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Goodness-of-fit R²

The quality of the model yi = xi'β + εi , i = 1, …, N, with K regressors 
can be measured by R2, the goodness-of-fit (GoF) statistic

� R2 is the portion of the variance in Y that can be explained by the 
linear regression with regressors Xk, k=1,…,K

� If the model contains an intercept (as usual):  

with         = (Σi ei²)/(N-1)

� Alternatively, R2 can be calculated as
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Properties of R2

R2 is the portion of the variance in Y that can be explained by the 
linear regression; 100R2 is measured in percent

� 0 ≤ R2 ≤ 1, if the model contains an intercept 

� R2 = 1: all residuals are zero

� R2 = 0: for all regressors, bk = 0, k = 2, …, K; the model explains 
nothing

� R2 cannot decrease if a variable is added

� Comparisons of R2 for two models makes no sense if the 
explained variables are different
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Example: Individ. Wages, cont’d

OLS estimated wage equation (Table 2.1, Verbeek)

only 3.17% of the variation of individual wages p.h. is due to the 
gender
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Individual Wages, cont’d

Wage equation with three regressors (Table 2.2, Verbeek)

R2 increased due to adding school and exper
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Other GoF Measures

� Uncentered R2: for the case of no intercept; the Uncentered R2

cannot become negative

Uncentered R2 = 1 – Σi ei²/ Σi yi²

� adj R2 (adjusted R2): for comparing models; compensated for 
added regressor, penalty for increasing K

for a given model, adj R2 is smaller than R2

� For other than OLS estimated models

it coincides with R2 for OLS estimated models
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Individual Wages

OLS estimated wage equation (Table 2.1, Verbeek)

b1 = 5.147, se(b1) = 0.081: mean wage p.h. for females: 5.15$,  
with std.error of 0.08$

b2 = 1.166, se(b2) = 0.112
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OLS Estimator: Distributional 
Properties
Under the assumptions (A1) to (A5): 

� The OLS estimator b = (X’X)-1 X’y is normally distributed with mean 
β and covariance matrix V{b} = σ2(X‘X)-1

b ~ N(β, σ2(X’X)-1),   bk ~ N(βk, σ
2ckk), k=1,…,K

with ckk the k-th diagonal element of (X’X)-1

� The statistic

follows the standard normal distribution N(0,1)

� The statistic

follows the t-distribution with N-K degrees of freedom (df)
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Testing a Regression 
Coefficient: t-Test
For testing a restriction on the (single) regression coefficient βk:

� Null hypothesis H0: βk = q (most interesting case: q = 0)

� Alternative HA: βk > q

� Test statistic: (computed from the sample with known distribution 
under the null hypothesis)

� tk is a realization of the random variable tN-K, which follows the t-
distribution with N-K degrees of freedom (df = N-K)

� under H0 and 
� given the Gauss-Markov assumptions and normality of the errors

� Reject H0, if the p-value P{tN-K > tk | H0} is small (tk-value is large)
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Normal and t-Distribution

Standard normal distribution: Z ~ N(0,1)

� Distribution function Φ(z) = P{Z ≤ z}

t-distribution: Tdf ~ t(df)

� Distribution function F(t) = P{Tdf ≤ t}

� p-value: P{TN-K > tk | H0} = 1 – FH0(tk)

For growing df, the t-distribution approaches the standard normal 
distribution, Tdf follows asymptotically (N → ∞) the N(0,1)-distribution

� 0.975-percentiles tdf,0.975 of the t(df)-distribution

� 0.975-percentile of the standard normal distribution: z0.975 = 1.96
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df 5 10 20 30 50 100 200 ∞

tdf,0.025 2.571 2.228 2.085 2.042 2.009 1.984 1.972 1.96



OLS Estimators: Asymptotic 
Distribution
If the Gauss-Markov (A1) - (A4) assumptions hold but not the 

normality assumption (A5): 

t-statistic

� follows asymptotically (N → ∞) the standard normal distribution

In many situations, the unknown true properties are substituted by 
approximate results (asymptotic theory)

The t-statistic

� follows the t-distribution with N-K d.f. 

� follows approximately the standard normal distribution N(0,1)

The approximation error decreases with increasing sample size N
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Two-sided t-Test

For testing a restriction wrt a single regression coefficient βk:

� Null hypothesis H0: βk = q

� Alternative HA: βk ≠ q

� Test statistic: (computed from the sample with known distribution 
under the null hypothesis)

follows the t-distribution with N-K d.f.

� Reject H0, if the p-value P{TN-K > |tk| | H0} is small (|tk|-value is large)
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Individual Wages, cont’d

OLS estimated wage equation (Table 2.1, Verbeek)

Test of null hypothesis H0: β2 = 0 (no gender effect on wages, equal 
wages for males and females) against HA: β2 > 0 

t2 = b2/se(b2) = 1.1661/0.1122 = 10.38

Under H0, T follows the t-distribution with df = 3294-2 = 3292

p-value = P{T3292 > 10.38 | H0} = 3.7E-25: reject H0!
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Individual Wages, cont’d
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OLS estimated wage equation: Output from GRETL

Model 1: OLS, using observations 1-3294
Dependent variable: WAGE

coefficient std. error t-ratio p-value

const 5,14692 0,0812248 63,3664 <0,00001 ***
MALE 1,1661 0,112242 10,3891 <0,00001 ***

Mean dependent  var 5,757585 S.D. dependent  var 3,269186
Sum  squared  resid 34076,92 S.E. of regression 3,217364
R- squared 0,031746 Adjusted R- squared 0,031452
F(1, 3292) 107,9338 P-value(F) 6,71e-25
Log-likelihood -8522,228 Akaike criterion 17048,46
Schwarz criterion 17060,66 Hannan-Quinn 17052,82

p-value for tMALE-test: < 0.00001
„gender has a significant effect on wages, males earn more“



Significance Tests

For testing a restriction wrt a single regression coefficient βk:

� Null hypothesis H0: βk = q

� Alternative HA: βk ≠ q

� Test statistic: (computed from the sample with known distribution 
under the null hypothesis)

� Determine the critical value tN-K,1-α/2 for the significance level α from 

P{|Tk| > tN-K,1-α/2 | H0} = α
� Reject H0, if |Tk| > tN-K,1-α/2

� Typically, the value 0.05 is taken for α
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Significance Tests, cont’d

One-sided test :

� Null hypothesis H0: βk = q

� Alternative HA: βk > q (βk < q)

� Test statistic: (computed from the sample with known distribution 
under the null hypothesis)

� Determine the critical value tN-K,α for the significance level α from 

P{Tk > tN-K,α | H0} = α
� Reject H0, if tk > tN-K,α (tk < -tN-K,α)
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Confidence Interval for βk

Range of values (bkl, bku) for which the null hypothesis on βk is not 
rejected 

bkl = bk - tN-K,1-α/2 se(bk) < βk < bk + tN-K,1-α/2 se(bk) = bku

� Refers to the significance level α of the test

� For large values of df and α = 0.05 (1.96 ≈ 2)

bk – 2 se(bk) < βk < bk + 2 se(bk)

� Confidence level: γ = 1- α; typically γ = 0.95

Interpretation:

� A range of values for the true βk that are not unlikely (contain the 
true value with probability 100γ%), given the data (?)

� A range of values for the true βk such that 100γ% of all intervals 
constructed in that way contain the true βk 
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Individual Wages, cont’d

OLS estimated wage equation (Table 2.1, Verbeek)

The confidence interval for the gender wage difference (in USD p.h.)

� confidence level γ = 0.95

1.1661 – 1.96*0.1122 < β2 < 1.1661 + 1.96*0.1122 

0.946 < β2 < 1.386  (or 0.94 < β2 < 1.39) 

� γ = 0.99: 0.877 < β2 < 1.455
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Testing a Linear Restriction on 
Regression Coefficients
Linear restriction r’β = q

� Null hypothesis H0: r’β = q

� Alternative HA: r’β > q

� Test statistic

se(r’b) is the square root of V{r’b} = r’V{b}r 

� Under H0 and (A1)-(A5), t follows the t-distribution with df = N-K

GRETL: The option Linear restrictions from Tests on the output 
window of the Model statement Ordinary Least Squares allows to 
test linear restrictions on the regression coefficients
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Testing Several Regression 
Coefficients: F-test
For testing a restriction wrt more than one, say J with 1 < J < K, 

regression coefficients:

� Null hypothesis H0: βk = 0, K-J+1 ≤ k ≤ K

� Alternative HA: for at least one k, K-J+1 ≤ k ≤ K, βk ≠ 0

� F-statistic: (computed from the sample, with known distribution 
under the null hypothesis; R0

2 (R1
2): R2 for (un)restricted model)

F follows the F-distribution with J and N-K d.f.

� under H0 and given the Gauss-Markov assumptions (A1)-(A4) 
and normality of the εi (A5)

� Reject H0, if the p-value P{FJ,N-K > F | H0} is small (F-value is large)

� The F-test with J = K-1 is a standard test in GRETL
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Individual Wages, cont’d

A more general model is

wagei = β1 + β2 malei + β3 schooli + β4 experi + εi

β2 measures the difference in expected wages p.h. between males 
and females, given the other regressors fixed, i.e., with the same 
schooling and experience: ceteris paribus condition

Have school and exper an explanatory power?

Test of null hypothesis H0: β3 = β4 = 0 against HA: H0 not  true 

� R0
2 = 0.0317

� R1
2 = 0.1326 

� p-value = P{F2,3290 > 191.24 | H0} = 2.68E-79
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Individual Wages, cont’d

OLS estimated wage equation (Table 2.2, Verbeek)
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Alternatives for Testing 
Several Regression Coefficients
Test again

� H0: βk = 0, K-J+1 ≤ k ≤ K

� HA: at least one of these βk ≠ 0

1. The test statistic F can alternatively be calculated as

� S0 (S1): sum of squared residuals for the (un)restricted model

� F follows under H0 and (A1)-(A5) the F(J,N-K)-distribution

2. If σ2 is known, the test can be based on 

F = (S0-S1)/σ2

under H0 and (A1)-(A5): Chi-squared distributed with J d.f.

� For large N, s2 is very close to σ2; test with F approximates F-test
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Individual Wages, cont’d

A more general model is

wagei = β1 + β2 malei + β3 schooli + β4 experi + εi

Have school and exper an explanatory power?

� Test of null hypothesis H0: β3 = β4 = 0 against HA: H0 not true 

� S0 = 34076.92, S1 = 30527.87

� s = 3.046143

F(1) = [(34076.92 - 30527.87)/2]/[30527.87/(3294-4)] = 191.24

F(2) = [(34076.92 - 30527.87)/2]/3.046143 = 191.24

Does any regressor contribute to explanation? 

� Overall F-test for H0: β2 = … = β4 = 0 against HA: H0 not  true (see 
Table 2.2 or GRETL-output): J=3

F = 167.63, p-value: 4.0E-101
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The General Case

Test of H0: Rβ = q 

Rβ = q: J linear restrictions on coefficients (R: JxK matrix, q: J-vector) 

Example: 

Wald test: test statistic

ξ = (Rb - q)’[RV{b}R’]-1(Rb - q) 

� follows under H0 for large N approximately the Chi-squared 
distribution with J d.f. 

� Test based on F = ξ /J is algebraically identical to the F-test with
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p-value, Size, and Power

Type I error: the null hypothesis is rejected, while it is actually true 

� p-value: the probability to commit the type I error

� In experimental situations, the probability of committing the type I 
error can be chosen before applying the test; this probability is the 
significance level α, also denoted as the size of the test

� In model-building situations, not a decision but learning from data is 
intended; multiple testing is quite usual; the use of p-values is more 
appropriate than using a strict α

Type II error: the null hypothesis is not rejected, while it is actually 
wrong; the decision is not in favor of the true alternative

� The probability to decide in favor of the true alternative, i.e., not 
making a type II error, is called the power of the test; depends of 
true parameter values

Oct 6, 2017 Hackl, Econometrics, Lecture 2 28



p-value, Size, and Power, cont’d

� The smaller the size of the test, the smaller is its power (for a given 
sample size)

� The more HA deviates from H0, the larger is the power of a test of a 
given size (given the sample size)

� The larger the sample size, the larger is the power of a test of a 
given size

Attention! Significance vs relevance
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OLS Estimators: Asymptotic 
Properties 
Gauss-Markov assumptions (A1)-(A4) plus the normality assumption 

(A5) are in many situations very restrictive

An alternative are properties derived from asymptotic theory

� Asymptotic results hopefully are sufficiently precise 
approximations for large (but finite) N

� Typically, Monte Carlo simulations are used to assess the quality 
of asymptotic results 

Asymptotic theory: deals with the case where the sample size N
goes to infinity: N → ∞
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Chebychev’s Inequality 

Chebychev’s Inequality: Bound for the probability of deviations from 
its mean 

P{|z-E{z}| > rσ} < r- -2

for all r>0; true for any distribution with moments E{z} and σ2 = 
V{z}

For OLS estimator bk:

for all δ>0; ckk: the k-th diagonal element of (X’X)-1 = (Σi xi xi’)
-1

� For growing N: the elements of Σi xi xi’ increase, V{bk} decreases

� Given (A6) [see next slide], for all δ>0

bk converges in probability to βk for N → ∞; plimN → ∞ bk = βk
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Consistency of the OLS-
estimator
Simple linear regression

yi = β1 + β2xi + εi

Observations: (yi, xi), i = 1, …, N

OLS estimator 

� and  converge in probability to 
Cov {x, ε} and V{x} 

� Due to (A2), Cov {x, ε} =0; with V{x}>0 follows 

plimN → ∞ b2 = β2 + Cov {x, ε}/V{x} = β2
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OLS Estimators: Consistency

If (A2) from the Gauss-Markov assumptions (exogenous xi, all xi and 
εi are independent) and the assumption (A6) are fulfilled:

bk converges in probability to βk for N → ∞

Consistency of the OLS estimators b:

� For N → ∞, b converges in probability to β, i.e., the probability 
that b differs from β by a certain amount goes to zero for N → ∞

� The distribution of b collapses in β

� plimN → ∞ b = β

Needs no assumptions beyond (A2) and (A6)!
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A6 1/N (ΣN
i=1xi xi’) = 1/N (X’X) converges with growing N to 

a finite, nonsingular matrix Σxx



OLS Estimators: Consistency, 
cont’d

Consistency of OLS estimators can also be shown to hold under 
weaker assumptions: 

The OLS estimators b are consistent, 

plimN → ∞ b = β,

if the assumptions (A7) and (A6) are fulfilled

Follows from

and 

plim(b - β) = Σxx
-1E{xi εi}
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Consistency of s2

The estimator s2 for the error term variance σ2 is consistent, 

plimN → ∞ s
2 = σ2,

if the assumptions (A3), (A6), and (A7) are fulfilled
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Consistency: Some Properties

� plim g(b) = g(β)

� if plim s2 = σ2, then plim s = σ

� The conditions for consistency are weaker than those for 
unbiasedness
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OLS Estimators: Asymptotic 
Normality
� Distribution of OLS estimators mostly unknown 

� Approximate distribution, based on the asymptotic distribution

� Many estimators in econometrics follow asymptotically the normal 
distribution

� Asymptotic distribution of the consistent estimator b: distribution 
of 

N1/2(b - β) for N → ∞

� Under the Gauss-Markov assumptions (A1)-(A4) and assumption 
(A6), the OLS estimators b fulfill

“→” means “is asymptotically distributed as”
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OLS Estimators: Approximate 
Normality
Under the Gauss-Markov assumptions (A1)-(A4) and assumption 

(A6), the OLS estimators b follow approximately the normal 
distribution

The approximate distribution does not make use of assumption (A5), 
i.e., the normality of the error terms!

Tests of hypotheses on coefficients βk, 

� t-test

� F-test

can be performed by making use of the approximate normal 
distribution
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Assessment of Approximate 
Normality
Quality of 

� approximate normal distribution of OLS estimators

� p-values of t- and F-tests

� power of tests, confidence intervals, ec.

depends on sample size N and factors related to Gauss-Markov 
assumptions etc.

Monte Carlo studies: simulations that indicate consequences of 
deviations from ideal situations

Example: yi = β1 + β2xi + εi; distribution of b2 under classical 
assumptions?

� 1) Choose N; 2) generate xi, εi, calculate yi, i=1,…,N; 3) estimate b2

� Repeat steps 1)-3) R times: the R values of b2 allow assessment of 
the distribution of b2
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Multicollinearity

OLS estimators b = (X’X)-1X’y for regression coefficients β require 
that the KxK matrix 

X’X or Σi xi xi’

can be inverted

In real situations, regressors may be correlated, such as

� age and experience (measured in years)

� experience and schooling 

� inflation rate and nominal interest rate 

� common trends of economic time series, e.g., in lag structures 

Multicollinearity: between the explanatory variables exists 

� an exact linear relationship (exact collinearity)

� an approximate linear relationship 
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Multicollinearity: Consequences

Approximate linear relationship between regressors: 

� When correlations between regressors are high: difficult to 
identify the individual impact of each of the regressors

� Inflated variances 

� If xk can be approximated by the other regressors, variance of bk is 
inflated; 

� Smaller tk-statistic, reduced power of t-test

� Example: yi = β1xi1 + β2xi2 + εi

� with sample variances of X1 and X2 equal 1 and correlation r12,  
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Exact Collinearity

Exact linear relationship between regressors

� Example: Wage equation

� Regressors male and female in addition to intercept

� Regressor age defined as age = 6 + school + exper

� Σi xi xi’ is not invertible

� Econometric software reports ill-defined matrix Σi xi xi’

� GRETL drops regressor

Remedy:

� Exclude (one of the) regressors 

� Example: Wage equation

� Drop regressor female, use only regressor male in addition to intercept

� Alternatively: use female and intercept

� Not good: use of male and female, no intercept
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Variance Inflation Factor

Variance of bk

Rk
2: R2 of the regression of xk on all other regressors

� If xk can be approximated by a linear combination of the other 
regressors, Rk

2 is close to 1, the variance of bk inflated

Variance inflation factor: VIF(bk) = (1 - Rk
2)-1

Large values for some or all VIFs indicate multicollinearity

Warning! Large values of the variance of bk (and reduced power of 
the t-test) can have various causes

� Multicollinearity

� Small value of variance of Xk

� Small number N of observations
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Other Indicators for 
Multicollinearity
Large values for some or all variance inflation factors VIF(bk) are an 

indicator for multicollinearity

Other indicators: 

� At least one of the Rk
2, k = 1, …, K, has a large value

� Large values of standard errors se(bk) (low t-statistics), but 
reasonable or good R2 and F-statistic

� Effect of adding a regressor on standard errors se(bk) of 
estimates bk of regressors already in the model: increasing 
values of se(bk) indicate multicollinearity
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The Predictor

Given the relation yi = xi’β + εi

Given estimators b, predictor for the expected value of Y at x0, i.e., 
y0 = x0’β + ε0: ŷ0 = x0’b 

Prediction error: f0 = ŷ0 - y0 = x0’(b – β) + ε0

Some properties of ŷ0

� Under assumptions (A1) and (A2), E{b} = β and ŷ0 is an unbiased 
predictor

� Variance of ŷ0

V{ŷ0} = V{x0’b} = x0’ V{b} x0 = σ2 x0’(X’X)-1x0 = s0
2

� Variance of  the prediction error f0
V{f0} = V{x0’(b – β) + ε0} = σ2(1 + x0’(X’X)-1x0) = sf0²

given that ε0 and b are uncorrelated
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Prediction Intervals

100γ% prediction interval 

� for the expected value of Y at x0, i.e., y0 = x0’β + ε0: ŷ0 = x0’b 

ŷ0 – z(1+γ)/2 s0  ≤ y0 ≤ ŷ0 + z(1+γ)/2 s0 

with the standard error s0 of ŷ0 from s0
2 = σ2 x0’(X’X)-1x0

� for the prediction Y at x0

ŷ0 – z(1+γ)/2 sf0  ≤ y0 ≤ ŷ0 + z(1+γ)/2 sf0 

with sf0 from sf0
2 = σ2 (1 + x0’(X’X)-1x0); takes the error term ε0 into 

account

Calculation of sf0

� OLS estimate s2 of σ2 from regression output (GRETL: “S.E. of 
regression”)

� Substitution of s2 for σ2: s0 = s[x0’(X’X)-1x0]
0.5, sf0 = [s2 + s0

2]0.5 
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Example: Simple Regression

Given the relation yi = β1 + xiβ2 + εi

Predictor for Y at x0, i.e., y0 = β1 + x0β2 + ε0: 

ŷ0 = b1 + x0’b2

Variance of  the prediction error 

Figure: Prediction inter-
vals for various x0‘s 
(indicated as “x”) for  
γ = 0.95
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Individual Wages: Prediction

The fitted model is

wagei = −3.3800 + 1.3444 malei + 0.6388 schooli + 0.1248 experi

For a male with school = 12 and exper = 5, the predicted wage is

wage0 = 6.25405 ≈ 6.25 

Calculation of variance s0
2: 

� Based on variance s0
2 = x0’ V{b} x0 = σ2 x0’(X’X)-1x0 is laborious

� Re-estimating the model for regressors m1 = male–1, s1 = school–
12, e1 = exper –5 gives

wage = 6.25405+ 1.3444 m1 + 0.6388 s1 + 0.1248 e1

with a std.err. of the intercept of 0.10695. 

� The std.err. of the intercept, i.e., of the expected wage wage0 , is 
s0
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Individual Wages: Prediction, 
cont’d

The 95% confidence interval for wage0 is

6.25405 – 1.96* 0.10695 ≤ wage0 ≤ 6.25405 + 1.96* 0.10695 

or 6.04 ≤ wage0 ≤ 6.47

The 95% prediction interval for wage0: 

� From model fit: s = 3.046143

� sf0 = [s2 + s0
2]0.5 = [3.0461432 + 0.106952]0.5 = 3.048

� 95% prediction interval

6.254 – 1.96* 3.048 ≤ wage0 ≤ 6.254 + 1.96* 3.048

or 0.16 ≤ wage0 ≤ 12.35

Oct 6, 2017 Hackl, Econometrics, Lecture 2 52



Your Homework

1. For Verbeek’s data set “wages1” use GRETL (a) for estimating a 
linear regression model with intercept for wage p.h. with 
explanatory variables male and school; (b) interpret the 
coefficients of the model; (c) test the hypothesis that men and 
women, on average, have the same wage p.h., against the 
alternative that women‘s wage p.h. are different from men’s wage 
p.h.; (d) repeat this test against the alternative that women earn 
less; (e) calculate a 95% confidence interval for the wage 
difference of males and females.

2. Generate a variable exper_b by adding the Binomial random 
variable BE~B(2,0.5) to exper; (a) estimate two linear regression 
models with intercept for wage p.h. with explanatory variables (i) 
male and exper, and (ii) male, exper_b, and exper; compare the 
standard errors of the estimated coefficients; 
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Your Homework

(b) compare the VIFs for the variables of the two models; (c) 
check the correlations of the involved regressors.

3. Show for a linear regression with intercept that  R2 < adj R2

4. Show that the F-test based on 

and the F-test based on 

are identical.
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