:

� Reduction of standard errors in FGLS estimation as compared to 
heteroskedasticity-robust estimation, efficiency gains

� Comparison with OLS estimation not appropriate

� FGLS estimates differ slightly from OLS estimates; effect of 
capital is indicated to be relevant (p-value: 0.0086)

� R2 of FGLS estimation is misleading
� Model has no intercept, is uncentered

� Comparison with that of OLS estimation not appropriate, explained 
variables are different

Nov 25, 2016 Hackl,  Econometrics, Lecture 4 58



Contents

� Violations of V{ε} = σ2 IN: Illustrations and Consequences

� Heteroskedasticity 

� Tests against Heteroskedasticity

� GLS Estimation

� Autocorrelation

� Tests against Autocorrelation

� Inference under Autocorrelation

Nov 25, 2016 Hackl,  Econometrics, Lecture 4 59

x



Example: Demand for Ice 
Cream
Verbeek’s time series dataset “icecream” 
� 30 four weekly observations (1951-1953)
� Variables

� cons: consumption of ice cream per head (in pints)
� income: average family income per week (in USD, red line)
� price: price of ice cream (in USD per pint, blue line)
� temp: average temperature (in Fahrenheit); tempc: (green, in °C)
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Demand for Ice Cream, cont’d

Time series plot of consumption of ice cream per head (in pints), 
cons, over observation periods
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Demand for Ice Cream, cont’d

Consumption of ice cream per head (in pints), cons: scatter 
diagramme of actual values cons  over lagged values cons-1
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Autocorrelation

� Typical for time series data such as consumption, production, 
investments, etc., and models for time series data 

� Autocorrelation of error terms is typically observed if
� a relevant regressor with trend or seasonal pattern is not included in 

the model: miss-specified model 

� the functional form of a regressor is incorrectly specified

� the dependent variable is correlated in a way that is not appropriately 
represented in the systematic part of the model

� Autocorrelation of the error terms indicates deficiencies of the 
model specification such as omitted regressors, incorrect 
functional form, incorrect dynamic

� Tests for autocorrelation are the most frequently used tool for 
diagnostic checking the model specification
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Demand for Ice Cream, cont’d

Time series plot of 
Cons: consumption of ice cream per head (in pints); mean: 0.36 
Temp/100: average temperature (in Fahrenheit)
Price (in USD per pint); mean: 0.275 USD
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Demand for Ice Cream, cont’d

Demand for  ice cream, measured by cons, explained by price, 
income, and temp
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Demand for Ice Cream, cont’d

Time series diagramme of demand for ice cream, actual values (o) 
and predictions (polygon), based on the model with income and 
price
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Demand for Ice Cream, cont’d

Ice cream model: Scatter-plot of residuals et vs et-1 (r = 0.401)
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A Model with AR(1) Errors

Linear regression 

yt = xt‘β + εt
1)

with 

εt = ρεt-1 + vt with -1 < ρ < 1 or |ρ| < 1 

where vt are uncorrelated random variables with mean zero and 
constant variance σv

2

� For ρ ≠ 0, the error terms εt are correlated; the Gauss-Markov 
assumption V{ε} = σε

2IN is violated

� The other Gauss-Markov assumptions are assumed to be fulfilled

The sequence εt, t = 0, 1, 2, … which follows εt = ρεt-1 + vt is called 
an autoregressive process of order 1 or AR(1) process 

_____________________
1) In the context of time series models, variables are indexed by „t“
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Properties of AR(1) Processes 

Repeated substitution of εt-1, εt-2, etc. results in

εt = ρεt-1 + vt = vt + ρvt-1 + ρ2vt-2 + … 

with vt being uncorrelated and having mean zero and variance σv
2:

� E{εt} = 0

� V{εt} = σε
2 = σv

2(1-ρ2)-1

This results from V{εt} = σv
2 + ρ2σv

2 + ρ4σv
2 + … = σv

2(1-ρ2)-1 for |ρ|<1; 
the geometric series 1 + ρ2 + ρ4 + … has the sum (1- ρ2)-1 given 
that |ρ| < 1 
� for |ρ| > 1, V{εt} is undefined

� Cov{εt, εt-s } = ρs σv
2 (1-ρ2)-1 for s > 0

all error terms are correlated; covariances – and correlations 
Corr{εt, εt-s } = ρs (1-ρ2)-1 – decrease with growing distance s in 
time
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AR(1) Process, cont’d

The covariance matrix V{ε}:  

� V{ε} has a band structure

� Depends only of two parameters: ρ and σv
2 
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Consequences of V{ε} ≠ σ2IT

OLS estimators b for β
� are unbiased

� are consistent

� have the covariance-matrix

V{b} = σ2 (X'X)-1 X'ΨX (X'X)-1

� are not efficient estimators, not BLUE

� follow – under general conditions – asymptotically the normal 
distribution

The estimator s2 = e'e/(T-K) for σ2 is biased

For an AR(1)-process εt with ρ > 0, s.e. from σ2 (X'X)-1 

underestimates the true s.e. 
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Inference in Case of 
Autocorrelation
Covariance matrix of b:

V{b} = σ2 (X'X)-1 X'ΨX (X'X)-1

Use of σ2 (X'X)-1 (the standard output of econometric software) 
instead of V{b} for inference on β may be misleading 

Identification of autocorrelation: 

� Statistical tests, e.g., Durbin-Watson test

Remedies

� Use of correct variances and standard errors

� Transformation of the model so that the error terms are 
uncorrelated
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Estimation of ρ

Autocorrelation coefficient ρ: parameter of  the AR(1) process

εt = ρεt-1 + vt

Estimation of ρ 

� by regressing the OLS residual et on the lagged residual et-1

� estimator is 
� biased 

� but consistent under weak conditions
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Autocorrelation Function

Autocorrelation of order s:

� Autocorrelation function (ACF) assigns rs to s

� Correlogram: graphical representation of the autocorrelation 
function 

GRETL: Variable => Correlogram 

Produces (a) the autocorrelation function (ACF) and (b) the 
graphical representation of the ACF (and the partial 
autocorrelation function)
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Example: Ice Cream Demand

Autocorrelation function (ACF) of cons
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LAG      ACF          PACF         Q-stat. [p-value]

1   0,6627  ***   0,6627 ***     14,5389  [0,000]
2   0,4283  **   -0,0195         20,8275  [0,000]
3   0,0982       -0,3179 *       21,1706  [0,000]
4  -0,1470       -0,1701         21,9685  [0,000]
5  -0,3968  **   -0,2630         28,0152  [0,000]
6  -0,4623  **   -0,0398         36,5628  [0,000]
7  -0,5145  ***  -0,1735         47,6132  [0,000]
8  -0,4068  **   -0,0299         54,8362  [0,000]
9  -0,2271        0,0711         57,1929  [0,000]
10  -0,0156        0,0117         57,2047  [0,000]
11   0,2237        0,1666         59,7335  [0,000]
12   0,3912  **    0,0645         67,8959  [0,000]



Example: Ice Cream Demand

Correlogram of cons

Nov 25, 2016 Hackl,  Econometrics, Lecture 4 76

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  2  4  6  8  10  12

lag

ACF for CONS

+- 1,96/T^0,5

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  2  4  6  8  10  12

lag

PACF for CONS

+- 1,96/T^0,5



Contents

� Violations of V{ε} = σ2 IN: Illustrations and Consequences

� Heteroskedasticity 

� Tests against Heteroskedasticity

� GLS Estimation

� Autocorrelation

� Tests against Autocorrelation

� Inference under Autocorrelation

Nov 25, 2016 Hackl,  Econometrics, Lecture 4 77

x



Tests for Autocorrelation of 
Error Terms
Due to unbiasedness of b, residuals are expected to indicate 

autocorrelation

Graphical displays, e.g., the correlogram of residuals may give 
useful hints 

Residual-based tests: 

� Durbin-Watson test

� Box-Pierce test

� Breusch-Godfrey test
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Durbin-Watson Test

Test of H0: ρ = 0 against H1: ρ ≠ 0 

Test  statistic

� For ρ > 0, dw is expected to have a value in (0,2)
� For ρ < 0, dw is expected to have a value in (2,4)
� dw close to the value 2 indicates no autocorrelation of error terms
� Critical limits of dw

� depend upon xt’s
� exact critical value is unknown, but upper and lower bounds can be 

derived, which depend upon xt’s only via the number of regression 
coefficients

� Test can be inconclusive
� H1: ρ > 0 may be more appropriate than H1: ρ ≠ 0
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Durbin-Watson Test: Bounds 
for Critical Limits
Derived by Durbin and Watson

Upper (dU) and lower (dL) bounds for the critical limits and α = 0.05

� dw < dL: reject H0

� dw > dU: do not reject H0

� dL < dw < dU: no decision (inconclusive region)
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x

T
K=2 K=3 K=10

dL dU dL dU dL dU

15 1.08 1.36 0.95 1.54 0.17 3.22

20 1.20 1.41 1.10 1.54 0.42 2.70

100 1.65 1.69 1.63 1.71 1.48 1.87



Durbin-Watson Test: Remarks

� Durbin-Watson test gives no indication of causes for the 
rejection of the null hypothesis and how the model to modify 

� Various types of misspecification may cause the rejection of the 
null hypothesis

� Durbin-Watson test is a test against first-order autocorrelation; a 
test against autocorrelation of other orders may be more 
suitable, e.g., order four if the model is for quarterly data

� Use of tables unwieldy
� Limited number of critical bounds (K, T, α) in tables 

� Inconclusive region

� GRETL: Standard output of the OLS estimation reports the 
Durbin-Watson statistic; to see the p-value: 
� OLS output => Tests => Durbin-Watson p-value 
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Asymptotic Tests

AR(1) process for error terms

εt = ρεt-1 + vt

Auxiliary regression of et on xt and et-1: produces 

� Re
2

Test of H0: ρ = 0 against H1: ρ > 0 or H1: ρ ≠ 0 

1. Breusch-Godfrey test (GRETL: OLS output => Tests => Autocorr.)
� Re

2 of the auxiliary regression: close to zero if ρ = 0

� Under H0: ρ = 0, (T-1) Re
2 follows approximately the Chi-squared 

distribution with 1 d.f. 

� Lagrange multiplier F (LMF) statistic: F-test for explanatory power of et-1;
follows approximately the F(1, T-K-1) distribution if ρ = 0

� General case of the Breusch-Godfrey test: Auxiliary regression based on 
higher order autoregressive process
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Asymptotic Tests, cont’d

2. Box-Pierce test 

� The t-statistic based on the OLS estimate r of ρ from εt = ρεt-1 + vt, 

t = √(T) r

follows approximately the t-distribution, t2 = T r2 the Chi-squared 
distribution with 1 d.f. if ρ = 0

� Test based on √(T) r is a special case of the Box-Pierce test which 
uses the test statistic Qm = T Σs

m rs
2

3. Similar the Ljung-Box test, based on 

follows the Chi-squared distribution with m d.f. if ρ = 0

� GRETL: OLS output => Tests => Autocorrelation

� GRETL: OLS output => Graphs => Residual correlogram
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Asymptotic Tests, cont’d 

� GRETL: Ljung-Box test is conducted by

� OLS output => Tests => Autocorrelation (shows Ljung-Box statistic)

� OLS output => Graphs => Residual correlogram (shows for lag = 1: 
Ljung-Box statistic and p-value)

Remarks

� If the model of interest contains lagged values of y the auxiliary 
regression should also include all explanatory variables (just to 
make sure the distribution of the test is correct) 

� If heteroskedasticity is suspected, White standard errors may be 
used in the auxiliary regression
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Demand for Ice Cream, cont’d
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OLS estimated demand function: Output from GRETL

Dependent variable : CONS

coefficient   std. error   t-ratio    p-value
-------------------------------------------------------------

const       0.197315     0.270216       0.7302   0.4718
INCOME 0.00330776   0.00117142     2.824    0.0090 ***
PRICE -1.04441      0.834357      -1.252    0.2218
TEMP 0.00345843   0.000445547    7.762    3.10e-08 ***

Mean dependent var 0.359433  S.D. dependent var 0,065791
Sum squared resid 0,035273   S.E. of regression   0,036833
R- squared               0,718994   Adjusted R-squared 0,686570
F(2, 129)               22,17489   P-value (F)               2,45e-07
Log-likelihood          58,61944   Akaike criterion       -109,2389
Schwarz criterion      -103,6341   Hannan-Quinn -107,4459
rho                     0,400633   Durbin-Watson 1,021170
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Demand for Ice Cream, cont’d

Test for autocorrelation of error terms
� H0: ρ = 0, H1: ρ ≠ 0
� dw = 1.02 < 1.21 = dL for T = 30, K = 4; p = 0.0003 (in GRETL: 

0.0003025); reject H0

� GRETL also shows the autocorrelation coefficient: r = 0.401
Plot of actual (o) and fitted (polygon) values
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Demand for Ice Cream, cont’d

Auxiliary regression εt = ρεt-1 + vt: OLS estimation gives

et = 0.401 et-1

with s.e.(r) = 0.177, R2 =  0.154

Test of H0: ρ = 0 against H1: ρ > 0

1. Box-Pierce test:
� t ≈ √(30) 0.401 = 2.196, p-value: 0.018 

� t-statistic: 2.258, p-value: 0.016

2. Breusch-Godfrey test 
� LMF = (T-1) R2 = 4.47, p-value: 0.035

Both reject the null hypothesis
GRETL: OLS Output =>Tests => Autocorrelation: similar p-value for 

Box-Pierce (0.040) and Breusch-Godfrey test (0.053)
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Inference under 
Autocorrelation
Covariance matrix of b:

V{b} = σ2 (X'X)-1 X'ΨX (X'X)-1

Use of σ2 (X'X)-1 (the standard output of econometric software) 
instead of V{b} for inference on β may be misleading 

Remedies

� Use of correct variances and standard errors

� Transformation of the model so that the error terms are 
uncorrelated
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HAC-estimator for V{b}

Substitution of Ψ in 

V{b} = σ2 (X'X)-1 X'ΨX (X'X)-1

by a suitable estimator

� Newey-West: substitution of Sx = σ2(X'ΨX)/T = (ΣtΣsσtsxtxs‘)/T by

with wj = j/(p+1); p, the truncation lag, is to be chosen suitably

� The estimator 

T (X'X)-1 Ŝx (X'X)-1

for V{b} is called heteroskedasticity and autocorrelation 
consistent (HAC) estimator, the corresponding standard errors 
are the HAC s.e.
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Demand for Ice Cream, cont’d

Demand for  ice cream, measured by cons, explained by price, 
income, and temp, OLS and HAC standard errors

Nov 25, 2016 Hackl,  Econometrics, Lecture 4 91

coeff s.e.

OLS HAC

constant 0.197 0.270 0.288

price -1.044 0.834 0.876

income*10-3 3.308 1.171 1.184

temp*10-3 3.458 0.446 0.411



Cochrane-Orcutt Estimator

GLS estimator  

� With transformed variables yt
* =  yt – ρyt-1 and xt

* = xt – ρxt-1, also 
called “quasi-differences”, the model yt = xt‘β + εt with εt = ρεt-1 + 
vt can be written as

yt – ρyt-1 = yt
* = (xt – ρxt-1)‘β + vt = xt

*‘β + vt (A)

� The model in quasi-differences has error terms which fulfill the 
Gauss-Markov assumptions

� Given observations for t = 1, …, T, model (A) is defined for t = 2, 
…, T

� Estimation of ρ using, e.g., the auxiliary regression εt = ρεt-1 + vt

gives the estimate r; substitution of r in (A) for ρ results in FGLS 
estimators for β

� The FGLS estimator is called Cochrane-Orcutt estimator
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Cochrane-Orcutt Estimation

In following steps

1. OLS estimation of b for β from yt = xt‘β + εt, t = 1, …, T

2. Estimation of r for ρ from the auxiliary regression εt = ρεt-1 + vt

3. Calculation of quasi-differences yt
* =  yt – ryt-1 and xt

* = xt – rxt-1

4. OLS estimation of β from 

yt
* = xt

*‘β + vt, t = 2, …, T

resulting in the Cochrane-Orcutt estimators 

Steps 2. to 4. can be repeated in order to improve the estimate r : 
iterated Cochrane-Orcutt estimator

GRETL provides the iterated Cochrane-Orcutt estimator: 

Model => Time series => Autoregressive estimation
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Demand for Ice Cream, cont’d

Iterated Cochrane-Orcutt estimator

Durbin-Watson test: dw = 1.55; dL=1.21 < dw < 1.65 = dU
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Demand for Ice Cream, cont’d

Demand for ice cream, measured by cons, explained by price, 
income, and temp, OLS and HAC standard errors (se), and 
Cochrane-Orcutt estimates
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OLS-estimation
Cochrane-

Orcutt

coeff se HAC coeff se

constant 0.197 0.270 0.288 0.157 0.300

price -1.044 0.834 0.881 -0.892 0.830

income 3.308 1.171 1.151 3.203 1.546

temp 3.458 0.446 0.449 3.558 0.555



Demand for Ice Cream, cont’d

Model extended by temp-1

Durbin-Watson  test: dw = 1.58; dL=1.21 < dw < 1.65 = dU
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Demand for Ice Cream, cont’d

Demand for ice cream, measured by cons, explained by price, 
income, and temp, OLS and HAC standard errors, Cochrane-
Orcutt estimates, and OLS estimates for the extended model

Adding temp-1 improves the adj R2 from 0.687 to 0.800
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OLS
Cochrane-

Orcutt
OLS

coeff HAC coeff se coeff se

constant 0.197 0.288 0.157 0.300 0.189 0.232

price -1.044 0.881 -0.892 0.830 -0.838 0.688

income 3.308 1.151 3.203 1.546 2.867 1.053

temp 3.458 0.449 3.558 0.555 5.332 0.670

temp-1 -2.204 0.731



General Autocorrelation 
Structures
Generalization of model

yt = xt‘β + εt

with εt = ρεt-1 + vt

Alternative dependence structures of error terms 

� Autocorrelation of higher order than 1

� Moving average pattern
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Higher Order Autocorrelation

For quarterly data, error terms may develop according to 

εt = γεt-4 + vt

or - more generally - to 

εt = γ1εt-1 + … + γ4εt-4 + vt

� εt follows an AR(4) process, an autoregressive process of order 4

� More complex structures of correlations between variables with 
autocorrelation of order 4 are possible than with that of order 1
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Moving Average Processes

Moving average process  of order 1, MA(1) process

εt = vt + αvt-1

� εt is correlated with εt-1, but not with εt-2, εt-3, …

� Generalizations to higher orders 
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Remedies against 
Autocorrelation
� Change functional form, e.g., use log(y) instead of y

� Extend the model by including additional explanatory variables, 
e.g., seasonal dummies, or additional lags

� Use HAC standard errors for the OLS estimators

� Reformulate the model in quasi-differences (FGLS) or in 
differences 
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Your Homework

1. Use the data set “labour2” of Verbeek for the following analyses: 
a) Estimate (OLS) the model for log(labor) with regressors log(output)

and log(wage); generate a display of the residuals which may 
indicate heteroskedasticity of the error term.

b) Compare (i) the OLS and (ii) the White standard errors with HC0 of 
the estimated coefficients.

c) Perform (i) the Breusch-Pagan test with h(zi‘α) = exp{zi‘α} and (ii) 
the White test without interactions; explain the tests and compare 
the results; use zi = (capitali, outputi, wagei)’.

d) Estimate (i) the model of a), using FGLS and weights obtained in the 
auxiliary regression of the Breusch-Pagan test in c); (ii) comment 
the estimates of the coefficients, the standard errors, and the R2 of 
this model and those of b)(i) and c)(ii).
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Your Homework, cont’d

2. Use the data set “icecream” of Verbeek for the following analyses: 
a) Estimate the model where cons is explained by income and temp; 

show a diagramme of the residuals which may indicate autocorrelation 
of the error terms.

b) Use the Durbin-Watson and the Box-Pierce test against 
autocorrelation; state suitably H0 and H1.

c) Compare (i) the OLS and (ii) the HAC standard errors of the estimated 
coefficients.

d) Repeat a), using (i) the iterative Cochrane-Orcutt estimation and (ii) 
OLS estimation of the model in differences; compare and interpret the 
result. 

3. For the Durbin-Watson test: (a) show that dw ≈ 2 – 2r; (b) can you 
agree with the statement “The Durbin-Watson test is a 
misspecification test”. 
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