Econometrics - Lecture 4

Heteroskedasticity

Contents

- Violations of $V(\varepsilon) = \sigma^2 I_N$: Illustrations and Consequences
- Heteroskedasticity
- Tests against Heteroskedasticity
- GLS Estimation

Gauss-Markov Assumptions

Observation y_i is a linear function

$$y_i = x_i'\beta + \varepsilon_i$$

of observations x_{ik} , k = 1, ..., K, of the regressor variables and the error term ε_i

for
$$i = 1, ..., N$$
; $x_i' = (x_{i1}, ..., x_{iK})$; $X = (x_{ik})$

A1	$E\{\varepsilon_i\} = 0$ for all <i>i</i>
A2	all ε_i are independent of all x_i (exogeneous x_i)
A3	$V\{\varepsilon_i\} = \sigma^2$ for all <i>i</i> (homoskedasticity)
A4	$Cov\{\varepsilon_i, \varepsilon_j\} = 0$ for all i and j with $i \neq j$ (no autocorrelation)

In matrix notation: $E\{\varepsilon\} = 0$, $V\{\varepsilon\} = \sigma^2 I_N$

OLS Estimator: Properties

Under assumptions (A1) and (A2):

1. The OLS estimator *b* is unbiased: $E\{b\} = \beta$

Under assumptions (A1), (A2), (A3) and (A4):

2. The variance of the OLS estimator is given by

$$V\{b\} = \sigma^2(\Sigma_i x_i x_i')^{-1} = \sigma^2(X'X)^{-1}$$

3. The sampling variance s^2 of the error terms ε_i ,

$$s^2 = (N - K)^{-1} \sum_i e_i^2$$

is unbiased for σ^2

4. The OLS estimator *b* is BLUE (best linear unbiased estimator)

Violations of $V\{\epsilon\} = \sigma^2 I_N$

Implications of the Gauss-Markov assumptions for ε:

$$V{\epsilon} = \sigma^2 I_N$$

Violations:

Heteroskedasticity

$$V{\epsilon}$$
 = diag(σ_1^2 , ..., σ_N^2)

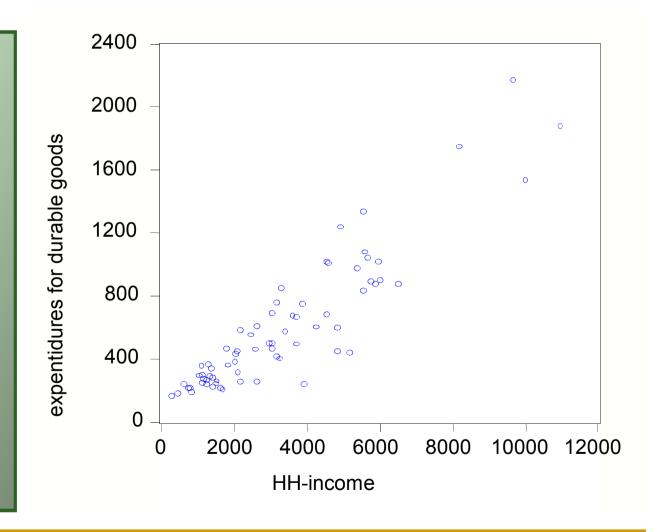
with $\sigma_i^2 \neq \sigma_j^2$ for at least one pair $i \neq j$, or using $\sigma_i^2 = \sigma^2 h_i^2$, $V\{\epsilon\} = \sigma^2 \Psi = \sigma^2 \operatorname{diag}(h_1^2, ..., h_N^2)$

■ Autocorrelation: $V{ε_i, ε_j} \neq 0$ for at least one pair $i \neq j$ or $V{ε} = σ^2Ψ$

with non-diagonal elements different from zero

Example: Household Income and Expenditures

70 households (HHs):
monthly HHincome and
expenditures for
durable goods



Household Income and Expenditures, cont'd

Residuals $e = y - \hat{y}$ from

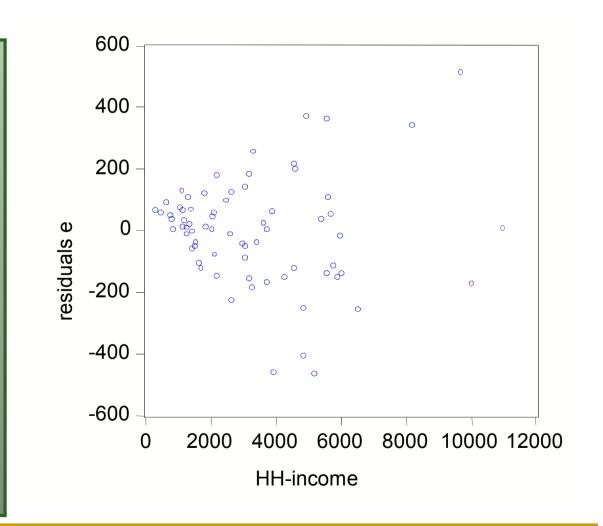
$$\hat{Y} = 44.18 + 0.17 X$$

X: monthly HH-income

Y: monthly expenditures

for durable goods

the larger the income, the more scattered are the residuals



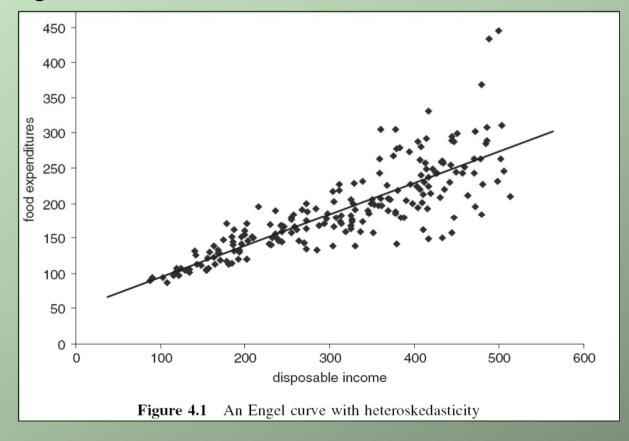
Typical Situations for Heteroskedasticity

Heteroskedasticity is typically observed

- in data from cross-sectional surveys, e.g., surveys in households, firms, or regions
- in data with variance that depends of one or several explanatory variables, e.g., variance of the firms' turnover depends on firm size (in number of staff)
- in data from financial markets, e.g., exchange rates, stock returns

Example: Household Expenditures for Food

Variation of expenditures for food, increasing with growing income; from Verbeek, Fig. 4.1



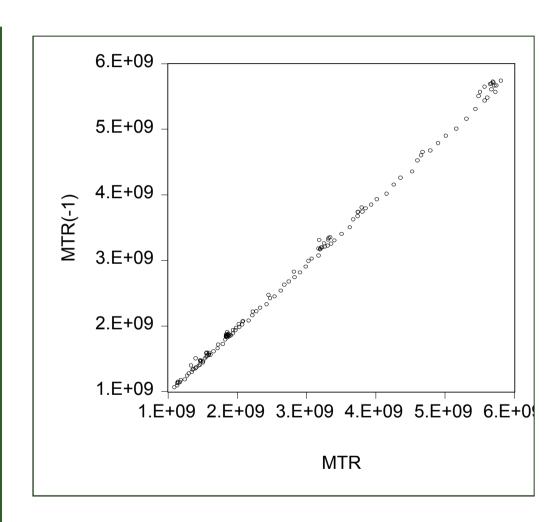
Autocorrelation of Economic Time-series

- Consumption in actual period is similar to that of the preceding period; the actual consumption "depends" on the consumption of the preceding period
- Consumption, production, investments, etc.: to be expected that successive observations of economic variables correlate positively
- Seasonal adjustment: application of smoothing and filtering algorithms induces correlation of the smoothed data

Example: Imports

Scatter-diagram of by one period lagged imports [MTR(-1)] against actual imports [MTR] (MRT from the AWM-database)

Correlation coefficient between MTR und MTR(-1): 0.9994

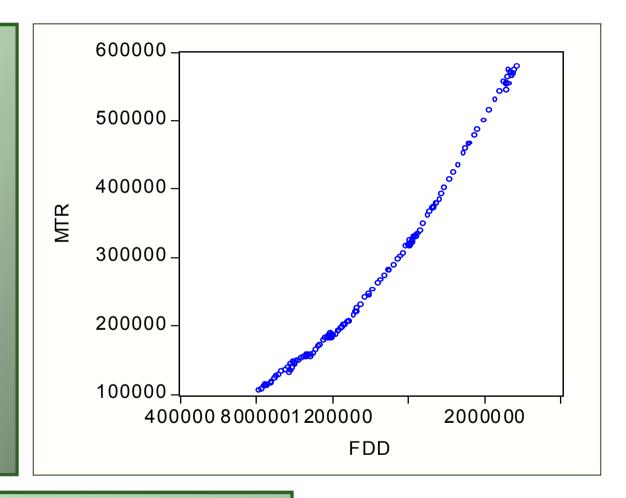


Example: Import Function

MTR: Imports

FDD: Total Demand

(from AWM-database)



Import function: MTR = -227320 + 0.36 FDD

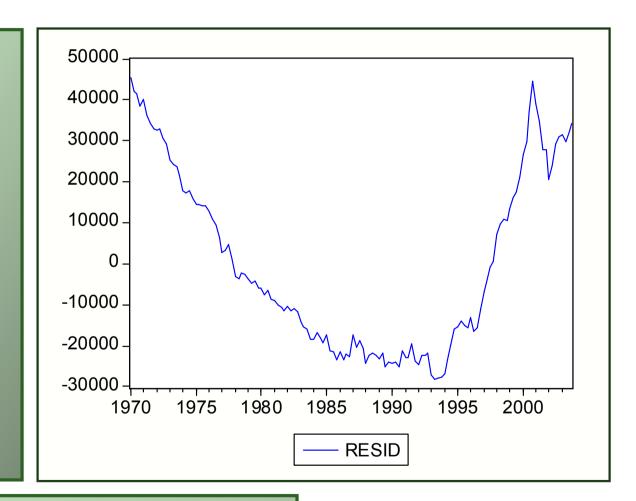
 $R^2 = 0.977$, $t_{FFD} = 74.8$

Import Function: Residuals

MTR: Imports

FDD: Total Demand

(from AWM-database)

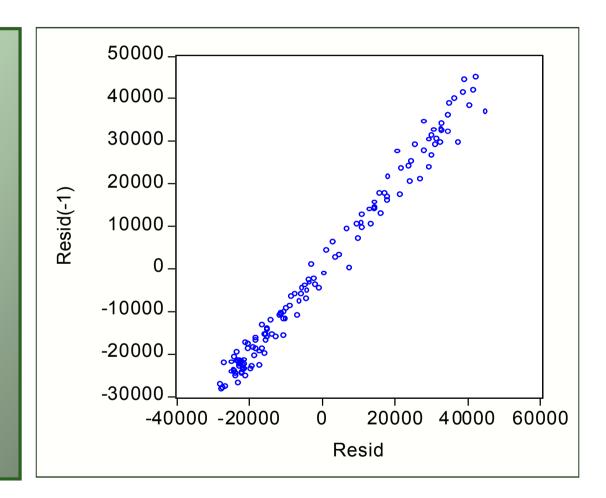


RESID: $e_t = MTR - (-227320 + 0.36 FDD)$

Import Function: Residuals, cont'd

Scatter-diagram of by one period lagged residuals [Resid(-1)] against actual residuals [Resid]

Serial correlation!



Typical Situations for Autocorrelation

Autocorrelation is typically observed if

- a relevant regressor with trend or seasonal pattern is not included in the model: miss-specified model
- the functional form of a regressor is incorrectly specified
- the dependent variable is correlated in a way that is not appropriately represented in the systematic part of the model
- Warning! Omission of a relevant regressor with trend implies autocorrelation of the error terms; in econometric analyses, autocorrelation of the error terms is always to be suspected!
- Autocorrelation of the error terms indicates deficiencies of the model specification
- Tests for autocorrelation are the most frequently used tool for diagnostic checking the model specification

Some Import Functions

Regression of imports (MTR) on total demand (FDD)

MTR =
$$-2.27 \times 10^9 + 0.357$$
 FDD, $t_{\text{FDD}} = 74.9$, R² = 0.977

Autocorrelation (of order 1) of residuals:

$$Corr(e_t, e_{t-1}) = 0.993$$

Import function with trend (T)

$$MTR = -4.45 \times 10^9 + 0.653 \text{ FDD} - 0.030 \times 10^9 \text{ T}$$

$$t_{\text{FDD}} = 45.8, t_{\text{T}} = -21.0, R^2 = 0.995$$

Multicollinearity? Corr(FDD, T) = 0.987!

Import function with lagged imports as regressor

$$MTR = -0.124 \times 10^9 + 0.020 \text{ FDD} + 0.956 \text{ MTR}_{-1}$$

$$t_{\text{FDD}} = 2.89, t_{\text{MTR}(-1)} = 50.1, R^2 = 0.999$$

Consequences of $V\{\epsilon\} \neq \sigma^2 I_N$ for OLS estimators

OLS estimators b for β

- are unbiased
- are consistent
- have the covariance-matrix

$$V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$$

- are not efficient estimators, not BLUE
- follow under general conditions asymptotically the normal distribution

The estimator $s^2 = e'e/(N-K)$ for σ^2 is biased

Consequences of $V\{\epsilon\} \neq \sigma^2 I_N$ for Applications

- OLS estimators b for β are still unbiased
- Routinely computed standard errors are biased; the bias can be positive or negative
- t- and F-tests may be misleading

Remedies

- Alternative estimators
- Corrected standard errors
- Modification of the model

Tests for identification of heteroskedasticity and for autocorrelation are important tools

Contents

- Violations of $V(\varepsilon) = \sigma^2 I_N$: Illustrations and Consequences
- Heteroskedasticity
- Tests against Heteroskedasticity
- GLS Estimation

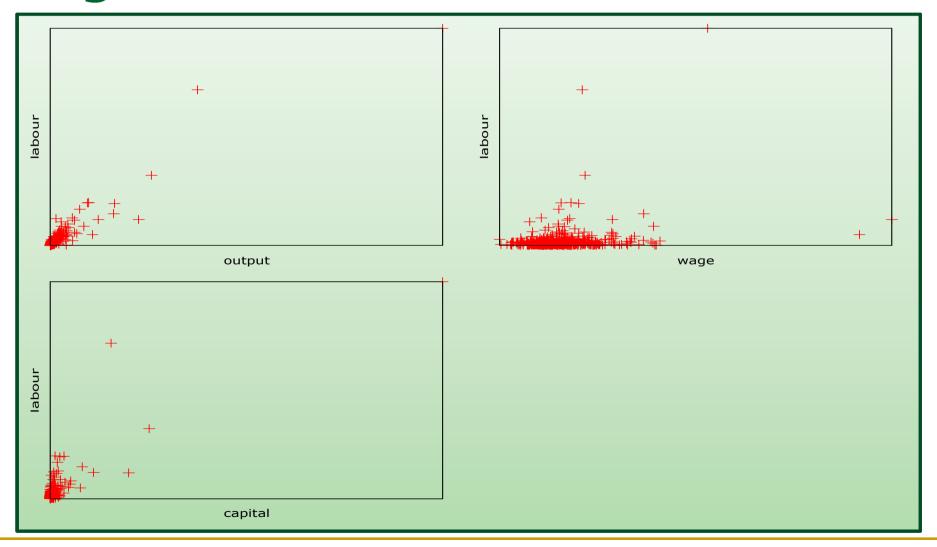
Example: Labor Demand

Verbeek's data set "labour2": Sample of 569 Belgian companies (data from 1996)

- Variables
 - labour: total employment (number of employees)
 - capital: total fixed assets
 - wage: total wage costs per employee (in 1000 EUR)
 - output: value added (in million EUR)
- Labour demand function

$$labour = \beta_1 + \beta_2^* wage + \beta_3^* output + \beta_4^* capital$$

Labor Demand and Potential Regressors



Inference under Heteroskedasticity

Covariance matrix of *b*:

$$V\{b\} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$$

with $\Psi = \text{diag}(h_1^2, ..., h_N^2)$

Use of σ^2 (X'X)⁻¹ (the standard output of econometric software) instead of V{*b*} for inference on β may be misleading

Remedies

- Use of correct variances and standard errors
- Transformation of the model so that the error terms are homoskedastic

The Correct Variances

- $V{ε_i} = σ_i^2 = σ^2 h_i^2$, i = 1,...,N: each observation has its own unknown parameter h_i
- N observation for estimating N unknown parameters?

To estimate σ_i^2 – and $V\{b\}$

- Known form of the heteroskedasticity, specific correction
 - \Box E.g., $h_i^2 = z_i'\alpha$ for some variables z_i
 - \Box Requires estimation of α
- White's heteroskedasticity-consistent covariance matrix estimator (HCCME)

$$\tilde{V}\{b\} = \sigma^2(X'X)^{-1}(\Sigma_i \hat{h}_i^2 x_i x_i') (X'X)^{-1}$$

with $\hat{h}_i^2 = e_i^2$

- Denoted as HC₀
- Inference based on HC₀: "heteroskedasticity-robust inference"

White's Standard Errors

White's standard errors for b

- Square roots of diagonal elements of HCCME
- Underestimate the true standard errors
- Various refinements, e.g., $HC_1 = HC_0[N/(N-K)]$

In **GRETL**: HC₀ is the default HCCME, HC₁ and other modifications are available as options

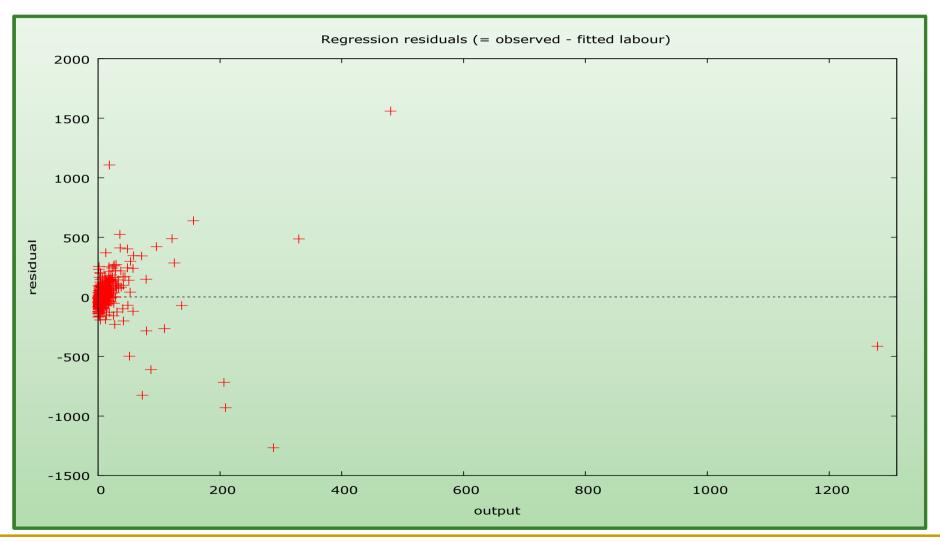
Labor Demand Function

For Belgian companies, 1996; Verbeek's data set "labour2"

Table 4.1 OLS results linear model						
Dependent variable: <i>labour</i>						
Variable	Estimate	Standard error	r <i>t</i> -ratio			
constant	287.72	19.64	14.648			
wage	-6.742	0.501	-13.446			
output	15.40	0.356	43.304			
capital	-4.590	0.269	-17.067			
s = 156.26	$R^2 = 0.9352$	$\bar{R}^2 = 0.9348$	F = 2716.02			

 $labour = \beta_1 + \beta_2^* wage + \beta_3^* output + \beta_4^* capital$

Labor Demand Function: Residuals vs *output*



Can the error terms be assumed to be homoskedastic?

- They may vary depending on the company size, measured by, e.g., size of output or capital
- Regression of squared residuals on appropriate regressors will indicate heteroskedasticity

Auxiliary regression of squared residuals, Verbeek

Table 4.2 Auxiliary regression Breusch-Pagan test						
Dependent	variable: e_i^2					
Variable	Estimate	Standard error	t-ratio			
constant	-22719.51	11838.88	-1.919			
wage	228.86	302.22	0.757			
output	5362.21	214.35	25.015			
capital	-3543.51	162.12	-21.858			
s = 94182	$R^2 = 0.5818$	$\bar{R}^2 = 0.5796$ $F =$	262.05			

Indicates dependence of error terms on output, capital, not on wage

With White standard errors: Output from GRETL

	ene	nde	nt \	/aria	able	- 1	LAB	OR
\boldsymbol{L}	c	HUC	. I I L \	anc	มมเบ		${}^{L}\!$	\cup

Heteroskedastic-robust standard errors, variant HC0,

	coefficient	std. error	t-ratio	p-value
const	287,719	64,8770	4,435	1,11e-05 ***
WAGE	-6,7419	1,8516	-3,641	0,0003 ***
CAPITAL	-4,5905	1,7133	-2,679	0,0076 ***
OUTPUT	15,4005	2,4820	6,205	1,06e-09 ***
Mean depe	ndent var	201,024911	S.D. dependent var	611,9959
Sum square	ed resid	13795027	S.E. of regression	156,2561
R- squared		0,935155	Adjusted R-squared	0,934811
F(2, 129)		225,5597	P-value (F)	3,49e-96
Log-likelihood		455,9302	Akaike criterion 7	
Schwarz criterion		-3679,670	Hannan-Quinn 73	

Estimated function

 $labour = \beta_1 + \beta_2^* wage + \beta_3^* output + \beta_4^* capital$

OLS estimates and standard errors: without (s.e.) and with White correction (White s.e.) and GLS estimates with $w_i = 1/(e^2)$

	β_1	β_2	β_3	β_4
Coeff OLS	287.19	-6.742	15.400	-4.590
s.e.	19.642	0.501	0.356	0.269
White s.e.	64.877	1.852	2.482	1.713
Coeff GLS	321.17	-7.404	15.585	-4.740
s.e.	20.328	0.506	0.349	0.255

The White standard errors are inflated by factors 3.7 (wage), 6.4 (capital), 7.0 (output) with respect to the OLS s.e.

An Alternative Estimator for b

Idea of the estimator

- 1. Transform the model so that it satisfies the Gauss-Markov assumptions
- 2. Apply OLS to the transformed model Results in an (at least approximately) BLUE

Transformation often depends upon unknown parameters that characterizing heteroskedasticity: two-step procedure

- Estimate the parameters that characterize heteroskedasticity and transform the model
- 2. Estimate the transformed model

The procedure results in an approximately BLUE

An Example

Model:

$$y_i = x_i'\beta + \varepsilon_i$$
 with $V(\varepsilon_i) = \sigma_i^2 = \sigma^2 h_i^2$

Division by h_i results in

$$y_i/h_i = (x_i/h_i)'\beta + \varepsilon_i/h_i$$

with a homoskedastic error term

$$V\{\varepsilon_i/h_i\} = \sigma_i^2/h_i^2 = \sigma^2$$

OLS applied to the transformed model gives

$$\hat{\beta} = \left(\sum_{i} h_{i}^{-2} x_{i} x_{i}'\right)^{-1} \sum_{i} h_{i}^{-2} x_{i} y_{i}$$

This estimator is an example of the "generalized least squares" (GLS) or "weighted least squares" (WLS) estimator

Weighted Least Squares Estimator

A GLS or WLS estimator is a least squares estimator where each observation is weighted by a non-negative factor $w_i > 0$:

$$\hat{\beta}_{w} = \left(\sum_{i} w_{i} x_{i}' x_{i}\right)^{-1} \sum_{i} w_{i} x_{i}' y_{i}$$

- Weights w_i proportional to the inverse of the error term variance $\sigma^2 h_i^2$: Observations with a higher error term variance have a lower weight; they provide less accurate information on β
- Needs knowledge of the h_i
 - Is seldom available
 - \Box Estimates of h_i can be based on assumptions on the form of h_i
 - □ E.g., $h_i^2 = z_i'\alpha$ or $h_i^2 = \exp(z_i'\alpha)$ for some variables z_i
- Analogous with general weights w_i
- White's HCCME uses $w_i = e_i^{-2}$

Regression of "l_usq1", i.e., $log(e_i^2)$, on capital and output

Dependent variable: I_usq1	Dep	pend	lent	variab	ole :	l usq	1
----------------------------	-----	------	------	--------	-------	-------	---

coefficient	std. error	t-ratio	p-value
const 7,24526	0,0987518	73,37	2,68e-291 ***
CAPITAL -0,0210417	0,00375036	-5,611	3,16e-08 ***
OUTPUT 0,0359122	0,00481392	7,460	3,27e-013 ***
Mean dependent var Sum squared resid R- squared F(2, 129) Log-likelihood Schwarz criterion	7,531559	S.D. dependent var	2,368701
	2797,660	S.E. of regression	2,223255
	0,122138	Adjusted R-squared	0,119036
	39,37427	P-value (F)	9,76e-17
	-1260,487	Akaike criterion	2526,975
	2540,006	Hannan-Quinn	2532,060

Estimated function

 $labour = \beta_1 + \beta_2 * wage + \beta_3 * output + \beta_4 * capital$

OLS estimates and standard errors: without (s.e.) and with White correction (White s.e.); and GLS estimates with $w_i = e_i^{-2}$, with fitted values for e_i from the regression of $\log(e_i^2)$ on *capital* and *output*

	β_1	wage	output	capital
OLS coeff	287.19	-6.742	15.400	-4.590
s.e.	19.642	0.501	0.356	0.269
White s.e.	64.877	1.852	2.482	1.713
FGLS coeff	321.17	-7.404	15.585	-4.740
s.e.	20.328	0.506	0.349	0.255

Contents

- Violations of $V(\varepsilon) = \sigma^2 I_N$: Illustrations and Consequences
- Heteroskedasticity
- Tests against Heteroskedasticity
- GLS Estimation

Tests against Heteroskedasticity

Due to unbiasedness of *b*, residuals are expected to indicate heteroskedasticity

Graphical displays of residuals may give useful hints

Residual-based tests:

- Breusch-Pagan test
- Koenker test
- Goldfeld-Quandt test
- White test

Breusch-Pagan Test

For testing whether the error term variance is a function of $Z_2, ..., Z_p$ Model for heteroskedasticity

$$\sigma_i^2/\sigma^2 = h(z_i'\alpha)$$

with function h with h(0)=1, p-vectors z_i und α , z_i containing an intercept and p-1 variables Z_2 , ..., Z_p

Null hypothesis

$$H_0$$
: $\alpha = 0$

implies $\sigma_i^2 = \sigma^2$ for all *i*, i.e., homoskedasticity

Breusch-Pagan Test, cont'd

Typical functions h for $h(z_i^{\cdot}\alpha)$

- Linear regression: $h(z_i'\alpha) = z_i'\alpha$
- Exponential function $h(z_i'\alpha) = \exp\{z_i'\alpha\}$
 - □ Auxiliary regression of the log (e_i^2) upon z_i
 - "Multiplicative heteroskedasticity"
 - Variances are non-negative

For
$$h(z_i \cdot \alpha) = z_i \cdot \alpha$$

- Auxiliary regression of the "scaled" squared residuals $u_i^2 = e_i^2/s^2$ with $s^2 = e'e/N$ on z_i (and squares of z_i);
- Test statistic BP = N^*R^2 with R^2 from the auxiliary regression
- Test statistic BP follows approximately the Chi-squared distribution with p -1 d.f.

Koenker Test

Koenker test: variant of the BP test which is robust against nonnormality of the error terms

- For testing whether the error term variance is a function of $Z_2, ..., Z_p$
- Auxiliary regression of the squared OLS residuals e_i^2 on z_i

$$e_i^2 = z_i \alpha + v_i$$

Test statistic: $N^*R_v^2$ with R_v^2 of the auxiliary regression; follows approximately the Chi-squared distribution with p -1 d.f.

- **GRETL**: The output window of OLS estimation allows the execution of the Breusch-Pagan test with $h(z_i, \alpha) = z_i, \alpha$
 - OLS output => Tests => Heteroskedasticity => Breusch-Pagan
 - Koenker test: OLS output => Tests => Heteroskedasticity => Koenker

Auxiliary regression of squared residuals, Verbeek

Tests of the null hypothesis of homoskedasticity

Table 4.2 Auxiliary regression Breusch–Pagan test				
Dependent	variable: e_i^2			
Variable	Estimate	Standard error	t-ratio	
constant	-22719.51	11838.88	-1.919	
wage	228.86	302.22	0.757	
output	5362.21	214.35	25.015	
capital	-3543.51	162.12	-21.858	
s = 94182	$R^2 = 0.5818$	$\bar{R}^2 = 0.5796$ $F =$	262.05	

Breusch-Pagan: BP = 5931.8, p-value = 0

Koenker: $NR^2 = 569*0.5818 = 331.04$, p-value = 2.17E-70

Goldfeld-Quandt Test

For testing whether the error term variance has values σ_A^2 and σ_B^2 for observations from regime A and B, respectively, $\sigma_A^2 \neq \sigma_B^2$

Regimes can be urban vs rural area, economic prosperity vs stagnation, etc.

Example (in matrix notation):

$$y_A = X_A \beta_A + \varepsilon_A$$
, $V\{\varepsilon_A\} = \sigma_A^2 I_{NA}$ (regime A)
 $y_B = X_B \beta_B + \varepsilon_B$, $V\{\varepsilon_B\} = \sigma_B^2 I_{NB}$ (regime B)

Null hypothesis: $\sigma_A^2 = \sigma_B^2$

Test statistic:

$$F = \frac{S_A}{S_B} \frac{N_B - K}{N_A - K}$$

with S_i : sum of squared residuals for *i*-th regime; follows under H_0 exactly or approximately the *F*-distribution with N_A -K and N_B -K d.f.

Goldfeld-Quandt Test, cont'd

Test procedure in three steps:

- 1. Sort the observations with respect to the regimes A and B
- 2. Separate fittings of the model to the N_A and N_B observations; sum of squared residuals S_A and S_B
- Calculate the test statistic F

White Test

- For testing whether the error term variance is a function of the model regressors, their squares and their cross-products; generalizes the Breusch-Pagan test
- Auxiliary regression of the squared OLS residuals upon x_i 's, squares of x_i 's, and cross-products
- Test statistic: NR² with R² of the auxiliary regression; follows the Chi-squared distribution with the number of coefficients in the auxiliary regression as d.f.
- The number of coefficients in the auxiliary regression may become large, maybe conflicting with the size of *N*, resulting in low power of the White test

```
White's test for heteroskedasticity
OLS, using observations 1-569
Dependent variable: uhat^2
                  coefficient std. error
                                     t-ratio
                                             p-value
                 -260.910
                          18478.5 -0.01412 0.9887
const
                          833,028 0,6655 0,5060
WAGE
                 554,352
                 2810,43 663,073 4,238 2,63e-05 ***
CAPITAL
OUTPUT
                 -2573,29 512,179 -5,024 6,81e-07 ***
                  -10,0719 9,29022 -1,084 0,2788
sq_WAGE
X2 X3
                   -48,2457 14,0199 -3,441 0,0006
X2 X4
                 58,5385
                             8,11748 7,211 1,81e-012 ***
sq_CAPITAL 14,4176 2,01005 7,173 2,34e-012 ***
X3 X4
                -40,0294 3,74634 -10,68 2,24e-024 ***
sa OUTPUT
               27,5945
                             1,83633 15,03
                                            4.09e-043 ***
Unadjusted R-squared = 0,818136
Test statistic: TR^2 = 465,519295,
with p-value = P(Chi-square(9) > 465,519295) = 0
```

Contents

- Violations of $V(\varepsilon) = \sigma^2 I_N$: Illustrations and Consequences
- Heteroskedasticity
- Tests against Heteroskedasticity
- GLS Estimation

Transformed Model Satisfying Gauss-Markov Assumptions

Model:

$$y_i = x_i'\beta + \varepsilon_i$$
 with $V(\varepsilon_i) = \sigma_i^2 = \sigma^2 h_i^2$

Division by h_i results in

$$y_i/h_i = (x_i/h_i)'\beta + \varepsilon_i/h_i$$

with a homoskedastic error term

$$V\{\varepsilon_i/h_i\} = \sigma_i^2/h_i^2 = \sigma^2$$

OLS applied to the transformed model gives

$$\hat{\beta} = \left(\sum_{i} h_{i}^{-2} x_{i} x_{i}'\right)^{-1} \sum_{i} h_{i}^{-2} x_{i} y_{i}$$

This estimator is an example of the "generalized least squares" (GLS) or "weighted least squares" (WLS) estimator

Properties of GLS Estimators

The GLS estimator

$$\hat{\beta} = \left(\sum_{i} h_{i}^{-2} x_{i} x_{i}'\right)^{-1} \sum_{i} h_{i}^{-2} x_{i} y_{i}$$

is a least squares estimator; standard properties of OLS estimator apply

The covariance matrix of the GLS estimator is

$$V\left\{\hat{\beta}\right\} = \sigma^2 \left(\sum_i h_i^{-2} x_i x_i'\right)^{-1}$$

Unbiased estimator of the error term variance

$$\hat{\sigma}^2 = \frac{1}{N - K} \sum_{i} h_i^{-2} \left(y_i - x_i' \hat{\beta} \right)^2$$

 Under the assumption of normality of errors, t- and F-tests can be used; for large N, these properties hold approximately without normality assumption

Generalized Least Squares Estimator

- A GLS or WLS estimator is a least squares estimator where each observation is weighted by a non-negative factor
- Example:

$$y_i = x_i'\beta + \varepsilon_i$$
 with $V(\varepsilon_i) = \sigma_i^2 = \sigma^2 h_i^2$

- Division by h_i results in a model with homoskedastic error terms $V\{\epsilon_i/h_i\} = \sigma_i^2/h_i^2 = \sigma^2$
- OLS applied to the transformed model results in the weighted least squares (GLS) estimator with $w_i = h_i^{-2}$:

$$\hat{\beta} = \left(\sum_{i} h_{i}^{-2} x_{i} x_{i}'\right)^{-1} \sum_{i} h_{i}^{-2} x_{i} y_{i}$$

- □ Transformation corresponds to the multiplication of each observation with the non-negative factor h_i^{-1}
- The GLS estimator is a LS estimator $b_W = (\Sigma_i w_i x_i x_i')^{-1} (\Sigma_i w_i x_i x_i)$ that weights the *i*-th observation with $w_i = h_i^{-2}$, so that the Gauss-Markov assumptions are satisfied

Feasible GLS Estimator

Is a GLS estimator with estimated weights $w_i = h_i^{-2}$

Substitution of the weights $w_i = h_i^{-2}$ by estimates \hat{h}_i^{-2}

$$\hat{\beta}^* = \left(\sum_{i} \hat{h}_i^{-2} x_i x_i'\right)^{-1} \sum_{i} \hat{h}_i^{-2} x_i y_i$$

- Feasible (or estimated) GLS or FGLS or EGLS estimator
- For consistent estimates \hat{h}_{i} , the FGLS and GLS estimators are asymptotically equivalent
- For small values of N, FGLS estimators are in general not BLUE
- For consistent estimates \hat{h}_i , the FGLS estimator is consistent and asymptotically efficient with covariance matrix (estimate for σ^2 : based on FGLS residuals)

$$V\left\{\hat{\boldsymbol{\beta}}^*\right\} = \hat{\boldsymbol{\sigma}}^2 \left(\sum_{i} \hat{h}_i^{-2} x_i x_i'\right)^{-1}$$

Warning: The transformed model is uncentered

Multiplicative Heteroskedasticity

Assume $V\{\varepsilon_i\} = \sigma_i^2 = \sigma^2 h_i^2 = \sigma^2 \exp\{z_i^2 \alpha\}$

The auxiliary regression

$$\log e_i^2 = \log \sigma^2 + z_i'\alpha + v_i$$

provides a consistent estimator a for α

- Transform the model $y_i = x_i'\beta + \varepsilon_i$ with $V\{\varepsilon_i\} = \sigma_i^2 = \sigma^2 h_i^2$ by dividing through \hat{h}_i from $\hat{h}_i^2 = \exp\{z_i'a\}$
- Error term in this model is (approximately) homoskedastic
- Applying OLS to the transformed model gives the FGLS estimator for β

FGLS Estimation

In the following steps $(y_i = x_i'\beta + \varepsilon_i)$:

- 1. Calculate the OLS estimates b for β
- 2. Compute the OLS residuals $e_i = y_i x_i'b$
- 3. Regress $\log(e_i^2)$ on z_i and a constant, obtaining estimates a for α $\log e_i^2 = \log \sigma^2 + z_i'\alpha + v_i$
- 4. Compute $\hat{h}_i^2 = \exp\{z_i'a\}$, transform all variables and estimate the transformed model to obtain the FGLS estimators:

$$y_i/\hat{h}_i = (x_i/\hat{h}_i)'\beta + \varepsilon_i/\hat{h}_i$$

5. The consistent estimate s^2 for σ^2 , based on the FGLS-residuals, and the consistently estimated covariance matrix

$$\hat{V}\left\{\hat{\beta}^*\right\} = s^2 \left(\sum_i \hat{h}_i^{-2} x_i x_i'\right)^{-1}$$

are part of the stàndard output when regressing the transformed model

FGLS Estimation in GRETL

Preparatory steps:

- 1. Calculate the OLS estimates b for β of $y_i = x_i'\beta + \varepsilon_i$
- 2. Under the assumption $V\{\varepsilon_i\} = \sigma_i^2 = \sigma^2 h_i^2$, conduct an auxiliary regression for e_i^2 or $\log(e_i^2)$ that provides estimates \hat{h}_i^2
- 3. Define wtvar as weight variable with wtvar $_{i} = (\hat{h}_{i}^{2})^{-1}$

FGLS estimation:

- 4. Model => Other linear models => Weighted least squares
- 5. Use of variable *wtvar* as "Weight variable": both the dependent and all independent variables are multiplied with the square roots (*wtvar*)^{1/2}

Labor Demand Function

For Belgian companies, 1996; Verbeek

Table 4.5 OLS results loglinear model with White standard errors				
Dependent variable: log(labour)				
		Heteroskedastic	city-consistent	
Variable	Estimate S	tandard error	t-ratio	
constant	6.177	0.294	21.019	
$\log(wage)$	-0.928	0.087	-10.706	
log(output)	0.990	0.047	21.159	
log(capital)	-0.004	0.038	-0.098	
s = 0.465	$R^2 = 0.8430 \bar{R}^2 = 0.8421$	F = 544.73		

Log-transformation is expected to reduce heteroskedasticity

Estimated function

 $\log(labour) = \beta_1 + \beta_2 * \log(wage) + \beta_3 * \log(output) + \beta_4 * \log(capital)$

The table shows: OLS estimates and standard errors: without (s.e.) and with White correction (White s.e.); FGLS estimates

standard errors

	β_1	wage	output	capital
OLS coeff	6.177	-0.928	0.990	-0.0037
s.e.	0.246	0.071	0.026	0.0188
White s.e.	0.293	0.086	0.047	0.0377
FGLS coeff	5.895	-0.856	1.035	-0.0569
s.e.	0.248	0.072	0.027	0.0216

For Belgian companies, 1996; Verbeek

Table 4.6	Auxiliary regressi	on multiplicative	heteroskedasticity
	, <u>, , , , , , , , , , , , , , , , , , </u>	I I	2

-		- 2
Dependent	variable:	$\log e_i^2$
1		c_{l}

Variable	Estimate	Standard error	t-ratio
constant	-3.254	1.185	-2.745
log(wage) log(output)	-0.061 0.267	0.344 0.127	-0.178 2.099
$\log(capital)$	-0.331	0.090	-3.659

$$s = 2.241$$
 $R^2 = 0.0245$ $\bar{R}^2 = 0.0193$ $F = 4.73$

Breusch-Pagan test: BP = 66.23, p-value: 1,42E-13

For Belgian companies, 1996; Verbeek

Weights estimated assuming multiplicative heteroskedasticity

Table 4.7 EGLS results loglinear model				
Dependent vari	able: log(labou	ur)	_	
Variable	Estimate	Standard error	<i>t</i> -ratio	
constant	5.895	0.248	23.806	
$\log(wage)$	-0.856	0.072	-11.903	
log(output)	1.035	0.027	37.890	
$\log(capital)$	-0.057	0.022	-2.636	
$s = 2.509 R^2$	$= 0.9903 \bar{R}^2$	F = 0.9902 $F = 14$	401.3	

Estimated function

 $\log(labour) = \beta_1 + \beta_2 * \log(wage) + \beta_3 * \log(output) + \beta_4 * \log(capital)$

The table shows: OLS estimates and standard errors: without (s.e.) and with White correction (White s.e.); FGLS (or EGLS) estimates and standard errors

	β_1	wage	output	capital
OLS coeff	6.177	-0.928	0.990	-0.0037
s.e.	0.246	0.071	0.026	0.0188
White s.e.	0.293	0.086	0.047	0.0377
FGLS coeff	5.895	-0.856	1.035	-0.0569
s.e.	0.248	0.072	0.027	0.0216

Some comments:

- Reduction of standard errors in FGLS estimation as compared to heteroskedasticity-robust estimation, efficiency gains
- Comparison with OLS estimation not appropriate
- FGLS estimates differ slightly from OLS estimates; effect of capital is indicated to be relevant (p-value: 0.0086)
- R² of FGLS estimation is misleading
 - Model has no intercept, is uncentered
 - Comparison with that of OLS estimation not appropriate, explained variables are different

Your Homework

- 1. Use the data set "labour2" of Verbeek for the following analyses:
 - a) (i) Estimate (OLS) the model for log(*labor*) with regressors log(*output*) and log(*wage*); (ii) generate a graphical display of the residuals which may indicate heteroskedasticity of the error term.
 - b) Perform (i) the Breusch-Pagan test with $h(z_i'\alpha) = \exp\{z_i'\alpha\}$, $z_i = (\log(capital_i), \log(output_i), \log(wage_i))'$, and the White test (ii) without and (iii) with interactions; explain the tests and compare the results.
 - c) For the model of a): Compare (i) the OLS and (ii) the White standard errors with HC₀ of the estimated coefficients.
 - d) Estimate (i) the model of a), using FGLS and weights obtained in the auxiliary regression of the Breusch-Pagan test in b); (ii) comment on the estimates of the coefficients, the standard errors, and the R² of this model and those of c)(i) and (ii).

Your Homework, cont'd

2. Transform the variables of the model $y_i = x_i'\beta + \varepsilon_i$ with $E\{\varepsilon_i\} = 0$ and $V\{\varepsilon_i\} = \sigma_i^2 = \sigma^2 h_i^2$ for i = 1, ..., N, by dividing each variable through h_i : $y_i -> y_i/h_i$ and $(x_i)' -> (x_i/h_i)'$. Show that for the model in transformed variables,

$$y_i/h_i = (x_i/h_i)'\beta + \varepsilon_i/h_i$$

the Gauss-Markov assumptions A3 and A4 are satisfied.