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Undirected Graphs
̶ A graph with undirected edge 

interactions between variables is 
an undirected graph.

̶ These graphs produce a class of 
models commonly known as 
undirected graphical models, 
which are suitable for analyzing 
similarities and correlated 
behaviors
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Directed Graphs
̶ A graph with directed edges between variables is a 

directed graph
̶ A directed graph without cycles is a directed acyclic graph 

(DAG)
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Other Network Types
̶ A partially directed acyclic graph (or chain graph) is a 

type of DAG that allows bi-directed edges. 
e.g. A –> B –> C

̶ A weighted graph is one that has a numeric value 
(weights) associated with each edge (node)
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Bipartite Graphs
̶ A bipartite graph is an undirected graph in which 

variables are categorized into two sets, such that nodes 
in one set can only interact with those in the other set, 
and no two nodes in the same set are connected
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Multilayer Networks
̶ In reality, individual units belong to more than one 

network (in content, in space, in time)
̶ This give rise to multilayer networks
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Network Representation
̶ A graph-theoretic representation ! = ($; &; ') of 

relationships & (edges, links) of strengths ' between 
units $ (vertices, nodes)

̶ Nodes: individuals, companies, stocks, consumers, 
industries, countries

̶ Physical links: 
̶ import/export
̶ borrowing/lending 
̶ common shareholdings 
̶ supply chains

̶ Statistical links: 
̶ correlations
̶ similarities (commercial, financial, operations)
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Adjacency Matrix

!",$ = &1 if ( and ) are connceted
0 otherwise

Example:
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Adjacency List
̶ The adjacency list stores only the non-zero elements of 

the adjacency matrix in a full list of all vertices.

Example:
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Edge List
̶ The edge list stores only the non-zero elements of the 

adjacency matrix.

Example: 
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Centrality Measures
̶ A common question we may ask when analyzing the structure 

of a network is which vertices are more important?
̶ To answer this question depends on what we mean by 

important. Define importance in terms
̶ the most connected vertex
̶ the vertex closest to all others
̶ the vertex in the middle of the network
̶ the most influential vertex

̶ The most common centrality measures
̶ degree centrality
̶ closeness centrality
̶ betweenness centrality
̶ eigenvector centrality
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Degree Centrality
̶ The simplest measure of importance is the degree centrality
̶ The vertex with largest degree exerts the greatest effect on the 

network
̶ Degree centrality: number of nearest neighbors
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̶ Sensitive to the addition of one more node
̶ We cannot compare degree centrality of vertices belonging to two 

different network
̶ Normalized degree centrality (relative metric to compare degree 

centrality)
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Degree Centrality: ExampleI
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In-Degree and Out-Degree
In-Degree: the number of edges incoming to a vertex 
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Out-Degree: the number of edges outgoing from a vertex
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Closeness Centrality 
̶ Measures how close a node is to all the other nodes in 

network (in terms of the shortest path) 
! " = 1

∑&'() *(", -)
where *(", -) is the shortest path between the nodes " and -
̶ Normalized closeness centrality (relative metric to 

compare closeness centrality) 
/0(1) = 2 − 1 !(")
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Closeness Centrality: ExampleI
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Betweenness Centrality 
̶ The number of shortest paths from all vertices to all 

others that pass through a node. 
! " = $

%&'&(
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where ,-(") is the number of shortest paths between , and 
- that pass through ", and ,- is the total number of shortest 
paths between , and -. 
̶ Probability that a communication from , to - will go 

through " (the frequency of " lying on the shortest path)
̶ Normalized betweenness centrality

./(') =
2

1 − 1 1 − 2 !(")
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Betweenness Centrality: ExampleI
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Eigenvector Centrality
̶ Eigenvector centrality measures assign an importance 

score to vertices in a way that is proportional to the 
importance scores of its neighbors hence the importance 
of a node depends on the importance of its neighbors 

̶ Shows how a well-connected vertex is connected to other 
well-connected vertices 

̶ This involves an eigenvector problem of the form 
!" = $%&

where ! is the adjacency matrix, & is a vector containing 
the eigenvector centralities, and $% is the largest 
eigenvalue of !
̶ PageRank is a form of eigenvector centrality
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Centrality Measures: ExampleI
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Centrality Measures: Example

̶ Degree most central nodes: D & K
̶ Closeness most central nodes: H
̶ Betweenness most central nodes: H
̶ Eigenvector most central nodes: D & K 
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Network Density
̶ The density of a network is the frequency of realized 

edges relative to potential edges 
̶ Undirected Networks: For ! number of nodes, there are 
!(! − 1)/2 possible edges

den +, = ./
0(012)/3

̶ Directed Networks: For ! number of nodes, there are 
!(! − 1) possible edges

den 4, = 5,
!(! − 1)
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Network Analysis
̶ Can we construct network, when we don‘t have 

information on the exact links?
̶ Network reconstruction algorithms
̶ Similarity networks

̶ Complexity reductions
̶ Threshold networks
̶ Spanning trees

̶ Simulations on networks
̶ Flow analysis
̶ Community/pattern identification
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Applications in Risk Management

̶ Market risk
̶ Asset correlation networks
̶ Volatility-based networks

̶ Liquidity and operational risks
̶ Payment networks

̶ Counterparty and systemic risks
̶ Exposure networks


