
This project has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement No 825215 (Topic: ICT-35-2018 Type of action: CSA). All material
presented here reflects only the authors' view. The European Commission is not responsible for any use
that may be made of the information it contains.

Text Mining with
Machine Learning
FINancial supervision and TECHnology compliance
training program – SUPTECH WORKSHOP IV

František Dařena

Access to R Server

join at https://uem1.euba.sk/rstudio/auth-sign-in

login: cnb## (numbers from 02 to 15)

password: fintech01

https://uem1.euba.sk/rstudio/auth-sign-in

Knowledge Discovery in Texts

Introduction to Text Mining
and

Examples of Applications

Web 2.0

• people don’t view the content of Web pages
passively, but they create it (social networks,
blogs, wikis, folksonomies, …)

• usability and interoperability enable access
and content creation anywhere and at any
time to many people

• huge amount of data is available
• about 80% is in textual form

Available textual content

• often freely available (newspapers, blogs,
company sites, discussion boards, social
networks, reviews sites, …)

• very useful for many purposes (contextual
advertising, customer care, hiring personnel,
opinion mining, market research, political
campaigns, fight against cybercrime, …)

Problems

• large volumes of data
• unstructured, not very suitable for machines
• processing by humans is not feasible
• automation of revealing hidden knowledge in

text data => discipline known as text mining

Text mining

• knowledge discovery discipline
• closely related to data mining (also known ad

text data mining)

econometrics vs. data mining
assumes that the data are
generated by a given
stochastic data model

starts with a model and tries
to find its parameters

uses algorithmic models and
treats the data mechanism as
unknown

starts with data and tries to
find a model that well fits
(and predicts) the data

Typical tasks

• classification – assigning documents to
one or more predefined classes
according to the training examples

• information retrieval – retrieving
documents matching a query

• clustering – grouping documents
according to their similarity without
prior knowledge of the groups (clusters)

Typical tasks

• summarization – selecting the
most important information from
one or more documents

• finding associations among
document parts

• sentiment analysis and opinion
mining

Typical tasks
• information extraction – finding structured

information in unstructured texts (e.g.,
accounting data in annual reports)

• question answering – understanding
questions in a natural language, extracting
or formulating answers

• machine translation – computers translate
texts from one language to another;
statistical MT with incorporation
of human experts is the most
popular today

Data mining vs. Text mining

• some of the tasks are quite similar to the ones
of data mining

• data mining
– a well developed branch of science
– focuses on finding interesting patterns and hidden

knowledge in large amounts of data
– involves the following common tasks: anomaly

detection, association rule learning, clustering,
classification, regression, summarization

– works with highly structured data (tabular format)

Data mining vs. Text mining

• text mining
– focuses on tasks similar to those in DM – why not

to use the same methods?
– textual data is unstructured and complicated for

understanding (grammar, several meanings of a
word, order of words, dictionary size, …)

– documents must be converted to a representation
suitable for a selected DM algorithm

Data mining vs. Text mining

• text mining is related to disciplines such as
statistics, artificial intelligence, machine
learning (like data mining), but also to natural
language processing, linguistics, speech
recognition and generation, …

Specifics of text mining

• large input space – many potential examples,
huge number of words and their combinations

• sparse vectors representing the documents –
the number of features in one document is
small compared to the number of all features

• little training data – because of demandingness
of the labeling process

• noise – spelling errors, typos, wrong grammar
etc., typical for natural languages, also incorrect
labeling

Specifics of text mining

• a small fraction of the content is often relevant
• the distribution of the probability with which

the words appear in documents is strongly
skewed

Text Mining Process

• defining the problem
• collecting the necessary data
• defining features
• analyzing the data
• interpreting the results

Machine Learning for Text Mining

• it is not possible to cover all possible problems
(inputs, situations) in advance

• past experience can be used to solve problems
in the future

• machines need an ability to learn – a model to
be applied in the future (in unknown
situations) is trained (learned) as a
generalization of past experience represented
by data

Machine Learning for Text Mining

Machine Learning for Text Mining

available documents
(training data,
experience)

Machine Learning for Text Mining
learning (training,
generalization,
induction, model
creation)

available documents
(training data,
experience)

Machine Learning for Text Mining

new (previously
unseen) problem

Machine Learning for Text Mining

using the
learned
model

new (previously
unseen) problem

Machine Learning for Text Mining

an answer

using the
learned
model

new (previously
unseen) problem

Machine Learning

• supervised – availability of “correct answers”
(target variables, labels)

• unsupervised – no correct answers are
available

• semi-supervised – a few labeled examples
contain initial information for learning from
many unlabeled examples

Some typical tasks – more details

Summarization

• producing a new text from one or more texts
• the new text conveys the most important

information from the original text(s) and it is
significantly shorter

• the new text can have the form of a set of key
phrases, set of most important sentences, a
linguistically correct abstract, …

Summarization

• four basic approaches
– extraction – identifying and reproducing most

important parts
– abstraction – producing most important parts in a

new way
– fusion – combining extracted document parts
– compression – throwing out unimportant sections

Summarization – extraction

• early attempts focused on
– extracting sentences containing the most frequent

words (considering also distance of the words)
– position of sentences in paragraphs (the most

informative is often at the beginning)
– sentences containing some of the predefined

words
– parts defining document structure (e.g., title,

headings)

Summarization – extraction
• further research focused on using machine

learning using features such as
– number of words
– first occurrence
– frequency
– length in characters
– presence of a part of speech (verb, adjective, …)

• supervised approaches use existing data, such as
newspaper articles, web pages, etc. with available
abstracts or keywords (keyphrases)

Summarization – abstraction

• can be characterized as ’top-down’ – they look
for a set of pre-defined information types to
include in the summary (e.g., an earthquake
frame may contain slots for location,
earthquake magnitude, number of casualties,
etc.)

• the desired pieces of information are located
and filled in

Multi-document summarization

• major problems
– identifying and coping with redundancy
– recognizing novelty, contradictions
– ensuring logical coherence
– ensuring completeness

Sentiment analysis

• not only objective information is important
• sentiment analysis (or opinion mining) focuses

on sentiments, evaluations, attitudes, and
emotions

• applications: product ranking, predicting sales
performance, box-office revenues for movies,
election results, stock market and many others

Opinion definition

• an opinion is a quintuple (ei, aij, sijkl, hk, tl)
– ei is the name of an entity
– aij is an aspect of ei
– sijkl is the sentiment (positive, negative, or neutral,

or expressed with different strength/intensity
levels, e.g., 1 to 5) on aspect aij of entity ei

– hk is the opinion holder
– tl is the time when the opinion is expressed by hk

• SA objective – to identify all components

Levels of analysis

• sentiment might be identified at
– document/sentence level – overall sentiment for

the entire piece of text
– entity/aspect level – a sentiment is related to a

target (“Although the service is not that great, I
still love this restaurant.”)

• two types of sentiment
– regular opinions (“Coke tastes very good”)
– comparative opinions (“Coke tastes better than

Pepsi”)

Sentiment lexicons
• the most straightforward method
– words: positive (good, wonderful, amazing, …) and

negative (bad, poor, terrible, …)
– phrases: e.g., a cold fish (a person who does not seem

very friendly and does not show their emotions)
• problems
– “This camera sucks” vs. “This vacuum cleaner really

sucks”
– “Can you tell me which Sony camera is good?”
– “What a great car! It stopped working in two days.”
– “This washer uses a lot of water.”

Machine translation

• Computer Aided Translation (CAT)
– uses software tools to facilitate the translation

process, spell checkers, terminologies,
concordances, translation memories tools etc.

– help a human translator
• Machine translation
– performs the translation itself

Machine Translation types
• rule-based

– original form based on linguistic information and dictionaries
• example-based

– based on analogy with previous translations (a segment is
translated according to already translated sub-segment parts)

• statistical
– the most popular MT branch
– rules from huge bilingual content (training set) are inferred

(using statistics)
– the more training data is used the better results are produced

• hybrid
– leverages the strengths of statistical and rule-based translation

methodologies

Information extraction
• finding structured information in unstructured

data
• the desired concepts from a domain (entities,

relationships) are known and IE focuses on
identifying them in texts

• the output is like database records containing
templates filled during an IE process

• different from complete natural language
understanding => shallow linguistic analysis is
usually enough

IE problems

• one fact might be expressed by many different
ways

• one fact might spread across more sentences,
documents, or repositories

• some information is implicit

IE tasks
• named entity recognition
– identification and classification of predefined types of

entities, such as organizations, persons, places,
numerical and currency expressions, temporal
expressions, etc.

• co-reference resolution
– identification of multiple (co-referring) mentions of

the same entity,
• named: “EU” and “European Union”
• pronominal: “John bought food. But he forgot to buy drinks.”
• nominal: “Microsoft revealed its earnings. The company also

unveiled future plans.”
• implicit: “Marco è arrivato tardi. (he, Marco) Ha portato la

birra.”

IE tasks

• Relation extraction
– identification of predefined relationships
• “Steve Jobs works for Apple” => EmployeeOf(Steve

Jobs,Apple)
• “Mr. Smith gave a talk at the conference in New York”

=> LocatedIn(Smith,New York)
• “Listed broadcaster TVN said its parent company, ITI

Holdings, is considering various options for the
potential sale” => SubsidiaryOf(TVN,ITI Holding)
• etc.

IE tasks
• Event Extraction
– identifying events and finding who did what to whom,

when, where, through what methods (instruments),
and why

– “Masked gunmen armed with assault rifles and
grenades attacked a wedding party in mainly Kurdish
southeast Turkey, killing at least 44 people.” =>
perpetrators (masked gunmen), victims (people),
number of killed/injured (at least 44), weapons and
means used (rifles and grenades), and location
(southeast Turkey)

Open Information Extraction
• doesn’t require the knowledge of relations of interest

(the type of extracted information is not specified in
advance)

• all possible relations are found and are then available,
e.g., for querying

• based on the fact that that most relations (in English)
can be characterized by a set of several lexicosyntactic
patterns, e.g.,
– Noun phrase, Verb, Noun Phrase – e.g., Graham Bell,

invented, telephone
– Subject, Verb, Complement – e.g., Albert Einstein, is, a

scientist
• uses part-of-speech tags and close word classes (e.g.,

pronouns, conjunctions), or clause types

Open Information Extraction

• problems
– incoherent extractions – have no meaningful

interpretation
– uninformative extractions: “Faust made a deal

with the devil” => (Faust, made, a deal) instead of
(Faust, made a deal with, the devil)

– overly-specific relation phrases: “is offering only
modest greenhouse gas reduction targets at”

• solutions – better specification of linguistic
constraints

Question answering

• provides information containing answers to
user questions

• related to human language understanding
(semantic analysis)

• in early phases limited only to some narrow
domains

• can use the IE output (structured databases)
for finding answers

Question answering
• NLP based

– a query is thoroughly analysed and converted into a formal
representation (logic, semantic networks, …)

– the answer is found using a world model (e.g., an ontology)
– ensures the most reliable answers

• IR based
– focus on fact retrieval from a large text corpus
– employ shallow or deep NLP techniques
– are considered language and domain independent

• template based
– question templates are matched against queries
– after a match is found, an answer in a structured database is

found
– templates are typically created manually

Data preprocessing and definition
of features

Data preparation – standardization

• converting the document into a suitable
format, e.g., extracting text from PDF
documents, removing tags from HTML and
XML documents, removing headers from e-
mails, etc.

• determining the language of documents
• one document might be further split, e.g., a

book into chapters, a newspaper article into
paragraphs, a review into sentences

Data preparation – preprocessing

• algorithms that work with document
properties (features) that are related to the
document content or other properties are
used

• it is therefore necessary to define the features
• features (characters, words, terms, concepts,)

might be extracted or derived
• a document represented as a set of features

and their values = structured representation

Data preparation – preprocessing
• typical steps
– text cleaning
– white space removal
– case folding
– spelling errors corrections
– abbreviations expanding
– stemming
– lemmatization
– stop words removal
– negation handling
– feature selection
– part-of-speech tagging
– syntactical or shallow parsing

Data preparation – preprocessing
• classification of the typical steps of linguistic

processing
– tokenize – deciding what constitutes a term
– normalize

• making same things looking differently look the same
• usually increases recall, reduces precision
• e.g., converting superficially different strings of characters

to the same form (e.g., car, Car, cars, and Cars could all be
normalized to car) or case folding

– annotate
• marking identical strings of characters as being different
• usually decreases, increases precision
• e.g., fly might be a verb -> fly/VB or a noun -> fly/NN)

Data preparation – tokenization
• might seems simple at fist glance (e.g., for English) – words

are separated by spaces (unlike, e.g., in Chinese)
• a good tokenizer must handle punctuation (e.g., don't,

Jane's, and/or), hyphenation (e.g., state-of-the-art versus
state of the art), and recognize multi-word terms (e.g.,
Barack Obama and ice hockey)

• ignoring stop words – high-frequency words with relatively
low information content (e.g., of, the, and, them, who, that)

• the text might be broken into character unigrams or
bigrams

• the input text might be matched against a against a lexicon
• accurate tokenization is a challenging task for most human

languages

Data preparation – tokenization

• splitting the text into basic units, called tokens
(typically words, numbers, currency symbols,
dates, …)

• based on understanding the structure of the
used language (e.g., what is a delimiter and
what is not, how numbers are written,
smileys)

Data preparation – standardization
• converting every token to a standard form, e.g.,

am, are, is => be
car, cars, car's, cars' => car

• reduces the number of distinct tokens
• usually increases recall, reduces precision
• case folding
– easy in English, can be problematic in some languages,

e.g., in French, accents are optional for uppercase:
example, PECHE -> pêche (fishing or peach) or péché
(sin)

– problems even in English, e.g., SMART (abbreviation
of the name of an information retrieval system) vs.
smart; Bush (a surname) vs. bush (a kind of plant)

Data preparation – standardization

• stemming
– the process of reducing inflected words to their stems
– in English, affixes are simpler and more regular than in

many other languages -> stemming algorithms based
on heuristics work relatively well

– Porter stemming: ED -> ‘’ (plastered -> plaster),
ATIONAL -> ATE (relational -> relate), ATOR -> ATE
(operator -> operate), EMENT -> ‘’ (replacement ->
replac) etc.

• lemmatization
– requires more detailed morphological analysis to

convert a word into so called lemma (dictionary form),
like ‘better’ -> ‘good’ (will be missed by a stemmer)

Data preparation – annotation
• inverse to normalization
• usually increase precision and decrease recall
• part-of-speech (POS) tagging
– marking words according to their parts of speech;

sometimes, additional linguistic features are needed
– determining whether a word is a noun, verb, adjective,

preposition, conjunction, pronoun, article, adverb, etc.
• word sense disambiguation
– marking ambiguous words according to their intended

meanings
– some words have more meanings, e.g., derecho (in

Spanish) is right or law

Data preparation – annotation

• named entity recognition
– some tokens or groups of tokens might represent

an entity (a person, company, place, …)
– e.g., the automotive company created by Henry

Ford in 1903 -> Ford, European Union, EU, a
politico-economic union of 28 member states that
are located primarily in Europe -> European Union

Data preparation – annotation

• parsing (syntax analysis)
– analyzing the grammatical structure of sentences and marking

the words in the sentences according to their grammatical roles
– relations of a word to the others and the functions of the words

(subject, object, etc.) become obvious

sentence
verb phrase

noun phrase verb noun phrase

article adjective noun article adjective noun
The large cat eats the small rat.

Data preparation – annotation

• shallow parsing
– standard parsing algorithms are too expensive for

use on very large corpora and are not robust
enough

– shallow parsing produces only parts that are easy
and unambiguous, typically, small and simple
noun and verb phrases

– for the purposes of information extraction,
shallow parsing is usually sufficient

Data preparation

• adding potentially relevant attributes if some
additional information is available, about, e.g.
– time
– place
– people
– topic
– sentiment
– …

Converting texts into a suitable format

• a document is typically broken down into some
pieces (typically the words) that are not as
complex as the entire document is

• these pieces might be than transformed in some
way (relevant features are derived):
– removed (e.g., rare words are eliminated)
– changed to a different value (e.g., stemmed)
– supplemented by additional information (e.g., part of

speech)
• the features are represented in a way suitable for

a particular algorithm (e.g., feature–document
matrix)

Document vector representation

• documents are often treated as a bag of
words

• bag = multiset – a set where duplicates are
allowed

• not important are
– the order of words
– relationships between words

• the problem becomes less complex and thus
manageable

Document vector representation

• a form suitable for data mining algorithms
(tabular format)

• a document is represented by a vector
– attributes – numeric values representing

properties of the document
– properties – terms (included in the text), concepts

(derived from the text)
– attribute values – characterize, quantify the

features

Document vector representation –
a simple example

• a set of documents (reviews)
very good product
very bad product
very very good
good
quite bad

• a simple document vector representation

good quite product bad very
1 0 1 0 1
0 0 1 1 1
1 0 0 0 2
1 0 0 0 0
0 1 0 1 0

word1

word2

word3

document2

document1document3

Vector components
• a local weight Lij representing the frequency fij of

term i in document j (in every single document)
• a global weight Gi reflecting the discriminative

ability of the term i, based on the distribution of
the term over the entire document collection

• a normalization factor Nj correcting the impact of
different lengths of documents

wij = Lij * Gi / Nj
wij … the weight of i-th term in j-th document
i … the number of a term
j … the number of a document

Local weights

• term presence (binary)
fij = 0 => wij = 0, fij > 0 => wij = 1

• term frequency
wij = fij

• logarithm
– de-emphasize the effect of frequency (a term

appearing 10 times is not 10 times more
important than a term appearing once)
fij = 0 => wij = 0, fij > 0 => wij = 1 + log fij

Local weights

• augmented normalized term frequency
– assigns weight k (typically 0.5) to every term in a

document + a bonus up to 1-k
– for longer documents lower (e.g., 0.3), for shorter

documents higher (e.g., 0.5)
fij = 0 => wij = 0, fij > 0 => wij = k + (1-k)*fij/xj

(xj is the maximum frequency in document j)
• and many others

Global weights

• inverse document frequency (the most popular)

!"# $% = log *
+($%)

N … number of documents, n(ti) … number of
documents containing term ti (document
frequency)

• other variations, e.g., squared inverse document
frequency, probabilistic inverse document
frequency, GFIDF, Entropy, …

Normalization

• transforms the elements of vector dj, i.e., the
vector with local and global weighting applied:

dj = (l1j*g1, l2j*g2, …, lmj*gm)
• eliminates the problem of preferring longer

documents because
– they have higher term frequencies
– contain more words (the probability of matching

against a query is higher)

Normalization

• cosine normalization
– most popular

!" = $
%&'

(
)%*

• other variants – max weight, sum of weights…

Document classification

Classification (categorization)
• many text mining tasks require that the data

items to be processed have assigned labels =>
importance of classification

• a label
– symbolic, no additional knowledge is available
– characterizes a class (category)

• applications: document (web page, newspaper
article, scientific paper, …) categorization, spam
detection, word sense disambiguation,
authorship attribution, language identification, or
sentiment analysis

Classification problem

• to find a function (classifier, hypothesis) that can be,
according to training data, represented by input data
(training examples) paired with desired outputs
(class labels), used for predicting the outputs for
new, unseen data

(I1, O1)
(I2, O2) training generalization
(I3, O3) f(I) à O
…
(In, On)

Classification problem

• having documents d1, d2, …, dn and classes c1,
c2, …, cm, the hypothesis assigns true or false
to each pair (dj, ci) denoting whether
document dj belongs to category ci

• alternatively, the categories might be ranked
according to their appropriateness and a
human expert might decide on a category
(categories)

Would you like to loose
weight?

SPAM

Cheap Viagra!!! SPAM

Amateur teen girls SPAM

Urgent money transfer SPAM

Department meeting
takes place on Tuesday

HAM

Registration of courses
has started

HAM

New grant possibilities
have been announced

HAM

Dissertation thesis
defense

HAM

…

…

SPAM
FILTER

New e-mail

?
SPAM or HAM

Classification problem

• single-label classification – only one category
is assigned

• binary classification – a document belongs to
ci or to the complement of ci

• multi-label classification
– a document can belong to 0..|C| categories
– can be transformed to |C| independent binary

classifications

Commonly used classifiers

• probabilistic classifiers, decision trees,
decision rules, example-based classifiers,
support vectors machine, or neural networks

• it is very difficult to compare individual
methods
– different authors use different sampling,

preprocessing, algorithm setting, etc.
– generally, support vectors machine, instance

based classifiers, neural networks, and decision
trees bring acceptable results

Decision trees

• the category of an object is determined by
performing a sequence of tests, based on the
values of attributes characterizing the object

• a DT is represented by a directed graph (with
one root) where the nodes represent the
questions and the leaves the classes

• able to explain why a certain instance should
be assigned to a specific class

Decision tree training

• a DT is usually build using the top-down
approach:
1. find an attribute ai that best divides T (training

set)
2. divide T into subsets Ti , each characterized by a

different value of ai
3. if all documents in Ti belong to the same class,

create a leaf labelled with that class; otherwise,
recursively apply the same procedure starting
with step 1 to Ti

Decision tree training
• calculating the suitability of an attribute to split the

training set
• a common measure is the information gain

!" #, %& = (# − ((#, %&)

(# = −+
,-.

/
0(1&) log 0(1&)

(#, %& =+
&
6&((#&)

H … entropy, Pi … relative size of Ti, n … number of classes

Support vector machine

• the data is partitioned by finding a linear
boundary (hyperplane) between two classes

• the margin widths between the class
boundary and training patterns are maximized
during the training process

• the best decision surface is determined by
only a small set of training examples, called
the support vectors

• robust to overfitting

objects of two classes to be separated

the blue line separates the data with some margin

the green line separates the data with a larger margin

the red line separates the data with the largest margin
(dotted lines contain the support vectors – yellow objects)

Support vector machine

• when it is not possible to separate the data in
a given n-dimensional space linearly, a kernel
function that projects the data to a space of
higher dimension is used

Van Looy et al. Critical Care 2007 11:R83

Artificial neural networks
• imitate the behavior of neural networks in living

organisms
• consist of elements called neurons
• neurons receive signals (all inputs are combined

into a single value) and produce responses (an
activation function)

• the neurons are organized in a network (layers)
with their inputs and outputs connected together

• the interconnected neurons compose a function
of the whole network

Artificial neural networks – a neuron

Artificial neural networks design

• the structure of neurons
• the topology of the network
• the learning algorithm (the backpropagation

algorithm is one of the most used)

Artificial neural networks design

Artificial neural networks learning

• ANN inputs – features
• ANN outputs – classes
• learning process – updating the inter-neuronal

synaptic weights during training iterations in
order to maximize the correctness of assigned
classes

Instance-based classifiers

• sometimes called lazy learners or exemplar-
based classifiers

• do not create a generalization of class
representation, a label of an unknown
document is determined according to the
training documents that are similar

• fast training, slow classification

Instance-based classifiers

• k-nearest neighbors classifier (IBL-1) is a
typical representative
– a decision whether a document di belongs to class

cj is made based on k documents that are most
similar to di

– if a large enough proportion of them have the
label cj, a positive decision is taken

– k nearest documents can have a different weight
according to the degree of their similarity to di

Instance-based classifiers

• IBL-2
– it is not necessary to store every instance the learner

has seen to classify unseen instances
– only instances near the boundaries in a small

neighborhood of the boundary line, are needed to
produce an accurate approximation of the concept
boundary (instances away from the concept boundary
do not really matter in classification)

– we can save space by storing only informative
instances

Instance-based classifiers

• IBL-3
– IB3 is a noise tolerant algorithm that reduces IB1’s

storage requirements
– a “wait and see” method is employed – a

classification record with each saved instance is
maintained

– only good classifiers are used to classify
subsequently presented instances

Probabilistic classifiers

• calculate the probability P(cj | di) that a
document di belongs to class cj

• this can be computed using the Bayes’
theorem

! "# $% = ! "# !($%|"#)
!($%)

Naïve Bayes Classifier
• finding the most likely class (maximum a posteriori)

!"#$ = argmax
+,∈.

/ 01 /(34|01)
/(34)

= argmax
+,∈.

/ 01 /(34|01)

• 34 = (78, 7:, … , 7<) so the probability
P(78, 7:, … , 7< 01 must be calculated (possible only
when a very large number of training examples is
available)

• if the features are independent
P(78, 7:, … , 7< 01 = P(78 01 > P(7: 01 > ⋯ > P(7< 01

Naïve Bayes Classifier

• calculating the necessary probabilities – from
frequencies in the data

!(#$) =
'()*+, -. /-#()+'01 .,-) #2311 #$

'()*+, -. /-#()+'01

P(56 #$ = #-('0(56, #$)
∑9∈; #-('0(5, #$)

Naïve Bayes Classifier

• if one of P(#$ %& is 0 the entire formula will
result in zero, no matter the other evidence

• thus, Laplace smoothing is used

P(#$ %& = %()*+ #$, %& + 1
∑0∈2(%()*+ #, %& + 1)

= %()*+ #$, %& + 1
(∑0∈2 %()*+(#, %&)) + 4

M … size of the vocabulary

Naïve Bayes Classifier – example
good +
very good +
very very good +
not good -
very bad -
bad -
not very good ?

we need to calculate P(?|not very good), where ? id + and -

we need P(+), P(-), P(not very good | +), and P(not very good | -)

Naïve Bayes Classifier – example
good +

very good +

very very good +

not good -

very bad -

bad -

not very good ?

P(+) = 3/6

P(-) = 3/6

P(good|+) = (3+1)/(5+4)

P(very|+) = (2+1)/(5+4)

P(bad|+) = (0+1)/(5+4)

P(not|+) = (0+1)/(5+4)

P(good|-) = (1+1)/(5+4)

P(very|-) = (1+1)/(5+4)

P(bad|-) = (2+1)/(5+4)

P(not|-) = (1+1)/(5+4)

Naïve Bayes Classifier – example
good +

very good +

very very good +

not good -

very bad -

bad -

not very good ?

P(+) = 3/6

P(-) = 3/6

P(good|+) = (3+1)/(5+4)

P(very|+) = (2+1)/(5+4)

P(bad|+) = (0+1)/(5+4)

P(not|+) = (0+1)/(5+4)

P(good|-) = (1+1)/(5+4)

P(very|-) = (1+1)/(5+4)

P(bad|-) = (2+1)/(5+4)

P(not|-) = (1+1)/(5+4)

P(+|not very good) = 1/2*1/9*3/9*4/9 = 0.00823
P(-|not very good) = 1/2*2/9*2/9*2/9 = 0.005487

Naïve Bayes Classifier – example
good +

very good +

very very good +

not good -

very bad -

bad -

not very good ?

P(+) = 3/6

P(-) = 3/6

P(good|+) = (3+1)/(6+4)

P(very|+) = (3+1)/(6+4)

P(bad|+) = (0+1)/(6+4)

P(not|+) = (0+1)/(6+4)

P(good|-) = (1+1)/(5+4)

P(very|-) = (1+1)/(5+4)

P(bad|-) = (2+1)/(5+4)

P(not|-) = (1+1)/(5+4)

P(+|not very good) = 1/2*1/9*3/9*4/9 = 0.00823
P(-|not very good) = 1/2*2/9*2/9*2/9 = 0.005487

Measuring the quality of classifiers

• classifiers trained on training data are applied
to test samples (objects with known labels)

• in the two class classification, the classes
might be labeled as positive and negative;
correctly classified objects are referred as true
positive (TP) and true negative (TN); false
positive (FP) and (FN) represent misclassified
objects

Classifier effectiveness measures

• standard IR measures, like precision and recall
might be used

• precision: P(f(ci, dx) = true | h(ci, dx) = true)
– the probability that if a random document dx is

classified under ci, the decision is correct
• recall: P(h(ci, dx) = true | f(ci, dx) = true)
– the probability that if a random document dx

should be classified under ci, this decision is taken

Classifier effectiveness measures

• the values of precision and recall can be estimated
from the contingency table (P…predicted, R…real)

Prec = 50/(50+15) Prec = 60/(60+20) Prec = 40/(40+20)
Rec = 50/(50+30) Rec = 60/(60+20) Rec = 40/(40+5)

Prec(C1) = 50 / (50+10+5)
Rec(C1) = 50/(50+20+10)
Prec(C2) = 60 / (20+60+0)
Rec(C2) = 60/(10+60+10)
Prec(C3) = 40 / (10+10+40)
Rec(C3) = 40/(5+0+40)

C1 P+ P-
R+ 50 30
R- 15 110

C2 P+ P-
R+ 60 20
R- 20 105

C3 P+ P-
R+ 40 5
R- 20 140

P C1 P C2 P C3
R C1 50 20 10
R C2 10 60 10
R C3 5 0 40

Measuring the quality of classifiers
• Accuracy
– proportion of good results among all
– not suitable for unbalanced data

!""#$%"& = () + (+
() + (+ + ,) + ,+

• Precision (positive predictive value)
– proportion of good results among result marked as good

(retrieved results)

)$-"./.01 = ()
() + ,)

Measuring the quality of classifiers
• Recall (sensitivity, true positive rate)
– proportion of retrieved good results among all good

results

!"#$%% = '(
'(+ *+

• F-measure (F-score)
– balances Precision and Recall
– values between 0 (worst) and 1 (best)

*˗-"$./0" = 12 + 1 ∗ (0"#5.567 ∗ !"#$%%
12 ∗ (0"#5.567 + !"#$%%

– often β=1, F1score is the harmonic mean of Precision
and Recall (they are equally balanced)

Micro- and macro- averaging

• macroaveraging
– computes a simple average over classes
– each class has equal weight

• microaveraging
– aggregates per-document decisions across classes

(computes a measure on the pooled contingency
table)

– classes have different weights depending on their
size (bigger classes contribute to a measure value
more)

Micro- and macro- averaging
Class 1

R: yes R: no

P: yes 10 10

P: no 10 970

Class 2
R: yes R: no

P: yes 90 10

P: no 10 890

Overall
R: yes R: no

P: yes 100 20

P: no 20 1860

• Prec(1) = 10/(10+10) =0.5
• Prec(2) = 90/(90+10) =0.9
• microaveraged: Prec(overall) = 100/(100+20) = 0.83
• macroaveraged: (Prec(1)+Prec(2))/2 = 0.7
• microaveraged Precision is closer to 0.9 than to 0.5

because Class 2 is five times bigger than Class 1

R … real value, P … predicted value

Documents clustering

Documents clustering
• an answer to unavailability of labeled data – no

characteristics of the groups (classes) is known
• goal = grouping data into subsets called clusters using

information contained in the data
• the clusters are coherent (homogeneous) internally and

must be clearly different from each other
• no labels = no one correct solution
• used in automatic creation of ontologies, summarizing,

disambiguating, and navigating the results retrieved by
a search engine, patent analysis, detecting crime
patterns, and many others

Similarity

• the only endogenous information that is available
in the clustering process, used also by instance
based classifiers (k-NN)

• can be measured between individual documents,
between groups of documents, or between a
document and a group of documents

• a vector representing a group of documents

!" =
∑%∈" '
|!| = !"), !"+, … , !"-

Similarity measures
• cosine similarity (based on the angle between two vectors)

!"($, &) =
$) &
$ ∗ & = ∑,-./ $, ∗ &,

∑,-./ ($,)0 ∗ ∑,-./ (&,)0
• Euclidean distance (distance in the vector space)

!1($, &) = 2
,-.

/
($, − &,)0

• Jaccard coefficient (intersection of two sets divided by their union)

!4 $, & = $) &
$ + & − $) &

= ∑,-./ $, ∗ &,
∑,-./ ($,)0 + ∑,-./ (&,)0 − ∑,-./ $, ∗ &,

Clustering algorithms
• hard clustering – each object belongs exactly to

one cluster
• soft or fuzzy clustering – each object is associated

with each cluster with a degree of membership in
the interval [0, 1]

• different clustering algorithms usually lead to
different clustering solutions

• clustering optimization is a very hard task (e.g.,
for a hard, flat clustering of n elements into k
clusters there exist kn/k! possible solutions)

Clustering algorithms

• partitional (flat) clustering seeks
a k-partition C = {C1, C2, …, Ck},
k ≤ n of X
such that
!" ≠ ∅, & = 1, 2, … , +;

-
"./

0
!" = 1; !" ∩ !3 = ∅, &, 4 = 1, 2, … , + and & ≠ 4

Clustering algorithms

• hierarchical clustering constructs a tree
like, nested structure partition of X,

H = {H1, H2, …, Hk}, k < n,
such that Ci Î Hm, Cj Î Hl, and m > l
imply CiÌ Cj or Ci Ç Cj = Æ for
all i, j ≠ i, m, l = 1, 2, …, k

Clustering algorithms

• graph clustering – partitioning a similarity
graph (vertices = documents, edges =
quantified according to the similarity between
the documents), i.e., minimization of the
edge-cut; an alternate model considers the
documents and the terms contained in them
to be the vertices and weights of the edges
are set using tf-idf measure

Hierarchical clustering
• top-down (divisive) – at the beginning is all data

in one cluster; in the following steps, the data is
split into several clusters (typically using a flat
method); the same step is then recursively
repeated for the new clusters according to some
criteria

• bottom-up (agglomerative) methods – each item
to be clustered is considered to be a single cluster
at the beginning; in each of the following steps,
two most similar clusters are joined together until
all objects are in one cluster

Merging clusters in agglomerative
methods

• single linkage clustering method (SLINK), the clusters
are merged according to the similarity of the most
similar objects from the clusters

• complete linkage clustering method (CLINK),
determines the similarity according to the similarity of
two most dissimilar objects

• Unweighted Pair Group Method with Arithmetic Mean
(UPGMA), the distance between two clusters is
calculated as the average of all distances between pairs
of objects

• Weighted Pair Group Method with Arithmetic Mean
(WPGMA) assigns higher importance to the objects
added to the clusters later

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

A dendrogram as a result of agglomerative hierarchical
clustering. By performing different cuts different clusters

are obtained.

Partitioning clustering

• no explicit structure between the clusters is
considered

• their result is a set of k clusters, where k is given
or automatically determined

• well suited for clustering large document data
sets due to relatively low computational
requirements

K-means
• the most widely used flat clustering algorithm
• in the first step, k randomly selected cluster centers
• then, all objects are assigned to a cluster with the closest

center
• in the following step, the cluster centroids are re-computed

according to the positions of the objects in the clusters
• the steps of assignment of the objects to the clusters and

re-computation of cluster centroids are repeated until a
stopping criterion has been met

• the algorithm might arrive to a local optimum – the entire
process might be repeated several times with a different
seed, outliers might be excluded from the seed set, or the
seed might be obtained from another method

Clustering criterion functions

• functions representing the quality of flat
clustering solutions

• during assigning the documents into the
clusters, a particular clustering criterion
(objective) function defined over the entire
clustering solution is optimized (typically using
a greedy strategy)

Criterion functions

• internal – maximizing the similarity of documents
in individual clusters while not considering the
documents in different clusters

• external – focuses on optimization of dissimilarity
of individual clusters

• hybrid – combine both internal and external
criteria

• graph-based criterion functions – minimizing the
edge-cut in a graph

Evaluating the clustering process
• a correct result (labels) is not known unlike in a

supervised learning problem
• the perfectness of the output is usually expected to be

much lower that desired because only a human has a
clear objective and can use some additional, external
information

• a user typically wants a reasonable amount of clusters
with sufficient quality

• approaches use
– internal evaluation measures
– external evaluation measures
– expert opinion

Quality of clustering solutions with different numbers
of clusters measured by the Purity criterion

Internal evaluation measures

• derived from the data itself
• usually based on the criteria of
– compactness – how much the objects are in a

cluster related to each other (low pairwise or
center-based distances in the cluster)

– separation – how a cluster is separated from other
clusters (distances between cluster centers,
pairwise distances between objects from different
clusters, or measures based on density)

External evaluation measures
• class labels (ground truth) for the data to be

clustered are available a priori

• entropy: !" = −%
&
'&" log '&" (pij – probability

that a member of the cluster j belongs to the
class i)

• purity: +" = ,
-.
∗ max&3,..5 6&" (nj is the number of

instances in the cluster j, nij is the number of
instances of the class i in the cluster j, and l is the
number of classes)

Evaluation based on expert opinion

• suitable under many circumstances
• may reveal new insight into the data
• generally very expensive and demanding
• the results that are subjectively influenced are

also not very well comparable

Evaluation based on expert opinion

• visual examination
– not possible when the number of dimensions > 3
– objects might be projected from a

multidimensional space to 2D or 3D (groups of
objects that are separated in 2D or 3D space are
also separated in a space with many dimensions

– difficult to use for data with a very high number of
dimensions

Evaluation based on expert opinion

• examining the objects in individual clusters
– usually not possible to consider not all of the

documents but examine only some of them:
• an average document – lies most closely to the

remaining documents in the cluster (located near the
centroid)
• the most typical – located near the border of the

cluster, far from the other clusters (the most different
from all of the documents in the collection = most
specific)
• the least typical element – close the border of the

cluster, closely to the remaining clusters; it is most
similar to the documents in the other clusters

Evaluation based on expert opinion
with machine learning support

• an advanced automated method that would
help in evaluating individual clusters is useful

• relevant attributes that sufficiently well
characterize the documents in the clusters
might be filtered

• a feature selection method using clusters as
classes is an option

Feature selection

The purpose

• select (feature selection) or derive (feature
extraction) a suitable subset of features from
the original set

• decreasing the size of the vocabulary
– important for, e.g., classifiers that are expensive to

train
• eliminating noise
– to prevent overfitting

Approaches to FS

• filter methods
– assign a metric to each feature
– top k features are selected
– attributes are treated separately
– redundancy of attributes or dependency between

attributes is not considered
– independent on a task, based only on information

in the data
– popular in text mining because of low

computational costs

Approaches to FS
• wrapper methods
– tailored to a particular task and algorithm
– sets of features are evaluated in a search procedure
– forward selection – starts with an empty set, adds

attributes as long that the performance improves
– backward elimination – starts with the full set,

eliminates attributes as long that the performance
improves

– a greedy approach is usually applied because of
computational complexity (exponential number of
subsets)

Approaches to FS

• embedded methods
– feature selection is an integral part of an

algorithm
– for example, a decision tree learner selects the

best attributes in a training process

Basic FS algorithm

SelectFeatures (D, c, k)

1 ExtractVocabulary -> V

2 [] -> L

3 for each t in V do

4 ComputeFeatureUtility(D, t, c) -> A(t, c)

5 Append(L, A(t, c))

6 return FeaturesWithLargestValues(L, k)

D …a set of documents

c … a given class

k … the number of best features

http://nlp.stanford.edu/IR-book/html/htmledition/feature-selection-1.html

Score-computing functions
• often work with some probabilities

(e.g., the probability that a document x
contains term t, the joint probability
that a document x contains term t and
also belongs to category ci)

Score-computing functions
• these probabilities can be estimated from the following

statistical information:
– Ai = the number of the documents that contain the term t and also

belong to category ci
– Bi = the number of the documents that contain the term t but do

not belong to category ci
– Ci = the number of the documents that do not contain the term t

but belong to category ci, i.e., Ni - Ai

– Di = the number of the documents that neither contain the term t
nor belong to category ci, i.e., Nall - Ni - Bi

– Ni = the total number of the documents that belong to category ci
– Nall = the total number of all documents from the training data
– ci – a class (i = 1..m)

χ2

• in statistics, χ2 test is applied to categorical
data to evaluate whether two events are
independent on each other

• independent events: P(AB)=P(A)P(B), or
P(A|B)=P(A) or P(B|A)=P(B)

• in FS, the two events are occurrence of a class
and a term

χ2

Χ"($, &, ') = *
+,∈{/,0}

*
+2∈{/,0}

(3+,+2 − 5+,+,)"
5+,+2

et = 1 … the document contains t, et = 0 … the document does
not contain t
ec = 1 … the document is in class c, ec = 0 … the document is not
in class c
N … observed frequency
E … expected frequency given that t and c are independent (e.g.,
E11 = N*P(t)*P(c))

χ2

• the above formula might be rewritten as

!"# = %&''()*+* − !*-*)/
()* + !*)(-* + +*)()* + -*)(!* + +*)

• high values of χ2 indicate that the hypothesis
of independence of t and c is incorrect

• a weakness – not reliable for low frequency
terms

Word embeddings

Basic ideas
• the bag-of-words model does not capture relations

between words
• it would be possible to add other information to the

existing words, e.g., the word is A, it's POS tag is T, the
previous word is B, and the following word is C – too
many features

• similar words should have similar properties à more
than one dimension is needed to represent each word
or feature

• each word is mapped to a continuous
multidimensional space that has typically a few
hundred dimensions, similar words are expected to be
close to each other

Basic ideas

• vector operations bring interesting results
– vector("king") - vector("man") + vector("woman")
» vector("queen") which captures the
male/female relationship

– vector("paris") - vector("france") +
vector("poland") » vector("warsaw") – the capital-
of relation

– vector("cars") - vector("car") + vector("apple") »
vector("apples") – pluralisation relation

Basic ideas

• word vectors can also significantly help in
calculating true document similarities:

• e.g., The queen visited the capital of US. and
Elizabeth came to Washington in the USA.
share no words

• they, however, describe the same situation
– word vectors of Elisabeth and queen and USA and

US will be very close

Context
• finding suitable values of the vector elements is

based on the hypothesis stating that words in
similar contexts have similar meanings

• a context = a set of words in somehow defined
environment of the word (the same document,
sentence, or a piece of a text of some length)

• very often, a few word to the left and right are
considered (smaller window – more syntactic
relations, bigger window – more semantic
relations)

Computing word embeddings
• supervised methods
– require annotated data for a specific task (e.g., POS

tagging)
– embeddings are trained towards the given goal and can

capture information relevant for the task
• unsupervised methods
– do not require annotated data (they only compute

embeddings)
– the task is to predict a word given its context or deciding,

whether a word can belong to a context given examples of
real and randomly created word-context pairs

– embeddings capture general syntactic and semantic
relationships and can be applied in a wide variety of tasks

word2vec

• a family of methods proposed by T. Mikolov
that strongly attracted the NLP community to
neural language models

• the prediction has two forms:
– the word based on its context = Continuous bag-

of-words (CBOW)
– the context for a word = skip-gram

fastText
• most of the techniques for learning word

embeddings ignore sub-word information
(prefixes, suffixes) which is very important for
morphologically rich languages

• fastText (which is derived from word2vec) treats
each word as a bag of character n-grams where
the vectors are associated at the n-gram level

• the vector for a word is calculated as the sum of
n-gram vectors

• this enables creating vectors for words that are
not in the training data

Word vectors aggregation
• to represent larger pieces of text (sentences, paragraphs,

documents), word vectors need to be somehow aggregated
(fixed length vectors are often needed)

• simple aggregation approaches – sum, average, or a
weighted average (using tf-idf weights) of the word vectors

• more complex methods
– Paragraph Vector

• a larger piece of text, here a paragraph, should be useful in predicting
other words too

• a paragraph vector behaves like another word in the prediction task
– a recursive neural network architecture to aggregate words

vectors requiring parsing was proposed by Socher et al. (2013)
– aggregation of word embedding to binary hash codes through

Fisher kernel and hashing methods was proposed by Zhang et al.
(2014)

Workshop evaluation

https://www.fintech-
ho2020.eu/free/app/evaluation-suptech-prague-4

Please fill in the evaluation form:
̶ Role: National Supervisor
̶ Scale evaluations
̶ Comments

https://www.fintech-ho2020.eu/free/app/evaluation-suptech-prague-4

