Econometrics - Lecture 5

Endogeneity, Instru mental Variables, IV **Estimator**

Contents

- \mathcal{L}^{max} OLS Estimator Revisited
- \Box Cases of Endogenous Regressors
- $\overline{}$ Instrumental Variables (IV) Estimator: The Concept
- $\overline{\mathcal{A}}$ IV Estimator: The Method
- \mathcal{L}^{max} Calculation of the IV Estimator
- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ An Example
- **The GIV Estimator** \mathcal{L}^{max}
- Some Tests

OLS Estimator

Linear model for $y_{\rm t}$

*y*i ⁼ *^x*i'β ⁺ *^ε*i, *i* = 1, …, *N* (or *y* ⁼ *^X*^β ⁺ *ε*)

given observations x_{ik} , $k = 1, ..., K$, of the regressor variables, error term *ε*i

OLS estimator

$$
b = (\sum_{i} X_{i} X_{i})^{-1} \sum_{i} X_{i} y_{i} = (XX)^{-1} \times y
$$

From

$$
b = (\sum_{i} X_{i} X_{i}^{\prime})^{-1} \sum_{i} X_{i} y_{i} = (\sum_{i} X_{i} X_{i}^{\prime})^{-1} \sum_{i} X_{i} X_{i}^{\prime} \beta + (\sum_{i} X_{i} X_{i}^{\prime})^{-1} \sum_{i} X_{i} \varepsilon_{i}
$$

= $\beta + (\sum_{i} X_{i} X_{i}^{\prime})^{-1} \sum_{i} X_{i} \varepsilon_{i} = \beta + (X^{\prime}X)^{-1} X^{\prime} \varepsilon$

follows

$$
E{b} = (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i y_i = (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i x_i' \beta + (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i \varepsilon_i
$$

= $\beta + (\Sigma_i x_i x_i')^{-1} E{\Sigma_i x_i \varepsilon_i} = \beta + (X'X)^{-1} E{X' \varepsilon}$

OLS Estimator: Properties

- 1. OLS estimator *b* is unbiased if
	- $(A1) E{ε} = 0$
	- H **E**{ $\sum_i X_i \varepsilon_i$ } = E{ $X \varepsilon$ } = 0; is fulfilled if (A7) or a stronger assumption is true
		- \Box (A2) $\{x_i, i = 1, ..., N\}$ and $\{\varepsilon_i, i = 1, ..., N\}$ are independent; is the strong of assumption strongest assumption
		- \Box (A10) E{*ε*|*X*} = 0, i.e., *X* uninformative about E{*ε*_i} for all *i* (*ε* is \Box conditional mean independent of *X*); is implied by (A2)
		- \Box **□** (A8) x_i and ε_i are independent for all *i* (no contemporaneous dependence); is loss streps than (A2) and (A10) dependence); is less strong than (A2) and (A10)
		- **□** (A7) E{x_i ε_i} = 0 for all *i* (no contemporaneous correlation); is even less strong than (A8)

OLS Estimator: Properties, cont'd

- 2. OLS estimator *b* is consistent for β if
	- П **■** (A8) x_i and ε_i are independent for all *i*
	- H \blacksquare (A6) (1/N)Σ_i x_i x_i' has as limit (N→∞) a non-singular matrix Σ_{xx} (A8) can be substituted by (A7) [E{ x_i ε _i} = 0 for all *i*, no contemporaneous correlation]
- 3. OLS estimator *b* is asymptotically normally distributed if (A6), (A8) and
	- $$ are true;
	- H ■ for large *N*, *b* follows approximately the normal distribution $b \sim a \text{ N{β, σ²(Σ_i x_i x_i')⁻¹}$
	- Use White and Newey-West estimators for V{b} in case of $\mathcal{L}^{\mathcal{A}}$ heteroskedasticity and autocorrelation of error terms, respectively

Assumption $(A7)$: $E\{x_i \varepsilon_i\} = 0$ for all *i*

- Implication of (A7): for all *i*, each of the regressors is uncorrelated with the current error term, no contemporaneous correlation
- k. (A7) guaranties unbiasedness and consistency of the OLS estimator
- Stronger assumptions $-$ (A2), (A10), (A8) have same consequences
- In reality, (A7) is not always true: alternative estimation procedures are required for ascertaining consistency and unbiasedness

Examples of situations with E{*^x*i *^ε*i} ≠ 0 (see the following slides):

- \Box Regressors with measurement errors
- $\overline{}$ Regression on the lagged dependent variable with autocorrelated error terms (dynamic regression)
- **DEDEDIAC Unobserved heterogeneity**
- \Box Endogeneity of regressors, simultaneity

Contents

$\overline{\mathcal{A}}$ OLS Estimator Revisited

- $\overline{\mathbb{R}^n}$ Cases of Endogenous Regressors
- $\overline{}$ Instrumental Variables (IV) Estimator: The Concept
- $\overline{\mathcal{A}}$ IV Estimator: The Method
- \mathcal{L}^{max} Calculation of the IV Estimator
- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ An Example
- **The GIV Estimator** \mathcal{L}^{max}
- Some Tests

Regressor with Measurement Error

 $y_i = \beta_1 + \beta_2 w_i + v_i$

with white noise v_i , $V{v_i} = \sigma_v^2$, and $E{v_i|w_i} = 0$; conditional expectation of y_i given w_i : E{ $y_i|w_i$ } = β₁ + β₂ w_i

Example: *y*i: household savings , *^w*i: household income Measurement process: reported household income *^x*i may deviate from household income *w*i

 $x_i = w_i + u_i$

where u_i is (i) white noise with $V\{u_i\} = \sigma_u^2$, (ii) independent of v_i , and (iii) independent of *^w*i

The model to be analyzed is

 $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ with $\varepsilon_i = v_i - \beta_2 u_i$

- E{*x*_i *ε*_i} = β₂ $\sigma_u^2 \neq 0$: requirement for consistency and
uphiasodness of OLS estimates is violated unbiasedness of OLS estimates is violated
- **■** *x*_i and *ε*_i are negatively (positively) correlated if $β_2 > 0 (β_2 < 0)$ \Box

Consequences of Measurement Errors

Inconsistency of $b_2 = s_{xy}/s_x^2$ \mathbb{R}^3 plim $b_2 = \beta_2 + ($ plim $s_{xε})/($ plim $s_x^2) = \beta_2 + \text{E}\{x_i \; \varepsilon_i\} / \text{V}\{x_i\}$ $= \beta_2 \left(1 - \frac{\sigma_u^2}{\sigma_w^2 + \sigma_u^2} \right)$

β $_2$ is underestimated

■ Inconsistency of
$$
b_1 = \overline{y} - b_2 \overline{x}
$$

plim (*b*₁ - β₁) = - plim (*b*₂ - β₂) E{*x*_i}

given $E\{x_i\}$ > 0 for the reported income: β_1 is overestimated; inconsistency "carries over"

 $\overline{\mathbb{R}^n}$ The model does not correspond to the conditional expectation of *y*ⁱ given *^x*i:

 $E{y_i|x_i} = \beta_1 + \beta_2 x_i - \beta_2 E{u_i|x_i} \neq \beta_1 + \beta_2 x_i$ as $E{u_i|x_i} ≠ 0$

Dynamic Regression

```
Allows modelling dynamic effects of changes of x on y:
                y<sub>t</sub> = β<sub>1</sub> + β<sub>2</sub>x<sub>t</sub> + β<sub>3</sub>y<sub>t-1</sub> + ε<sub>t</sub>
      with \varepsilon_{\rm t} following the AR(1) model
                \varepsilon_{t} = \rho \varepsilon_{t-1} + v_{t}vt white noise with σv²
From y_t = \beta_1 + \beta_2 x_t + \beta_3 y_{t-1} + \rho \varepsilon_{t-1} + v_t follows
                E{y_{t-1}ε_t} = β_3 E{y_{t-2}ε_t} + ρ^2 σ_v^2 (1 - ρ^2)^{-1}i.e., y_{t\text{-}1} is correlated with \varepsilon_{\text{t}}Remember: E{\epsilon_{\rm t},\,\epsilon_{\rm t\text{-s}} } = \rho^{\rm s}\,\sigma_{\rm v}^{\phantom{\rm s}} (1-\rho^{\rm 2})^{\rm -1} for s > 0
OLS estimators not consistent if \rho \neq 0The model does not correspond to the conditional expectation of y_{\rm t}given the regressors x_{\rm t} and y_{\rm t\text{-}1}:
       E{y_t|x_t, y_{t-1}} = \beta_1 + \beta_2 x_t + \beta_3 y_{t-1} + E{\epsilon_t |x_t, y_{t-1}}
```
Omission of Relevant Regressors

Two models:

$$
y_{i} = x_{i}^{'}\beta + z_{i}^{'}\gamma + \varepsilon_{i}
$$
 (A)

$$
y_{i} = x_{i}^{'}\beta + v_{i}
$$
 (B)

- $\mathcal{L}(\mathcal{A})$ True model (A), fitted model (B)
- k. ■ OLS estimates b_{B} of β from (B)

$$
b_B = \beta + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i z_i' \gamma + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i \varepsilon_i
$$

and variable bias: $E[(\sum_i x_i)^{-1}] \sum_i x_i z_i' \gamma + E[(\sum_i x_i)^{-1}] \gamma \gamma$

- k. \blacksquare Omitted variable bias: E{(Σ_i *x*_i *x*_i')⁻¹ Σ_i *x*_i z_i'}γ = E{(*X'X*)⁻¹ *X'Z*}γ
- \Box No bias if (a) $y = 0$, i.e., model (A) is correct, or if (b) variables in x_i and *z*i are uncorrelated (orthogonal)
- OLS estimators are biased, if relevant regressors are omitted that are correlated with regressors in *^x*i

Unobserved Heterogeneity

Example: Wage equation with y_i : log wage, x_{1i} : personal characteristics, *x*_{2i}: years of schooling, *u*_i: abilities (unobservable)

 $y_i = x_{1i}$ 'β₁ + x_{2i} β₂ + *u*_i γ + *v*_i

 $\overline{}$ Model for analysis (unobserved *^u*ⁱ covered in error term)

$$
y_i = x_i' \beta + \varepsilon_i
$$

with
$$
x_i = (x_{1i}, x_{2i})
$$
, $\beta = (\beta_1, \beta_2)$, $\varepsilon_i = u_i v + v_i$

 \Box Given $E\{x_i | v_i\} = 0$

plim $b = \beta + \sum_{xx}^{-1} E\{x_i u_i\}$ *γ*

 OLS estimators *^b* are not consistent if *x*ⁱ and *u*ⁱ are correlated (*γ* ≠ 0), e.g., if higher abilities induce more years at school: estimator for β_2 might be overestimated, hence effects of years at school etc. are overestimated: "ability bias"

Unobserved heterogeneity: observational units differ in other aspects than ones that are observable

Endogenous Regressors

Regressors in *X* which are correlated with error term, E{*X*'*ε*} ≠ 0, are called endogenous

- OLS estimators *^b* = β + (*X*'*X*)-1*X*'*^ε*
	- E{*b*} ≠ β, *^b* is biased; bias E{(*X*'*X*)-1*X*'*ε*} difficult to assess
	- \Box plim *b* = β + Σ_{xx}⁻¹q with *q* = plim(*N*⁻¹*X*'^{*ε*})
		- For $q = 0$ (regressors and error term asymptotically uncorrelated), OLS estimators *b* are consistent also in case of endogenous regressors
		- For *^q* ≠ 0 (error term and at least one regressor asymptotically correlated): plim *^b* ≠ β, the OLS estimators *^b* are not consistent
- k. Endogeneity bias
- k. Relevant for many economic applications

 Exogenous regressors: with error term uncorrelated, all regressors that are not endogenous

Consumption Function

AWM data base, 1970:1-2003:4■ C: private consumption (PCR), growth rate p.y. Y: disposable income of households (PYR), growth rate p.y. $C_t = \beta_1 + \beta_2 Y_t + \varepsilon_t$ (A) *β*₂: marginal propensity to consume, $0 < β₂ < 1$ OLS estimates: *Ĉ*t = 0.011 + 0.718 *Y*^t with *t* = 15.55, R² = 0.65, *DW* = 0.50 *I*_t: per capita investment (exogenous, $E\{I_t \epsilon_t\} = 0$) $Y_t = C_t + I_t$ (B) Both *Y*_t and *C*_t are endogenous: $E\{C_i \varepsilon_i\} = E\{Y_i \varepsilon_i\} = \sigma_s^2(1 - \beta_2)^{-1}$ The regressor Y_t has an impact on C_t ; at the same time C_t has an impact on Y_t

Simultaneous Equation Models

Illustrated by the preceding consumption function:

$$
C_t = \beta_1 + \beta_2 Y_t + \varepsilon_t \qquad (A)
$$

$$
Y_t = C_t + I_t \qquad (B)
$$

Variables Y_t and C_t are simultaneously determined by equations (A) and (B)

- **Equations (A) and (B) are the structural equations or the structural** ϵ form of the simultaneous equation model that describes both Y_t and C_t
- The coefficients $β_1$ and $β_2$ are behavioural parameters
- \Box Reduced form of the model: one equation for each of the endogenous variables C_t and Y_t , with only the exogenous variable *I*t as regressor

The OLS estimators are biased and not consistent

Consumption Function, cont'd

 \Box Reduced form of the model:

$$
C_{t} = \frac{\beta_{1}}{1 - \beta_{2}} + \frac{\beta_{2}}{1 - \beta_{2}} I_{t} + \frac{1}{1 - \beta_{2}} \varepsilon_{t}
$$

$$
Y_{t} = \frac{\beta_{1}}{1 - \beta_{2}} + \frac{1}{1 - \beta_{2}} I_{t} + \frac{1}{1 - \beta_{2}} \varepsilon_{t}
$$

- \Box ■ OLS estimator b_2 from (A) is inconsistent; E{ Y_t ε_t } ≠ 0 plim $b_2 = \beta_2 + \text{Cov}\{Y_t \varepsilon_t\} / V\{Y_t\} = \beta_2 + (1 - \beta_2) \sigma_{\varepsilon}^2 (V\{I_t\} + \sigma_{\varepsilon}^2)^{-1}$ for 0 < β_2 < 1, b_2 overestimates β_2
- M. The OLS estimator b_1 is also inconsistent

Contents

- **The Co** OLS Estimator Revisited
- $\overline{\mathcal{A}}$ Cases of Endogenous Regressors
- $\overline{}$ Instrumental Variables (IV) Estimator: The Concept
- $\overline{\mathcal{A}}$ IV Estimator: The Method
- \mathcal{L}^{max} Calculation of the IV Estimator
- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ An Example
- **The GIV Estimator** \mathcal{L}^{max}
- Some Tests

An Alternative Estimator

Model

*y*_i = β₁ + β₂ *x*_i + ε_i

with E{ *^ε*i *^x*ⁱ } ≠ 0, i.e., endogenous regressor *^x*i : OLS estimators are biased and inconsistent

Instrumental variable *z*i satisfying

- 1.Exogeneity: $E\{\varepsilon_i z_i\} = 0$: is uncorrelated with error term
- Relevance: $Cov\{x_i, z_i\} \neq 0$: is correlated with endogenous *requisedence* 2.regressor

Transformation of model equation

$$
Cov{yi, zi} = \beta2 Cov{xi, zi} + Cov{εi, zi}
$$

gives

$$
\beta_2 = \frac{Cov\{y_i, z_i\}}{Cov\{x_i, z_i\}}
$$

IV Estimator for β_2

Substitution of sample moments for covariances gives the instrumental variables (IV) estimator

$$
\hat{\beta}_{2,IV} = \frac{\sum_{i} (z_i - \overline{z})(y_i - \overline{y})}{\sum_{i} (z_i - \overline{z})(x_i - \overline{x})}
$$

- \mathbb{R}^n **Consistent estimator for** β_2 **given that the instrumental variable** z_i **is** valid , i.e., it is
	- □ Exogenous, i.e. E{ε_i z_i} = 0
	- □ Relevant, i.e. Cov{*x*_i*, z*_i} ≠ 0
- $\overline{\mathbb{R}^n}$ Typically, nothing can be said about the bias of an IV estimator; small sample properties are unknown
- **Coincides with OLS estimator for** $z_i = x_i$ $\overline{\mathcal{A}}$

Consumption Function, cont'd

Alternative model: $C_t = \beta_1 + \beta_2 Y_{t-1} + \varepsilon_t$

- M. *Y*_{t-1} and ε _t are certainly uncorrelated; avoids risk of inconsistency due to correlated Y_t and ε_t
- \Box *Y*_{t-1} is certainly highly correlated with Y_t , is almost as good as regressor as Y_t

Fitted model:

```
Ĉ = 0.012 + 0.660 Y-1
with t = 12.86, R2 = 0.56, DW = 0.79 (instead of 
     Ĉ = 0.011 + 0.718 Y
with t = 15.55, R2 = 0.65, DW = 0.50)
```
Deterioration of *t*-statistic and R² are price for improvement of the estimator

IV Estimator: The Concept

Alternative to OLS estimator

k. Avoids inconsistency in case of endogenous regressorsIdea of the IV estimator:

- Replace regressors which are correlated with error terms by regressors which are
	- uncorrelated with the error terms
	- (highly) correlated with the regressors that are to be replaced

and use OLS estimation

The hope is that the IV estimator is consistent (and less biased than the OLS estimator)

Price: IV estimator is less efficient; deteriorated model fit as measured by, e.g., *t*-statistic, R²

Contents

- **The Co** OLS Estimator Revisited
- $\overline{\mathcal{A}}$ Cases of Endogenous Regressors
- $\overline{\mathcal{A}}$ Instrumental Variables (IV) Estimator: The Concept
- $\overline{\mathcal{A}}$ IV Estimator: The Method
- \mathcal{L}^{max} Calculation of the IV Estimator
- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ An Example
- **The GIV Estimator** \mathcal{L}^{max}
- Some Tests

IV Estimator: General Case

The model is

*y*i ⁼*x*i'β ⁺*ε*ⁱ with $V\{\varepsilon_i\} = \sigma_{\varepsilon}^2$ and E{*^ε*i *^x*i} ≠ 0

 \mathbb{R}^3 at least one component of x_i is correlated with the error term The vector of instruments *z*i (with the same dimension as *^x*i) fulfils

$$
E\{\varepsilon_i z_i\} = 0
$$

Cov{ x_i , z_i } $\neq 0$

IV estimator based on the instruments *z*i

$$
\hat{\beta}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \left(\sum_{i} z_{i} y_{i}\right)
$$

IV Estimator: Distribution

The (asymptotic) covariance matrix of the IV estimator is given by

$$
V\left\{\hat{\beta}_{IV}\right\} = \sigma^2 \left[\left(\sum_i x_i z_i' \right) \left(\sum_i z_i z_i' \right)^{-1} \left(\sum_i z_i x_i' \right) \right]^{-1}
$$

In the estimated covariance matrix $V\{\beta_{\scriptscriptstyle{IV}}\}$, $\sigma^{\scriptscriptstyle{2}}$ is substituted by $\hat{V} \{ \hat{\beta}_{IV} \},$

$$
\hat{\sigma}^2 = \frac{1}{N} \sum_{i} \left(y_i - x_i' \hat{\beta}_{IV} \right)^2
$$
\nwhich is based on the IV residuals

IV $y_i - x_i$ ['] β_i

The asymptotic distribution of IV estimators, given IID(0, σ_{ϵ}^2) error terms, leads to the approximate distribution

ˆ

with the estimated covariance matrix $\hat{V}\{\hat{\pmb{\beta}}_{\scriptscriptstyle{IV}}\}$ ($N\Big(\boldsymbol{\beta},\hat{V}\{\hat{\boldsymbol{\beta}}_{IV}\}\Big)$

Derivation of the IV Estimator

The model is

*y*_i = *x*_i'β + *ε*_t = *x*_{0i}'β₀ + β_K*x*_{Ki} + *ε*_i with $x_{0i} = (x_{1i}, \ldots, x_{K-1,i})'$ containing the first K-1 components of x_i , and E{ $ε_i x_{0i}$ } = 0

K-the component is endogenous: Ε{ $\epsilon_{\sf i}$ ${\sf x}_{\sf Ki}$ } ≠ 0

The instrumental variable *z_{Ki} fulfils*

 $E\{\varepsilon_{\sf i}\; z_{\sf K i}\}\;$ = 0

Moment conditions: *K* conditions to be satisfied by the coefficients, the *K*-th condition with z_{Ki} instead of x_{Ki} :

$$
E\{\varepsilon_i x_{0i}\} = E\{(y_i - x_{0i} \beta_0 - \beta_k x_{ki}) x_{0i}\} = 0 \quad \text{(K-1 conditions)}
$$
\n
$$
E\{\varepsilon_i z_i\} = E\{(y_i - x_{0i} \beta_0 - \beta_k x_{ki}) z_{ki}\} = 0
$$

Number of conditions – and of corresponding linear equations – equals the number of coefficients to be estimated

Derivation of the IV Estimator, cont'd

The system of linear equations for the *K* coefficients β to be estimated can be uniquely solved for the coefficients β : the coefficients β are said "to be identified"

To derive the IV estimators from the moment conditions, the expectations are replaced by sample averages

$$
\frac{1}{N} \sum_{i} (y_i - x_i' \hat{\beta}_{IV}) x_{ki} = 0, k = 1, ..., K - 1
$$

$$
\frac{1}{N}\sum_{i}\left(y_{i}-x_{i}^{\prime}\hat{\beta}_{IV}\right)z_{Ki}=0
$$

The solution of the linear equation system – with $z_i' = (x_{0i}^{\prime}, z_{Ki}) - is$

$$
\hat{\beta}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \sum_{i} z_{i} y_{i}
$$

Identification requires that the *K*x*K* matrix $\Sigma_i z_i x_i'$ is finite and invertible; instrument $z_{\rm Ki}$ is relevant when this is fulfilled

Contents

- **The Co** OLS Estimator Revisited
- $\overline{\mathcal{A}}$ Cases of Endogenous Regressors
- $\overline{\mathcal{A}}$ Instrumental Variables (IV) Estimator: The Concept
- $\overline{\mathcal{A}}$ IV Estimator: The Method
- \mathcal{L}^{max} Calculation of the IV Estimator
- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ An Example
- **The GIV Estimator** \mathcal{L}^{max}
- Some Tests

Calculation of IV Estimators

The model in matrix notation

$$
y = X\beta + \varepsilon
$$

The IV estimator

$$
\hat{\beta}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \sum_{i} z_{i} y_{i} = (Z'X)^{-1} Z' y
$$
\nz obtained from x by substitution is

with *z*i obtained from *x*ⁱ by substituting instrumental variable(s) for all endogenous regressors

Calculation in two steps:

- 1. Reduced form: Regression of the explanatory variables $x_1, \, ... , \, x_{\mathsf{K}}$ – including the endogenous ones – on the columns of *Z*: fitted values $\hat{X} = Z(Z'Z)^{-1}Z'X$
- 2. Regression of *y* on the fitted explanatory variables:

$$
\hat{\beta}_{IV} = (\hat{X}\hat{X})^{-1}\hat{X}\hat{y}
$$

Calculation of IV Estimators: Remarks

- The *K*x*K* matrix *Z*'*X* = $Σ_i z_ix_i[']$ is required to be finite and invertible \Box
	- From $(\hat{X}\hat{X})^{-1}\hat{X}\hat{y} = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'\hat{y}$

 $^{1}Z^{\prime}Z(X^{\prime}Z)^{-1}X^{\prime}Z(Z^{\prime}Z)^{-1}Z^{\prime}y=(Z^{\prime}X)^{-1}Z^{\prime}y=\hat{\beta}$ $(X^2Y)^{-1}X^2Y = (X^2Z(Z^2)^{-1}Z^2X)^{-1}X^2Z(Z^2Z)^{-1}Z^2Y$
= $(Z^2X)^{-1}Z^2Z(X^2Z)^{-1}X^2Z(Z^2Z)^{-1}Z^2Y = (Z^2X)^{-1}Z^2Y = \hat{\beta}_W$

it is obvious that the estimator obtained in the second step is the IV estimator

- $\overline{\mathbb{R}^n}$ However, the estimator obtained in the second step is more general; see below
- In **GRETL**: The sequence "Model > Instrumental variables > $\overline{}$ Two-Stage Least Squares…" leads to the specification window with boxes (i) for the regressors and (ii) for the instruments

k.

Choice of Instrumental Variables

Instrumental variable are required to be

- **EXOGEROUS, i.e., uncorrelated with the error terms** \Box
- **relevant, i.e., correlated with the endogenous regressors** k. **Instruments**
- **nd must be based on subject matter arguments, e.g., arguments** \Box from economic theory
- **should be explained and motivated**
- **nata must show a significant effect in explaining an endogenous** \Box regressor
- k. Choice of instruments often not easy

Regression of endogenous variables on instruments

- k. Best linear approximation of endogenous variables
- k. Economic interpretation not of importance and interest

Contents

- **The Co** OLS Estimator Revisited
- $\overline{\mathcal{A}}$ Cases of Endogenous Regressors
- $\overline{\mathcal{A}}$ Instrumental Variables (IV) Estimator: The Concept
- $\overline{\mathcal{A}}$ IV Estimator: The Method
- $\overline{\mathcal{A}}$ Calculation of the IV Estimator
- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ An Example
- **The GIV Estimator** \mathcal{L}^{max}
- Some Tests

Returns to Schooling: Causality?

Human capital earnings function:

*w*_i = β₁ + β₂S_i + β₃E_i + β₄E_i² + ε_i

with *w*i: log of individual earnings, *S*i: years of schooling, *E*i: years of experience (*E*i ⁼*age*ⁱ – *^S*ⁱ – 6)

Empirically, more education implies higher income

Question: Is this effect causal?

- **■** If yes, one year more at school increases wage by β₂ (Theory A) \Box
- \Box Alternatively, personal abilities of an individual causes higher income and also more years at school; more years at school do not necessarily increase wage (Theory B)

Issue of substantial attention in literature

Returns to Schooling: Endogenous Regressors

 Wage equation: besides *S*i and *E*ⁱ, additional explanatory variables like gender, regional, racial dummies, family backgroundModel for analysis:

*w*_i = β₁ + z_i'γ + β₂S_i + β₃E_i + β₄E_i² + ε_i

*^z*i: observable variables besides *E*ⁱ, *S*ⁱ

- z_i is assumed to be exogenous, i.e., E{ z_i ε_i} = 0
- S_i may be endogenous, i.e., E{*S*_i ε_i} ≠ 0
	- □ Ability bias: unobservable factors like intelligence, family background, etc. enable to more schooling and higher earnings
	- □ Measurement error in measuring schooling
	- □ Etc.
- \Box With S_i , also $E_i = age_i - S_i - 6$ and E_i^2 are endogenous
- k. OLS estimators may be inconsistent

Returns to Schooling: Data

- \Box Verbeek's data set "schooling"
- \Box National Longitudinal Survey of Young Men (Card, 1995)
- M. Data from 3010 males, survey 1976
- **Individual characteristics, incl. experience, race, region, family** \Box background, etc.
- M. Human capital earnings or wage function

 $log(wage_i) = β_1 + β_2 ed_i + β_3 exp_i + β_3 exp_i^2 + ε_i$

with ed_i : years of schooling (S_i) , exp_i : years of experience (E_i)

- M. Variables: *wage76* (wage in 1976, raw, cents p.h.), *ed76* (years at school in 1976), *exp76* (experience in 1976), *exp762* (*exp76*squared)
- M. Further explanatory variables: *black*: dummy for afro-american, *smsa*: dummy for living in metropolitan area, *south*: dummy for living in the south

OLS Estimation

OLS estimated wage function

Model 2: OLS, using observations 1-3010Dependent variable: l_WAGE76

Instruments for S_i , E_i , E_i^2

Potential instrumental variables

- П Factors which affect schooling but are uncorrelated with error terms, in particular with unobserved abilities that are determining wage
- For years of schooling (S_i) \Box
	- □ Costs of schooling, e.g., distance to school (*lived near college*), number of siblings
	- □ Parents' education
- M. ■ For years of experience (E_i , E_i^2): *age* is natural candidate

Step 1 of IV Estimation

Reduced form for *schooling*(*ed76*), gives predicted values *ed76_h*,

Model 3: OLS, using observations 1-3010Dependent variable: ED76

Step 2 of IV Estimation

Wage equation, estimated by IV with instruments *age*, *age*2, and *nearc4a*

Model 4: OLS, using observations 1-3010Dependent variable: l_WAGE76

Returns to Schooling: Summary of Estimates

Estimated regression coefficients and *t*-statistics

Some Comments

Instrumental variables (*age*, *age*², *nearc4a*)

- П are relevant, i.e., have explanatory power for *ed76*, *exp76*, *exp76*²
- \Box Whether they are exogenous, i.e., uncorrelated with the error terms, is not answered
- M. Test for exogeneity of regressors: Wu-Hausman test

Estimates of *ed76-*coefficient:

- \Box IV estimate: 0.16 (0.13), i.e., 16% higher wage for one additional year of schooling; more than the double of the OLS estimate (0.07); not in line with "ability bias" argument!
- \Box s.e. of IV estimate (0.04) much higher than s.e. of OLS estimate (0.004)
- M. Loss of efficiency especially in case of weak instruments: $R²$ of model for *ed76*: 0.12; Corr{*ed76*, *ed76*_*h*} = 0.35

GRETL's TSLS Estimation

Wage equation, estimated by GRETL's TSLS

Model 8: TSLS, using observations 1-3010Dependent variable: l_WAGE76 Instrumented: ED76 EXP76 EXP762 Instruments: const AGE76 sq_AGE76 BLACK SMSA76 SOUTH76 NEARC4A

Returns to Schooling: Summary of Estimates

Estimated regression coefficients and *t*-statistics

Some Comments

Verbeek's IV estimates

- П Deviate from GRETL results
- No report of R^2 ; definition of R^2 does not apply to IV estimated M. models
- IV estimates of coefficients
- M. are smaller than the OLS estimates; exception is *ed76*
- have higher s.e. than OLS estimates, smaller *t*-statistics \Box

Questions

- **Robustness of IV estimates to changes in the specification** M.
- M. Exogeneity of instruments
- П Weak instruments

Contents

- **The Co** OLS Estimator Revisited
- $\overline{\mathcal{A}}$ Cases of Endogenous Regressors
- $\overline{\mathcal{A}}$ Instrumental Variables (IV) Estimator: The Concept
- $\overline{\mathcal{M}}$ IV Estimator: The Method
- Calculation of the IV Estimator
- $\mathcal{L}^{\mathcal{L}}$ An Example
- **The GIV Estimator** \mathcal{L}^{max}
- Some Tests

From OLS to IV Estimation

Linear model *y*_i = x_i'β + ε_i

H ■ OLS estimator: solution of the *K* normal equations

 $1/N \sum_i (y_i - x_i)^i b) x_i = 0$

П Corresponding moment conditions

 $E\{\varepsilon_i x_i\} = E\{(y_i - x_i)$ β) $x_i\} = 0$

 $\overline{\mathcal{A}}$ **IV** estimator given R instrumental variables z_i which may overlap with *^x*i: based on the *R* moment conditions

E{εi *^z*i} = E{(*y*i –*^x*i'β) *^z*i} = 0

IV estimator: solution of corresponding sample moment conditions

Number of Instruments

Moment conditions

 $E\{\varepsilon_i z_i\} = E\{(y_i - x_i)$ β) $z_i\} = 0$

one equation for each component of *z*i

*z*i possibly overlapping with *x*i

General case: *R* moment conditions

Substitution of expectations by sample averages gives *R* equations

$$
\frac{1}{N}\sum_{i}(y_i - x_i'\hat{\beta}_{IV})z_i = 0
$$

- *1. R = K*: one unique solution, the IV estimator; identified model ()1 $\hat{\beta}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \sum_{i} z_{i} y_{i} = (Z'X)^{-1}Z' y$ $=(\sum_{i} z_{i} x_{i}^{\prime}) \sum_{i} z_{i} y_{i} = (Z^{\dagger} X)^{-}$ $\sum_i z_i x'_i$ $\sum_i z_i y_i$
e number of solutio
- *2. R < K:* infinite number of solutions, not enough instruments for a unique solution; under-identified or not identified model

The GIV Estimator

- *3. R > K*: more instruments than necessary for identification; overidentified model
- For *R > K*, in general, no unique solution of all *R* sample moment conditions can be obtained; instead:
- $\overline{\mathcal{A}}$ the weighted quadratic form in the sample moments

$$
Q_N(\beta) = \left[\frac{1}{N} \sum_i (y_i - x'_i \beta) z_i\right]' W_N \left[\frac{1}{N} \sum_i (y_i - x'_i \beta) z_i\right]
$$

a *RxR* positive definite weiahtina matrix W₁, is minimized

with a R x R positive definite weighting matrix $W_{\sf N}$ is minimized gives the generalized instrumental variable (GIV) estimator

> $\hat{\beta}_W = (X'ZW_XZ'X)^{-1}X'ZW_XZ'y$ $=$ (X, I, W, I, X) $ZW_{\scriptscriptstyle N} Z'X)^{-1}X'ZW_{\scriptscriptstyle N}Z'y'$

H

The weighting matrix *W*N

*W*_N: positive definite, order *RxR*

- **Different weighting matrices result in different consistent GIV** H estimators with different covariance matrices
- \blacksquare Optimal choice for $W_{\sf N}$?
- For $R = K$, the matrix $Z'X$ is square and invertible; the IV H estimator is $(Z^{\prime}\!X)^{\text{-}1}Z^{\prime}y$ for any \mathcal{W}_{N}

GIV and TSLS Estimator

Optimal weighting matrix: W_{N}^{opt} = [1/N(Z'Z)]⁻¹; corresponds to the most efficient IV estimator

> $\hat{B}_{\text{av}} = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}$ $\beta_{IV} = (X'Z(Z'Z)^{-1}ZX)^{-1}X'Z(Z'Z)^{-1}$ $\beta_{IV} = (XZ(ZZ)^{-1}ZX)^{-1}XZ(ZZ)^{-1}Z^{\prime}y$ $Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'y'$

- If the error terms are heteroskedastic or autocorrelated, the optimal weighting matrix has to be adapted
- $\overline{\mathbb{R}^n}$ ■ Regression of each regressor, i.e., each column of *X*, on *Z* results in $\hat{X} = Z(Z'Z)^{-1}Z'X$ and $=$ $\sqrt{2}$ $\sqrt{2}$

 $\hat{\beta}_{IV} = (\hat{X}\hat{X})^{-1}\hat{X}\hat{y}$ $\beta_{IV} = (XX)^{-1} X' y$ $=$ $\begin{smallmatrix} \overline{a} & \overline{b} & \overline{c} & \overline{d} & \overline{d} & \overline{d} & \end{smallmatrix}$ $(X)^{-1}X^{\prime}_{\mathcal{Y}}$

- This explains why the GIV estimator is also called "two stage least squares" (TSLS) estimator:
	- 1.First step: regress each column of *X* on *Z*
	- 2.Second step: regress *y* on predictions of *X*

GIV Estimator and Properties

- H GIV estimator is consistent
- Π **The asymptotic distribution of the GIV estimator, given IID(0,** σ_{ϵ}^2 **)** error terms, leads to

()ˆˆ $N\left(\boldsymbol{\beta}, V\{\boldsymbol{\beta}_{I\!V}\}\right)$

which is used as approximate distribution in case of finite *N*

■ The (asymptotic) covariance matrix of the GIV estimator is given $\mathcal{O}(\mathcal{A})$ by 1

$$
V\left\{\hat{\beta}_{IV}\right\} = \sigma^2 \left[\left(\sum_i x_i z_i' \right) \left(\sum_i z_i z_i' \right)^{-1} \left(\sum_i z_i x_i' \right) \right]^{-1}
$$

2

 $\overline{}$ In the estimated covariance matrix, σ^2 is substituted by

$$
\hat{\sigma}^2 = \frac{1}{N} \sum_{i} \left(y_i - x_i' \hat{\beta}_{IV} \right)
$$

the estimate based on the IV residuals IV $y_i - x_i$ ['] β_i

ˆ

Contents

- **The Co** OLS Estimator Revisited
- $\overline{\mathcal{A}}$ Cases of Exndogenous Regressors
- $\mathcal{L}_{\mathcal{A}}$ Instrumental Variables (IV) Estimator: The Concept
- $\overline{\mathcal{A}}$ IV Estimator: The Method
- \mathcal{L}^{max} Calculation of the IV Estimator
- $\mathcal{L}_{\mathcal{A}}$ An Example
- The GIV Estimator $\overline{\mathcal{A}}$
- Some Tests

Some Tests

Questions of interest

- 1. Is it necessary to use IV estimation? To be tested the null hypothesis of exogeneity of suspected variables
- 2. If IV estimation is use: Are the chosen instruments valid?

For testing

- \Box exogeneity of regressors: Wu-Hausman test, also called Durbin-Wu-Hausman test, in GRETL: Hausman test
- \mathcal{L}^{max} relevance of potential instrumental variables: Sargan test or over-identifying restrictions test
- $\overline{\mathbb{R}^n}$ Weak instruments, i.e., only weak correlation between endogenous regressor and instrument: Cragg-Donald test

Wu-Hausman Test

For testing whether one or more regressors *^x*i are endogenous (correlated with the error term); null hypothesis $E{_{ε_i}}x_i$ } = 0

- If the null hypothesis
	- \Box is true, OLS estimates are more efficient than IV estimates
	- \Box is not true, OLS estimates are inefficient, the less efficient but consistent IV estimates to be used
- Based on the assumption that the instrumental variables are valid; i.e., given that E{ ϵ _i z _i} = 0, the null hypothesis E{ ϵ _i x _i} = 0 can be tested against the alternative E{ ε_{i} x_{i} } \neq 0

The idea of the test:

- k. Under the null hypothesis, both the OLS and IV estimator are consistent; they should differ by sampling errors only
- k. Rejection of the null hypothesis indicates inconsistency of the OLS estimator

Wu-Hausman Test, cont'd

Based on the differences between OLS- and IV-estimators; various versions of the Wu-Hausman test

Added variable interpretation of the Wu-Hausman test: checks whether the residuals v_{i} from the reduced form equation of potentially endogenous regressors contribute to explaining

*y*_i = *x*_{1i}'β₁ + *x*_{2i}'β₂ + *v*_i'γ + *ε*_i

- \Box $x₂$: potentially endogenous regressors
- k. *v*_i: residuals from reduced form equation for x_2 (predicted values for *x*₂: $x_2 + v$
- $$

For testing H_0 : use of

- k. *^t*-test, if γ has one component, *^x*² is just one regressor
- \Box *^F*-test, if more than 1 regressors are tested for exogeneity

Hausman Test Statistic

Based on the quadratic form of differences between OLS- estimators b_{LS} and IV-estimators b_{IV}

- $\blacksquare\,$ H₀: both b_LS and b_IV are consistent, b_LS is efficient relative to b_IV
- $\blacksquare\blacksquare\mathsf{H}_1: b_{\mathsf{IV}}$ is consistent, b_{LS} is inconsistent

Hausman test statistic

H = $(b_{\text{IV}} - b_{\text{LS}})'$ V $(b_{\text{IV}} - b_{\text{LS}})$

with estimated covariance matrix of $b_{IV} - b_{LS}$ follows the approximate Chi-square distribution with *J* d.f.

Wu-Hausman Test: Remarks

Remarks

- k. Test requires valid instruments
- k. Test has little power if instruments are weak or invalid
- In GRETL: Whenever the TSLS estimation is used, GRETL produces automatically the Hausman test statistic

Sargan Test

For testing whether the instruments are valid

The validity of the instruments *^z*i requires that all moment conditions are fulfilled; for the *R*-vector *z*i, the *^R* sums

$$
\frac{1}{N}\sum_{i}e_{i}z_{i}=0
$$

must be close to zero

Test statistic

$$
\xi = NQ_N(\hat{\beta}_W) = \left(\sum_i e_i z_i\right)' \left(\hat{\sigma}^2 \sum_i z_i z_i'\right)^{-1} \left(\sum_i e_i z_i\right)
$$

has, under the null hypothesis, an asymptotic Chi-squareddistribution with *R-K* df

Calculation of ξ: ξ = N R_e² using R_e² from the auxiliary regression of IV residuals $e_{\mathsf{i}} = y_{\mathsf{i}} - x_{\mathsf{i}}$ ' β_{IV} on the instruments z_{i}

Sargan Test: Remarks

Remarks

- k. In case of an identified model $(R = K)$, all R moment conditions are fulfilled, $ξ = 0$
- $\overline{}$ Over-identified model: *R > K*; the Sargan test is also called *overidentifying restrictions test*
- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Rejection implies: the joint validity of all moment conditions and hence of all instruments is not acceptable
- $\overline{\mathcal{A}}$ The Sargan test gives no indication of invalid instruments
- In GRETL: Whenever the TSLS estimation is used and *R > K*, GRETL produces automatically the Sargan test statistic

Cragg-Donald Test

Weak (only marginally valid) instruments, i.e., only weak correlation between endogenous regressor and instrument :

- k. Biased IV estimates
- \Box Inconsistent IV estimates
- k. Inappropriate large-sample approximations to the finite-sample distributions even for large *N*
- Definition of weak instruments: estimates are biased to an extent that is unacceptably large
- Null hypothesis: instruments are weak, i.e., can lead to an asymptotic relative bias greater than some value *b*

Cragg-Donald Test, cont'd

Test procedure

- k. Regression of the endogenous regressor on all instruments (internal and external)
- $\mathcal{L}^{\text{max}}_{\text{max}}$ *^F*-test of the null hypothesis that the coefficients of all external instruments are zero
- If *F*-statistic is less a not too large value, e.g., 10: consider the instruments as weak

Your Homework

1. Use the data set "schooling" of Verbeek for the following analyses based on the wage equation

> $log(wage76) = \beta_1 + \beta_2$ ₂ ed76 + β₃ exp76 + β₄ *exp762*

+ β_5 *black* + β_6 *momed* + β_7 *smsa smsa76* ⁺ ε

- a) Assuming that *ed76* is endogenous, estimate the reduced form for *ed76*, including external instruments *smsa66, sinmom14*, *south66*, and *mar76*; assess the validity of the potential instruments; what indicate the correlation coefficients?
- b) Estimate, by means of the GRETL Instrumental variables (Two-Stage Least Squares …) procedure, the wage equation, using the external instruments *black*, *momed*, *sinmom14*, *smsa66*, *south76*, *mar76,* and *age76*; interpret the results including the Hausman and the Sargan test.
- c) Compare the estimates for β_2 (i) from the model in b), (ii) from the model with instruments *black*, *momed*, *smsa66*, *south76*, *mar76,* and *age76*, and (iii) with the OLS estimates.

Your Homework, cont'd

2. The model for consumption and income consists of two equations:

$$
C_t = \beta_1 + \beta_2 Y_t + \varepsilon_t
$$

$$
Y_t = C_t + I_t
$$

a. Show that both $C_{\rm t}$ and $Y_{\rm t}$ are endogenous:

 $E\{C_i \varepsilon_i\} = E\{Y_i \varepsilon_i\} = \sigma_{\varepsilon}^2 (1 - \beta_2)$ $_{2})^{-1}$

b. Derive the reduced form of the model