Econometrics - Lecture 5

Endogeneity, Instrumental Variables, IV Estimator

Contents

- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- The GIV Estimator
- Some Tests

OLS Estimator

Linear model for y_t

 $y_i = x_i'\beta + \varepsilon_i, i = 1, ..., N$ (or $y = X\beta + \varepsilon$)

given observations x_{ik} , k = 1, ..., K, of the regressor variables, error term ε_i

OLS estimator

$$b = (\sum_{i} x_{i} x_{i}')^{-1} \sum_{i} x_{i} y_{i} = (X'X)^{-1} X' y$$

From

$$b = (\sum_{i} x_{i} x_{i}')^{-1} \sum_{i} x_{i} y_{i} = (\sum_{i} x_{i} x_{i}')^{-1} \sum_{i} x_{i} x_{i}' \beta + (\sum_{i} x_{i} x_{i}')^{-1} \sum_{i} x_{i} \varepsilon_{i}$$

= $\beta + (\sum_{i} x_{i} x_{i}')^{-1} \sum_{i} x_{i} \varepsilon_{i} = \beta + (X'X)^{-1} X'\varepsilon$

follows

$$E\{b\} = (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i y_i = (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i x_i' \beta + (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i \varepsilon_i$$

= $\beta + (\Sigma_i x_i x_i')^{-1} E\{\Sigma_i x_i \varepsilon_i\} = \beta + (X'X)^{-1} E\{X'\varepsilon\}$

OLS Estimator: Properties

- 1. OLS estimator *b* is unbiased if
 - (A1) $E\{\epsilon\} = 0$
 - $E{\Sigma_i x_i \epsilon_i} = E{X \epsilon} = 0$; is fulfilled if (A7) or a stronger assumption is true
 - (A2) { x_i , i = 1, ..., N} and { ε_i , i = 1, ..., N} are independent; is the strongest assumption
 - (A10) $E{\epsilon|X} = 0$, i.e., X uninformative about $E{\epsilon_i}$ for all *i* (ϵ is conditional mean independent of X); is implied by (A2)
 - (A8) x_i and ε_i are independent for all *i* (no contemporaneous dependence); is less strong than (A2) and (A10)
 - (A7) $E\{x_i \varepsilon_i\} = 0$ for all *i* (no contemporaneous correlation); is even less strong than (A8)

OLS Estimator: Properties, cont'd

- 2. OLS estimator *b* is consistent for β if
 - (A8) x_i and ε_i are independent for all *i*
 - (A6) (1/N)Σ_i x_i x_i' has as limit (N→∞) a non-singular matrix Σ_{xx}
 (A8) can be substituted by (A7) [E{x_i ε_i} = 0 for all *i*, no contemporaneous correlation]
- 3. OLS estimator *b* is asymptotically normally distributed if (A6), (A8) and
 - (A11) ε_i ~ IID(0,σ²) are true;
 - for large N, b follows approximately the normal distribution b ~_a N{β, σ²(Σ_i x_i x_i')⁻¹}
 - Use White and Newey-West estimators for V{b} in case of heteroskedasticity and autocorrelation of error terms, respectively

Assumption (A7): $E\{x_i \varepsilon_i\} = 0$ for all *i*

- Implication of (A7): for all *i*, each of the regressors is uncorrelated with the current error term, no contemporaneous correlation
- (A7) guaranties unbiasedness and consistency of the OLS estimator
- Stronger assumptions (A2), (A10), (A8) have same consequences
- In reality, (A7) is not always true: alternative estimation procedures are required for ascertaining consistency and unbiasedness

Examples of situations with $E\{x_i \ \varepsilon_i\} \neq 0$ (see the following slides):

- Regressors with measurement errors
- Regression on the lagged dependent variable with autocorrelated error terms (dynamic regression)
- Unobserved heterogeneity
- Endogeneity of regressors, simultaneity

Contents

OLS Estimator Revisited

- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- The GIV Estimator
- Some Tests

Regressor with Measurement Error

 $y_i = \beta_1 + \beta_2 w_i + v_i$

with white noise v_i , $V\{v_i\} = \sigma_v^2$, and $E\{v_i|w_i\} = 0$; conditional expectation of y_i given $w_i : E\{y_i|w_i\} = \beta_1 + \beta_2 w_i$

Example: y_i: household savings , w_i: household income Measurement process: reported household income x_i may deviate from household income w_i

 $x_i = w_i + u_i$

where u_i is (i) white noise with V{ u_i } = σ_u^2 , (ii) independent of v_i , and (iii) independent of w_i

The model to be analyzed is

 $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ with $\varepsilon_i = v_i - \beta_2 u_i$

- $E\{x_i \epsilon_i\} = -\beta_2 \sigma_u^2 \neq 0$: requirement for consistency and unbiasedness of OLS estimates is violated
- x_i and ε_i are negatively (positively) correlated if $\beta_2 > 0$ ($\beta_2 < 0$)

Consequences of Measurement Errors

Inconsistency of $b_2 = s_{xy}/s_x^2$ plim $b_2 = \beta_2 + (\text{plim } s_{x\epsilon})/(\text{plim } s_x^2) = \beta_2 + E\{x_i \epsilon_i\} / V\{x_i\}$ $= \beta_2 \left(1 - \frac{\sigma_u^2}{\sigma_w^2 + \sigma_u^2}\right)$

 β_2 is underestimated

• Inconsistency of
$$b_1 = \overline{y} - b_2 \overline{x}$$

plim $(b_1 - \beta_1) = -$ plim $(b_2 - \beta_2) \in \{x_i\}$

given $E{x_i} > 0$ for the reported income: β_1 is overestimated; inconsistency "carries over"

The model does not correspond to the conditional expectation of y_i given x_i:

 $E\{y_i|x_i\} = \beta_1 + \beta_2 x_i - \beta_2 E\{u_i|x_i\} \neq \beta_1 + \beta_2 x_i$ as $E\{u_i|x_i\} \neq 0$

Dynamic Regression

```
Allows modelling dynamic effects of changes of x on y:
              y_t = \beta_1 + \beta_2 x_t + \beta_3 y_{t-1} + \varepsilon_t
     with \varepsilon_{t} following the AR(1) model
              \varepsilon_{t} = \rho \varepsilon_{t-1} + V_{t}
     v_{\rm t} white noise with \sigma_{\rm v}^2
From y_t = \beta_1 + \beta_2 x_t + \beta_3 y_{t-1} + \rho \varepsilon_{t-1} + v_t follows
              E\{y_{t-1}\varepsilon_t\} = \beta_3 E\{y_{t-2}\varepsilon_t\} + \rho^2 \sigma_v^2 (1 - \rho^2)^{-1}
     i.e., y_{t-1} is correlated with \varepsilon_t
     Remember: E{\epsilon_{t}, \epsilon_{t-s}} = \rho^{s} \sigma_{v}^{2} (1-\rho^{2})^{-1} for s > 0
OLS estimators not consistent if \rho \neq 0
The model does not correspond to the conditional expectation of y_{t}
     given the regressors x_t and y_{t-1}:
      E\{y_t|x_t, y_{t-1}\} = \beta_1 + \beta_2 x_t + \beta_3 y_{t-1} + E\{\varepsilon_t | x_t, y_{t-1}\}
```

Omission of Relevant Regressors

Two models:

$$y_{i} = x_{i}'\beta + z_{i}'\gamma + \varepsilon_{i}$$
(A)
$$y_{i} = x_{i}'\beta + v_{i}$$
(B)

- True model (A), fitted model (B)
- OLS estimates b_B of β from (B)

$$b_B = \beta + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i z_i' \gamma + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i \varepsilon_i$$

- Omitted variable bias: $E\{(\Sigma_i x_i x_i')^{-1} \Sigma_i x_i z_i'\}\gamma = E\{(X'X)^{-1} X'Z\}\gamma$
- No bias if (a) γ = 0, i.e., model (A) is correct, or if (b) variables in x_i and z_i are uncorrelated (orthogonal)
- OLS estimators are biased, if relevant regressors are omitted that are correlated with regressors in x_i

Unobserved Heterogeneity

Example: Wage equation with y_i : log wage, x_{1i} : personal characteristics, x_{2i} : years of schooling, u_i : abilities (unobservable)

$$y_i = x_{1i}'\beta_1 + x_{2i}\beta_2 + u_i\gamma + v_i$$

Model for analysis (unobserved u_i covered in error term)

$$y_i = x_i^{\,i}\beta + \varepsilon_i$$

with
$$x_i = (x_{1i}, x_{2i})$$
, $\beta = (\beta_1, \beta_2)$, $\varepsilon_i = u_i \gamma + v_i$

• Given $E\{x_i | v_i\} = 0$

plim $b = \beta + \Sigma_{xx}^{-1} E\{x_i u_i\} \gamma$

• OLS estimators *b* are not consistent if x_i and u_i are correlated ($\gamma \neq 0$), e.g., if higher abilities induce more years at school: estimator for β_2 might be overestimated, hence effects of years at school etc. are overestimated: "ability bias"

Unobserved heterogeneity: observational units differ in other aspects than ones that are observable

Endogenous Regressors

Regressors in X which are correlated with error term, $E{X^{t}\varepsilon} \neq 0$, are called endogenous

- OLS estimators $b = \beta + (X^{L}X)^{-1}X^{L}\varepsilon$
 - □ $E{b} \neq \beta$, *b* is biased; bias $E{(X^{L}X)^{-1}X^{L}\varepsilon}$ difficult to assess
 - $\Box \quad \text{plim } b = \beta + \Sigma_{xx}^{-1}q \text{ with } q = \text{plim}(N^{-1}X^{\epsilon}\varepsilon)$
 - For q = 0 (regressors and error term asymptotically uncorrelated), OLS estimators b are consistent also in case of endogenous regressors
 - For $q \neq 0$ (error term and at least one regressor asymptotically correlated): plim $b \neq \beta$, the OLS estimators b are not consistent
- Endogeneity bias
- Relevant for many economic applications

Exogenous regressors: with error term uncorrelated, all regressors that are not endogenous

Consumption Function

AWM data base, 1970:1-2003:4 C: private consumption (PCR), growth rate p.y. Y: disposable income of households (PYR), growth rate p.y. $C_{t} = \beta_{1} + \beta_{2}Y_{t} + \varepsilon_{t}$ (A) β_2 : marginal propensity to consume, $0 < \beta_2 < 1$ OLS estimates: $\hat{C}_{t} = 0.011 + 0.718 Y_{t}$ with t = 15.55, $R^2 = 0.65$, DW = 0.50 I_t : per capita investment (exogenous, E{ $I_t \varepsilon_t$ } = 0) $Y_{t} = C_{t} + I_{t}$ **(B)** Both Y_t and C_t are endogenous: $E\{C_t \epsilon_i\} = E\{Y_t \epsilon_i\} = \sigma_{\epsilon}^2(1 - \beta_2)^{-1}$ The regressor Y_t has an impact on C_t ; at the same time C_t has an impact on Y_{t}

Simultaneous Equation Models

Illustrated by the preceding consumption function:

$$C_{t} = \beta_{1} + \beta_{2}Y_{t} + \varepsilon_{t} \qquad (A)$$

$$Y_{t} = C_{t} + I_{t} \qquad (B)$$

Variables Y_t and C_t are simultaneously determined by equations (A) and (B)

- Equations (A) and (B) are the structural equations or the structural form of the simultaneous equation model that describes both Y_t and C_t
- The coefficients β_1 and β_2 are behavioural parameters
- Reduced form of the model: one equation for each of the endogenous variables C_t and Y_t, with only the exogenous variable I_t as regressor

The OLS estimators are biased and not consistent

Consumption Function, cont'd

Reduced form of the model:

$$C_{t} = \frac{\beta_{1}}{1 - \beta_{2}} + \frac{\beta_{2}}{1 - \beta_{2}}I_{t} + \frac{1}{1 - \beta_{2}}\varepsilon_{t}$$
$$Y_{t} = \frac{\beta_{1}}{1 - \beta_{2}} + \frac{1}{1 - \beta_{2}}I_{t} + \frac{1}{1 - \beta_{2}}\varepsilon_{t}$$

 OLS estimator b₂ from (A) is inconsistent; E{Y_t ε_t} ≠ 0 plim b₂ = β₂ + Cov{Y_t ε_t} / V{Y_t} = β₂ + (1 − β₂) σ_ε²(V{I_t} + σ_ε²)⁻¹ for 0 < β₂ < 1, b₂ overestimates β₂

The OLS estimator b₁ is also inconsistent

Contents

- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- The GIV Estimator
- Some Tests

An Alternative Estimator

Model

 $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$

with E{ $\varepsilon_i x_i$ } $\neq 0$, i.e., endogenous regressor x_i : OLS estimators are biased and inconsistent

Instrumental variable z_i satisfying

- 1. Exogeneity: $E{\epsilon_i z_i} = 0$: is uncorrelated with error term
- 2. Relevance: $Cov{x_i, z_i} \neq 0$: is correlated with endogenous regressor

Transformation of model equation

$$\operatorname{Cov}\{y_i\,,\,z_i\} = \beta_2 \operatorname{Cov}\{x_i\,,\,z_i\} + \operatorname{Cov}\{\varepsilon_i\,,\,z_i\}$$

gives

$$\beta_2 = \frac{Cov\{y_i, z_i\}}{Cov\{x_i, z_i\}}$$

IV Estimator for β_2

Substitution of sample moments for covariances gives the instrumental variables (IV) estimator

$$\hat{\beta}_{2,IV} = \frac{\sum_{i} (z_i - \overline{z})(y_i - \overline{y})}{\sum_{i} (z_i - \overline{z})(x_i - \overline{x})}$$

- Consistent estimator for β_2 given that the instrumental variable z_i is valid , i.e., it is
 - Exogenous, i.e. $E{\epsilon_i z_i} = 0$
 - □ Relevant, i.e. $Cov{x_i, z_i} \neq 0$
- Typically, nothing can be said about the bias of an IV estimator; small sample properties are unknown
- Coincides with OLS estimator for $z_i = x_i$

Consumption Function, cont'd

Alternative model: $C_t = \beta_1 + \beta_2 Y_{t-1} + \varepsilon_t$

- Y_{t-1} and ε_t are certainly uncorrelated; avoids risk of inconsistency due to correlated Y_t and ε_t
- Y_{t-1} is certainly highly correlated with Y_t , is almost as good as regressor as Y_t

Fitted model:

```
\hat{C} = 0.012 + 0.660 Y_{-1}
with t = 12.86, \mathbb{R}^2 = 0.56, DW = 0.79 (instead of
\hat{C} = 0.011 + 0.718 Y
with t = 15.55, \mathbb{R}^2 = 0.65, DW = 0.50)
```

Deterioration of *t*-statistic and R² are price for improvement of the estimator

IV Estimator: The Concept

Alternative to OLS estimator

Avoids inconsistency in case of endogenous regressors
 Idea of the IV estimator:

- Replace regressors which are correlated with error terms by regressors which are
 - uncorrelated with the error terms
 - (highly) correlated with the regressors that are to be replaced

and use OLS estimation

The hope is that the IV estimator is consistent (and less biased than the OLS estimator)

Price: IV estimator is less efficient; deteriorated model fit as measured by, e.g., *t*-statistic, R²

Contents

- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- The GIV Estimator
- Some Tests

IV Estimator: General Case

The model is

 $y_{i} = x_{i}^{\,i}\beta + \varepsilon_{i}$ with $V\{\varepsilon_{i}\} = \sigma_{\varepsilon}^{2}$ and $E\{\varepsilon_{i}, x_{i}\} \neq 0$

• at least one component of x_i is correlated with the error term The vector of instruments z_i (with the <u>same dimension</u> as x_i) fulfils

$$E\{\varepsilon_i \ z_i\} = 0$$
$$Cov\{x_i, z_i\} \neq 0$$

IV estimator based on the instruments z_i

$$\hat{\boldsymbol{\beta}}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \left(\sum_{i} z_{i} y_{i}\right)$$

IV Estimator: Distribution

The (asymptotic) covariance matrix of the IV estimator is given by

$$V\left\{\hat{\boldsymbol{\beta}}_{IV}\right\} = \boldsymbol{\sigma}^{2} \left[\left(\sum_{i} x_{i} z_{i}'\right) \left(\sum_{i} z_{i} z_{i}'\right)^{-1} \left(\sum_{i} z_{i} x_{i}'\right) \right]^{-1}$$

In the estimated covariance matrix $V\{\beta_{IV}\}$, σ^2 is substituted by

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i} \left(y_i - x'_i \hat{\beta}_{IV} \right)^2$$

which is based on the IV residuals $y_i - x_i' \hat{\beta}_{IV}$

The asymptotic distribution of IV estimators, given IID(0, σ_{ϵ}^{2}) error terms, leads to the approximate distribution

 $N(\hat{\beta}, \hat{V}\{\hat{\beta}_{IV}\})$ with the estimated covariance matrix $\hat{V}\{\hat{\beta}_{IV}\}$

Derivation of the IV Estimator

The model is

 $y_i = x_i \beta + \varepsilon_t = x_{0i} \beta_0 + \beta_K x_{Ki} + \varepsilon_i$ with $x_{0i} = (x_{1i}, ..., x_{K-1,i})$ containing the first *K*-1 components of x_i , and $E\{\varepsilon_i | x_{0i}\} = 0$

K-the component is endogenous: $E\{\varepsilon_i | x_{Ki}\} \neq 0$

The instrumental variable z_{κ_i} fulfils

 $\mathsf{E}\{\varepsilon_{\mathsf{i}} | z_{\mathsf{K}\mathsf{i}}\} = 0$

Moment conditions: *K* conditions to be satisfied by the coefficients, the *K*-th condition with z_{κ_i} instead of x_{κ_i} :

 $E\{\varepsilon_{i} x_{0i}\} = E\{(y_{i} - x_{0i} \beta_{0} - \beta_{K} x_{Ki}) x_{0i}\} = 0 \quad (K-1 \text{ conditions})$ $E\{\varepsilon_{i} z_{i}\} = E\{(y_{i} - x_{0i} \beta_{0} - \beta_{K} x_{Ki}) z_{Ki}\} = 0$

Number of conditions – and of corresponding linear equations – equals the number of coefficients to be estimated

Derivation of the IV Estimator,

The system of linear equations for the K coefficients β to be estimated can be uniquely solved for the coefficients β : the coefficients β are said "to be identified"

To derive the IV estimators from the moment conditions, the expectations are replaced by sample averages

$$\frac{1}{N}\sum_{i}(y_{i}-x_{i}'\hat{\beta}_{IV})x_{ki}=0, k=1,...,K-1$$

$$\frac{1}{N}\sum_{i}(y_{i}-x_{i}'\hat{\beta}_{IV})z_{Ki}=0$$

The solution of the linear equation system – with $z_i' = (x_{0i}', z_{Ki}) - is$

$$\hat{\boldsymbol{\beta}}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \sum_{i} z_{i} y_{i}$$

Identification requires that the *K*x*K* matrix $\Sigma_i z_i x_i$ ' is finite and invertible; instrument z_{Ki} is relevant when this is fulfilled

Contents

- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- The GIV Estimator
- Some Tests

Calculation of IV Estimators

The model in matrix notation

$$y = X\beta + \varepsilon$$

The IV estimator

$$\hat{\beta}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \sum_{i} z_{i} y_{i} = (Z'X)^{-1} Z'y$$

with z_i obtained from x_i by substituting instrumental variable(s) for all endogenous regressors

Calculation in two steps:

- 1. Reduced form: Regression of the explanatory variables $x_1, ..., x_K$ including the endogenous ones on the columns of *Z*: fitted values $\hat{X} = Z(Z'Z)^{-1}Z'X$
- 2. Regression of *y* on the fitted explanatory variables:

 $\hat{\boldsymbol{\beta}}_{IV} = (\hat{X}'\hat{X})^{-1}\hat{X}'y$

Calculation of IV Estimators: Remarks

- The *K*x*K* matrix $Z'X = \Sigma_i z_i x_i'$ is required to be finite and invertible
 - From $(\hat{X}'\hat{X})^{-1}\hat{X}'y = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'y$

 $= (Z'X)^{-1}Z'Z(X'Z)^{-1}X'Z(Z'Z)^{-1}Z'y = (Z'X)^{-1}Z'y = \hat{\beta}_{IV}$

it is obvious that the estimator obtained in the second step is the IV estimator

- However, the estimator obtained in the second step is more general; see below
- In GRETL: The sequence "Model > Instrumental variables > Two-Stage Least Squares…" leads to the specification window with boxes (i) for the regressors and (ii) for the instruments

Choice of Instrumental Variables

Instrumental variable are required to be

- exogenous, i.e., uncorrelated with the error terms
- relevant, i.e., correlated with the endogenous regressors
 Instruments
- must be based on subject matter arguments, e.g., arguments from economic theory
- should be explained and motivated
- must show a significant effect in explaining an endogenous regressor
- Choice of instruments often not easy

Regression of endogenous variables on instruments

- Best linear approximation of endogenous variables
- Economic interpretation not of importance and interest

Contents

- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- The GIV Estimator
- Some Tests

Returns to Schooling: Causality?

Human capital earnings function:

 $w_i = \beta_1 + \beta_2 S_i + \beta_3 E_i + \beta_4 E_i^2 + \varepsilon_i$

with w_i : log of individual earnings, S_i : years of schooling, E_i : years of experience ($E_i = age_i - S_i - 6$)

Empirically, more education implies higher income

Question: Is this effect causal?

- If yes, one year more at school increases wage by β_2 (Theory A)
- Alternatively, personal abilities of an individual causes higher income and also more years at school; more years at school do not necessarily increase wage (Theory B)

Issue of substantial attention in literature

Returns to Schooling: Endogenous Regressors

Wage equation: besides S_i and E_i, additional explanatory variables like gender, regional, racial dummies, family background
 Model for analysis:

 $w_i = \beta_1 + z_i'\gamma + \beta_2 S_i + \beta_3 E_i + \beta_4 E_i^2 + \varepsilon_i$

 z_i : observable variables besides E_i , S_i

- z_i is assumed to be exogenous, i.e., E{ z_i ε_i} = 0
- S_i may be endogenous, i.e., $E\{S_i \varepsilon_i\} \neq 0$
 - Ability bias: unobservable factors like intelligence, family background, etc. enable to more schooling and higher earnings
 - Measurement error in measuring schooling
 - Etc.
- With S_i , also $E_i = age_i S_i 6$ and E_i^2 are endogenous
- OLS estimators may be inconsistent

Returns to Schooling: Data

- Verbeek's data set "schooling"
- National Longitudinal Survey of Young Men (Card, 1995)
- Data from 3010 males, survey 1976
- Individual characteristics, incl. experience, race, region, family background, etc.
- Human capital earnings or wage function

 $\log(wage_i) = \beta_1 + \beta_2 ed_i + \beta_3 exp_i + \beta_3 exp_i^2 + \varepsilon_i$

with ed_i : years of schooling (S_i) , exp_i : years of experience (E_i)

- Variables: wage76 (wage in 1976, raw, cents p.h.), ed76 (years at school in 1976), exp76 (experience in 1976), exp762 (exp76 squared)
- Further explanatory variables: *black*: dummy for afro-american, *smsa*: dummy for living in metropolitan area, *south*: dummy for living in the south

OLS Estimation

OLS estimated wage function

Model 2: OLS, using observations 1-3010 Dependent variable: I_WAGE76

С	oefficient	std. error	<i>t</i> -ratio	<i>p</i> -value
const	4.73366	0.0676026	70.02	0.0000 ***
ED76	0.0740090	0.00350544	21.11	2.28e-092 ***
EXP76	0.0835958	0.00664779	12.57	2.22e-035 ***
EXP762	-0.00224088	0.000317840	0 -7.050	2.21e-012 ***
BLACK	-0.189632	0.0176266	-10.76	1.64e-026 ***
SMSA76	0.161423	0.0155733	10.37	9.27e-025 ***
SOUTH76	-0.124862	0.0151182	-8.259	2.18e-016 ***
Mean dependent var		6.261832	S.D. dependent var	0.443798
Sum squared resid		420.4760	S.E. of regression	0.374191
R-squared		0.290505 A	Adjusted R-squared	0.289088
F(6, 3003)		204.9318 F	P-value(F)	1.5e-219
Log-likelihood		-1308.702	Akaike criterion	2631.403
Schwarz criterion		2673.471 H	Hannan-Quinn	2646.532

Instruments for S_i , E_i , E_i^2

Potential instrumental variables

- Factors which affect schooling but are uncorrelated with error terms, in particular with unobserved abilities that are determining wage
- For years of schooling (S_i)
 - Costs of schooling, e.g., distance to school (*lived near college*), number of siblings
 - Parents' education
- For years of experience (E_i, E_i^2) : age is natural candidate

Step 1 of IV Estimation

Reduced form for *schooling* (*ed76*), gives predicted values *ed76_h*,

Model 3: OLS, using observations 1-3010 Dependent variable: ED76

coefficient	std. error	t-ratio	p-value
 const -1.81870	4.28974	-0.4240	0.6716
AGE76 1.05881	0.300843	3.519	0.0004 ***
sq_AGE76 -0.0187266	0.00522162	-3.586	0.0003 ***
BLACK -1.46842	0.115245	-12.74	2.96e-036 ***
SMSA76 0.841142	0.105841	7.947	2.67e-015 ***
SOUTH76 -0.429925	0.102575	-4.191	2.85e-05 ***
NEARC4A 0.441082	0.0966588	4.563	5.24e-06 ***
Mean dependent var	13.26346 S.D. depe	ndent var	2.676913
Sum squared resid	18941.85 S.E. of reg	gression	2.511502
R-squared	0.121520 Adjusted F	R-squared	0.119765
F(6, 3003)	69.23419 P-value(F))	5.49e-81
Log-likelihood	-7039.353 Akaike crit	terion	14092.71
Schwarz criterion	14134.77 Hannan-Q	uinn	14107.83

Step 2 of IV Estimation

Wage equation, estimated by IV with instruments age, age², and nearc4a

Model 4: OLS, using observations 1-3010 Dependent variable: I_WAGE76

(coefficient	std. error	t-ratio	p-value
const	3.69771	0.435332	8.494	3.09e-017 ***
ED76_h	0.164248	0.036887	4.453	8.79e-06 ***
EXP76_h	0.044588	0.022502	1.981	0.0476 **
EXP762_h	-0.000195	0.001152	-0.169	0.8655
BLACK	-0.057333	0.056772	-1.010	0.3126
SMSA76	0.079372	0. 037116	2.138	0.0326 **
SOUTH76	-0.083698	0.022985	-3.641	0.0003 ***
Mean deper	ndent var	6.261832	S.D. dependent var	0.443798
Sum square	d resid	446.8056	S.E. of regression	0.385728
R-squared		0.246078	Adjusted R-squared	0.244572
F(6, 3003)		163.3618	P-value(F)	4.4e-180
Log-likelihoo	bd	-1516.471	Akaike criterion	3046.943
Schwarz crit	erion	3089.011	Hannan-Quinn	3062.072

Returns to Schooling: Summary of Estimates

Estimated regression coefficients and *t*-statistics

	OLS	IV ¹⁾	TSLS ¹⁾	IV (M.V.)
ed76	0.0740	0.1642	0.1642	0.1329
	21.11	4.45	3.92	2.59
exp76	0.0836	0.0445	0.0446	0.0560
	12.75	1.98	1.74	2.15
exp762	-0.0022	-0.0002	-0.0002	-0.0008
	-7.05	-0.17	-0.15	-0.59
black	-0.1896	-0. 0573	-0.0573	-0.1031
	-10.76	-1.01	-0.89	-1.33
R ²	0.291	0.246		
<i>F</i> -test	204.9	163.4		
¹⁾ The model differs from that used by Verbeek				

Some Comments

Instrumental variables (*age*, *age*², *nearc4a*)

- are relevant, i.e., have explanatory power for ed76, exp76, exp76²
- Whether they are exogenous, i.e., uncorrelated with the error terms, is not answered
- Test for exogeneity of regressors: Wu-Hausman test

Estimates of ed76-coefficient:

- IV estimate: 0.16 (0.13), i.e., 16% higher wage for one additional year of schooling; more than the double of the OLS estimate (0.07); not in line with "ability bias" argument!
- s.e. of IV estimate (0.04) much higher than s.e. of OLS estimate (0.004)
- Loss of efficiency especially in case of weak instruments: R² of model for ed76: 0.12; Corr{ed76, ed76_h} = 0.35

GRETL's TSLS Estimation

Wage equation, estimated by GRETL's TSLS

Model 8: TSLS, using observations 1-3010 Dependent variable: I_WAGE76 Instrumented: ED76 EXP76 EXP762 Instruments: const AGE76 sq_AGE76 BLACK SMSA76 SOUTH76 NEARC4A

coefficient	std. error	t-ratio	p-value
const 3.69771	0.495136	7.468	8.14e-014 ***
ED76 0.164248 EXP76 0.0445878	0.0419547 0.0255932		9.04e-05 *** 0.0815 *
EXP762 -0.00019526 BLACK -0.0573333	0.0013110 0.0645713		0.8816 0.3746
SMSA76 0.0793715	0.0045715		0.0601 *
SOUTH76 -0.0836975	0.0261426	-3.202	0.0014 ***
Mean dependent var	6.261832	S.D. dependent var	0.443798
Sum squared resid R-squared	577.9991 0.195884	S.E. of regression Adjusted R-squared	0.438718 0.194277
F(6, 3003)	126.2821	P-value(F)	8.9e-143

Returns to Schooling: Summary of Estimates

Estimated regression coefficients and *t*-statistics

	OLS	IV ¹⁾	TSLS ¹⁾	IV (M.V.)
ed76	0.0740	0.1642	0.1642	0.1329
	21.11	4.45	3.92	2.59
exp76	0.0836	0.0445	0.0446	0.0560
	12.75	1.98	1.74	2.15
exp762	-0.0022	-0.0002	-0.0002	-0.0008
	-7.05	-0.17	-0.15	-0.59
black	-0.1896	-0. 0573	-0.0573	-0.1031
	-10.76	-1.01	-0.89	-1.33
R ²	0.291	0.246	0.196	
<i>F</i> -test	204.9	163.4	126.3	
¹⁾ The model differs from that used by Verbeek				

Some Comments

Verbeek's IV estimates

- Deviate from GRETL results
- No report of R²; definition of R² does not apply to IV estimated models
- IV estimates of coefficients
- are smaller than the OLS estimates; exception is ed76
- have higher s.e. than OLS estimates, smaller *t*-statistics

Questions

- Robustness of IV estimates to changes in the specification
- Exogeneity of instruments
- Weak instruments

Contents

- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- The GIV Estimator
- Some Tests

From OLS to IV Estimation

Linear model $y_i = x_i^{\beta} + \varepsilon_i$

OLS estimator: solution of the K normal equations

 $1/N \Sigma_{i}(y_{i} - x_{i}^{*}b) x_{i} = 0$

Corresponding moment conditions

 $\mathsf{E}\{\varepsilon_i | x_i\} = \mathsf{E}\{(y_i - x_i;\beta) | x_i\} = 0$

 IV estimator given R instrumental variables z_i which may overlap with x_i: based on the R moment conditions

 $\mathsf{E}\{\varepsilon_i \ z_i\} = \mathsf{E}\{(y_i - x_i`\beta) \ z_i\} = 0$

 IV estimator: solution of corresponding sample moment conditions

Number of Instruments

Moment conditions

 $\mathsf{E}\{\varepsilon_i \ z_i\} = \mathsf{E}\{(y_i - x_i^{`}\beta) \ z_i\} = 0$

one equation for each component of z_i

z_i possibly overlapping with x_i

General case: R moment conditions

Substitution of expectations by sample averages gives *R* equations

$$\frac{1}{N}\sum_{i}(y_{i}-x_{i}^{\prime}\hat{\beta}_{IV})z_{i}=0$$

- 1. R = K: one unique solution, the IV estimator; identified model $\hat{\beta}_{IV} = \left(\sum_{i} z_i x'_i\right)^{-1} \sum_{i} z_i y_i = (Z'X)^{-1} Z' y$
- 2. R < K: infinite number of solutions, not enough instruments for a unique solution; under-identified or not identified model

The GIV Estimator

- 3. *R* > *K*: more instruments than necessary for identification; overidentified model
- For R > K, in general, no unique solution of all R sample moment conditions can be obtained; instead:
- the weighted quadratic form in the sample moments

$$Q_N(\boldsymbol{\beta}) = \left[\frac{1}{N}\sum_i (y_i - x'_i \boldsymbol{\beta}) z_i\right]' W_N\left[\frac{1}{N}\sum_i (y_i - x'_i \boldsymbol{\beta}) z_i\right]$$

with a *RxR* positive definite weighting matrix *W_N* is minimized
 gives the generalized instrumental variable (GIV) estimator

 $\hat{\boldsymbol{\beta}}_{IV} = (X'ZW_N Z'X)^{-1} X'ZW_N Z'y$

The weighting matrix W_N

 $W_{\rm N}$: positive definite, order RxR

- Different weighting matrices result in different consistent GIV estimators with different covariance matrices
- Optimal choice for W_N ?
- For R = K, the matrix Z'X is square and invertible; the IV estimator is (Z'X)⁻¹Z'y for any W_N

GIV and TSLS Estimator

Optimal weighting matrix: $W_N^{opt} = [1/N(Z'Z)]^{-1}$; corresponds to the most efficient IV estimator

 $\hat{\beta}_{IV} = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'y$

- If the error terms are heteroskedastic or autocorrelated, the optimal weighting matrix has to be adapted
- Regression of each regressor, i.e., each column of X, on Z results in $\hat{X} = Z(Z'Z)^{-1}Z'X$ and

 $\hat{\boldsymbol{\beta}}_{IV} = (\hat{X}'\hat{X})^{-1}\hat{X}'y$

- This explains why the GIV estimator is also called "two stage least squares" (TSLS) estimator:
 - 1. First step: regress each column of *X* on *Z*
 - 2. Second step: regress *y* on predictions of *X*

GIV Estimator and Properties

- GIV estimator is consistent
- The asymptotic distribution of the GIV estimator, given IID(0, σ_{ϵ}^{2}) error terms, leads to

 $N\left(oldsymbol{eta}, \hat{V}\{\hat{oldsymbol{eta}}_{IV}\}
ight)$

which is used as approximate distribution in case of finite N

 The (asymptotic) covariance matrix of the GIV estimator is given by

$$V\left\{\hat{\boldsymbol{\beta}}_{IV}\right\} = \boldsymbol{\sigma}^{2} \left[\left(\sum_{i} x_{i} z_{i}'\right) \left(\sum_{i} z_{i} z_{i}'\right)^{-1} \left(\sum_{i} z_{i} x_{i}'\right) \right]^{-1}$$

2

In the estimated covariance matrix, σ² is substituted by

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i} \left(y_i - x_i' \hat{\beta}_{IV} \right)$$

the estimate based on the IV residuals $y_i - x_i' \beta_{IV}$

Contents

- OLS Estimator Revisited
- Cases of Exndogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- The GIV Estimator
- Some Tests

Some Tests

Questions of interest

- 1. Is it necessary to use IV estimation? To be tested the null hypothesis of exogeneity of suspected variables
- 2. If IV estimation is use: Are the chosen instruments valid?

For testing

- exogeneity of regressors: Wu-Hausman test, also called Durbin-Wu-Hausman test, in GRETL: Hausman test
- relevance of potential instrumental variables: Sargan test or over-identifying restrictions test
- Weak instruments, i.e., only weak correlation between endogenous regressor and instrument: Cragg-Donald test

Wu-Hausman Test

For testing whether one or more regressors x_i are endogenous (correlated with the error term); null hypothesis $E\{\varepsilon_i x_i\} = 0$

- If the null hypothesis
 - □ is true, OLS estimates are more efficient than IV estimates
 - is not true, OLS estimates are inefficient, the less efficient but consistent IV estimates to be used
- Based on the assumption that the instrumental variables are valid; i.e., given that $E\{\varepsilon_i z_i\} = 0$, the null hypothesis $E\{\varepsilon_i x_i\} = 0$ can be tested against the alternative $E\{\varepsilon_i x_i\} \neq 0$

The idea of the test:

- Under the null hypothesis, both the OLS and IV estimator are consistent; they should differ by sampling errors only
- Rejection of the null hypothesis indicates inconsistency of the OLS estimator

Wu-Hausman Test, cont'd

Based on the differences between OLS- and IV-estimators; various versions of the Wu-Hausman test

Added variable interpretation of the Wu-Hausman test: checks whether the residuals v_i from the reduced form equation of potentially endogenous regressors contribute to explaining

 $y_{i} = x_{1i}'\beta_{1} + x_{2i}'\beta_{2} + v_{i}'\gamma + \varepsilon_{i}$

- x_2 : potentially endogenous regressors
- v_i: residuals from reduced form equation for x₂ (predicted values for x₂: x₂ + v)
- $H_0: \gamma = 0$; corresponds to: x_2 is exogenous

For testing H₀: use of

- *t*-test, if γ has one component, x_2 is just one regressor
- *F*-test, if more than 1 regressors are tested for exogeneity

Hausman Test Statistic

Based on the quadratic form of differences between OLS- estimators $b_{\rm LS}$ and IV-estimators $b_{\rm IV}$

- H_0 : both b_{LS} and b_{IV} are consistent, b_{LS} is efficient relative to b_{IV}
- $H_1: b_{IV}$ is consistent, b_{LS} is inconsistent

Hausman test statistic

 $H = (b_{IV} - b_{LS})' V (b_{IV} - b_{LS})$

with estimated covariance matrix of $b_{IV} - b_{LS}$ follows the approximate Chi-square distribution with *J* d.f.

Wu-Hausman Test: Remarks

Remarks

- Test requires valid instruments
- Test has little power if instruments are weak or invalid
- In GRETL: Whenever the TSLS estimation is used, GRETL produces automatically the Hausman test statistic

Sargan Test

For testing whether the instruments are valid

The validity of the instruments z_i requires that all moment conditions are fulfilled; for the *R*-vector z_i , the *R* sums

$$\frac{1}{N}\sum_{i}e_{i}z_{i}=0$$

must be close to zero

Test statistic

$$\boldsymbol{\xi} = NQ_N(\hat{\boldsymbol{\beta}}_{IV}) = \left(\sum_i e_i z_i\right)' \left(\hat{\boldsymbol{\sigma}}^2 \sum_i z_i z_i'\right)^{-1} \left(\sum_i e_i z_i\right)$$

has, under the null hypothesis, an asymptotic Chi-squared distribution with R-K df

Calculation of ξ : $\xi = NR_e^2$ using R_e^2 from the auxiliary regression of IV residuals $e_i = y_i - x_i' \hat{\beta}_{IV}$ on the instruments z_i

Sargan Test: Remarks

Remarks

- In case of an identified model (R = K), all R moment conditions are fulfilled, $\xi = 0$
- Over-identified model: R > K; the Sargan test is also called overidentifying restrictions test
- Rejection implies: the joint validity of all moment conditions and hence of all instruments is not acceptable
- The Sargan test gives no indication of invalid instruments
- In GRETL: Whenever the TSLS estimation is used and R > K, GRETL produces automatically the Sargan test statistic

Cragg-Donald Test

Weak (only marginally valid) instruments, i.e., only weak correlation between endogenous regressor and instrument :

- Biased IV estimates
- Inconsistent IV estimates
- Inappropriate large-sample approximations to the finite-sample distributions even for large N
- Definition of weak instruments: estimates are biased to an extent that is unacceptably large
- Null hypothesis: instruments are weak, i.e., can lead to an asymptotic relative bias greater than some value *b*

Cragg-Donald Test, cont'd

Test procedure

- Regression of the endogenous regressor on all instruments (internal and external)
- F-test of the null hypothesis that the coefficients of all external instruments are zero
- If *F*-statistic is less a not too large value, e.g., 10: consider the instruments as weak

Your Homework

1. Use the data set "schooling" of Verbeek for the following analyses based on the wage equation

 $\log(wage76) = \beta_1 + \beta_2 ed76 + \beta_3 exp76 + \beta_4 exp762$

+ β_5 black + β_6 momed + β_7 smsa76 + ϵ

- a) Assuming that *ed76* is endogenous, estimate the reduced form for *ed76*, including external instruments *smsa66*, *sinmom14*, *south66*, and *mar76*; assess the validity of the potential instruments; what indicate the correlation coefficients?
- b) Estimate, by means of the GRETL Instrumental variables (Two-Stage Least Squares ...) procedure, the wage equation, using the external instruments *black*, *momed*, *sinmom14*, *smsa66*, *south76*, *mar76*, and *age76*; interpret the results including the Hausman and the Sargan test.
- c) Compare the estimates for β_2 (i) from the model in b), (ii) from the model with instruments *black*, *momed*, *smsa66*, *south76*, *mar76*, and *age76*, and (iii) with the OLS estimates.

Your Homework, cont'd

2. The model for consumption and income consists of two equations:

$$C_{t} = \beta_{1} + \beta_{2}Y_{t} + \varepsilon_{t}$$
$$Y_{t} = C_{t} + I_{t}$$

a. Show that both C_t and Y_t are endogenous:

 $\mathsf{E}\{C_i \ \varepsilon_i\} = \mathsf{E}\{Y_i \ \varepsilon_i\} = \sigma_{\varepsilon}^{2}(1-\beta_2)^{-1}$

b. Derive the reduced form of the model