Econometrics - Lecture 3

Regression Models: Interpretation and **Comparison**

Contents

- $\overline{\mathbb{R}^n}$ The Linear Model: Interpretation
- $\overline{\mathcal{A}}$ Selection of Regressors
- $\mathcal{L}^{\mathcal{L}}$ Selection Criteria
- $\mathcal{C}^{\mathcal{A}}$ Comparison of Competing Models
- \mathbb{R}^n Specification of the Functional Form
- $\overline{\mathcal{A}}$ Structural Break

Economic Models

Describe economic relationships (not only a set of observations), have an economic interpretation

Linear regression model:

$$
y_i = \beta_1 + \beta_2 x_{i2} + ... + \beta_k x_{ik} + \varepsilon_i = x_i' \beta + \varepsilon_i
$$

- Variables Y, X₂, ..., X_K: observable $\overline{}$
- H **•** Observations: y_i , x_{i2} , ..., x_{iK} , $i = 1, ..., N$
- **■** Error term ε _i (disturbance term) contains all influences that are П not included explicitly in the model; unobservable
- **Assumption** (A1), i.e., $E\{\varepsilon_i | X\} = 0$ or $E\{\varepsilon_i | x_i\} = 0$, gives E{*y*i | *^x*i} = *^x*i'β

the model describes the expected value of *y*i given *x*i(conditional expectation)

Example: Wage Equation

Wage equation (Verbeek's dataset "wages1")

```
wage<sub>i</sub> = β<sub>1</sub> + β
                      2 malei + β
3 school
 + β4 experi +
εii
```
Answers questions like:

 \Box Expected wage p.h. of a female with 12 years of education and 10 years of experience

Wage equation fitted to all 3294 observations

*wage*i = -3.38 + 1.34**male*ⁱ + 0.64**school* + 0.12**exper*ⁱ i

 \Box Expected wage p.h. of a female with 12 years of education and 10 years of experience: 5.50 USD

*wage*i = -3.38 + 1.34*0 + 0.64*12 + 0.12*10 = 5.50

Regression Coefficients

Linear regression model:

$$
y_i = \beta_1 + \beta_2 x_{i2} + ... + \beta_k x_{ik} + \varepsilon_i = x_i \beta + \varepsilon_i
$$

Coefficient β_k measures the change of *Y* if X_k changes by one unit

$$
\frac{\Delta E\{y_i \mid x_i\}}{\Delta x_k} = \beta_k \text{ for } \Delta x_k = 1
$$

H **For continuous regressors**

$$
\frac{\partial E\big\{y_i \big| x_i\big\}}{\partial x_{ik}} = \beta_k
$$

Marginal effect of changing X_{k} on Y

- Ceteris paribus condition: measuring the effect of a change of Y due to a change Δx_{k} = 1 by β_{k} implies
	- □ knowledge which other X_i , *i ‡k*, are in the model \Box
	- \Box that all other *X*ⁱ*, i* ǂ*^k*, remain unchanged

Example: Coefficients of Wage Equation

Wage equation

*wage*_i = β₁ + β 2 *male*ⁱ + β 3 *school* + β4 *exper*ⁱ ⁺ *ε*ii

 $β_3$ measures the impact of one additional year at school upon a person's wage, keeping gender and years of experience fixed

{
} } $\overline{P_3}$ $i \left| \frac{m \alpha v}{i}, \frac{m \alpha v}{i}, \frac{m \alpha v}{i} \right|$ $E\{\text{wage}_i | \text{male}_i, \text{school}_i, \text{exper}_i\}$ β ∂ = ∂ school.

i

Wage equation fitted to all 3294 observations *school*

> *wage*i = -3.38 + 1.34**male*ⁱ + 0.64**school* + 0.12**exper*ⁱ i

- One extra year at school, e.g., at the university, results in an increase of 64 cents; a 4-year study results in an increase of 2.56 USD of the wage p.h.
- This is true for otherwise (gender, experience) identical people

Regression Coefficients, cont'd

- П The marginal effect of a changing regressor may depend on other variables
- **Examples**
- Π $■ \nVage equation: *wage*_i = β₁ + β$ 2₂ male_i + β₃ age_i + β ₄ age_i² + ε_i the impact of changing age depends on age:

$$
\frac{\partial E\{y_i | x_i\}}{\partial age_i} = \beta_3 + 2\beta_4 age_i
$$

H ■ Wage equation may contain β₃ age_i + β effect of age depends upon gender4equation may contain β_3 *age*_i + β_4 *age*_i *male*_i: marginal

$$
\frac{\partial E\{y_i \mid x_i\}}{\partial age_i} = \beta_3 + \beta_4 male_i
$$

Elasticities

Elasticity: measures the *relative* change in the dependent variable *^Y*due to a *relative* change in $X_{\sf k}$

For a linear regression, the elasticity of Y with respect to X_k is ${\left\{ {\left. {{y_i}\left| {{x_i}} \right.} \right\}} / E\{ {{y_i}} \right|{x_i}} \right\}} = \frac{{\partial E\{ {{y_i}} \left| {{x_i}} \right\}}}{\partial E}$ $\int x_{ik}$ ∂x_{ik} $E\{y_i | x_i\}$ $\frac{\partial}{\partial x_{ik}} / x_{ik}$ $\frac{\partial}{\partial x_{ik}} = \frac{\partial}{\partial x_{ik}} \frac{\partial}{\partial x_{ik}} - \frac{\partial}{\partial x_{ik}} \frac{\partial}{\partial x_{ik}} = \frac{\partial}{\partial x_{ik}} \frac{\partial}{\partial x_{ik}}$ $\frac{\partial E\{y_i | x_i\} / E\{y_i | x_i\}}{\partial x_{ik} / x_{ik}} = \frac{\partial E\{y_i | x_i\}}{\partial x_{ik}} \frac{x_{ik}}{E\{y_i | x_i\}} = \frac{x_{ik}}{x_i' \beta} \beta_k$

Π For a loglinear model with (log x_i)' = (1, log x_{i2} ,..., log x_{ik}) log *y*i = (log *^x*i)' β ⁺*ε*ⁱ elasticities are the coefficients β (see slide 10) $\{\mathcal{Y}_i | x_i\}/E\{\mathcal{Y}_i | x_i\}$ / $\frac{\partial x_{ik}}{\partial x_{ik}}$ / x_{ik} $\qquad \qquad$ $=$ β_k $E\{y_i|x_i\}/E\{y_i|x_i\}$ x_{ik} / x_{ik} $\beta_{\scriptscriptstyle{k}}$ $\frac{\partial E\{y_i | x_i\}/E\{y_i | x_i\}}{\partial x_i / x_i} =$

Example: Wage Elasticity

Wage equation, fitted to all 3294 observations:

log*(wage*i) = 1.09 + 0.20 *male*i + 0.19 log(*exper*i)

- The coefficient of log(*exper*i) measures the elasticity of wages with respect to experience:
- 100% more years of experience result in an increase of wage by 0.19 or a 19% higher wage
- 10% more years of experience result in a 1.9% higher wage

Elasticities, continues slide 8

This follows – for log $y_i = (log x_i)' \beta + \varepsilon_i$ – from $\frac{\{\log y_i | x_i\}}{\sqrt{2}} = \frac{\partial E\{\log y_i | x_i\}}{\sqrt{2}} \frac{\partial E\{y_i | x_i\}}{\sqrt{2}}$ $\{y_i|x_i\}$ $\frac{\log E\{y_i|x_i\}}{\log E\{y_i|x_i\}} = \frac{1}{\log E\{y_i|x_i\}}$ $\{y_i | x_i\}$ ∂x_{ik} $E\{y_i | x_i\}$ $\frac{1}{i} \left| \frac{v_i}{v_i} \right| = \frac{0.2 \left(10.5 \frac{v_i}{v_i} \right)^2 \left| \frac{v_i}{v_i} \right|}{1}$ *ik* σ σ σ _{*i*} σ _{*i*} σ ^{*i*}_{*ik*} $\frac{1}{i} \left| \frac{v_i}{v_i} \right| \frac{v_i}{v_i} = \frac{1}{i}$ *i* $\begin{bmatrix} x_i \\ y_i \end{bmatrix}$ $\begin{bmatrix} x_i \\ y_i \end{bmatrix}$ $\begin{bmatrix} x_i \\ y_i \end{bmatrix}$ $\begin{bmatrix} x_i \\ y_i \end{bmatrix}$ $\frac{E\{\log y_i | x_i\}}{y_i} = \frac{\partial E\{\log y_i | x_i\}}{\partial y_i} \frac{\partial E\{y_i | x_i\}}{\partial y_i}$ $\partial E \{y_i | x_i\}$ ∂x_{ik} $\frac{E\{y_i | x_i\}}{y_i} \frac{\partial E\{y_i | x_i\}}{\partial y_i} = \frac{1}{\frac{\partial E\{y_i | x_i\}}{\partial y_i}}$ $E\{y_i | x_i\}$ ∂x_{ik} $E\{y_i | x_i\}$ ∂x_{ik} $\frac{\partial E\{\log y_i | x_i\}}{\partial E\{\log y_i | x_i\}} = \frac{\partial E\{\log y_i | x_i\}}{\partial E\{\log y_i\}}$ ∂x_{ik} $\partial E\{y_i|x_i\}$ ∂x $\approx \frac{\partial \log E\{y_i | x_i\}}{\partial F(x_i | x_i)} \frac{\partial E\{y_i | x_i\}}{\partial x} = \frac{1}{F(x_i | x_i)} \frac{\partial F(x_i | x_i)}{\partial x}$ $\partial E \{y_i | x_i\}$ ∂x_{ik} $E \{y_i | x_i\}$ ∂x $\frac{\partial E\{\log y_i | x_i\}}{\partial y_i} = \frac{\beta_k}{\beta_k}$ ∂x_{ik} *x*_{*ik*}

and

$$
\frac{\partial E\{y_i | x_i\}}{\partial x_{ik}} \frac{x_{ik}}{E\{y_i | x_i\}} = \frac{\partial E\{\log y_i | x_i\}}{\partial x_{ik}} E\{y_i | x_i\} \frac{x_{ik}}{E\{y_i | x_i\}}
$$

$$
= \frac{\beta_k}{x_{ik}} x_{ik} = \beta_k
$$

Semi-Elasticities

Semi-elasticity: measures the *relative* change in the dependent variable *Y* due to an (absolute) one-unit-change in $X_{\sf k}$

 $\overline{\mathcal{A}}$ Linear regression for

$$
\log y_i = x_i' \beta + \varepsilon_i
$$

the elasticity of Y with respect to X_{k} is

$$
\frac{\partial E\{y_i \mid x_i\} / E\{y_i \mid x_i\}}{\partial x_{ik} / x_{ik}} = \beta_k x_{ik}
$$

 β_{k} measures the relative change in Y due to a change in X_{k} by β one unit

 $■$ β_k is called semi-elasticity of Y with respect to X_{κ}

Example: Wage Differential

Wage equation, fitted to all 3294 observations:

*log(wage*i) = 1.09 + 0.20 *male*i + 0.19 log(*exper*i)

- The semi-elasticity of the wages with respect to gender, i.e., the relative wage differential between males and females, is the coefficient of *male*i: 0.20 or 20%
- The wage differential between males (*male*ⁱ =1) and females is obtained from $wage_{\textsf{f}}$ = exp{1.09 + 0.19 log(*exper*_i)} and $wage_{\textsf{m}}$ *wage_f exp{0.20} = 1.22 <i>wage_f; the wage differential is 0.22 or* $m =$ 22%; the coefficient $0.20¹$ is a good approximation.

¹⁾ For small *x*, exp{*x*} = $\Sigma_k x^k$ /*k*! ≈ 1+*x*

Contents

- $\overline{\mathbb{R}}$ The Linear Model: Interpretation
- $\overline{\mathcal{A}}$ Selection of Regressors
- $\mathcal{L}^{\mathcal{L}}$ Selection Criteria
- $\mathcal{C}^{\mathcal{A}}$ Comparison of Competing Models
- \mathbb{R}^n Specification of the Functional Form
- $\overline{\mathcal{A}}$ Structural Break

Selection of Regressors

Specification errors:

- Omission of a relevant variable
- Inclusion of an irrelevant variable

Questions:

- \mathbf{r} What are the consequences of a specification error?
- $\overline{}$ How to avoid specification errors?
- $\overline{}$ How to detect an erroneous specification?

Example: Income and Consumption

Income and Consumption

Income and Consumption: Growth Rates

Consumption Function

- C: Private Consumption, real, yearly growth rate (PCR_D4)
- Y: Household's Disposable Income, real, yearly growth rate (PYR_D4)
- *T*: Trend (*T*_i = *i*/1000)

ˆ $\hat{C} = 0.011 + 0.761Y$, adj $R^2 = 0.717$

Consumption function with trend $\tau_{\sf i}$ = i/1000:

2ˆ $C = 0.016 + 0.708 Y - 0.068T$, adj $R^2 = 0.741$

Consumption Function, cont'd

OLS estimated consumption function: Output from GRETL

Dependent variable : PCR_D4

Misspecification: Two Models

Two models:

$$
y_{i} = x_{i}^{'}\beta + z_{i}^{'}\gamma + \varepsilon_{i}
$$
 (A)
\n
$$
y_{i} = x_{i}^{'}\beta + v_{i}
$$
 (B)
\nwith *J*-vector z_{i}

Misspecification: Omitted Regressor

Specified model is (B), but true model is (A)

$$
\mathbf{y}_{i} = \mathbf{x}_{i}^{'}\boldsymbol{\beta} + \mathbf{z}_{i}^{'}\boldsymbol{\gamma} + \boldsymbol{\varepsilon}_{i}
$$
 (A)

$$
\mathbf{y}_{i} = \mathbf{x}_{i}^{'}\boldsymbol{\beta} + \mathbf{v}_{i}
$$
 (B)

OLS estimates b_{B} _B of β from (B) can be written with y_i from (A):

$$
b_B = \beta + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i z_i' \gamma + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i \varepsilon_i
$$

If (A) is the true model but (B) is specified, i.e., *J* relevant regressors *z*i are omitted, b_{B} $_{\mathsf{B}}$ is biased by $\,$

$$
E\left\{\sum_{i} x_{i} x_{i}^{\prime}\right\}^{-1} \sum_{i} x_{i} z_{i}^{\prime} \gamma\right\}
$$

Omitted variable bias!

No bias if (a) γ = 0 or if (b) variables in *x*i and *z*i are orthogonal

Misspecification: Irrelevant Regressor

Specified model is (A), but true model is (B):

*y***i ⁼** *^x***i'β +***^z***i'γ ⁺** *ε***i** (A) *y***i ⁼** *^x***i'β +***v***i** \mathbf{A} (B)

If (B) is the true model but (A) is specified, i.e., the model contains irrelevant regressors *z*i

The OLS estimates $b_{\sf A}$

are unbiased

 \blacksquare have higher variances and standard errors than the OLS estimate b_{B} $_{\rm B}$ obtained from fitting model (B)

Consequences

Consequences of specification errors:

- $\overline{\mathcal{A}}$ Omission of a relevant variable
- $\overline{\mathcal{A}}$ Inclusion of a irrelevant variable

Specification Search

General-to-specific modeling:

- 1. List all potential regressors, based on, e.g.,
	- \Box economic theory
	- \Box empirical research
	- \Box availability of data
- 2. Specify the most general model: include all potential regressors
- 3.Iteratively, test which variables have to be dropped, re-estimate
- 4. Stop if no more variable has to be dropped
- The procedure is known as the LSE (London School of Economics) method

Specification Search, cont'd

Alternative procedures

- $\overline{}$ Specific-to-general modeling: start with a small model and add variables as long as they contribute to explaining *Y*
- $\mathcal{C}^{\mathcal{A}}$ Stepwise regression
- Specification search can be subsumed under *data mining*

Practice of Specification Search

Applied research

- Starts with a in terms of economic theory plausible specification
- $\mathcal{L}_{\mathcal{A}}$ Tests whether imposed restrictions are correct, such as
	- \Box Test for omitted regressors
	- \Box Test for autocorrelation of residuals
	- \Box Test for heteroskedasticity
- \mathbf{r} Tests whether further restrictions need to be imposed
	- \Box Test for irrelevant regressors

Obstacles for good specification

- Complexity of economic theory
- Limited availability of data

Contents

- $\mathcal{L}_{\mathrm{eff}}$ The Linear Model: Interpretation
- $\overline{\mathcal{A}}$ Selection of Regressors
- \mathcal{L}^{max} Selection Criteria
- $\mathcal{C}^{\mathcal{A}}$ Comparison of Competing Models
- \mathbb{R}^n Specification of the Functional Form
- $\overline{\mathcal{A}}$ Structural Break

Regressor Selection Criteria

Criteria for adding and deleting regressors

- *t*-statistic, *F*-statistic
- Adjusted R²
- **Information Criteria: penalty for increasing number of regressors** $\overline{}$
	- Akaike's Information Criterion

$$
AIC = \log \frac{1}{N} \sum_{i} e_i^2 + \frac{2K}{N}
$$

- Alternative criteria are
	- \Box Schwarz's Bayesian Information Criterion (BIC)
	- \Box Hannan-Quinn Information Criterion

model with smaller BIC (or AIC) is preferred

The corresponding probabilities for type I and type II errors can hardly be assessed

Information Criteria

The most popular information criteria are

Akaike's Information Criterion

$$
AIC = \log \frac{1}{N} \sum_{i} e_i^2 + \frac{2K}{N}
$$

 $\overline{\mathcal{A}}$ **Schwarz's Bayesian Information Criterion**

 $BIC = \log \frac{1}{N} \sum_i e_i^2 + \frac{K}{N} \log N$ $=$ log $\frac{1}{N}$ $\sum_{i} e_i^2 + \frac{K}{N}$ log ∑+

 \mathbf{r} **Hannan-Quinn Information Criterion**

$$
HQIC = \log \frac{1}{N} \sum_{i} e_i^2 + 2K \log \log N
$$

Decide in favour of the model with the *lowest* value of the information criterion

Information Criteria: Penalties

Wages: Which Regressors?

Are *school* and *exper* relevant regressors in

```
wage<sub>i</sub> = β<sub>1</sub> + β
                      2 malei + β
3 school
 + β4 experi +
εii
```
or shall they be omitted?

- *t*-test: *p*-values are 4.62E-80 (*school*) and 1.59E-7 (*exper*)
- *F*-test: *F* = [(0.1326-0.0317)/2]/[(1-0.1326)/(3294-4)] = 191.24, with *p*-value 2.68E-79
- adj R²: 0.1318 for the wider model, much higher than 0.0315
- AIC: the wider model (AIC = 16690.2) is preferable; for the smaller model: AIC = 17048.5
- BIC: the wider model (BIC = 16714.6) is preferable; for the smaller model: BIC = 17060.7

All criteria suggest the wider model

Wages, cont'd

OLS estimated smaller wage equation (Table 2.1, Verbeek)

with AIC = 17048.46, BIC = 17060.66

-

The AIC Criterion

Various versions in literature

 $\overline{\mathbb{R}^n}$ Verbeek, also Greene:

$$
AIC_{V} = \log \frac{1}{N} \sum_{i} e_{i}^{2} + \frac{2K}{N} = \log(s^{2}) + 2K / N
$$

 $\overline{}$ Akaike's original formula is

$$
AIC_A = -2 I(b)/N + 2K/N = AIC_V + 1 + \log(2\pi)
$$

with the log-likelihood function

$$
\ell(b) = -\frac{N}{2} (1 + \log(2\pi) + \log(s^2))
$$

 $\mathcal{C}^{\mathcal{A}}$ GRETL:

$$
AIC_G = N \log(s^2) + 2K + N(1 + \log(2\pi)) = N AIC_A
$$

Contents

- $\mathcal{L}_{\mathrm{eff}}$ The Linear Model: Interpretation
- $\overline{\mathcal{A}}$ Selection of Regressors
- **The Co** Selection Criteria
- $\mathcal{C}^{\mathcal{A}}$ Comparison of Competing Models
- \mathbb{R}^3 Specification of the Functional Form
- $\overline{\mathcal{A}}$ Structural Break

Nested Models: Comparison

Model (B), $y_i = x_i$ ΄β + v_i , see slide 21, is nested in model

*y*i ⁼ *^x*i'β ⁺ *^z*i'γ ⁺ *ε*i(A)

i.e., (A) is extended by *J* additional regressors *z*i

Do the *J* added regressors contribute to explaining *Y*?

F-test (*t*-test when $J = 1$) for testing H_0 : all coefficients of added regressors are zero

$$
F = \frac{(R_A^2 - R_B^2)/J}{(1 - R_A^2)/(N - K)}
$$

- $R_{\mathcal{B}}$ 2 and *RA*2 are the *R*2 of the models without (B) and with (A) the *J*additional regressors, respectively
- $\overline{\mathcal{A}}$ **•** Adjusted R^2 : adj R^2 > adj R^2 2 equivalent to *F* > 1
- Information Criteria: choose the model with the smaller value of the information criterion

Comparison of Non-nested Models

Non-nested models:

$$
y_{i} = x_{i}^{'}\beta + \varepsilon_{i}
$$
 (A)

$$
y_{i} = z_{i}^{'}\gamma + v_{i}
$$
 (B)

at least one component in *z*i that is not in *x*i

 $\mathcal{L}_{\mathcal{A}}$ ■ Non-nested or encompassing *F*-test: compares by *F*-tests artificially nested models

> $y_i = x_i'β + z_{2i'}δ_B$ $_{\sf B}$ + $\boldsymbol{\varepsilon}^{\star}_{\;\; \sf i}$ with $z_{2 {\sf i}}$: regressors from $z_{\sf i}$ not in $x_{\sf i}$

> *y*i ⁼ *^z*i'γ ⁺ *^x*2i'δA $_{\mathsf{A}}$ + $\mathsf{v}^{\star}_{}$ with $\mathsf{x}_{2\mathsf{i}}$: regressors from x_{i} not in z_{i}

- \Box \Box Test validity of model A by testing H₀: δ_B = 0
- **α** Analogously, test validity of model B by testing H₀: δ _A = 0 \Box
- □ Possible results: A or B is valid, both models are valid, none is valid \Box
- Other procedures: *J*-test, PE-test (see below)

Wages: Which Model?

Which of the models is adequate?

```
log(wagei) = 0.119 + 0.260 malei + 0.115 school
                                               i(A)
```

```
adjR2 = 0.121, BIC = 5824.90,
```
log(*wage*i) = 0.119 + 0.064 *age*i

adj*R*2 = 0.069, BIC = 6004.60

Artificially nested model

 $log(wage_i) =$

= -0.472 + 0.243 *male*i + 0.088 *school* + 0.035 *age*ⁱ i

Test of model validity

- \Box model A: *t*-test for *age*, *p*-value 5.79E-15; model A is not adequate
- \Box model B: *F*-test for *male* and *school*: model B is not adequate

(B)

J-Test: Comparison of Nonnested Models

Non-nested models: (A) $y_i = x_i'β + ε_i$, (B) $y_i = z_i'γ + ν_i$ with components of *^z*i that are not in *x*ⁱ

 $\mathcal{L}_{\mathcal{A}}$ Combined model

*y*i = (1 - δ) *^x*i'β + δ *z*i'γ ⁺*u*ⁱ

with $0 < δ < 1$; δ indicates model adequacy

 $\overline{}$ Transformed model

*y*_i = *x*_i'β* + δ*z*_i'c + *u*_i = *x*_i'β* + δ \hat{y}_{iB} + *u*^{*}_i

with OLS estimate *c* for γ and predicted values $\hat{y}_{iB} = z_i$ 'c obtained
from fitting model **D**: *0** = (4, Σ)0 from fitting model B; $\beta^* = (1-\delta)\beta$

- $\mathcal{L}(\mathcal{A})$ *J*-test for validity of model A by testing H₀: δ = 0
- Less computational effort than the encompassing *F*-test

Wages: Which Model?

Which of the models is adequate?

```
log(wagei) = 0.119 + 0.260 malei + 0.115 school
                                               i(A)
```

```
adjR2 = 0.121, BIC = 5824.90,
```
log(*wage*i) = 0.119 + 0.064 *age*i

adj*R*2 = 0.069, BIC = 6004.60

Test the validity of model B by means of the *J*-test

Extend the model B to

log(*wage_i) = -0.587 + 0.034 age_i + 0.826* $\hat{\mathsf{y}}_{\mathsf{iA}}$

with values $\hat{\mathsf{y}}_{\mathsf{iA}}$ predicted for log(*wage*_i) from model A

- **Figure 15.96, p-value** Letter Forms and Test for coefficient of \hat{y}_{iA} , $t = 15.96$, p-value 2.65E-55
- Model B is not a valid model

(B)

Linear vs. Loglinear Model

Choice between linear and loglinear functional form

*y*i ⁼ *^x*i'β + *ε*i (A) log *y*_i = (log *x*_i)'β + *v*_i (B)

- \blacksquare In terms of economic interpretation: Are effects additive or multiplicative?
- $\overline{\mathcal{A}}$ Log-transformation stabilizes variance, particularly if the dependent variable has a skewed distribution (wages, income, production, firm size, sales,…)
- \mathbb{R}^n Loglinear models are easily interpretable in terms of elasticities

PE-Test: Linear vs. Loglinear Model

Choice between linear and loglinear functional form

Estimate both models

 $y_i = x_i' \beta + \varepsilon_i$ (A) log *y*i = (log *^x*i)'β + *^v*ⁱ (B)

calculate the fitted values \hat{y} (from model A) and log $\ddot{\jmath}$ (from B)

$$
\blacksquare
$$
 Test H₀: $\delta_{LIN} = 0$ in

*y*_i = *x*_i'β + δ_{LIN} (log (\hat{y} _i) − log \ddot{y} _i) + *u*_i

not rejecting H₀: δ _{LIN} = 0 favors the model A

$$
\blacksquare
$$
 Test H₀: $\delta_{\text{LOG}} = 0$ in

log *y*_i = (log *x*_i)'β + δ_{LOG} (\hat{y} _i – exp{log \ddot{y} _i}) + *u*_i

not rejecting H₀: δ_{LOG} = 0 favors the model B

Both null hypotheses are rejected: find a more adequate model

Wages: Which Model?

Test of validity of models by means of the PE-test

```
The fitted models are (with l_x for log(
x))
```
*wage*i = -2.046 + 1.406 *male*ⁱ + 0.608 *school* i(A)

*l*_*wage*ⁱ = 0.119 + 0.260 *male*ⁱ + 0.115 *l_school i*(B)

*x*_ *wage_f* – exp(*l_wage_f*) *^f*: predicted value of *x*: *d*_*log* = log(*wage* _*f*) – *l_wage_f*, *d_lin* ⁼

Test of validity of model A:

*wage*i = -1.708 + 1.379 *male*ⁱ + 0.637 *school* – 4.731 *d*_*log*ⁱi

with*^p*-value 0.013 for *d*_*log*; validity of model A in doubt

```
 Test of model validity, model B:
```
*l_wage*i = -1.132 + 0.240 *male*ⁱ + 1.008 *l*_*school* + 0.171 *d*_*lin*ⁱiwith*^p*-value 0.076 for *d*_*lin*; model B to be preferred

The PE-Test

Choice between linear and loglinear functional form

- **The auxiliary regressions are estimated for testing purposes**
- \blacksquare If the linear model is not rejected: accept the linear model
- \blacksquare If the loglinear model is not rejected: accept the loglinear model
- $\overline{}$ If both are rejected, neither model is appropriate, a more adequate model should be considered
- $\mathcal{L}_{\mathcal{A}}$ In case of the Individual Wages example:
	- \Box Linear model (A): *t*-statistic is – 4.731, *p*-value 0.013: the model is rejected
	- \Box Loglinear model (B): *t*-statistic is 0.171, *p*-value 0.076 : the model is not rejected

Contents

- $\mathcal{L}_{\mathcal{A}}$ The Linear Model: Interpretation
- $\overline{\mathcal{A}}$ Selection of Regressors
- **BECRICA Selection Criteria**
- $\mathcal{L}_{\mathcal{A}}$ Comparison of Competing Models
- \mathbb{R}^3 Specification of the Functional Form
- $\overline{\mathcal{A}}$ Structural Break

Non-linear Functional Forms

Model specification

*y*i = g(*^x*i, β) + *^ε*ⁱ

substitution of g(x_i , β) for x_i 'β: allows for two types on non-linearity

g(*^x*i, β) non-linear in regressors (but linear in parameters)

- \Box \Box Powers of regressors, e.g., g(x_i, β) = β₁ + β₂ age_i + β₃ age_i²
- \Box **□** Interactions of regressors, e.g., g(x_i, β) = β₁ + β₂ age_i + β₃ age_i**male*_i

OLS technique still works; *t*-test, *F*-test for specification check

- M. g(*^x*i, β) non-linear in regression coefficients, e.g.,
	- $g(x_i, β) = β_1 x_{i1}^{β2} x_{i2}^{β3}$

logarithmic transformation: log g(x _i, β) = log β₁ + β₂log x_{i1} + β₃log x_{i2}

$$
g(x_i, \beta) = \beta_1 + \beta_2 x_i^{\beta 3}
$$

non-linear least squares estimation, numerical procedures

Various specification test procedures, e.g., RESET test, Chow test

Individual Wages: Effect of Gender and Education

- Effect of gender may be depending of education level
- m. Separate models for males and females
- ٠ Interaction terms between dummies for education level and male
- Example: Belgian Household Panel, 1994 ("bwages", *N*=1472)
- ш Five education levels
- п Model for log(*wage*) with education dummies
- Model with interaction terms between education dummies and gender dummy
- п *F*-statistic for interaction terms:

 $F(5, 1460) = \{(0.4032 - 0.3976)/5\}/\{(1 - 0.4032)/(1472 - 12)\}$ $= 2.74$

with a *p*-value of 0.018

Wages: Model with Education Dummies

Model with education dummies: Verbeek, Table 3.11

Table 3.11		OLS results specification 5
-------------------	--	-----------------------------

Dependent variable: log(wage)

Wages: Model with Gender Interactions

Wage equation with interactions *educ***male*

RESET Test

Test of the linear model E{*y*i [|]*^x*i} = *^x*i'β against misspecification of the functional form:

- $\mathcal{L}^{\mathcal{L}}$ Null hypothesis: linear model is correct functional form
- Test of H₀: RESET test (Regression Specification Error Test), \blacksquare Ramsey (1969)
- \blacksquare Test idea: linear model is extended by adding \hat{y}_i^2 , \hat{y}_i^3 , ..., where \hat{y}_i is the fitted values from the linear model; extension does not improve model fit under H_0
	- □ \hat{y}_i^2 is a function of squares (and interactions) of the regressor variables; analogously for $\hat{\gamma}^3$, ...
	- □ If the *F*-test indicates that the additional regressor \hat{y}^2 contributes to explaining *Y*: the linear relation is not adequate, another functional form is more appropriate

The RESET Test Procedure

Test of the linear model E{*y*_i |x_i} = x_i'β against misspecification of the functional form:

- $\mathcal{L}^{\mathcal{A}}$ **Linear model extended by adding** $\hat{y}_i^2, ..., \hat{y}_i^Q$
- **F** (or *t*-) test to decide whether \hat{y}_i^2 , ..., \hat{y}_i^Q contribute as additional regressors to explaining *Y*
- Maximal power Q of fitted values: typical choice is Q = 2 or Q = 3 $\mathcal{L}_{\mathcal{A}}$

In **GRETL**: Ordinary Least Squares… => Tests => Ramsey's RESET, input of *Q*

Wages: RESET Test

The fitted models are (with *l_x* for log(*x*))

*wage*i = -2.046 + 1.406 *male*ⁱ + 0.608 *school* i(A)

*l*_*wage*ⁱ = 0.119 + 0.260 *male*ⁱ + 0.115 *l_school i*(B)

Test of specification of the functional form with *Q* = 3

- Model A: Test statistic: *F*(2, 3288) = 10.23, *p*-value = 3.723e-005
- ٠ Model B: Test statistic: *F*(2, 3288) = 4.52, *p*-value = 0.011

For both models the adequacy of the functional form is in doubt

Contents

- $\mathcal{L}_{\mathcal{A}}$ The Linear Model: Interpretation
- $\overline{\mathcal{A}}$ Selection of Regressors
- **The Co** Selection Criteria
- $\mathcal{L}^{\mathcal{L}}$ Comparison of Competing Models
- $\mathcal{L}_{\mathcal{A}}$ Specification of the Functional Form
- \mathcal{L}_{max} Structural Break

Structural Break: Chow Test

In time-series context, coefficients of a model may change due to a major policy change, e.g., the oil price shock

 $\overline{\mathbb{R}^2}$ Modeling a process with structural break

E{*y*i|*^x*i}= *^x*i'β ⁺ *g*i*x*i' γ

with dummy variable *g*i=0 before the break, *g*i=1 after the break

- \mathbf{r} **■ Regressors x_i, coefficients β before, β+γ after the break**
- \mathbf{r} Null hypothesis: no structural break, γ=0
- Test procedure: fitting the extended model, *^F* (or *t*-) test of γ=0

$$
F = \frac{S_r - S_u}{S_u} \frac{N - 2K}{K}
$$

 S_u *K*
with \mathcal{S}_{r} (\mathcal{S}_{u}): sum of squared residuals of the (un)restricted model

■ Chow test for structural break or structural change, Chow (1960)

Chow Test: The Practice

Test procedure is performed in the following steps

- Fit the restricted model: S_r
- \blacksquare \blacksquare Fit the extended model: $\mathtt{S}_\mathtt{u}$
- Calculate *F* and the *p*-value from the *F*-distribution with *K* and *N*- $\overline{}$ *2K* d.f.

Needs knowledge of break point

In **GRETL**: Ordinary Least Squares… => Tests => Chow testinput of the first observation period after the break point

Your Homework

1. Use the data set "bwages" of Verbeek for the following analyses:

- a) Estimate the model where the log hourly wages (*lnwage*) are explained by *lnexper*, *male*, and *educ*; interpret the results.
- b) Repeat exercise a) using dummy variables for the education levels, e.g., *d1* for *educ* = 1, instead of the variable *educ*; compare the models from exercises a) and b) by using (i) the non-nested *F*-test and (ii) the *J*-test; interpret the results.
- c) Use the PE-test to decide whether the model in a) (where log hourly wages, *lnwage,* are explained) or the same model but with levels, *wage,* of hourly wages as explained variable is to be preferred; interpret the result.
- d) Estimate the model for log hourly wages (*lnwage*) with regressors *exper*, *male*, *educ,* and the interaction *male* **exper* as additional regressor; interpret the result.

Your Homework, cont'd

- 2. OLS is used to estimate β from $y_i = x_i$ β + ε_i , but a relevant \sim \sim \sim \sim \sim \sim \sim regressor *z*i is neglected: *y*i ⁼ *^x*i'β +*^z*i'γ ⁺ *^ε*i. (a) Show that the estimate *b* is biased, and derive an expression for the bias; (b) what test statistic can be used for testing H₀: γ = 0?
—
- 3. The linear regression is specified as

log *y*i ⁼ *x*i'β ⁺ *ε*i

Show that the elasticity of Y with respect to X_{k} is $\beta_{\mathsf{k}}x_{\mathsf{i}\mathsf{k}}.$