library(wordVectors) prep_word2vec(origin="complaints_text.txt", destination="complaints_text_prep.txt", lowercase=TRUE, bundle_ngrams=1) model <- train_word2vec(train_file="complaints_text_prep.txt", output_file="complaints_text.bin", vectors=150, threads=4, min_count=3, window=5, iter=5, negative_samples=10, force=TRUE) x <- model["account", ] closest_to(model, x) x <- model["steak", ] - model["beef", ] + model["pork", ] closest_to(model, x)