Econometrics - Lecture 5

Autocorrelation, IV Estimator

Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

Example: Demand for Ice Cream

Verbeek's time series dataset "icecream"

- 30 four weekly observations (1951-1953)
- Variables
 - *cons*: consumption of ice cream per head (in pints)
 - income: average family income per week (in USD, red line)
 - price: price of ice cream (in USD per pint, blue line)
 - temp: average temperature (in Fahrenheit); tempc: (green, in °C)

Time series plot of consumption of ice cream per head (in pints), *cons*, over observation periods

Autocorrelation

- Typical for time series data such as consumption, production, investments, etc.
- Autocorrelation of error terms is typically observed if
 - a relevant regressor with trend or seasonal pattern is not included in the model: miss-specified model
 - the functional form of a regressor is incorrectly specified
 - the dependent variable is correlated in a way that is not appropriately represented in the systematic part of the model
- Autocorrelation of the error terms indicates deficiencies of the model specification such as omitted regressors, incorrect functional form, incorrect dynamic
- Tests for autocorrelation are the most frequently used tool for diagnostic checking the model specification

Time series plot of

Cons: consumption of ice cream per head (in pints); mean: 0.36 *Temp/100*: average temperature (in Fahrenheit) *Price* (in USD per pint); mean: 0.275 USD

Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp*

	Table 4.9	OLS results	
Dependent v	ariable: cons		
Variable	Estimate	Standard error	<i>t</i> -ratio
constant price income temp	$0.197 \\ -1.044 \\ 0.00331 \\ 0.00345$	0.270 0.834 0.00117 0.00045	$0.730 \\ -1.252 \\ 2.824 \\ 7.762$
s = 0.0368 dw = 1.0212	$R^2 = 0.7190$	$\bar{R}^2 = 0.6866$ F	r = 22.175

Nov 3, 2017

A Model with AR(1) Errors

Linear regression

$$y_t = x_t^{\beta} + \varepsilon_t^{(1)}$$

with

$$\varepsilon_t = \rho \varepsilon_{t-1} + v_t$$
 with $-1 < \rho < 1$ or $|\rho| < 1$

where v_{t} are uncorrelated random variables with mean zero and constant variance $\sigma_{\!v}^{\ 2}$

- For $\rho \neq 0$, the error terms ε_t are correlated; the Gauss-Markov assumption V{ ε } = $\sigma_{\varepsilon}^2 I_N$ is violated
- The other Gauss-Markov assumptions are assumed to be fulfilled

The sequence ε_t , t = 0, 1, 2, ... which follows $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$ is called an autoregressive process of order 1 or AR(1) process

¹⁾ In the context of time series models, variables are indexed by "t"

Properties of AR(1) Processes

Repeated substitution of ε_{t-1} , ε_{t-2} , etc. results in

 $\varepsilon_{t} = \rho \varepsilon_{t-1} + v_{t} = v_{t} + \rho v_{t-1} + \rho^{2} v_{t-2} + \dots$

with v_t being uncorrelated and having mean zero and variance σ_v^2 :

•
$$E{\epsilon_t} = 0$$

•
$$V{\epsilon_t} = \sigma_{\epsilon}^2 = \sigma_v^2 (1 - \rho^2)^{-1}$$

This results from V{ ϵ_t } = $\sigma_v^2 + \rho^2 \sigma_v^2 + \rho^4 \sigma_v^2 + ... = \sigma_v^2 (1-\rho^2)^{-1}$ for $|\rho| < 1$; the geometric series 1 + $\rho^2 + \rho^4 + ...$ has the sum (1- ρ^2)⁻¹ given that $|\rho| < 1$

• for $|\rho| > 1$, $V{\epsilon_t}$ is undefined

• Cov{ ϵ_t , ϵ_{t-s} } = $\rho^s \sigma_v^2 (1-\rho^2)^{-1}$ for s > 0

all error terms are correlated; covariances – and correlations Corr{ $\epsilon_t, \epsilon_{t-s}$ } = $\rho^s (1-\rho^2)^{-1}$ – decrease with growing distance *s* in time

AR(1) Process, cont'd

The covariance matrix V{ ϵ }:

$$V\{\varepsilon\} = \sigma_{v}^{2}\Psi = \frac{\sigma_{v}^{2}}{1-\rho^{2}} \begin{pmatrix} 1 & \rho & \cdots & \rho^{N-1} \\ \rho & 1 & \cdots & \rho^{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ \rho^{N-1} & \rho^{N-2} & \cdots & 1 \end{pmatrix}$$

- V{ε} has a band structure
- Depends only of two parameters: ρ and σ_v^2

Consequences of V{ ϵ } $\neq \sigma^2 I_T$

OLS estimators b for β

- are unbiased
- are consistent
- have the covariance-matrix

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$

- are not efficient estimators, not BLUE
- follow under general conditions asymptotically the normal distribution

The estimator $s^2 = e'e/(T-K)$ for σ^2 is biased

For an AR(1)-process ε_t with $\rho > 0$, s.e. from $\sigma^2 (X'X)^{-1}$ underestimates the true s.e.

Inference in Case of Autocorrelation

Covariance matrix of *b*:

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$

Use of σ^2 (X'X)⁻¹ (the standard output of econometric software) instead of V{*b*} for inference on β may be misleading

Identification of autocorrelation:

Statistical tests, e.g., Durbin-Watson test

Remedies

- Use of correct variances and standard errors
- Transformation of the model so that the error terms are uncorrelated

Estimation of p

Autocorrelation coefficient ρ : parameter of the AR(1) process

$$\varepsilon_t = \rho \varepsilon_{t-1} + v_t$$

Estimation of p

by regressing the OLS residual e_t on the lagged residual e_{t-1}

$$r = \frac{\sum_{t=2}^{T} e_t e_{t-1}}{(T-K)s^2}$$

- estimator is
 - biased
 - but consistent under weak conditions

Autocorrelation Function

Autocorrelation of order s:

$$r_s = \frac{\sum_{t=s+1}^{T} e_t e_{t-s}}{(T-k)s^2}$$

- Autocorrelation function (ACF) assigns r_s to s
- Correlogram: graphical representation of the autocorrelation function

GRETL: <u>V</u>ariable => <u>C</u>orrelogram

Produces (a) the autocorrelation function (ACF) and (b) the graphical representation of the ACF (and the partial autocorrelation function)

Example: Ice Cream Demand

Autocorrelation fur	nction (ACF)) of cons
---------------------	--------------	-----------

LAG	ACF		PACF	Q-stat. [p-value]
1	0,6627	***	0,6627 ***	14,5389 [0,000]
2	0,4283	**	-0,0195	20,8275 [0,000]
3	0,0982		-0,3179 *	21,1706 [0,000]
4	-0,1470		-0,1701	21,9685 [0,000]
5	-0,3968	**	-0,2630	28,0152 [0,000]
6	-0,4623	**	-0,0398	36,5628 [0,000]
7	-0,5145	***	-0,1735	47,6132 [0,000]
8	-0,4068	**	-0,0299	54,8362 [0,000]
9	-0,2271		0,0711	57,1929 [0,000]
10	-0,0156		0,0117	57,2047 [0,000]
11	0,2237		0,1666	59,7335 [0,000]
12	0,3912	**	0,0645	67,8959 [0,000]

Example: Ice Cream Demand

Contents

Autocorrelation

Tests against Autocorrelation

- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

Tests for Autocorrelation of Error Terms

Due to unbiasedness of *b*, residuals are expected to indicate autocorrelation

Graphical displays, e.g., the correlogram of residuals may give useful hints

Residual-based tests:

- Durbin-Watson test
- Box-Pierce test
- Breusch-Godfrey test

Durbin-Watson Test

Test of H_0 : $\rho = 0$ against H_1 : $\rho \neq 0$

Test statistic

$$dw = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2} \approx 2(1 - r)$$

- For $\rho > 0$, *dw* is expected to have a value in (0,2)
- For $\rho < 0$, *dw* is expected to have a value in (2,4)
- *dw* close to the value 2 indicates no autocorrelation of error terms
- Critical limits of dw
 - depend upon x_t 's
 - exact critical value is unknown, but upper and lower bounds can be derived, which depend upon x_t 's only via the number of regression coefficients
- Test can be inconclusive
- $H_1: \rho > 0$ may be more appropriate than $H_1: \rho \neq 0$

Durbin-Watson Test: Bounds for Critical Limits

Derived by Durbin and Watson

Upper ($d_{\rm U}$) and lower ($d_{\rm L}$) bounds for the critical limits and $\alpha = 0.05$

-	K=2		<i>K</i> =3		<i>K</i> =10	
	d_{L}	d_{\cup}	$d_{ m L}$	d_{\cup}	d_{L}	d_{\cup}
15	1.08	1.36	0.95	1.54	0.17	3.22
20	1.20	1.41	1.10	1.54	0.42	2.70
100	1.65	1.69	1.63	1.71	1.48	1.87

- $dw < d_L$: reject H₀
- $dw > d_{\cup}$: do not reject H₀
- $d_{\rm L} < dw < d_{\rm U}$: no decision (inconclusive region)

Durbin-Watson Test: Remarks

- Durbin-Watson test gives no indication of causes for the rejection of the null hypothesis and how the model to modify
- Various types of misspecification may cause the rejection of the null hypothesis
- Durbin-Watson test is a test against first-order autocorrelation; a test against autocorrelation of other orders may be more suitable, e.g., order four if the model is for quarterly data
- Use of tables unwieldy
 - □ Limited number of critical bounds (*K*, *T*, α) in tables
 - Inconclusive region
- GRETL: Standard output of the OLS estimation reports the Durbin-Watson statistic; to see the *p*-value:
 - OLS output => Tests => Durbin-Watson *p*-value

Asymptotic Tests

AR(1) process for error terms

 $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$

Auxiliary regression of e_t on (an intercept,) x_t and e_{t-1} : produces

 $\bullet R_e^2$

Test of H_0 : $\rho = 0$ against H_1 : $\rho > 0$ or H_1 : $\rho \neq 0$

- 1. Breusch-Godfrey test (**GRETL**: OLS output => Tests => Autocorr.)
 - \square R_e² of the auxiliary regression: close to zero if $\rho = 0$
 - Under H_0 : $\rho = 0$, (*T*-1) R_e^2 follows approximately the Chi-squared distribution with 1 d.f.
 - Lagrange multiplier *F* (LMF) statistic: *F*-test for explanatory power of e_{t-1} ; follows approximately the *F*(1, *T*-*K*-1) distribution if $\rho = 0$
 - General case of the Breusch-Godfrey test: Auxiliary regression based on higher order autoregressive process

Asymptotic Tests, cont'd

2. Similar the Ljung-Box test, based on

 $Q^{LB} = T (T+2) \Sigma_{s}^{m} r_{s}^{2}/(T-s)$

with correlations r_s between e_t and e_{t-s} ; Q^{LB} follows the Chisquared distribution with *m* d.f. if $\rho = 0$

- 3. Box-Pierce test
 - The *t*-statistic based on the OLS estimate *r* of ρ from $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$, $t = \sqrt{T} r$

follows approximately the *t*-distribution, $t^2 = T r^2$ the Chi-squared distribution with 1 d.f. if $\rho = 0$

□ Test based on $\sqrt{(T)}r$ is a special case of the Box-Pierce test which uses the test statistic $Q_m = T \Sigma_s^m r_s^2$

Asymptotic Tests, cont'd

GRETL:

- OLS output => Tests => Autocorrelation (shows the Breusch-Godfrey LMF statistic, the Box-Pierce statistic, and the Ljung-Box statistic as well as *p*-values)
- OLS output => Graphs => Residual correlogram (shows besides the correlogram of the residuals Ljung-Box statistic and *p*-value)

Remarks

- If the model of interest contains lagged values of y the auxiliary regression should also include all explanatory variables (just to make sure the distribution of the test is correct)
- If heteroskedasticity is suspected, White standard errors may be used in the auxiliary regression

OLS estimated demand function: Output from **GRETL**

Dependent variable : CONS

0.7302 2.824 -1.252	0.4718 0.0090 ***
	0.2218
7.762	3.10e-08 ***
S.D. dependent var S.E. of regression Adjusted R-squared P-value (F) Akaike criterion Hannan-Quinn	0,065791 0,036833 0,686570 2,45e-07 -109,2389 -107,4459
	Adjusted R-squared P-value (F) Akaike criterion Hannan-Quinn Durbin-Watson

Test for autocorrelation of error terms

- $H_0: \rho = 0, H_1: \rho \neq 0$
- dw = 1.02 < 1.21 = d_L for T = 30, K = 4; p = 0.0003 (in GRETL: 0.0003025); reject H₀
- GRETL also shows the autocorrelation coefficient: r = 0.401
 Plot of actual (o) and fitted (polygon) values

Auxiliary regression $\varepsilon_t = x_t^{\beta} + \rho \varepsilon_{t-1} + v_t^{\beta}$: OLS estimation gives

 $r = 0.401, R^2 = 0.141$

Test of H_0 : $\rho = 0$ against H_1 : $\rho > 0$

- 1. Breusch-Godfrey test: LMF = 4.11, *p*-value: 0.053
- 2. Box-Pierce test: *t*² = 4.237, *p*-value: 0.040
- 3. Ljung-Box test: $Q^{LB} = 3.6$, *p*-value: 0.058

All three tests reject the null hypothesis

Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

Inference under Autocorrelation

Covariance matrix of *b*:

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$

Use of σ^2 (X'X)⁻¹ (the standard output of econometric software) instead of V{*b*} for inference on β may be misleading

Remedies

- Use of correct variances and standard errors
- Transformation of the model so that the error terms are uncorrelated

HAC-estimator for $V\{b\}$

Substitution of $\boldsymbol{\Psi}$ in

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$

by a suitable estimator

Newey-West: substitution of $S_x = \sigma^2(X'\Psi X)/T = (\Sigma_t \Sigma_s \sigma_{ts} x_t x_s')/T$ by

$$\hat{S}_{x} = \frac{1}{T} \sum_{t} e_{t}^{2} x_{t} x_{t}' + \frac{1}{T} \sum_{j=1}^{p} \sum_{t} (1 - w_{j}) e_{t} e_{t-j} (x_{t} x_{t-j}' + x_{t-j} x_{t}')$$

with $w_j = j/(p+1)$; *p*, the *truncation lag*, is to be chosen suitably The estimator

 $T(XX)^{-1} \hat{S}_{X}(XX)^{-1}$

for V{*b*} is called *heteroskedasticity and autocorrelation consistent* (HAC) estimator, the corresponding standard errors are the HAC s.e.

Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp*, OLS and HAC standard errors

	coeff	s.e.		
		OLS	HAC	
constant	0.197	0.270	0.288	
price	-1.044	0.834	0.876	
income*10 ⁻³	3.308	1.171	1.184	
<i>temp*10</i> -3	3.458	0.446	0.411	

Cochrane-Orcutt Estimator

GLS estimator

• With transformed variables $y_t^* = y_t - \rho y_{t-1}$ and $x_t^* = x_t - \rho x_{t-1}$, also called "quasi-differences", the model $y_t = x_t^{\cdot}\beta + \varepsilon_t$ with $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$ can be written as

 $y_t - \rho y_{t-1} = y_t^* = (x_t - \rho x_{t-1})^{\prime}\beta + v_t = x_t^{*\prime}\beta + v_t$ (A)

- The model in quasi-differences has error terms which fulfill the Gauss-Markov assumptions
- Given observations for t = 1, ..., T, model (A) is defined for t = 2, ..., T
- Estimation of ρ using, e.g., the auxiliary regression $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$ gives the estimate *r*; substitution of *r* in (A) for ρ results in FGLS estimators for β
- The FGLS estimator is called Cochrane-Orcutt estimator

Cochrane-Orcutt Estimation

In following steps

- 1. OLS estimation of *b* for β from $y_t = x_t^{\dagger}\beta + \varepsilon_t$, t = 1, ..., T
- 2. Estimation of *r* for ρ from the auxiliary regression $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$
- 3. Calculation of quasi-differences $y_t^* = y_t ry_{t-1}$ and $x_t^* = x_t rx_{t-1}$
- 4. OLS estimation of β from

 $y_t^* = x_t^{*'}\beta + v_t, t = 2, ..., T$

resulting in the Cochrane-Orcutt estimators

Steps 2. to 4. can be repeated in order to improve the estimate *r* : iterated Cochrane-Orcutt estimator

GRETL provides the iterated Cochrane-Orcutt estimator:

Model => Time series => Autoregressive estimation
Iterated Cochrane-Orcutt estimator

Table 4.10EGLS (iter	rative Cochrane–Orcutt) results
----------------------	---------------------------------

Dependent variable: cons

Variable	Estimate	Standard error	<i>t</i> -ratio	
constant <i>price</i> <i>income</i> <i>temp</i> $\hat{\rho}$	$\begin{array}{c} 0.157 \\ -0.892 \\ 0.00320 \\ 0.00356 \\ 0.401 \end{array}$	0.300 0.830 0.00159 0.00061 0.2079	0.524 -1.076 2.005 5.800 1.927	
$s = 0.0326^*$ dw = 1.5486	$R^2 = 0.7961^*$	$\bar{R}^2 = 0.7621^*$	F = 23.419	

Durbin-Watson test: dw = 1.55; $d_{L}=1.21 < dw < 1.65 = d_{U}$

Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp*, OLS and HAC standard errors (se), and Cochrane-Orcutt estimates

	OLS-estimation			Cochrane- Orcutt		
	coeff	se	HAC	coeff	se	
constant	0.197	0.270	0.288	0.157	0.300	
price	-1.044	0.834	0.881	-0.892	0.830	
income	3.308	1.171	1.151	3.203	1.546	
temp	3.458	0.446	0.449	3.558	0.555	

Model extended by temp_1

Table 4.11 OLS results extended specification						
Dependent variable: cons						
Variable	Estimate	Standard error	<i>t</i> -ratio			
constant 0.189 price -0.838 income 0.00287 temp 0.00533 temp_{t-1} -0.00220		0.232 0.688 0.00105 0.00067 0.00073	$\begin{array}{r} 0.816 \\ -1.218 \\ 2.722 \\ 7.953 \\ -3.016 \end{array}$			
$s = 0.0299 R^2 = 0.8285 \bar{R}^2 = 0.7999 F = 28.979$ dw = 1.5822						

Durbin-Watson test: dw = 1.58; $d_{L}=1.21 < dw < 1.65 = d_{U}$

Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp*, OLS and HAC standard errors, Cochrane-Orcutt estimates, and OLS estimates for the extended model

		OLS		Cochrane- Orcutt		OLS	
		coeff	HAC	coeff	se	coeff	se
	constant	0.197	0.288	0.157	0.300	0.189	0.232
	price	-1.044	0.881	-0.892	0.830	-0.838	0.688
	income	3.308	1.151	3.203	1.546	2.867	1.053
	temp	3.458	0.449	3.558	0.555	5.332	0.670
	temp_1					-2.204	0.731
ng	ng temp ₋₁ improves the adj R ² from 0.687 to 0.800						

Addi

General Autocorrelation Structures

Generalization of model

$$y_t = x_t \beta + \varepsilon_t$$

with $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$

Alternative dependence structures of error terms

- Autocorrelation of higher order than 1
- Moving average pattern

Higher Order Autocorrelation

For quarterly data, error terms may develop according to

$$\varepsilon_t = \gamma \varepsilon_{t-4} + v_t$$

or - more generally - to

 $\varepsilon_{t} = \gamma_{1}\varepsilon_{t-1} + \ldots + \gamma_{4}\varepsilon_{t-4} + V_{t}$

- ϵ_t follows an AR(4) process, an autoregressive process of order 4
- More complex structures of correlations between variables with autocorrelation of order 4 are possible than with that of order 1

Moving Average Processes

Moving average process of order 1, MA(1) process

 $\varepsilon_t = v_t + \alpha v_{t-1}$

- **ε**_t is correlated with $ε_{t-1}$, but not with $ε_{t-2}$, $ε_{t-3}$, ...
- Generalizations to higher orders

Remedies against Autocorrelation

- Change functional form, e.g., use log(y) instead of y
- Extend the model by including additional explanatory variables, e.g., seasonal dummies, or additional lags
- Use HAC standard errors for the OLS estimators
- Reformulate the model in quasi-differences (FGLS) or in differences

Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

OLS Estimator

Linear model for y_t

 $y_i = x_i'\beta + \varepsilon_i, i = 1, ..., N$ (or $y = X\beta + \varepsilon$)

given observations x_{ik} , k = 1, ..., K, of the regressor variables, error term ε_i

OLS estimator

$$b = (\sum_{i} x_{i} x_{i}')^{-1} \sum_{i} x_{i} y_{i} = (X'X)^{-1} X' y$$

From

$$b = (\sum_{i} x_{i} x_{i}')^{-1} \sum_{i} x_{i} y_{i} = (\sum_{i} x_{i} x_{i}')^{-1} \sum_{i} x_{i} x_{i}' \beta + (\sum_{i} x_{i} x_{i}')^{-1} \sum_{i} x_{i} \varepsilon_{i}$$

= $\beta + (\sum_{i} x_{i} x_{i}')^{-1} \sum_{i} x_{i} \varepsilon_{i} = \beta + (X'X)^{-1} X'\varepsilon$

follows

$$E\{b\} = (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i y_i = (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i x_i' \beta + (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i \varepsilon_i$$

= $\beta + (\Sigma_i x_i x_i')^{-1} E\{\Sigma_i x_i \varepsilon_i\} = \beta + (X'X)^{-1} E\{X'\varepsilon\}$

OLS Estimator: Properties

- 1. OLS estimator *b* is unbiased if
 - (A1) $E\{\epsilon\} = 0$
 - $E{\Sigma_i x_i \epsilon_i} = E{X \epsilon} = 0$; is fulfilled if (A7) or a stronger assumption is true
 - (A2) { x_i , i = 1, ..., N} and { ε_i , i = 1, ..., N} are independent; is the strongest assumption
 - (A10) $E{\epsilon|X} = 0$, i.e., X uninformative about $E{\epsilon_i}$ for all *i* (ϵ is conditional mean independent of X); is implied by (A2)
 - (A8) x_i and ε_i are independent for all *i* (no contemporaneous dependence); is less strong than (A2) and (A10)
 - (A7) $E\{x_i \varepsilon_i\} = 0$ for all *i* (no contemporaneous correlation); is even less strong than (A8)

OLS Estimator: Properties, cont'd

- 2. OLS estimator *b* is consistent for β if
 - (A8) x_i and ε_i are independent for all *i*
 - (A6) (1/N)Σ_i x_i x_i' has as limit (N→∞) a non-singular matrix Σ_{xx}
 (A8) can be substituted by (A7) [E{x_i ε_i} = 0 for all *i*, no contemporaneous correlation]
- 3. OLS estimator *b* is asymptotically normally distributed if (A6), (A8) and
 - (A11) ε_i ~ IID(0,σ²) are true;
 - for large N, b follows approximately the normal distribution b ~_a N{β, σ²(Σ_i x_i x_i')⁻¹}
 - Use White and Newey-West estimators for V{b} in case of heteroskedasticity and autocorrelation of error terms, respectively

Assumption (A7): $E\{x_i \varepsilon_i\} = 0$ for all *i*

- Implication of (A7): for all *i*, each of the regressors is uncorrelated with the current error term, no contemporaneous correlation
- (A7) guaranties unbiasedness and consistency of the OLS estimator
- Stronger assumptions (A2), (A10), (A8) have same consequences
- In reality, (A7) is not always true: alternative estimation procedures are required for ascertaining consistency and unbiasedness

Examples of situations with $E\{x_i \ \varepsilon_i\} \neq 0$ (see the following slides):

- Regressors with measurement errors
- Regression on the lagged dependent variable with autocorrelated error terms (dynamic regression)
- Unobserved heterogeneity
- Endogeneity of regressors, simultaneity

Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

Regressor with Measurement Error

 $y_i = \beta_1 + \beta_2 w_i + v_i$

with white noise v_i , $V\{v_i\} = \sigma_v^2$, and $E\{v_i|w_i\} = 0$; conditional expectation of y_i given $w_i : E\{y_i|w_i\} = \beta_1 + \beta_2 w_i$

Example: y_i : household savings , w_i : household income Measurement process: reported household income x_i may deviate from household income w_i

 $x_i = w_i + u_i$

where u_i is (i) white noise with V{ u_i } = σ_u^2 , (ii) independent of v_i , and (iii) independent of w_i

The model to be analyzed is

 $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ with $\varepsilon_i = v_i - \beta_2 u_i$

- $E\{x_i \epsilon_i\} = -\beta_2 \sigma_u^2 \neq 0$: requirement for consistency and unbiasedness of OLS estimates is violated
- x_i and ε_i are negatively (positively) correlated if $\beta_2 > 0$ ($\beta_2 < 0$)

Consequences of Measurement Errors

Inconsistency of $b_2 = s_{xy}/s_x^2$ plim $b_2 = \beta_2 + (\text{plim } s_{x\epsilon})/(\text{plim } s_x^2) = \beta_2 + E\{x_i \epsilon_i\} / V\{x_i\}$ $= \beta_2 \left(1 - \frac{\sigma_u^2}{\sigma_w^2 + \sigma_u^2}\right)$

 β_2 is underestimated

• Inconsistency of
$$b_1 = \overline{y} - b_2 \overline{x}$$

plim $(b_1 - \beta_1) = -$ plim $(b_2 - \beta_2) \in \{x_i\}$

given $E{x_i} > 0$ for the reported income: β_1 is overestimated; inconsistency of b_2 "carries over"

The model does not correspond to the conditional expectation of y_i given x_i:

 $E\{y_i|x_i\} = \beta_1 + \beta_2 x_i - \beta_2 E\{u_i|x_i\} \neq \beta_1 + \beta_2 x_i$ as $E\{u_i|x_i\} \neq 0$

Dynamic Regression

```
Allows modelling dynamic effects of changes of x on y:
              y_t = \beta_1 + \beta_2 x_t + \beta_3 y_{t-1} + \varepsilon_t
     with \varepsilon_{t} following the AR(1) model
              \varepsilon_{t} = \rho \varepsilon_{t-1} + V_{t}
     v_{\rm t} white noise with \sigma_{\rm v}^2
From y_t = \beta_1 + \beta_2 x_t + \beta_3 y_{t-1} + \rho \varepsilon_{t-1} + v_t follows
              E\{y_{t-1}\varepsilon_t\} = \beta_3 E\{y_{t-2}\varepsilon_t\} + \rho^2 \sigma_v^2 (1 - \rho^2)^{-1}
     i.e., y_{t-1} is correlated with \varepsilon_t
     Remember: E{\epsilon_{t}, \epsilon_{t-s}} = \rho^{s} \sigma_{v}^{2} (1-\rho^{2})^{-1} for s > 0
OLS estimators not consistent if \rho \neq 0
The model does not correspond to the conditional expectation of y_{t}
     given the regressors x_t and y_{t-1}:
      E\{y_t|x_t, y_{t-1}\} = \beta_1 + \beta_2 x_t + \beta_3 y_{t-1} + E\{\varepsilon_t | x_t, y_{t-1}\}
```

Omission of Relevant Regressors

Two models:

$$y_{i} = x_{i}'\beta + z_{i}'\gamma + \varepsilon_{i}$$
(A)
$$y_{i} = x_{i}'\beta + v_{i}$$
(B)

- True model (A), fitted model (B)
- OLS estimates b_B of β from (B)

$$b_B = \beta + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i z_i' \gamma + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i \varepsilon_i$$

- Omitted variable bias: $E\{(\Sigma_i x_i x_i')^{-1} \Sigma_i x_i z_i'\}\gamma = E\{(X'X)^{-1} X'Z\}\gamma$
- No bias if (a) γ = 0, i.e., model (A) is correct, or if (b) variables in x_i and z_i are uncorrelated (orthogonal)
- OLS estimators are biased, if relevant regressors are omitted that are correlated with regressors in x_i

Unobserved Heterogeneity

Example: Wage equation with y_i : log wage, x_{1i} : personal characteristics, x_{2i} : years of schooling, u_i : abilities (unobservable)

$$y_i = x_{1i}'\beta_1 + x_{2i}\beta_2 + u_i\gamma + v_i$$

Model for analysis (unobserved u_i covered in error term)

$$y_i = x_i^{\,i}\beta + \varepsilon_i$$

with
$$x_i = (x_{1i}, x_{2i})$$
, $\beta = (\beta_1, \beta_2)$, $\varepsilon_i = u_i \gamma + v_i$

• Given $E\{x_i | v_i\} = 0$

plim $b = \beta + \Sigma_{xx}^{-1} E\{x_i u_i\} \gamma$

• OLS estimators *b* are not consistent if x_i and u_i are correlated ($\gamma \neq 0$), e.g., if higher abilities induce more years at school: estimator for β_2 might be overestimated, hence effects of years at school etc. are overestimated: "ability bias"

Unobserved heterogeneity: observational units differ in other aspects than ones that are observable

Endogenous Regressors

Regressors in X which are correlated with error term, $E{X^{t}\varepsilon} \neq 0$, are called endogenous

- OLS estimators $b = \beta + (X^{L}X)^{-1}X^{L}\varepsilon$
 - □ $E{b} \neq \beta$, *b* is biased; bias $E{(X^{L}X)^{-1}X^{L}\varepsilon}$ difficult to assess
 - $\Box \quad \text{plim } b = \beta + \Sigma_{xx}^{-1}q \text{ with } q = \text{plim}(N^{-1}X^{\epsilon}\varepsilon)$
 - For q = 0 (regressors and error term asymptotically uncorrelated), OLS estimators b are consistent also in case of endogenous regressors
 - For $q \neq 0$ (error term and at least one regressor asymptotically correlated): plim $b \neq \beta$, the OLS estimators b are not consistent
- Endogeneity bias
- Relevant for many economic applications

Exogenous regressors: with error term uncorrelated, all regressors that are not endogenous

Consumption Function

AWM data base, 1970:1-2003:4 C: private consumption (PCR), growth rate p.y. Y: disposable income of households (PYR), growth rate p.y. $C_{t} = \beta_{1} + \beta_{2}Y_{t} + \varepsilon_{t}$ (A) β_2 : marginal propensity to consume, $0 < \beta_2 < 1$ OLS estimates: $\hat{C}_{t} = 0.011 + 0.718 Y_{t}$ with t = 15.55, $R^2 = 0.65$, DW = 0.50 I_t : per capita investment (exogenous, E{ $I_t \varepsilon_t$ } = 0) $Y_{t} = C_{t} + I_{t}$ **(B)** Both Y_t and C_t are endogenous: $E\{C_t \epsilon_i\} = E\{Y_t \epsilon_i\} = \sigma_{\epsilon}^2(1 - \beta_2)^{-1}$ The regressor Y_t has an impact on C_t ; at the same time C_t has an impact on Y_{t}

Simultaneous Equation Models

Illustrated by the preceding consumption function:

$$C_{t} = \beta_{1} + \beta_{2}Y_{t} + \varepsilon_{t} \qquad (A)$$

$$Y_{t} = C_{t} + I_{t} \qquad (B)$$

Variables Y_t and C_t are simultaneously determined by equations (A) and (B)

- Equations (A) and (B) are the structural equations or the structural form of the simultaneous equation model that describes both Y_t and C_t
- The coefficients β_1 and β_2 are behavioural parameters
- Reduced form of the model: one equation for each of the endogenous variables C_t and Y_t, with only the exogenous variable I_t as regressor

The OLS estimators are biased and not consistent

Consumption Function, cont'd

Reduced form of the model:

$$C_{t} = \frac{\beta_{1}}{1 - \beta_{2}} + \frac{\beta_{2}}{1 - \beta_{2}}I_{t} + \frac{1}{1 - \beta_{2}}\varepsilon_{t}$$
$$Y_{t} = \frac{\beta_{1}}{1 - \beta_{2}} + \frac{1}{1 - \beta_{2}}I_{t} + \frac{1}{1 - \beta_{2}}\varepsilon_{t}$$

 OLS estimator b₂ from (A) is inconsistent; E{Y_t ε_t} ≠ 0 plim b₂ = β₂ + Cov{Y_t ε_t} / V{Y_t} = β₂ + (1 − β₂) σ_ε²(V{I_t} + σ_ε²)⁻¹ for 0 < β₂ < 1, b₂ overestimates β₂

The OLS estimator b₁ is also inconsistent

Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

An Alternative Estimator

Model

 $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$

with E{ $\varepsilon_i x_i$ } $\neq 0$, i.e., endogenous regressor x_i : OLS estimators are biased and inconsistent

Instrumental variable z_i satisfying

- 1. Exogeneity: $E\{\epsilon_i z_i\} = 0$: is uncorrelated with error term
- 2. Relevance: $Cov{x_i, z_i} \neq 0$: is correlated with endogenous regressor

Transformation of model equation

$$\operatorname{Cov}\{y_{i}, z_{i}\} = \beta_{2} \operatorname{Cov}\{x_{i}, z_{i}\} + \operatorname{Cov}\{\varepsilon_{i}, z_{i}\}$$

gives

$$\beta_2 = \frac{Cov\{y_i, z_i\}}{Cov\{x_i, z_i\}}$$

IV Estimator for β_2

Substitution of sample moments for covariances gives the instrumental variables (IV) estimator

$$\hat{\beta}_{2,IV} = \frac{\sum_{i} (z_i - \overline{z})(y_i - \overline{y})}{\sum_{i} (z_i - \overline{z})(x_i - \overline{x})}$$

- Consistent estimator for β₂ given that the instrumental variable z_i is valid , i.e., it is
 - Exogenous, i.e. $E{\epsilon_i z_i} = 0$
 - □ Relevant, i.e. $Cov{x_i, z_i} \neq 0$
- Typically, nothing can be said about the bias of an IV estimator; small sample properties are unknown
- Coincides with OLS estimator for $z_i = x_i$

Consumption Function, cont'd

Alternative model: $C_t = \beta_1 + \beta_2 Y_{t-1} + \varepsilon_t$

- Y_{t-1} and ε_t are certainly uncorrelated; avoids risk of inconsistency due to correlated Y_t and ε_t
- Y_{t-1} is certainly highly correlated with Y_t , is almost as good as regressor as Y_t

Fitted model:

```
\hat{C} = 0.012 + 0.660 Y_{-1}
with t = 12.86, R^2 = 0.56, DW = 0.79 (instead of
\hat{C} = 0.011 + 0.718 Y
with t = 15.55, R^2 = 0.65, DW = 0.50)
```

Deterioration of *t*-statistic and R² are price for improvement of the estimator

IV Estimator: The Concept

Alternative to OLS estimator

Avoids inconsistency in case of endogenous regressors
 Idea of the IV estimator:

- Replace regressors which are correlated with error terms by regressors which are
 - uncorrelated with the error terms
 - (highly) correlated with the regressors that are to be replaced

and use OLS estimation

The hope is that the IV estimator is consistent (and less biased than the OLS estimator)

Price: IV estimator is less efficient; deteriorated model fit as measured by, e.g., *t*-statistic, R²

Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

IV Estimator: General Case

The model is

 $y_{i} = x_{i}^{\,i}\beta + \varepsilon_{i}$ with $V\{\varepsilon_{i}\} = \sigma_{\varepsilon}^{2}$ and $E\{\varepsilon_{i}, x_{i}\} \neq 0$

• at least one component of x_i is correlated with the error term The vector of instruments z_i (with the same dimension as x_i) fulfils

$$E\{\varepsilon_i \ z_i\} = 0$$
$$Cov\{x_i, \ z_i\} \neq 0$$

IV estimator based on the instruments z_i

$$\hat{\boldsymbol{\beta}}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \left(\sum_{i} z_{i} y_{i}\right)$$

IV Estimator: Distribution

The (asymptotic) covariance matrix of the IV estimator is given by

$$V\left\{\hat{\boldsymbol{\beta}}_{IV}\right\} = \boldsymbol{\sigma}^{2} \left[\left(\sum_{i} x_{i} z_{i}'\right) \left(\sum_{i} z_{i} z_{i}'\right)^{-1} \left(\sum_{i} z_{i} x_{i}'\right) \right]^{-1} \left(\sum_{i} z_{i} z_{i}' z_{i}'\right)^{-1} \left(\sum_{i} z_{i} z_{i}' z_{i}'\right)^{-1} \left(\sum_{i} z_{i}' z_{i}' z_{i}' z_{i}'\right)^{-1} \left(\sum_{i} z_{i}' z_{i}' z_{i}' z_{i}' z_{i}'\right)^{-1} \left(\sum_{i} z_{i}' z_{i}' z_{i}' z_{i}' z_{i}'\right)^{-1} \left(\sum_{i} z_{i}' z_$$

In the estimated covariance matrix $V\{\beta_{IV}\}$, σ^2 is substituted by

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i} \left(y_i - x'_i \hat{\beta}_{IV} \right)^2$$

which is based on the IV residuals $y_i - x_i' \hat{\beta}_{IV}$

The asymptotic distribution of IV estimators, given IID(0, σ_{ϵ}^{2}) error terms, leads to the approximate distribution

 $N\left(\hat{\beta}, \hat{V}\{\hat{\beta}_{IV}\}\right)$ with the estimated covariance matrix $\hat{V}\{\hat{\beta}_{IV}\}$

Derivation of the IV Estimator

The model is

 $y_i = x_i \beta + \varepsilon_t = x_{0i} \beta_0 + \beta_K x_{Ki} + \varepsilon_i$ with $x_{0i} = (x_{1i}, ..., x_{K-1,i})$ containing the first *K*-1 components of x_i , and $E\{\varepsilon_i | x_{0i}\} = 0$

K-th component is endogenous: $E\{\varepsilon_i | x_{Ki}\} \neq 0$

The instrumental variable z_{κ_i} fulfils

 $\mathsf{E}\{\varepsilon_{\mathsf{i}} | z_{\mathsf{K}\mathsf{i}}\} = 0$

Moment conditions: *K* conditions to be satisfied by the coefficients, the *K*-th condition with z_{Ki} instead of x_{Ki} :

 $E\{\varepsilon_{i} x_{0i}\} = E\{(y_{i} - x_{0i} \beta_{0} - \beta_{K} x_{Ki}) x_{0i}\} = 0 \quad (K-1 \text{ conditions})$ $E\{\varepsilon_{i} z_{i}\} = E\{(y_{i} - x_{0i} \beta_{0} - \beta_{K} x_{Ki}) z_{Ki}\} = 0$

Number of conditions – and of corresponding linear equations – equals the number of coefficients to be estimated

Derivation of the IV Estimator,

The system of linear equations for the K coefficients β to be estimated can be uniquely solved for the coefficients β : the coefficients β are said "to be identified"

To derive the IV estimators from the moment conditions, the expectations are replaced by sample averages

$$\frac{1}{N}\sum_{i}(y_{i}-x_{i}'\hat{\beta}_{IV})x_{ki}=0, k=1,...,K-1$$

$$\frac{1}{N}\sum_{i}(y_{i}-x_{i}'\hat{\beta}_{IV})z_{Ki}=0$$

The solution of the linear equation system – with $z_i' = (x_{0i}', z_{Ki}) - is$

$$\hat{\boldsymbol{\beta}}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \sum_{i} z_{i} y_{i}$$

Identification requires that the *K*x*K* matrix $\Sigma_i z_i x_i$ ' is finite and invertible; instrument z_{Ki} is relevant when this is fulfilled

Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

Calculation of IV Estimators

The model in matrix notation

$$y = X\beta + \varepsilon$$

The IV estimator

$$\hat{\beta}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \sum_{i} z_{i} y_{i} = (Z'X)^{-1} Z'y$$

with z_i obtained from x_i by substituting instrumental variable(s) for all endogenous regressors

Calculation in two steps:

- 1. Reduced form: Regression of the explanatory variables $x_1, ..., x_K$ including the endogenous ones on the columns of *Z*: fitted values $\hat{X} = Z(Z'Z)^{-1}Z'X$
- 2. Regression of *y* on the fitted explanatory variables:

 $\hat{\boldsymbol{\beta}}_{IV} = (\hat{X}'\hat{X})^{-1}\hat{X}'y$

Calculation of IV Estimators: Remarks

- The *K*x*K* matrix $Z'X = \Sigma_i z_i x_i'$ is required to be finite and invertible
 - From $(\hat{X}'\hat{X})^{-1}\hat{X}'y = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'y$

 $= (Z'X)^{-1}Z'Z(X'Z)^{-1}X'Z(Z'Z)^{-1}Z'y = (Z'X)^{-1}Z'y = \hat{\beta}_{IV}$

it is obvious that the estimator obtained in the second step is the IV estimator

- However, the estimator obtained in the second step is more general; see below
- In GRETL: The sequence "Model > Instrumental variables > Two-Stage Least Squares…" leads to the specification window with boxes (i) for the regressors and (ii) for the instruments
Choice of Instrumental Variables

Instrumental variable are required to be

- exogenous, i.e., uncorrelated with the error terms
- relevant, i.e., correlated with the endogenous regressors
 Instruments
- must be based on subject matter arguments, e.g., arguments from economic theory
- should be explained and motivated
- must show a significant effect in explaining an endogenous regressor
- Choice of instruments often not easy

Regression of endogenous variables on instruments

- Best linear approximation of endogenous variables
- Economic interpretation not of importance and interest

Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

Returns to Schooling: Causality?

Human capital earnings function:

 $w_i = \beta_1 + \beta_2 S_i + \beta_3 E_i + \beta_4 E_i^2 + \varepsilon_i$

with w_i : log of individual earnings, S_i : years of schooling, E_i : years of experience ($E_i = age_i - S_i - 6$)

Empirically, more education implies higher income

Question: Is this effect causal?

- If yes, one year more at school increases wage by β_2 (Theory A)
- Alternatively, personal abilities of an individual causes higher income and also more years at school; more years at school do not necessarily increase wage (Theory B)

Issue of substantial attention in literature

Returns to Schooling: Endogenous Regressors

Wage equation: besides S_i and E_i, additional explanatory variables like gender, regional, racial dummies, family background
 Model for analysis:

 $w_i = \beta_1 + z_i'\gamma + \beta_2 S_i + \beta_3 E_i + \beta_4 E_i^2 + \varepsilon_i$

 z_i : observable variables besides E_i , S_i

- z_i is assumed to be exogenous, i.e., E{ $z_i ε_i$ } = 0
- S_i may be endogenous, i.e., $E\{S_i \varepsilon_i\} \neq 0$
 - Ability bias: unobservable factors like intelligence, family background, etc. enable to more schooling and higher earnings
 - Measurement error in measuring schooling
 - Etc.
- With S_i , also $E_i = age_i S_i 6$ and E_i^2 are endogenous
- OLS estimators may be inconsistent

Returns to Schooling: Data

- Verbeek's data set "schooling"
- National Longitudinal Survey of Young Men (Card, 1995)
- Data from 3010 males, survey 1976
- Individual characteristics, incl. experience, race, region, family background, etc.
- Human capital earnings or wage function

 $\log(wage_i) = \beta_1 + \beta_2 ed_i + \beta_3 exp_i + \beta_3 exp_i^2 + \varepsilon_i$

with ed_i : years of schooling (S_i) , exp_i : years of experience (E_i)

- Variables: wage76 (wage in 1976, raw, cents p.h.), ed76 (years at school in 1976), exp76 (experience in 1976), exp762 (exp76 squared)
- Further explanatory variables: *black*: dummy for afro-american, *smsa*: dummy for living in metropolitan area, *south*: dummy for living in the south

OLS Estimation

OLS estimated wage function

Model 2: OLS, using observations 1-3010 Dependent variable: I_WAGE76

С	oefficient	std. error	t-ratio	<i>p</i> -value
const	4.73366	0.0676026	70.02	0.0000 ***
ED76	0.0740090	0.00350544	21.11	2.28e-092 ***
EXP76	0.0835958	0.00664779	12.57	2.22e-035 ***
EXP762	-0.00224088	0.000317840	-7.050	2.21e-012 ***
BLACK	-0.189632	0.0176266	-10.76	1.64e-026 ***
SMSA76	0.161423	0.0155733	10.37	9.27e-025 ***
SOUTH76	-0.124862	0.0151182	-8.259	2.18e-016 ***
Mean dependent var		6.261832 S.D. o	dependent var	0.443798
Sum squared resid		420.4760 S.E. o	of regression	0.374191
R-squared		0.290505 Adjus	ted R-squared	0.289088
F(6, 3003)		204.9318 P-val	ue(F)	1.5e-219
Log-likelihoo	d	-1308.702 Akaik	e criterion	2631.403
Schwarz crite	erion	2673.471 Hann	an-Quinn	2646.532

Instruments for S_i , E_i , E_i^2

Potential instrumental variables

- Factors which affect schooling but are uncorrelated with error terms, in particular with unobserved abilities that are determining wage
- For years of schooling (S_i)
 - Costs of schooling, e.g., distance to school (*lived near college*), number of siblings
 - Parents' education
- For years of experience (E_i, E_i^2) : age is natural candidate

Step 1 of IV Estimation

Reduced form for *schooling* (*ed76*), gives predicted values *ed76_h*,

Model 3: OLS, using observations 1-3010 Dependent variable: ED76

coefficient	std. error	t-ratio	p-value
const -1.81870	4.28974	-0.4240	0.6716
AGE76 1.05881	0.300843	3.519	0.0004 ***
sq_AGE76 -0.0187266	0.00522162	-3.586	0.0003 ***
BLACK -1.46842	0.115245	-12.74	2.96e-036 ***
SMSA76 0.841142	0.105841	7.947	2.67e-015 ***
SOUTH76 -0.429925	0.102575	-4.191	2.85e-05 ***
NEARC4A 0.441082	0.0966588	4.563	5.24e-06 ***
Mean dependent var	13.26346 S.D. depen	ident var	2.676913
Sum squared resid	18941.85 S.E. of regi	ression	2.511502
R-squared	0.121520 Adjusted R	-squared	0.119765
F(6, 3003)	69.23419 P-value(F)		5.49e-81
Log-likelihood	-7039.353 Akaike crite	erion	14092.71
Schwarz criterion	14134.77 Hannan-Qu	Jinn	14107.83

Step 2 of IV Estimation

Wage equation, estimated by IV with instruments age, age², and nearc4a

Model 4: OLS, using observations 1-3010 Dependent variable: I_WAGE76

coefficient	std. error	t-ratio	p-value
const 3.69771	0.435332	8.494	3.09e-017 ***
ED76_h 0.164248	0.036887	4.453	8.79e-06 ***
EXP76_h 0.044588	0.022502	1.981	0.0476 **
EXP762_h -0.000195	0.001152	-0.169	0.8655
BLACK -0.057333	0.056772	-1.010	0.3126
SMSA76 0.079372	0.037116	2.138	0.0326 **
SOUTH76 -0.083698	0.022985	-3.641	0.0003 ***
Mean dependent var	6.261832	S.D. dependent var	0.443798
Sum squared resid	446.8056	S.E. of regression	0.385728
R-squared	0.246078	Adjusted R-squared	0.244572
F(6, 3003)	163.3618	P-value(F)	4.4e-180
Log-likelihood	-1516.471	Akaike criterion	3046.943
Schwarz criterion	3089.011	Hannan-Quinn	3062.072

Returns to Schooling: Summary of Estimates

Estimated regression coefficients and *t*-statistics

	OLS	IV ¹⁾	TSLS ¹⁾	IV (M.V.)
ed76	0.0740	0.1642	0.1642	0.1329
	21.11	4.45	3.92	2.59
exp76	0.0836	0.0445	0.0446	0.0560
	12.75	1.98	1.74	2.15
exp762	-0.0022	-0.0002	-0.0002	-0.0008
	-7.05	-0.17	-0.15	-0.59
black	-0.1896	-0. 0573	-0.0573	-0.1031
	-10.76	-1.01	-0.89	-1.33
R ²	0.291	0.246		
<i>F</i> -test	204.9	163.4		
¹⁾ The model differs from that used by Verbeek				

Some Comments

Instrumental variables (*age*, *age*², *nearc4a*)

- are relevant, i.e., have explanatory power for ed76, exp76, exp76²
- Whether they are exogenous, i.e., uncorrelated with the error terms, is not answered
- Test for exogeneity of regressors: Wu-Hausman test

Estimates of ed76-coefficient:

- IV estimate: 0.16 (0.13), i.e., 16% higher wage for one additional year of schooling; more than the double of the OLS estimate (0.07); not in line with "ability bias" argument!
- s.e. of IV estimate (0.04) much higher than s.e. of OLS estimate (0.004)
- Loss of efficiency especially in case of weak instruments: R² of model for ed76: 0.12; Corr{ed76, ed76_h} = 0.35

GRETL's TSLS Estimation

Wage equation, estimated by GRETL's TSLS

Model 8: TSLS, using observations 1-3010 Dependent variable: I_WAGE76 Instrumented: ED76 EXP76 EXP762 Instruments: const AGE76 sq_AGE76 BLACK SMSA76 SOUTH76 NEARC4A

	coefficient	std. error	t-ratio	p-value
const	3.69771	0.495136	7.468	8.14e-014 ***
ED76	0.164248	0.0419547	3.915	9.04e-05 ***
EXP76	0.0445878	0.0255932	1.742	0.0815 *
EXP762	-0.00019526	0.0013110	-0.1489	0.8816
BLACK	-0.0573333	0.0645713	-0.8879	0.3746
SMSA76	0.0793715	0.0422150	1.880	0.0601 *
SOUTH76	6 -0.0836975	0.0261426	-3.202	0.0014 ***
Mean depe	ndent var	6.261832	S.D. dependent var	0.443798
Sum squared resid		577.9991	S.E. of regression	0.438718
R-squared		0.195884	Adjusted R-squared	0.194277
F(6, 3003)		126.2821	P-value(F)	8.9e-143

Returns to Schooling: Summary of Estimates

Estimated regression coefficients and *t*-statistics

	OLS	IV ¹⁾	TSLS ¹⁾	IV (M.V.)
ed76	0.0740	0.1642	0.1642	0.1329
	21.11	4.45	3.92	2.59
exp76	0.0836	0.0445	0.0446	0.0560
	12.75	1.98	1.74	2.15
exp762	-0.0022	-0.0002	-0.0002	-0.0008
	-7.05	-0.17	-0.15	-0.59
black	-0.1896	-0. 0573	-0.0573	-0.1031
	-10.76	-1.01	-0.89	-1.33
R ²	0.291	0.246	0.196	
<i>F</i> -test	204.9	163.4	126.3	
¹⁾ The model differs from that used by Verbeek				

Some Comments

Verbeek's IV estimates

- Deviate from GRETL results
- No report of R²; definition of R² does not apply to IV estimated models
- IV estimates of coefficients
- are smaller than the OLS estimates; exception is *ed76*
- have higher s.e. than OLS estimates, smaller *t*-statistics

Questions

- Robustness of IV estimates to changes in the specification
- Exogeneity of instruments
- Weak instruments

Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

Some Tests

Questions of interest

- Is it necessary to use IV estimation, must violation of exogeneity be expected? To be tested: the null hypothesis of exogeneity of suspected variables
- 2. If IV estimation is used: Are the chosen instruments valid (relevant)?

For testing

- exogeneity of regressors: Wu-Hausman test, also called Durbin-Wu-Hausman test, in GRETL: Hausman test
- relevance of potential instrumental variables: Sargan test or over-identifying restrictions test
- Weak instruments, i.e., only weak correlation between endogenous regressor and instrument: Cragg-Donald test

Wu-Hausman Test

For testing whether one or more regressors x_i are endogenous (correlated with the error term); H_0 : $E\{\varepsilon_i x_i\} = 0$

- If the null hypothesis
 - □ is true, OLS estimates are more efficient than IV estimates
 - is not true, OLS estimates are inefficient, the less efficient but consistent IV estimates to be used
- Based on the assumption that the instrumental variables are valid, i.e., given that $E{\epsilon_i z_i} = 0$, the null hypothesis $E{\epsilon_i x_i} = 0$ can be tested against the alternative $E{\epsilon_i x_i} \neq 0$

The idea of the test:

- Under the null hypothesis, both the OLS and IV estimator are consistent; they should differ by sampling errors only
- Rejection of the null hypothesis indicates inconsistency of the OLS estimator

Wu-Hausman Test, cont'd

Based on the differences between OLS- and IV-estimators; various versions of the Wu-Hausman test

Added variable interpretation of the Wu-Hausman test: checks whether the residuals v_i from the reduced form equation of potentially endogenous regressors contribute to explaining

 $y_{i} = x_{1i}'\beta_{1} + x_{2i}'\beta_{2} + v_{i}'\gamma + \varepsilon_{i}$

- x_2 : potentially endogenous regressors
- v_i: residuals from reduced form equation for x₂ (predicted values for x₂: x₂ + v)
- $H_0: \gamma = 0$; corresponds to: x_2 is exogenous

For testing H₀: use of

- *t*-test, if γ has one component, x_2 is just one regressor
- *F*-test, if more than 1 regressors are tested for exogeneity

Hausman Test Statistic

Based on the quadratic form of differences between OLS- estimators $b_{\rm LS}$ and IV-estimators $b_{\rm IV}$

- H_0 : both b_{LS} and b_{IV} are consistent, b_{LS} is efficient relative to b_{IV}
- $H_1: b_{IV}$ is consistent, b_{LS} is inconsistent

Hausman test statistic

 $H = (b_{IV} - b_{LS})' V (b_{IV} - b_{LS})$

with estimated covariance matrix V of $b_{IV} - b_{LS}$ follows the approximate Chi-square distribution with J d.f.

Wu-Hausman Test: Remarks

Remarks

- Test requires valid instruments
- Test has little power if instruments are weak or invalid
- Various versions of the test, all based on differences between OLSand IV-estimators
- In GRETL: Whenever the TSLS estimation is used, GRETL produces automatically the Hausman test statistic

Sargan Test

For testing whether the instruments are valid

The validity of the instruments z_i requires that all moment conditions are fulfilled; for the *R*-vector z_i , the *R* sums

$$\frac{1}{N}\sum_{i}e_{i}z_{i}=0$$

must be close to zero

Test statistic

$$\boldsymbol{\xi} = NQ_N(\hat{\boldsymbol{\beta}}_{IV}) = \left(\sum_i e_i z_i\right)' \left(\hat{\boldsymbol{\sigma}}^2 \sum_i z_i z_i'\right)^{-1} \left(\sum_i e_i z_i\right)$$

has, under the null hypothesis, an asymptotic Chi-squared distribution with R-K df

Calculation of ξ : $\xi = NR_e^2$ using R_e^2 from the auxiliary regression of IV residuals $e_i = y_i - x_i' \hat{\beta}_{IV}$ on the instruments z_i

Sargan Test: Remarks

Remarks

- In case of an identified model (R = K), all R moment conditions are fulfilled, $\xi = 0$
- Over-identified model: R > K; the Sargan test is also called overidentifying restrictions test
- Rejection implies: the joint validity of all moment conditions and hence of all instruments is not acceptable
- The Sargan test gives no indication of invalid instruments
- In GRETL: Whenever the TSLS estimation is used and R > K, GRETL produces automatically the Sargan test statistic

Cragg-Donald Test

Weak (only marginally valid) instruments, i.e., only weak correlation between endogenous regressor and instrument :

- Biased IV estimates
- Inconsistent IV estimates
- Inappropriate large-sample approximations to the finite-sample distributions even for large N
- Definition of weak instruments: estimates are biased to an extent that is unacceptably large
- Null hypothesis: instruments are weak, i.e., can lead to an asymptotic relative bias greater than some value *b*

Cragg-Donald Test, cont'd

Test procedure

- Regression of the endogenous regressor on all instruments, both external, i.e., ones not included among the regressors, and internal
- F-test of the null hypothesis that the coefficients of all external instruments are zero
- If *F*-statistic is less a not too large value, e.g., 10: consider the instruments as weak

Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

From OLS to IV Estimation

Linear model $y_i = x_i^{\beta} + \varepsilon_i$

OLS estimator: solution of the K normal equations

 $1/N \Sigma_{i}(y_{i} - x_{i}^{*}b) x_{i} = 0$

Corresponding moment conditions

 $E\{\epsilon_{i} x_{i}\} = E\{(y_{i} - x_{i} \beta) x_{i}\} = 0$

 IV estimator given R instrumental variables z_i which may overlap with x_i: based on the R moment conditions

 $\mathsf{E}\{\varepsilon_i \ z_i\} = \mathsf{E}\{(y_i - x_i`\beta) \ z_i\} = 0$

 IV estimator: solution of corresponding sample moment conditions

Number of Instruments

Moment conditions

 $\mathsf{E}\{\varepsilon_i \ z_i\} = \mathsf{E}\{(y_i - x_i^{\,i}\beta) \ z_i\} = 0$

one equation for each component of z_i

z_i possibly overlapping with x_i

General case: R moment conditions

Substitution of expectations by sample averages gives *R* equations

$$\frac{1}{N}\sum_{i}(y_{i}-x_{i}^{\prime}\hat{\beta}_{IV})z_{i}=0$$

- 1. R = K: one unique solution, the IV estimator; identified model $\hat{\beta}_{IV} = \left(\sum_{i} z_i x'_i\right)^{-1} \sum_{i} z_i y_i = (Z'X)^{-1} Z' y$
- 2. R < K: infinite number of solutions, not enough instruments for a unique solution; under-identified or not identified model

The GIV Estimator

- 3. *R* > *K*: more instruments than necessary for identification; overidentified model
- For R > K, in general, no unique solution of all R sample moment conditions can be obtained; instead:
- the weighted quadratic form in the sample moments

$$Q_N(\boldsymbol{\beta}) = \left[\frac{1}{N}\sum_i (y_i - x_i'\boldsymbol{\beta}) z_i\right]' W_N\left[\frac{1}{N}\sum_i (y_i - x_i'\boldsymbol{\beta}) z_i\right]$$

with a *RxR* positive definite weighting matrix W_N is minimized gives the generalized instrumental variable (GIV) estimator $\hat{\beta}_{IV} = (X'ZW_N Z'X)^{-1} X'ZW_N Z'y$

The weighting matrix W_N

 $W_{\rm N}$: positive definite, order RxR

- Different weighting matrices result in different consistent GIV estimators with different covariance matrices
- Optimal choice for W_N ?
- For R = K, the matrix Z'X is square and invertible; the IV estimator is (Z'X)⁻¹Z'y for any W_N

GIV and TSLS Estimator

Optimal weighting matrix: $W_N^{opt} = [1/N(Z'Z)]^{-1}$; corresponds to the most efficient IV estimator

 $\hat{\beta}_{IV} = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'y$

- If the error terms are heteroskedastic or autocorrelated, the optimal weighting matrix has to be adapted
- Regression of each regressor, i.e., each column of *X*, on *Z*, i.e., on the *R* column of *Z*, results in $\hat{X} = Z(Z'Z)^{-1}Z'X$ and

$$\hat{\boldsymbol{\beta}}_{IV} = (\hat{X}'\hat{X})^{-1}\hat{X}'y$$

- This explains why the GIV estimator is also called "two stage least squares" (TSLS) estimator:
 - 1. First step: regress each column of *X* on *Z*
 - 2. Second step: regress *y* on predictions of *X*

GIV Estimator and Properties

- GIV estimator is consistent
- The asymptotic distribution of the GIV estimator, given IID(0, σ_ε²) error terms, leads to

 $N\left(oldsymbol{eta}, \hat{V}\{\hat{oldsymbol{eta}}_{IV}\}
ight)$

which is used as approximate distribution in case of finite N

 The (asymptotic) covariance matrix of the GIV estimator is given by

$$V\left\{\hat{\boldsymbol{\beta}}_{IV}\right\} = \boldsymbol{\sigma}^{2} \left[\left(\sum_{i} x_{i} z_{i}'\right) \left(\sum_{i} z_{i} z_{i}'\right)^{-1} \left(\sum_{i} z_{i} x_{i}'\right) \right]^{-1}$$

In the estimated covariance matrix, σ^2 is substituted by

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i} \left(y_i - x'_i \hat{\beta}_{IV} \right)^2$$

the estimate based on the IV residuals $y_i - x_i' \hat{\beta}_{IV}$

Your Homework

1. Use the data set "icecream" of Verbeek for the following analyses:

- a) Estimate the model where *cons* is explained by *price* and *temp*; show a diagramme of the residuals which may indicate autocorrelation of the error terms.
- b) Use the Durbin-Watson and the Breusch-Godfrey test against autocorrelation; state suitably H_0 and H_1 .
- c) Compare (i) the OLS and (ii) the HAC standard errors of the estimated coefficients.
- Repeat a), using (i) the iterative Cochrane-Orcutt estimation and (ii) OLS estimation of the model in differences; compare and interpret the results.
- For the Durbin-Watson test: (a) show that *dw* ≈ 2 2*r*; (b) can you agree with the statement "The Durbin-Watson test is a misspecification test".

Your Homework, cont'd

3. Use the data set "schooling" of Verbeek for the following analyses based on the wage equation

 $\log(wage76) = \beta_1 + \beta_2 ed76 + \beta_3 exp76 + \beta_4 exp762$

+ β_5 black + β_6 momed + β_7 smsa76 + ϵ

- a) Assuming that *ed76* is endogenous, (i) estimate the reduced form for *ed76*, including external instruments *smsa66*, *sinmom14*, *south66*, and *mar76*; (ii) assess the validity of the potential instruments; what indicate the correlation coefficients?
- b) Estimate, by means of the GRETL Instrumental variables (Two-Stage Least Squares ...) procedure, the wage equation, using the external instruments *black*, *momed*, *sinmom14*, *smsa66*, *south76*, *mar76*, and *age76*. Interpret the results including the Hausman and the Sargan test.
- c) Compare the estimates for β_2 (i) from the model in b), (ii) from the model with instruments *black*, *momed*, *smsa66*, *south76*, *mar76*, and *age76*, and (iii) with the OLS estimates.

Your Homework, cont'd

4. The model for consumption and income consists of two equations:

$$C_{t} = \beta_{1} + \beta_{2}Y_{t} + \varepsilon_{t}$$
$$Y_{t} = C_{t} + I_{t}$$

a. Show that both C_t and Y_t are endogenous:

$$\mathsf{E}\{C_{i} \varepsilon_{i}\} = \mathsf{E}\{Y_{i} \varepsilon_{i}\} = \sigma_{\varepsilon}^{2}(1-\beta_{2})^{-1}$$

b. Derive the reduced form of the model