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Web 2.0

• people don’t view the content of Web pages 
passively, but they create it (social networks, 
blogs, wikis, folksonomies, …)

• usability and interoperability enable access 
and content creation anywhere and at any 
time to many people

• huge amount of data is available
• about 80% is in textual form



Available textual content

• often freely available (newspapers, blogs, 
company sites, discussion boards, social 
networks, reviews sites, …)

• very useful for many purposes (contextual 
advertising, customer care, hiring personnel, 
opinion mining, market research, political 
campaigns, fight against cybercrime, …)



Problems

• large volumes of data
• unstructured, not very suitable for machines
• processing by humans is not feasible
• automation of revealing hidden knowledge in 

text data => discipline known as text mining



Text mining

• knowledge discovery discipline
• closely related to data mining  (also known ad 

text data mining)

econometrics vs. data mining
assumes that the data are 
generated by a given 
stochastic data model

starts with a model and tries 
to find its parameters

uses algorithmic models and 
treats the data mechanism as 
unknown

starts with data and tries to 
find a model that well fits 
(and predicts) the data



Typical tasks

• classification – assigning documents to 
one or more predefined classes 
according to the training examples

• information retrieval – retrieving 
documents matching a query

• clustering – grouping documents 
according to their similarity without 
prior knowledge of the groups (clusters)



Typical tasks

• summarization – selecting the 
most important information from 
one or more documents

• finding associations among 
document parts

• sentiment analysis and opinion 
mining



Typical tasks
• information extraction – finding structured 

information in unstructured texts (e.g., 
accounting data in annual reports)

• question answering – understanding 
questions in a natural language, extracting 
or formulating answers

• machine translation – computers translate 
texts from one language to another; 
statistical MT with incorporation 
of human experts is the most 
popular today



Data mining vs. Text mining

• some of the tasks are quite similar to the ones 
of data mining

• data mining
– a well developed branch of science
– focuses on finding interesting patterns and hidden 

knowledge in large amounts of data
– involves the following common tasks: anomaly 

detection, association rule learning, clustering, 
classification, regression, summarization

– works with highly structured data (tabular format)



Data mining vs. Text mining

• text mining
– focuses on tasks similar to those in DM – why not 

to use the same methods?
– textual data is unstructured and complicated for 

understanding (grammar, several meanings of a 
word, order of words, dictionary size, …) 

– documents must be converted to a representation 
suitable for a selected DM algorithm



Data mining vs. Text mining

• text mining is related to disciplines such as 
statistics, artificial intelligence, machine 
learning (like data mining), but also to natural 
language processing, linguistics, speech 
recognition and generation, …



Specifics of text mining

• large input space – many potential examples, 
huge number of words and their combinations

• sparse vectors representing the documents –
the number of features in one document is 
small compared to the number of all features

• little training data – because of demandingness 
of the labeling process

• noise – spelling errors, typos, wrong grammar 
etc., typical for natural languages, also incorrect 
labeling 



Specifics of text mining

• a small fraction of the content is often relevant
• the distribution of the probability with which 

the words appear in documents is strongly 
skewed



Text Mining Process

• defining the problem
• collecting the necessary data
• defining features
• analyzing the data
• interpreting the results



Machine Learning for Text Mining

• it is not possible to cover all possible problems 
(inputs, situations) in advance

• past experience can be used to solve problems 
in the future

• machines need an ability to learn – a model to 
be applied in the future (in unknown 
situations) is trained (learned) as a 
generalization of past experience represented 
by data



Machine Learning for Text Mining



Machine Learning for Text Mining

available documents 
(training data, 
experience)



Machine Learning for Text Mining
learning (training, 
generalization, 
induction, model 
creation)

available documents 
(training data, 
experience)



Machine Learning for Text Mining

new (previously 
unseen) problem



Machine Learning for Text Mining

using the 
learned 
model

new (previously 
unseen) problem



Machine Learning for Text Mining

an answer

using the 
learned 
model

new (previously 
unseen) problem



Machine Learning

• supervised – availability of “correct answers” 
(target variables, labels)

• unsupervised – no correct answers are 
available

• semi-supervised – a few labeled examples 
contain initial information for learning from 
many unlabeled examples



Some typical tasks – more details



Summarization

• producing a new text from one or more texts
• the new text conveys the most important 

information from the original text(s) and it is 
significantly shorter

• the new text can have the form of a set of key 
phrases, set of most important sentences, a 
linguistically correct abstract, …



Summarization

• four basic approaches
– extraction – identifying and reproducing most 

important parts
– abstraction – producing most important parts in a 

new way
– fusion – combining extracted document parts
– compression – throwing out unimportant sections



Summarization – extraction 

• early attempts focused on 
– extracting sentences containing the most frequent 

words (considering also distance of the words)
– position of sentences in paragraphs (the most 

informative is often at the beginning)
– sentences containing some of the predefined 

words
– parts defining document structure (e.g., title, 

headings)



Summarization – extraction 
• further research focused on using machine 

learning using features such as
– number of words
– first occurrence
– frequency
– length in characters
– presence of a part of speech (verb, adjective, …)

• supervised approaches use existing data, such as 
newspaper articles, web pages, etc. with available 
abstracts or keywords (keyphrases)



Summarization – abstraction

• can be characterized as ’top-down’ – they look 
for a set of pre-defined information types to 
include in the summary (e.g., an earthquake 
frame may contain slots for location, 
earthquake magnitude, number of casualties, 
etc.)

• the desired pieces of information are located 
and filled in



Multi-document summarization

• major problems
– identifying and coping with redundancy
– recognizing novelty, contradictions
– ensuring logical coherence 
– ensuring completeness



Sentiment analysis

• not only objective information is important
• sentiment analysis (or opinion mining) focuses 

on sentiments, evaluations, attitudes, and 
emotions

• applications: product ranking, predicting sales 
performance, box-office revenues for movies, 
election results, stock market and many others



Opinion definition

• an opinion is a quintuple (ei, aij, sijkl, hk, tl)
– ei is the name of an entity
– aij is an aspect of ei
– sijkl is the sentiment (positive, negative, or neutral, 

or expressed with different strength/intensity 
levels, e.g., 1 to 5) on aspect aij of entity ei

– hk is the opinion holder
– tl is the time when the opinion is expressed by hk

• SA objective – to identify all components



Levels of analysis

• sentiment might be identified at
– document/sentence level – overall sentiment for 

the entire piece of text
– entity/aspect level – a sentiment is related to a 

target (“Although the service is not that great, I 
still love this restaurant.”)

• two types of sentiment
– regular opinions (“Coke tastes very good”)
– comparative opinions (“Coke tastes better than 

Pepsi”)



Sentiment lexicons
• the most straightforward method
– words: positive (good, wonderful, amazing, …) and 

negative (bad, poor, terrible, …)
– phrases: e.g., a cold fish (a person who does not seem

very friendly and does not show their emotions)
• problems
– “This camera sucks” vs. “This vacuum cleaner really 

sucks”
– “Can you tell me which Sony camera is good?”
– “What a great car! It stopped working in two days.”
– “This washer uses a lot of water.”



Machine translation

• Computer Aided Translation (CAT)
– uses software tools to facilitate the translation 

process, spell checkers, terminologies, 
concordances, translation memories tools etc. 

– help a human translator
• Machine translation
– performs the translation itself



Machine Translation types
• rule-based

– original form based on linguistic information and dictionaries
• example-based

– based on analogy with previous translations (a segment is 
translated according to already translated sub-segment parts)

• statistical 
– the most popular MT branch
– rules from huge bilingual content (training set) are inferred 

(using statistics)
– the more training data is used the better results are produced

• hybrid 
– leverages the strengths of statistical and rule-based translation 

methodologies



Information extraction
• finding structured information in unstructured 

data
• the desired concepts from a domain (entities, 

relationships) are known and IE focuses on 
identifying them in texts

• the output is like database records containing 
templates filled during an IE process

• different from complete natural language 
understanding => shallow linguistic analysis is 
usually enough



IE problems

• one fact might be expressed by many different 
ways

• one fact might spread across more sentences, 
documents, or repositories

• some information is implicit



IE tasks
• named entity recognition
– identification and classification of predefined types of 

entities, such as organizations, persons, places, 
numerical and currency expressions, temporal 
expressions, etc.

• co-reference resolution
– identification of multiple (co-referring) mentions of 

the same entity, 
• named: “EU” and “European Union”
• pronominal: “John bought food. But he forgot to buy drinks.”
• nominal: “Microsoft revealed its earnings. The company also 

unveiled future plans.”
• implicit: “Marco è arrivato tardi. (he, Marco) Ha portato la 

birra.”



IE tasks

• Relation extraction
– identification of predefined relationships
• “Steve Jobs works for Apple” => EmployeeOf(Steve 

Jobs,Apple)
• “Mr. Smith gave a talk at the conference in New York” 

=>  LocatedIn(Smith,New York)
• “Listed broadcaster TVN said its parent company, ITI 

Holdings, is considering various options for the 
potential sale” => SubsidiaryOf(TVN,ITI Holding)
• etc.



IE tasks
• Event Extraction
– identifying events and finding who did what to whom, 

when, where, through what methods (instruments), 
and why

– “Masked gunmen armed with assault rifles and 
grenades attacked a wedding party in mainly Kurdish 
southeast Turkey, killing at least 44 people.” => 
perpetrators (masked gunmen), victims (people), 
number of killed/injured (at least 44), weapons and 
means used (rifles and grenades), and location 
(southeast Turkey)



Open Information Extraction
• doesn’t require the knowledge of relations of interest 

(the type of extracted information is not specified in 
advance)

• all possible relations are found and are then available, 
e.g., for querying

• based on the fact that that most relations (in English) 
can be characterized by a set of several lexicosyntactic
patterns, e.g., 
– Noun phrase, Verb, Noun Phrase – e.g., Graham Bell, 

invented, telephone
– Subject, Verb, Complement – e.g., Albert Einstein, is, a 

scientist
• uses part-of-speech tags and close word classes (e.g., 

pronouns, conjunctions), or clause types



Open Information Extraction

• problems
– incoherent extractions – have no meaningful 

interpretation
– uninformative extractions: “Faust made a deal 

with the devil” => (Faust, made, a deal) instead of 
(Faust, made a deal with, the devil)

– overly-specific relation phrases: “is offering only 
modest greenhouse gas reduction targets at”

• solutions – better specification of linguistic 
constraints



Question answering

• provides information containing answers to 
user questions

• related to human language understanding 
(semantic analysis)

• in early phases limited only to some narrow 
domains

• can use the IE output (structured databases) 
for finding answers



Question answering
• NLP based

– a query is thoroughly analysed and converted into a formal 
representation (logic, semantic networks, …)

– the answer is found using a world model (e.g., an ontology)
– ensures the most reliable answers

• IR based 
– focus on fact retrieval from a large text corpus
– employ shallow or deep NLP techniques
– are considered language and domain independent

• template based
– question templates are matched against queries
– after a match is found, an answer in a structured database is 

found
– templates are typically created manually



Data preprocessing and definition 
of features



Data preparation – standardization

• converting the document into a suitable 
format, e.g., extracting text from PDF 
documents, removing tags from HTML and 
XML documents,  removing headers from e-
mails, etc.

• determining the language of documents
• one document might be further split, e.g., a 

book into chapters, a newspaper article into 
paragraphs, a review into sentences



Data preparation – preprocessing

• algorithms that work with document 
properties (features) that are related to the 
document content or other properties are 
used

• it is therefore necessary to define the features
• features (characters, words, terms, concepts, ) 

might be extracted or derived 
• a document represented as a set of features 

and their values = structured representation



Data preparation – preprocessing
• typical steps
– text cleaning
– white space removal
– case folding
– spelling errors corrections
– abbreviations expanding
– stemming
– lemmatization
– stop words removal
– negation handling
– feature selection 
– part-of-speech tagging
– syntactical or shallow parsing



Data preparation – preprocessing
• classification of the typical steps of linguistic 

processing
– tokenize – deciding what constitutes a term
– normalize 

• making same things looking differently look the same
• usually increases recall, reduces precision
• e.g., converting  superficially different strings of characters 

to the same form (e.g., car, Car, cars, and Cars could all be 
normalized to car) or case folding

– annotate 
• marking identical strings of characters as being different 
• usually decreases, increases precision
• e.g., fly might be a verb -> fly/VB or a noun -> fly/NN)



Data preparation – tokenization 
• might seems simple at fist glance (e.g., for English) – words 

are separated by spaces (unlike, e.g., in Chinese)
• a good tokenizer must  handle punctuation (e.g., don't, 

Jane's, and/or), hyphenation (e.g., state-of-the-art versus 
state of the art), and recognize multi-word terms (e.g., 
Barack Obama and ice hockey) 

• ignoring stop words – high-frequency words with relatively 
low information content (e.g., of, the, and, them, who, that)

• the text might be broken into character unigrams or 
bigrams

• the input text might be matched against a against a lexicon
• accurate tokenization is a challenging task for most human 

languages



Data preparation – tokenization 

• splitting the text into basic units, called tokens 
(typically words, numbers, currency symbols, 
dates, …)

• based on understanding the structure of the 
used language (e.g., what is a delimiter and 
what is not, how numbers are written, 
smileys)



Data preparation – standardization
• converting every token to a standard form, e.g., 

am, are, is => be 
car, cars, car's, cars' => car

• reduces the number of distinct tokens
• usually increases recall, reduces precision
• case folding
– easy in English, can be problematic in some languages, 

e.g., in French, accents are optional for uppercase: 
example, PECHE -> pêche (fishing or peach) or péché
(sin)

– problems even in English, e.g., SMART (abbreviation 
of the name of an information retrieval system) vs. 
smart; Bush (a surname) vs. bush (a kind of plant)



Data preparation – standardization

• stemming
– the process of reducing inflected words to their stems
– in English, affixes are simpler and more regular than in 

many other languages -> stemming algorithms based 
on heuristics work relatively well

– Porter stemming: ED -> ‘’ (plastered -> plaster), 
ATIONAL -> ATE (relational -> relate), ATOR -> ATE 
(operator -> operate), EMENT -> ‘’ (replacement -> 
replac) etc.

• lemmatization 
– requires more detailed morphological analysis to 

convert a word into so called lemma (dictionary form), 
like ‘better’ -> ‘good’ (will be missed by a stemmer)



Data preparation – annotation
• inverse to normalization
• usually increase precision and decrease recall
• part-of-speech (POS) tagging
– marking words according to their parts of speech; 

sometimes, additional linguistic features are needed
– determining whether a word is a noun, verb, adjective, 

preposition, conjunction, pronoun, article, adverb, etc.
• word sense disambiguation
– marking ambiguous words according to their intended 

meanings
– some words have more meanings, e.g., derecho (in 

Spanish) is right or law



Data preparation – annotation

• named entity recognition
– some tokens or groups of tokens might represent 

an entity (a person, company, place, …)
– e.g., the automotive company created by Henry 

Ford in 1903 -> Ford, European Union, EU, a 
politico-economic union of 28 member states that 
are located primarily in Europe -> European Union



Data preparation – annotation 

• parsing (syntax analysis)
– analyzing the grammatical structure of sentences and marking 

the words in the sentences according to their grammatical roles
– relations of a word to the others and the functions of the words 

(subject, object, etc.) become obvious

sentence                                                  
verb phrase

noun phrase                verb               noun phrase

article   adjective   noun                   article   adjective  noun
The        large       cat eats the         small       rat.



Data preparation – annotation 

• shallow parsing
– standard parsing algorithms are too expensive for 

use on very large corpora and are not robust 
enough

– shallow parsing produces only parts that are easy 
and unambiguous, typically, small and simple 
noun and verb phrases 

– for the purposes of information extraction, 
shallow parsing is usually sufficient



Data preparation

• adding potentially relevant attributes if some 
additional information is available, about, e.g.
– time
– place
– people
– topic
– sentiment
– …



Converting texts into a suitable format

• a document is typically broken down into some 
pieces (typically the words) that are not as 
complex as the entire document is

• these pieces might be than transformed in some 
way (relevant features are derived):
– removed (e.g., rare words are eliminated)
– changed to a different value (e.g., stemmed)
– supplemented by additional information (e.g., part of 

speech)
• the features are represented in a way suitable for 

a particular algorithm (e.g., feature–document 
matrix)



Document vector representation

• documents are often treated as a bag of 
words

• bag = multiset – a set where duplicates are 
allowed

• not important are
– the order of words
– relationships between words

• the problem becomes less complex and thus 
manageable



Document vector representation

• a form suitable for data mining algorithms 
(tabular format)

• a document is represented by a vector
– attributes – numeric values representing 

properties of the document
– properties – terms (included in the text), concepts 

(derived from the text)
– attribute values – characterize, quantify the 

features



Document vector representation –
a simple example

• a set of documents (reviews)
very good product
very bad product
very very good
good
quite bad

• a simple document vector representation

good quite product bad very
1 0 1 0 1
0 0 1 1 1
1 0 0 0 2
1 0 0 0 0
0 1 0 1 0



word1

word2

word3

document2

document1document3



Vector components
• a local weight Lij representing the frequency fij of 

term i in document j (in every single document)
• a global weight Gi reflecting the discriminative 

ability of the term i, based on the distribution of 
the term over the entire document collection

• a normalization factor Nj correcting the impact of 
different lengths of documents

wij = Lij * Gi / Nj
wij … the weight of i-th term in j-th document
i … the number of a term
j … the number of a document



Local weights

• term presence (binary)
fij = 0 => wij = 0, fij > 0 => wij = 1

• term frequency
wij = fij

• logarithm
– de-emphasize the effect of frequency (a term 

appearing 10 times is not 10 times more 
important than a term appearing once)
fij = 0 => wij = 0, fij > 0 => wij = 1 + log fij



Local weights

• augmented normalized term frequency
– assigns weight k (typically 0.5)  to every term in a 

document + a bonus up to 1-k 
– for longer documents lower (e.g., 0.3), for shorter 

documents higher (e.g., 0.5)
fij = 0 => wij = 0, fij > 0 => wij = k + (1-k)*fij/xj

(xj is the maximum frequency in document j)
• and many others



Global weights

• inverse document frequency (the most popular)

!"# $% = log *
+($%)

N … number of documents, n(ti) … number of 
documents containing term ti (document 
frequency)

• other variations, e.g., squared inverse document 
frequency, probabilistic inverse document 
frequency, GFIDF, Entropy, …



Normalization

• transforms the elements of vector dj, i.e., the 
vector with local and global weighting applied:

dj = (l1j*g1, l2j*g2, …, lmj*gm)
• eliminates the problem of preferring longer 

documents because
– they have higher term frequencies
– contain more words (the probability of matching 

against a query is higher)



Normalization

• cosine normalization 
– most popular

!" = $
%&'

(
)%*

• other variants – max weight, sum of weights…



Document classification



Classification (categorization)
• many text mining tasks require that the data 

items to be processed have assigned labels => 
importance of classification

• a label
– symbolic, no additional knowledge is available
– characterizes a class (category)

• applications: document (web page, newspaper 
article, scientific paper, …) categorization, spam 
detection, word sense disambiguation, 
authorship attribution, language identification, or 
sentiment analysis



Classification problem

• to find a function (classifier, hypothesis) that can be, 
according to training data, represented by input data 
(training examples) paired with desired outputs 
(class labels), used for predicting the outputs for 
new, unseen data

(I1, O1)
(I2, O2)     training generalization
(I3, O3) f(I) à O
…
(In, On)



Classification problem

• having documents d1, d2, …, dn and classes c1, 
c2, …, cm, the hypothesis assigns true or false 
to each pair (dj, ci) denoting whether 
document dj belongs to category ci

• alternatively, the categories might be ranked 
according to their appropriateness and a 
human expert might decide on a category 
(categories)



Would you like to loose 
weight?

SPAM

Cheap Viagra!!! SPAM

Amateur teen girls SPAM

Urgent money transfer SPAM

Department meeting 
takes place on Tuesday

HAM

Registration of courses 
has started

HAM

New grant possibilities 
have been announced

HAM

Dissertation thesis 
defense

HAM

…

…

SPAM 
FILTER

New e-mail

?
SPAM or HAM



Classification problem

• single-label classification – only one category 
is assigned

• binary classification – a document belongs to 
ci or to the complement of ci

• multi-label classification 
– a document can belong to 0..|C| categories
– can be transformed to |C| independent binary 

classifications



Commonly used classifiers

• probabilistic classifiers, decision trees, 
decision rules, example-based classifiers, 
support vectors machine, or neural networks

• it is very difficult to compare individual 
methods 
– different authors use different sampling, 

preprocessing, algorithm setting, etc.
– generally, support vectors machine, instance 

based classifiers, neural networks, and decision 
trees bring acceptable results



Decision trees

• the category of an object is determined by 
performing a sequence of tests, based on the 
values of attributes characterizing the object

• a DT is represented by a directed graph (with 
one root) where the nodes represent the 
questions and the leaves the classes

• able to explain why a certain instance should 
be assigned to a specific class





Decision tree training

• a DT is usually build using the top-down 
approach:
1. find an attribute ai that best divides T (training 

set)
2. divide T into subsets Ti , each characterized by a 

different value of ai
3. if all documents in Ti belong to the same class, 

create a leaf labelled with that class; otherwise, 
recursively apply the same procedure starting 
with step 1 to Ti



Decision tree training
• calculating the suitability of an attribute to split the 

training set
• a common measure is the information gain

!" #, %& = ( # − ((#, %&)

( # = −+
,-.

/
0(1&) log 0(1&)

( #, %& =+
&
6&((#&)

H … entropy, Pi … relative size of Ti, n … number of classes



Support vector machine

• the data is partitioned by finding a linear 
boundary (hyperplane) between two classes

• the margin widths between the class 
boundary and training patterns are maximized 
during the training process

• the best decision surface is determined by 
only a small set of training examples, called 
the support vectors

• robust to overfitting



objects of two classes to be separated



the blue line separates the data with some margin



the green line separates the data with a larger margin



the red line separates the data with the largest margin
(dotted lines contain the support vectors – yellow objects)



Support vector machine

• when it is not possible to separate the data in 
a given n-dimensional space linearly, a kernel 
function that projects the data to a space of 
higher dimension is used



Van Looy et al. Critical Care 2007 11:R83



Artificial neural networks
• imitate the behavior of neural networks in living 

organisms
• consist of elements called neurons 
• neurons receive signals (all inputs are combined 

into a single value ) and produce responses (an 
activation function)

• the neurons are organized in a network (layers) 
with their inputs and outputs connected together

• the interconnected neurons compose a function 
of the whole network



Artificial neural networks – a neuron



Artificial neural networks design

• the structure of neurons
• the topology of the network
• the learning algorithm (the backpropagation 

algorithm is one of the most used)



Artificial neural networks design



Artificial neural networks learning

• ANN inputs – features 
• ANN outputs – classes
• learning process – updating the inter-neuronal 

synaptic weights during training iterations in 
order to maximize the correctness of assigned 
classes



Instance-based classifiers

• sometimes called lazy learners or exemplar-
based classifiers

• do not create a generalization of class 
representation, a label of an unknown 
document is determined according to the 
training documents that are similar

• fast training, slow classification



Instance-based classifiers

• k-nearest neighbors classifier (IBL-1) is a 
typical representative
– a decision whether a document di belongs to class 

cj is made based on k documents that are most 
similar to di

– if a large enough proportion of them have the 
label cj, a positive decision is taken

– k nearest documents can have a different weight 
according to the degree of their similarity to di



Instance-based classifiers

• IBL-2
– it is not necessary to store every instance the learner 

has seen to classify unseen instances
– only instances near the boundaries in a small 

neighborhood of the boundary line, are needed to 
produce an accurate approximation of the concept 
boundary (instances away from the concept boundary 
do not really matter in classification)

– we can save space by storing only informative 
instances



Instance-based classifiers

• IBL-3
– IB3 is a noise tolerant algorithm that reduces IB1’s 

storage requirements
– a “wait and see” method is employed – a 

classification record with each saved instance is 
maintained

– only good classifiers are used to classify 
subsequently presented instances



Probabilistic classifiers

• calculate the probability P(cj | di) that a 
document di belongs to class cj

• this can be computed using the Bayes’ 
theorem

! "# $% = ! "# !($%|"#)
!($%)



Naïve Bayes Classifier
• finding the most likely class (maximum a posteriori)

!"#$ = argmax
+,∈.

/ 01 /(34|01)
/(34)

= argmax
+,∈.

/ 01 /(34|01)

• 34 = (78, 7:, … , 7< ) so the probability 
P(78, 7:, … , 7< 01 must be calculated (possible only 
when a very large number of training examples is 
available)

• if the features are independent
P(78, 7:, … , 7< 01 = P(78 01 > P(7: 01 > ⋯ > P(7< 01



Naïve Bayes Classifier

• calculating the necessary probabilities – from 
frequencies in the data

!(#$) =
'()*+, -. /-#()+'01 .,-) #2311 #$

'()*+, -. /-#()+'01

P(56 #$ = #-('0(56, #$)
∑9∈; #-('0(5, #$)



Naïve Bayes Classifier

• if one of P(#$ %& is 0 the entire formula will 
result in zero, no matter the other evidence

• thus, Laplace smoothing is used

P(#$ %& = %()*+ #$, %& + 1
∑0∈2(%()*+ #, %& + 1)

= %()*+ #$, %& + 1
(∑0∈2 %()*+(#, %&)) + 4

M … size of the vocabulary



Naïve Bayes Classifier – example
good +
very good +
very very good +
not good -
very bad -
bad -
not very good ?

we need to calculate P(?|not very good), where ? id + and -

we need P(+), P(-), P(not very good | + ), and P(not very good | - )



Naïve Bayes Classifier – example
good +

very good +

very very good +

not good -

very bad -

bad -

not very good ?

P(+) = 3/6

P(-) = 3/6

P(good|+) = (3+1)/(5+4)

P(very|+) = (2+1)/(5+4)

P(bad|+) = (0+1)/(5+4)

P(not|+) = (0+1)/(5+4)

P(good|-) = (1+1)/(5+4)

P(very|-) = (1+1)/(5+4)

P(bad|-) = (2+1)/(5+4)

P(not|-) = (1+1)/(5+4)



Naïve Bayes Classifier – example
good +

very good +

very very good +

not good -

very bad -

bad -

not very good ?

P(+) = 3/6

P(-) = 3/6

P(good|+) = (3+1)/(5+4)

P(very|+) = (2+1)/(5+4)

P(bad|+) = (0+1)/(5+4)

P(not|+) = (0+1)/(5+4)

P(good|-) = (1+1)/(5+4)

P(very|-) = (1+1)/(5+4)

P(bad|-) = (2+1)/(5+4)

P(not|-) = (1+1)/(5+4)

P(+|not very good) = 1/2*1/9*3/9*4/9 = 0.00823
P(-|not very good) = 1/2*2/9*2/9*2/9 = 0.005487



Naïve Bayes Classifier – example
good +

very good +

very very good +

not good -

very bad -

bad -

not very good ?

P(+) = 3/6

P(-) = 3/6

P(good|+) = (3+1)/(6+4)

P(very|+) = (3+1)/(6+4)

P(bad|+) = (0+1)/(6+4)

P(not|+) = (0+1)/(6+4)

P(good|-) = (1+1)/(5+4)

P(very|-) = (1+1)/(5+4)

P(bad|-) = (2+1)/(5+4)

P(not|-) = (1+1)/(5+4)

P(+|not very good) = 1/2*1/9*3/9*4/9 = 0.00823
P(-|not very good) = 1/2*2/9*2/9*2/9 = 0.005487



Measuring the quality of classifiers

• classifiers trained on training data are applied 
to test samples (objects with known labels)

• in the two class classification, the classes 
might be labeled as positive and negative; 
correctly classified objects are referred as true 
positive (TP) and true negative (TN); false 
positive (FP) and (FN) represent misclassified 
objects



Classifier effectiveness measures

• standard IR measures, like precision and recall 
might be used

• precision: P( f(ci, dx) = true | h(ci, dx) = true )
– the probability that if a random document dx is 

classified under ci, the decision is correct
• recall: P( h(ci, dx) = true | f(ci, dx) = true )
– the probability that if a random document dx 

should be classified under ci, this decision is taken



Classifier effectiveness measures

• the values of precision and recall can be estimated 
from the contingency table (P…predicted, R…real)

Prec = 50/(50+15) Prec = 60/(60+20) Prec = 40/(40+20)
Rec = 50/(50+30) Rec = 60/(60+20) Rec = 40/(40+5)

Prec(C1) = 50 / (50+10+5)
Rec(C1) = 50/(50+20+10)
Prec(C2) = 60 / (20+60+0)
Rec(C2) = 60/(10+60+10)
Prec(C3) = 40 / (10+10+40) 
Rec(C3) = 40/(5+0+40)

C1 P+ P-
R+ 50 30
R- 15 110

C2 P+ P-
R+ 60 20
R- 20 105

C3 P+ P-
R+ 40 5
R- 20 140

P C1 P C2 P C3
R C1 50 20 10
R C2 10 60 10
R C3 5 0 40



Measuring the quality of classifiers
• Accuracy 
– proportion of good results among all
– not suitable for unbalanced data

!""#$%"& = () + (+
() + (+ + ,) + ,+

• Precision (positive predictive value)
– proportion of good results among result marked as good 

(retrieved results)

)$-"./.01 = ()
() + ,)



Measuring the quality of classifiers
• Recall (sensitivity, true positive rate)
– proportion of retrieved good results among all good 

results

!"#$%% = '(
'( + *+

• F-measure (F-score)
– balances Precision and Recall
– values between 0 (worst) and 1 (best)

*˗-"$./0" = 12 + 1 ∗ (0"#5.567 ∗ !"#$%%
12 ∗ (0"#5.567 + !"#$%%

– often β=1, F1score is the harmonic mean of Precision 
and Recall (they are equally balanced)



Micro- and macro- averaging

• macroaveraging
– computes a simple average over classes
– each class has equal weight

• microaveraging
– aggregates per-document decisions across classes 

(computes a measure on the pooled contingency 
table)

– classes have different weights depending on their 
size (bigger classes contribute to a measure value 
more)



Micro- and macro- averaging
Class 1

R: yes R: no

P: yes 10 10

P: no 10 970

Class 2
R: yes R: no

P: yes 90 10

P: no 10 890

Overall
R: yes R: no

P: yes 100 20

P: no 20 1860

• Prec(1) = 10/(10+10) =0.5
• Prec(2) = 90/(90+10) =0.9
• microaveraged: Prec(overall) = 100/(100+20) = 0.83
• macroaveraged: (Prec(1)+Prec(2))/2 = 0.7
• microaveraged Precision is closer to 0.9 than to 0.5 

because Class 2 is five times bigger than Class 1

R … real value, P … predicted value



Documents clustering



Documents clustering
• an answer to unavailability of labeled data – no 

characteristics of the groups (classes) is known
• goal = grouping data into subsets called clusters using 

information contained in the data
• the clusters are coherent (homogeneous) internally and 

must be clearly different from each other 
• no labels = no one correct solution
• used in automatic creation of ontologies, summarizing, 

disambiguating, and navigating the results retrieved by 
a search engine, patent analysis, detecting crime 
patterns, and many others 



Similarity

• the only endogenous information that is available 
in the clustering process, used also by instance 
based classifiers (k-NN)

• can be measured between individual documents, 
between groups of documents, or between a 
document and a group of documents

• a vector representing a group of documents

!" =
∑%∈" '
|!| = !"), !"+, … , !"-



Similarity measures
• cosine similarity (based on the angle between two vectors)

!"($, &) =
$ ) &
$ ∗ & = ∑,-./ $, ∗ &,

∑,-./ ($,)0 ∗ ∑,-./ (&,)0
• Euclidean distance (distance in the vector space)

!1($, &) = 2
,-.

/
($, − &,)0

• Jaccard coefficient (intersection of two sets divided by their union)

!4 $, & = $ ) &
$ + & − $ ) &

= ∑,-./ $, ∗ &,
∑,-./ ($,)0 + ∑,-./ (&,)0 − ∑,-./ $, ∗ &,



Clustering algorithms
• hard clustering – each object belongs exactly to 

one cluster
• soft or fuzzy clustering – each object is associated 

with each cluster with a degree of membership in 
the interval [0, 1]

• different clustering algorithms usually lead to 
different clustering solutions

• clustering optimization is a very hard task (e.g., 
for a hard, flat clustering of n elements into k
clusters there exist kn/k! possible solutions)



Clustering algorithms

• partitional (flat) clustering seeks 
a k-partition C = {C1, C2, …, Ck}, 
k ≤ n of X
such that
!" ≠ ∅, & = 1, 2, … , +;

-
"./

0
!" = 1; !" ∩ !3 = ∅, &, 4 = 1, 2, … , + and & ≠ 4



Clustering algorithms

• hierarchical clustering constructs a tree 
like, nested structure partition of X, 

H = {H1, H2, …, Hk}, k < n, 
such that Ci Î Hm, Cj Î Hl, and m > l 
imply CiÌ Cj or Ci Ç Cj = Æ for 
all i, j ≠ i, m, l = 1, 2, …, k



Clustering algorithms

• graph clustering – partitioning a similarity 
graph (vertices = documents, edges = 
quantified according to the similarity between 
the documents), i.e., minimization of the 
edge-cut; an alternate model considers the 
documents and the terms contained in them 
to be the vertices and weights of the edges 
are set using tf-idf measure



Hierarchical clustering
• top-down (divisive) – at the beginning is all data 

in one cluster; in the following steps, the data is 
split into several clusters (typically using a flat 
method); the same step is then recursively 
repeated for the new clusters according to some 
criteria

• bottom-up (agglomerative) methods – each item 
to be clustered is considered to be a single cluster 
at the beginning; in each of the following steps, 
two most similar clusters are joined together until 
all objects are in one cluster



Merging clusters in agglomerative 
methods

• single linkage clustering method (SLINK), the clusters 
are merged according to the similarity of the most 
similar objects from the clusters

• complete linkage clustering method (CLINK), 
determines the similarity according to the similarity of 
two most dissimilar objects

• Unweighted Pair Group Method with Arithmetic Mean 
(UPGMA), the distance between two clusters is 
calculated as the average of all distances between pairs 
of objects

• Weighted Pair Group Method with Arithmetic Mean 
(WPGMA) assigns higher importance to the objects 
added to the clusters later
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C1 C2 C3 C4 C5 C6



A dendrogram as a result of agglomerative hierarchical 
clustering. By performing different cuts different clusters 

are obtained.



Partitioning clustering

• no explicit structure between the clusters is 
considered

• their result is a set of k clusters, where k is given 
or automatically determined

• well suited for clustering large document data 
sets due to relatively low computational 
requirements 



K-means
• the most widely used flat clustering algorithm
• in the first step, k randomly selected cluster centers 
• then, all objects are assigned to a cluster with the closest 

center
• in the following step, the cluster centroids are re-computed 

according to the positions of the objects in the clusters
• the steps of assignment of the objects to the clusters and 

re-computation of cluster centroids are repeated until a 
stopping criterion has been met 

• the algorithm might arrive to a local optimum – the entire 
process might be repeated several times with a different 
seed, outliers might be excluded from the seed set, or the 
seed might be obtained from another method



Clustering criterion functions

• functions representing the quality of flat 
clustering solutions 

• during assigning the documents into the 
clusters, a particular clustering criterion 
(objective) function defined over the entire 
clustering solution is optimized (typically using 
a greedy strategy)



Criterion functions

• internal – maximizing the similarity of documents 
in individual clusters while not considering the 
documents in different clusters

• external – focuses on optimization of dissimilarity 
of individual clusters

• hybrid – combine both internal and external 
criteria

• graph-based criterion functions – minimizing the 
edge-cut in a graph



Evaluating the clustering process 
• a correct result (labels) is not known unlike in a 

supervised learning problem
• the perfectness of the output is usually expected to be 

much lower that desired because only a human has a 
clear objective and can use some additional, external 
information

• a user typically wants a reasonable amount of clusters 
with sufficient quality

• approaches use
– internal evaluation measures 
– external evaluation measures 
– expert opinion



Quality of clustering solutions with different numbers 
of clusters measured by the Purity criterion



Internal evaluation measures

• derived from the data itself
• usually based on the criteria of 
– compactness – how much the objects are in a 

cluster related to each other (low pairwise or 
center-based distances in the cluster)

– separation – how a cluster is separated from other 
clusters (distances between cluster centers, 
pairwise distances between objects from different 
clusters, or measures based on density)



External evaluation measures
• class labels (ground truth) for the data to be 

clustered are available a priori

• entropy: !" = −%
&
'&" log '&" (pij – probability 

that a member of the cluster j belongs to the 
class i)

• purity: +" = ,
-.
∗ max&3,..5 6&" (nj is the number of 

instances in the cluster j, nij is the number of 
instances of the class i in the cluster j, and l is the 
number of classes)



Evaluation based on expert opinion

• suitable under many circumstances 
• may reveal new insight into the data
• generally very expensive and demanding
• the results that are subjectively influenced are 

also not very well comparable 



Evaluation based on expert opinion

• visual examination 
– not possible when the number of dimensions > 3
– objects might be projected from a 

multidimensional space to 2D or 3D (groups of 
objects that are separated in 2D or 3D space are 
also separated in a space with many dimensions

– difficult to use for data with a very high number of 
dimensions



Evaluation based on expert opinion

• examining the objects in individual clusters
– usually not possible to consider not all of the 

documents but examine only some of them:
• an average document – lies most closely to the 

remaining documents in the cluster (located near the 
centroid)
• the most typical – located near the border of the 

cluster, far from the other clusters (the most different 
from all of the documents in the collection = most 
specific)
• the least typical element – close the border of the 

cluster, closely to the remaining clusters; it is most 
similar to the documents in the other clusters



Evaluation based on expert opinion
with machine learning support

• an advanced automated method that would 
help in evaluating individual clusters is useful

• relevant attributes that sufficiently well 
characterize the documents in the clusters 
might be filtered

• a feature selection method using clusters as 
classes is an option



Feature selection



The purpose

• select (feature selection) or derive (feature 
extraction) a suitable subset of features from 
the original set 

• decreasing the size of the vocabulary
– important for, e.g., classifiers that are expensive to 

train
• eliminating noise
– to prevent overfitting



Approaches to FS

• filter methods
– assign a metric to each feature
– top k features are selected
– attributes are treated separately
– redundancy of attributes or dependency between 

attributes is not considered
– independent on a task, based only on information 

in the data
– popular in text mining because of low 

computational costs



Approaches to FS
• wrapper methods
– tailored to a particular task and algorithm
– sets of features are evaluated in a search procedure
– forward selection – starts with an empty set, adds 

attributes as long that the performance improves
– backward elimination – starts with the full set, 

eliminates attributes as long that the performance 
improves

– a greedy approach is usually applied because of 
computational complexity (exponential number of 
subsets)



Approaches to FS

• embedded methods
– feature selection is an integral part of an 

algorithm
– for example, a decision tree learner selects the 

best attributes in a training process



Basic FS algorithm

SelectFeatures (D, c, k)

1  ExtractVocabulary -> V

2  [] -> L

3  for each t in V do

4      ComputeFeatureUtility(D, t, c) -> A(t, c)

5      Append(L, A(t, c))

6  return FeaturesWithLargestValues(L, k)

D …a set of documents

c … a given class

k … the number of best features

http://nlp.stanford.edu/IR-book/html/htmledition/feature-selection-1.html



Score-computing functions
• often work with some probabilities 

(e.g., the probability that a document x
contains term t, the joint probability 
that a document x contains term t and 
also belongs to category ci)



Score-computing functions
• these probabilities can be estimated from the following 

statistical information:
– Ai = the number of the documents that contain the term t and also 

belong to category ci
– Bi = the number of the documents that contain the term t but do 

not belong to category ci
– Ci = the number of the documents that do not contain the term t

but belong to category  ci, i.e., Ni - Ai

– Di = the number of the documents that neither contain the term t
nor belong to category ci, i.e., Nall - Ni - Bi

– Ni = the total number of the documents that belong to category ci
– Nall = the total number of all documents from the training data
– ci – a class (i = 1..m)



χ2

• in statistics, χ2 test is applied to categorical 
data to evaluate whether two events are 
independent on each other

• independent events: P(AB)=P(A)P(B), or 
P(A|B)=P(A) or P(B|A)=P(B)

• in FS, the two events are occurrence of a class 
and a term



χ2

Χ"($, &, ') = *
+,∈{/,0}

*
+2∈{/,0}

(3+,+2 − 5+,+,)"
5+,+2

et = 1 … the document contains t, et = 0 … the document does 
not contain t
ec = 1 … the document is in class c, ec = 0 … the document is not 
in class c
N … observed frequency
E … expected frequency given that t and c are independent (e.g., 
E11 = N*P(t)*P(c))



χ2

• the above formula might be rewritten as

!"# = %&''()*+* − !*-*)/
()* + !*)(-* + +*)()* + -*)(!* + +*)

• high values of χ2 indicate that the hypothesis 
of independence of t and c is incorrect

• a weakness – not reliable for low frequency 
terms



Word embeddings



Basic ideas
• the bag-of-words model does not capture relations 

between words
• it would be possible to add other information to the 

existing words, e.g., the word is A, it's POS tag is T, the 
previous word is B, and the following word is C – too 
many features

• similar words should have similar properties à more 
than one dimension is needed to represent each word 
or feature

• each word is mapped to a continuous 
multidimensional space that has typically a few 
hundred dimensions, similar words are expected to be 
close to each other



Basic ideas

• vector operations bring interesting results
– vector("king") - vector("man") + vector("woman") 
» vector("queen") which captures the 
male/female relationship

– vector("paris") - vector("france") + 
vector("poland") » vector("warsaw") – the capital-
of relation  

– vector("cars") - vector("car") + vector("apple") »
vector("apples") – pluralisation relation 



Basic ideas

• word vectors can also significantly help in 
calculating true document similarities:

• e.g., The queen visited the capital of US. and 
Elizabeth came to Washington in the USA.
share no words

• they, however, describe the same situation
– word vectors of Elisabeth and queen and USA and 

US will be very close



Context
• finding suitable values of the vector elements is 

based on the hypothesis stating that words in 
similar contexts have similar meanings

• a context = a set of words in somehow defined 
environment of the word (the same document, 
sentence, or a piece of a text of some length)

• very often, a few word to the left and right are 
considered (smaller window – more syntactic 
relations, bigger window – more semantic 
relations)



Computing word embeddings
• supervised methods
– require annotated data for a specific task (e.g., POS 

tagging) 
– embeddings are trained towards the given goal and can 

capture information relevant for the task
• unsupervised methods 
– do not require annotated data (they only compute 

embeddings)
– the task is to predict a word given its context or deciding, 

whether a word can belong to a context given examples of 
real and randomly created word-context pairs

– embeddings capture general syntactic and semantic 
relationships and can be applied in a wide variety of tasks



word2vec

• a family of methods proposed by T. Mikolov
that strongly attracted the NLP community to 
neural language models

• the prediction has two forms:
– the word based on its context = Continuous bag-

of-words (CBOW)
– the context for a word = skip-gram



fastText
• most of the techniques for learning word 

embeddings ignore sub-word information 
(prefixes, suffixes) which is very important for 
morphologically rich languages 

• fastText (which is derived from word2vec) treats 
each word as a bag of character n-grams where 
the vectors are associated at the n-gram level

• the vector for a word is calculated as the sum of 
n-gram vectors

• this enables creating vectors for words that are 
not in the training data



Word vectors aggregation
• to represent larger pieces of text (sentences, paragraphs, 

documents), word vectors need to be somehow aggregated 
(fixed length vectors are often needed)

• simple aggregation approaches – sum, average, or a 
weighted average (using tf-idf weights) of the word vectors 

• more complex methods
– Paragraph Vector

• a larger piece of text, here a paragraph, should be useful in predicting 
other words too

• a paragraph vector behaves like another word in the prediction task
– a recursive neural network architecture to aggregate words 

vectors requiring parsing was proposed by Socher et al. (2013) 
– aggregation of word embedding to binary hash codes through 

Fisher kernel and hashing methods was proposed by Zhang et al. 
(2014)
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