Econometrics - Lecture 2

Introduction to Linear Regression – Part 2

Contents

- \mathcal{L}^{max} Goodness-of-Fit
- $\overline{}$ Hypothesis Testing
- $\overline{\mathcal{M}}$ Testing Linear
- $\overline{\mathbb{R}^n}$ Asymptotic Properties of the OLS Estimator
- \mathbb{R}^3 Multicollinearity
- $\mathcal{O}(\mathcal{O}_\mathcal{O})$ Prediction

Goodness-of-fit R²

The quality of the model $y_i = x_i' \beta + \varepsilon_i$, $i = 1, ..., N$, with K regressors can be measured by R^2 , the goodness-of-fit (GoF) statistic

H. R^2 is the portion of the variance in Y that can be explained by the linear regression with regressors X_k , $k=1,\ldots,K$

$$
R^{2} = \frac{\hat{V}\{\hat{y}_{i}\}}{\hat{V}\{y_{i}\}} = \frac{1/(N-1)\sum_{i}(\hat{y}_{i} - \overline{y})^{2}}{1/(N-1)\sum_{i}(y_{i} - \overline{y})^{2}}
$$

the model contains an intercept (as usual): $\hat{V}\{y_{i}\} - \hat{V}\{y_{i}\}$

- H. If the model contains an intercept (as usual): $\overline{}$ $\hat{V}\{y_i\} = \hat{V}\{\hat{y}_i\} + \hat{V}\{e_i\}$ ${e_i}$ $\{y_i\}$ $R^2 = 1 - \frac{V_1 e_i}{2}$ with $\hat{V}\{e_i\} = (\Sigma_i e_i^2)/(N-1)$ ˆ2 1 $\sqrt{ }$ $\alpha^2=1 \hat{V}\!\!\left\{\boldsymbol{e}_{\!\scriptscriptstyle \hat{i}}\right\}$
- H. Alternatively, R^2 can be calculated as

$$
R^2 = corr^2 \{y_i, \hat{y}_i\}
$$

Properties of R^2

 R^2 is the portion of the variance in Y that can be explained by the \mathbb{R}^2 is measured in parcent. linear regression; 100 \mathcal{R}^2 is measured in percent

- $0 \leq R^2 \leq 1$. if the mode ■ 0 \leq R² \leq 1, if the model contains an intercept
- R^2 = 1: all residuals are zero
- R^2 nothing R^2 = 0: for all regressors, $b_{\rm k}$ = 0, k = 2, …, K; the model explains nothing
- R^2 cannot decrease if a variable is added
- x**Comparisons of** R^2 **for two models makes no sense if the** H. explained variables are different

Other GoF Measures

H. **Uncentered** R^2 **: For the case of no intercept; the Uncentered** R^2 cannot become negative

Uncentered $R^2 = 1 - \sum_i e_i^2 / \sum_i y_i^2$

adj R^2 (adjusted R^2 added regressor, penalty for increasing κ R^2 (adjusted R^2): For comparing models; compensated for

$$
\overline{R}^2 = adj \ R^2 = 1 - \frac{1/(N-K)\sum_i e_i^2}{1/(N-1)\sum_i (y_i - \overline{y})^2}
$$

for a given model, *a*dj R^2 is smaller than R^2

■ For other than OLS estimated models H.

$$
corr^2\big\{y_i,\hat{y}_i\big\}
$$

it coincides with R^2 for OLS estimated models

Contents

 $\overline{\mathcal{A}}$ Goodness-of-Fit

$\overline{}$ Hypothesis Testing

- $\overline{\mathbb{R}^n}$ Testing Linear Restrictions
- $\overline{\mathcal{A}}$ Asymptotic Properties of the OLS Estimator
- $\mathcal{L}_{\mathcal{A}}$ Multicollinearity
- **Prediction**

OLS Estimator: Distributional Properties

Under the assumptions (A1) to (A5):

Π The OLS estimator $b = (XX)^{-1}$ β and covariance matrix V{b} = $\sigma^2(X^tX)^{-1}$ $\frac{1}{N}$ X'y is normally distributed with mean

b ~ N(β , $\sigma^2(XX)^{-1}$), b_k ~ N(β_k , σ^2c_{kk}), k=1,...,K

with c_{kk} the *k*-th diagonal element of $(\mathcal{X} \mathcal{X})$ ⁻¹

H. The statistic

$$
z = \frac{b_k - \beta_k}{se(b_k)} = \frac{b_k - \beta_k}{\sigma \sqrt{c_{kk}}}
$$

follows the standard normal distribution N(0,1)

■ The statistic
$$
\frac{7}{4}
$$

$$
t_k = \frac{b_k - \beta_k}{s\sqrt{c_{kk}}}
$$

follows the *t*-distribution with *N-K* degrees of freedom (*df*)

Testing a Regression Coefficient: t-Test

For testing a restriction on the (single) regression coefficient β_{k} :

- H. \blacksquare Null hypothesis ${\sf H}_0$ H_0 : β $kappa_{\mathsf{k}} = q \;$ (most interesting case: $q = 0$)
- **Alternative H_A: β_k > q**
- **Test statistic: (computed from the sample with known distribution** Π under the null hypothesis)

$$
t_k = \frac{b_k - q}{se(b_k)}
$$

- **t** t_{k} is a realization of the random variable $t_{\mathsf{N-K}}$, which follows the t distribution with N-K degrees of freedom $(df = N-K)$
	- **a** under H_0 and
	- given the Gauss -Markov assumptions and normality of the errors \Box
- Π **Reject H**₀, if the *p*-value P{ $t_{\sf N\text{-}K}$ > $t_{\sf k}$ $_{\rm k}$ | H $_{\rm 0}$ } is small ($t_{\rm k}$ -value is large)

Individual Wages, cont'd

OLS estimated wage equation (Table 2.1, Verbeek)

Test of null hypothesis H₀: β₂ = 0 (no gender effect on wages, equal wages for males and females) against H_A: β₂ > 0

 $t₂ = b₂/\text{se}(b₂) = 1.1661/0.1122 = 10.38$

Under H $_{\rm 0}$, $\,$ T follows the *t*-distribution with d f = 3294-2 = 3292

p-value = P{ T_{3292} > 10.38 | H $_{0}$ } = 3.7E-25: reject H $_{0}$!
!

Individual Wages, cont'd

OLS estimated wage equation: Output from GRETL

Model 1: OLS, using observations 1-3294Dependent variable: WAGE

p-value for $t_{\sf MALE}$ -test: < 0.00001 "gender has a significant effect on wages, males earn more"

Normal and t-Distribution

Standard normal distribution: $Z \sim N(0,1)$

H. **Distribution function** $\Phi(z) = P\{Z \leq z\}$

t-distribution: ${\cal T}_{{\sf df}}\thicksim t(df)$

- H. Distribution function $F(t) = P\{T_{df} \leq t\}$
- *p*-value: P{ T_{N-K} > t_k | H₀} = 1 $F_{H0}(t_k)$

For growing *df*, the *t*-distribution approaches the standard normal distribution, T_{df} follows asymptotically ($\mathsf{N}\to\infty$) the N(0,1)-distribution
e expansion distribution

П ■ 0.975-percentiles $t_{\sf df,0.975}$ of the $t(d\textit{f})$ -distribution

OLS Estimators: Asymptotic Distribution

If the Gauss-Markov (A1) - (A4) assumptions hold but not the
measure of the convention (A5): normality assumption (A5):

t-statistic

$$
t_k = \frac{b_k - q}{se(b_k)}
$$

H. follows asymptotically ($N \rightarrow \infty$) the standard normal distribution In many situations, the unknown true properties are substituted by approximate results (asymptotic theory)

The *t*-statistic

- H. **F** follows the *t*-distribution with *N-K* d.f.
- H. follows approximately the standard normal distribution N(0,1) The approximation error decreases with increasing sample size N

Two-sided t-Test

For testing a restriction wrt a single regression coefficient β_k :

- H. Null hypothesis H₀: β_k = q
- $\overline{\mathcal{A}}$ **■** Alternative H_A: $\beta_k \neq q$
- ~ 1 Test statistic: (computed from the sample with known distribution under the null hypothesis)

$$
t_k = \frac{b_k - q}{se(b_k)}
$$

follows the *t*-distribution with N-K d.f.

 $\overline{\mathcal{A}}$ Reject H_0 , if the *p*-value $P\{|T_{N-K}| > |t_{k}| | H_{0}\}\$ is small ($|t_k|$ -value is large)

Individual Wages, cont'd

OLS estimated wage equation (Table 2.1, Verbeek)

Test of null hypothesis H₀: β₂ = 0 (no gender effect on wages, equal wages for males and females) against H_A: β₂ ≠ 0

 $t₂ = b₂/\text{se}(b₂) = 1.1661/0.1122 = 10.38$

Under H $_{\rm 0}$, $\,$ T follows the *t*-distribution with d f = 3294-2 = 3292

p-value = P{ T_{3292} < -10.38 or T_{3292} > 10.38 | H₀} = 7.4E-25: reject H₀ |
!

Significance Tests

For testing a restriction wrt a single regression coefficient β_{k} :

- H. ■ Null hypothesis H₀: $β_k = q$
- Alternative H_A: $β_k ≠ q$
- **Test statistic: (computed from the sample with known distribution** $\mathcal{O}(\mathcal{O})$ under the null hypothesis)

$$
t_k = \frac{b_k - q}{se(b_k)}
$$

- Π **Determine the critical value** $t_{N-K,1-\alpha/2}$ **for the significance level** α **from** $\mathsf{P}\{\vert T_{\mathsf{k}}\vert\geq t_{\mathsf{N}\text{-}\mathsf{K},1\text{-}\alpha/2}$ ₂ | H₀} = α
- Reject H₀, if $|t_{\mathsf{k}}| > t_{\mathsf{N}\text{-}\mathsf{K},1\text{-}\alpha/2}$
- Π ■ Typically, the value 0.05 is taken for $α$

Significance Tests, cont'd

One-sided test :

- $\overline{\mathbb{R}^n}$ ■ Null hypothesis H₀: $β_k = q$
- **Alternative H_A**: $\beta_k > q$ ($\beta_k < q$) \Box
- **Test statistic: (computed from the sample with known distribution** $\overline{\mathbb{R}^n}$ under the null hypothesis)

$$
t_k = \frac{b_k - q}{se(b_k)}
$$

 $\overline{\mathcal{A}}$ ■ Determine the critical value $t_\text{N-K,α}$ $_{\alpha}$ for the significance level α from

$$
P\{T_k > t_{N-K,\alpha} \mid H_0\} = \alpha
$$

$$
\blacksquare \quad \text{Reject } H_0 \text{, if } t_k > t_{N-K,\alpha} \ (t_k < -t_{N-K,\alpha})
$$

Confidence Interval for β_k

Range of values ($b_{\mathsf{k}\mathsf{l}},\,b_{\mathsf{k}\mathsf{u}})$ for which the null hypothesis on β_{k} is not rejected

$$
b_{kl} = b_k - t_{N-K, 1-\alpha/2} \text{ se}(b_k) < \beta_k < b_k + t_{N-K, 1-\alpha/2} \text{ se}(b_k) = b_{ku}
$$

- $\mathcal{L}_{\mathcal{A}}$ **Refers to the significance level** α **of the test**
- H. For large values of df and α = 0.05 (1.96 \approx 2)

$$
b_k - 2 \, \text{se}(b_k) < \beta_k < b_k + 2 \, \text{se}(b_k)
$$

 $$ H.

Interpretation:

- Π A range of values for the true β_k that are not unlikely (contain the true value with probability 100 $\gamma\%$), given the data (?)
- $\mathcal{L}^{\mathcal{L}}$ **A** range of values for the true β_k such that 100γ% of all intervals constructed in that way contain the true β_{k}

Individual Wages, cont'd

OLS estimated wage equation (Table 2.1, Verbeek)

The confidence interval for the gender wage difference (in USD p.h.)

H \blacksquare confidence level $γ = 0.95$

> 1.1661 – 1.96*0.1122 < β $_2$ $_2$ < 1.1661 + 1.96*0.1122

$$
0.946 < \beta_2 < 1.386 \quad \text{(or } 0.94 < \beta_2 < 1.39)
$$

H γ = 0.99: 0.877 < β $_2$ <u>2 < 1.455</u>

Contents

- \mathbb{R}^n Goodness-of-Fit
- $\overline{\mathcal{A}}$ Hypothesis Testing
- **Testing Linear Restrictions** $\overline{\mathbb{R}^n}$
- $\overline{\mathcal{M}}$ Asymptotic Properties of the OLS Estimator
- $\mathcal{L}_{\mathcal{A}}$ Multicollinearity
- **Prediction**

Testing a Linear Restriction on Regression Coefficients

Linear restriction r ΄ β = q

- H. ■ Null hypothesis H₀: $r'β = q$
- **■** Alternative H_A: $r'β > q$
- **Test statistic** Π

$$
t = \frac{r'b - q}{se(r'b)}
$$

se(r'b) is the square root of V{r'b} = r'V{b}r

- H. \blacksquare Under ${\sf H}_0$ ₀ and (A1)-(A5), *t* follows the *t*-distribution with $df = N-K$
- **GRETL:** The option <u>Linear restrictions</u> from <u>Tests</u> on the output window of the <u>Model</u> statement <u>Ordinary Least Squares</u> allows to test linear restrictions on the regression coefficients

Testing Several Regression Coefficients: F-test

For testing a restriction wrt more than one, say J with 1 < J < K , regression coefficients:

- Null hypothesis H₀: $\beta_k = 0$, K-J+1 $\le k \le K$
- **Alternative H_A: for at least one** *k*, K-J+1 \leq *k* \leq *K*, $\beta_k \neq 0$ $\mathcal{L}^{\mathcal{A}}$
- F-statistic: (computed from the sample, with known distribution H. under H₀; R_0^2 : R^2 for restricted model; R_1^2 : R^2 for unrestricted r $(R_1^2 - R_0^2)$ 2²: R^2 for restricted model; $R^{~2}_1$: 2 : R^2 for unrestricted model) :/ 22 $R_1^2-R_2$ R $\, J \,$ $(1-R_1^2)/(N-K)$ 1 $\overline{0}$ 1 $R_1^2)/(N-K)$ $\,F$ −−=

F follows the F-distribution with J and N-K d.f.

- \Box $\overline{\mathsf{u}}$ under $\mathsf{H}_{\overline{0}}$ and normality of the $\varepsilon_{\text{\tiny{i}}}$ (A5) $_0$ and given the Gauss-Markov assumptions (A1)-(A4)
- П **Reject H**₀, if the p-value P{ $F_{J,N-K}$ > F | H₀} is small (*F*-value is large)
- The F-test with $J = K-1$ is a standard test in GRETL П

Individual Wages, cont'd

A more general model is

wage_i = β₁ + β 2 $_{2}$ male_i + β₃ school_i + β₄ exper_i + ε_i i

 $\boldsymbol{\beta}_2$ $_2$ measures the difference in expected wages p.h. between males and females, given the other regressors fixed, i.e., with the same schooling and experience: ceteris paribus condition

Have *school* <u>or</u> exper an explanatory power?

Test of null hypothesis H_0 : β₃ = β₄ = 0 against H_A: H₀ not true

$$
R_0^2 = 0.0317
$$

 $R_{\rm *}{}^2$ $R_1^2 = 0.1326$

$$
F = \frac{(0.1326 - 0.0317)/2}{(1 - 0.1326)/(3294 - 4)} = 191.24
$$

П p-value = P{F_{2,3290} > 191.24 | H₀} = 2.68E-79

Individual Wages, cont'd

OLS estimated wage equation (Table 2.2, Verbeek)

Table 2.2 OLS results wage equation

Dependent variable: wage

Alternatives for Testing Several Regression Coefficients

Test again

- $H_0: \beta_k = 0, K-J+1 \leq k \leq K$
- \blacksquare H_A: at least one of these $\beta_{\sf k} \neq 0$
- 1.The test statistic F can alternatively be calculated as

$$
F = \frac{(S_0 - S_1) / J}{S_1 / (N - K)}
$$

- $\left\langle N\!-\!K\right\rangle$ and $\left\langle N\right\rangle$ \mathcal{S}_0 (\mathcal{S}_1): sum of squared residuals for the (un)restricted model \mathbb{R}^3
- \digamma follows under ${\sf H}_0$ $\mathcal{C}^{\mathcal{A}}$ $_0$ and (A1)-(A5) the ${\it F(J,N)}$ - \mathcal{K})-distribution
- 2. If σ^2 is known, the test can be based on

 $F = (S_0 \mathcal{S}_1$)/ σ^2

under H^+_0 and (A $_{\rm 0}$ and (A1)-(A5): Chi-squared distributed with *J* d.f.

For large N, s^2 is very close to σ^2 П s^2 is very close to σ^2 ; test with F approximates F-test

Individual Wages, cont'd

A more general model is

$$
wage_i = \beta_1 + \beta_2 \ male_i + \beta_3 \ school_i + \beta_4 \ exper_i + \varepsilon_i
$$

Have *school* and *exper* an explanatory power?

 \Box **■** Test of null hypothesis H₀: $β_3 = β_4 = 0$ against H_A H_0 : β₃ = β₄ = 0 against H_A: H 0 $_0$ not true

$$
S_0 = 34076.92, S_1 = 30527.87
$$

 $s = 3.046143$

 $\mathcal{F}_{(1)}$ = [(34076.92 - 30527.87)/2]/[30527.87/(3294-4)] = 191.24

 $F_{(2)}$ = [(34076.92 30527.87)/2]/3.046143 = 191.24

Does <u>any</u> regressor contribute to explanation?

H **Overall F-test for H**₀: β_2 = ... = β_4 = 0 against H_A Table 2.2 or GRETL-output): J=3 $H_0: \beta_2 = ... = \beta_4 = 0$ against $H_A: H$ 0 $_{\rm 0}$ not true (see

F = 167.63, p-value: 4.0E-101

The General Case

Test of H₀: $R\beta$ = q

Rβ = q: J linear restrictions on coefficients (R: JxK matrix, q: J-vector) Example:

$$
R = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 \end{pmatrix}, q = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
$$

Wald test: test statistic

$$
\xi = (Rb - q)^{r}[RV\{b\}R^{r}]^{-1}(Rb - q)
$$

- H. \blacksquare follows under ${\sf H}_0$ distribution with J d.f. $_{\rm 0}$ for large N approximately the Chi-squared
- Test based on $F = \xi / J$ is algebraically identical to the F-test with

$$
F = \frac{(S_0 - S_1)/J}{S_1/(N - K)}
$$

p-value, Size, and Power

Type I error: the null hypothesis is rejected, while it is actually true

- **P** ϵ *p*-value: the probability to commit the type I error
- H. In experimental situations, the probability of committing the type I error can be chosen before applying the test; this probability is the significance level α , also denoted as the size of the test
- $\overline{\mathcal{M}}$ In model-building situations, not a decision but learning from data is intended; multiple testing is quite usual; the use of p-values is more appropriate than using a strict α
- Type II error: the null hypothesis is not rejected, while it is actually wrong; the decision is not in favor of the true alternative
- H. The probability to decide in favor of the true alternative, i.e., not making a type II error, is called the power of the test; depends of true parameter values

p-value, Size, and Power, cont'd

- H. The smaller the size of the test, the smaller is its power (for a given sample size)
- $\mathcal{O}(\mathcal{A})$ The more H_A deviates from H_0 , the larger is the power of a test of a given size (given the sample size)
- $\overline{\mathbb{R}^n}$ The larger the sample size, the larger is the power of a test of a given size

Attention! Significance vs relevance

Contents

- \mathbb{R}^n Goodness-of-Fit
- $\overline{\mathcal{A}}$ Hypothesis Testing
- $\overline{\mathcal{A}}$ Testing Linear Restrictions
- $\overline{\mathbb{R}^n}$ Asymptotic Properties of the OLS Estimator
- $\mathcal{L}_{\mathcal{A}}$ Multicollinearity
- **Prediction**

OLS Estimators: Asymptotic Properties

Gauss-Markov assumptions (A1)-(A4) plus the normality assumption (A5) are in many situations very restrictive

An alternative are properties derived from asymptotic theory

- $\overline{}$ Asymptotic results hopefully are sufficiently precise approximations for large (but finite) N
- **Typically, Monte Carlo simulations are used to assess the quality** $\mathcal{L}_{\mathcal{A}}$ of asymptotic results

Asymptotic theory: deals with the case where the sample size Ngoes to infinity: $\mathcal{N} \rightarrow \infty$

Chebychev's Inequality

 \bigcap

Chebychev's Inequality: Bound for the probability of deviations from its mean

 $P\{|\mathsf{z}\text{-}\mathsf{E}\{\mathsf{z}\}| \geq r\sigma\} \leq r^{-2}$

for all *r*>0; true for any distribution with moments E{z} and σ^2 = V{z}

For OLS estimator b_{k} :

$$
P\{|b_k - \beta_k| > \delta\} < \frac{\sigma^2 c_{kk}}{\delta^2}
$$

for all δ>0; $c_{\sf kk}$: the *k*-th diagonal element of $(XX)^{-1}$ = $(\Sigma_{\sf i} x_{\sf i} x_{\sf i}^{\sf '})^{-1}$

- $\overline{\mathbb{R}}$ ■ For growing $\mathcal N$: the elements of $\mathsf \Sigma_{\mathsf i}$ $\mathsf x_{\mathsf i}$ $\mathsf x_{\mathsf i}$ increase, $\mathsf V\{b_{\mathsf k}\}$ decreases
- $\overline{}$ ■ Given (A6) [see next slide], for all $δ > 0$

$$
\lim_{N \to \infty} P\{|b_k - \beta_k| > \delta\} = 0
$$

b_k converges in probability to β_k for $N \to \infty$; $\text{plim}_{N \to \infty} b_k = \beta_k$

Consistency of the OLSestimator

Simple linear regression

 $y_i = \beta_1 + \beta_2 x_i + \varepsilon$ i

Observations: (yⁱ, xi), i = 1, …, N

OLS estimator

$$
b_2 = \left[\sum_{i=1}^{N} (x_i - \overline{x}) y_i\right] / \left[\sum_{i=1}^{N} (x_i - \overline{x})^2\right]
$$

\n
$$
= \beta_2 + \left[N^{-1} \sum_{i=1}^{N} (x_i - \overline{x}) \varepsilon_i\right] / \left[N^{-1} \sum_{i=1}^{N} (x_i - \overline{x})^2\right]
$$

\n**1** $N^{-1} \sum_{i=1}^{N} (x_i - \overline{x}) \varepsilon_i$ and $N^{-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$ converge in probability to
\nCov {x, ε } and V{x}, respectively
\n**2** Due to (A2), Cov {x, ε } = 0; with V{x} > 0 follows
\n $\lim_{N \to \infty} b_2 = \beta_2 + \text{Cov} \{x, \varepsilon\} / \text{V}\{x\} = \beta_2$

2

OLS Estimators: Consistency

If (A2) from the Gauss-Markov assumptions (exogenous x_{i} , all x_{i} and $\varepsilon_{\rm i}$ are independent) and the assumption (A6) are fulfilled:

A6 $1/N$ $(\Sigma_{i=1}^{N} x_i^{\prime}) = 1/N$ (XX) converges with growing N to $\frac{1}{2}$ a finite, nonsingular matrix Σ $_{\mathsf{xx}}$

 b_{k} converges in probability to β_{k} $_{\mathsf{k}}$ for $\mathsf{N} \rightarrow \infty$

Consistency of the OLS estimators $b\colon$

- **■** For $N \rightarrow \infty$, *b* converges in probability to β, i.e., the probability that *b* differs from β by a certain amount goes to zero for $N \rightarrow \infty$
- \blacksquare The distribution of b collapses in β
- \blacksquare plim_{N → ∞} *b* = β

Needs no assumptions beyond (A2) and (A6)!

OLS Estimators: Consistency, cont'd

Consistency of OLS estimators can also be shown to hold under weaker assumptions:

The OLS estimators b are consistent,

plim $_{N\, \rightarrow \, \infty}$ $b = \beta$,

if the assumptions (A7) and (A6) are fulfilled

A7 The error terms have zero mean and are uncorrelated with each of the regressors: $\mathsf{E}\{\mathsf{x}_{\mathsf{i}}\,\mathsf{\varepsilon}_{\mathsf{i}}\}$ = 0

Follows from

$$
b = \beta + \left(\frac{1}{N}\sum_{i} x_{i}x_{i}^{\prime}\right)^{-1} \frac{1}{N}\sum_{i} x_{i}\varepsilon_{i}
$$

and

$$
\text{plim}(b - \beta) = \sum_{xx} \text{fE}\{x_i \, \varepsilon_i\}
$$

Consistency of s2

The estimator s² for the error term variance σ^2 is consistent,

$$
\text{plim}_{N \to \infty} s^2 = \sigma^2,
$$

if the assumptions (A3), (A6), and (A7) are fulfilled

Consistency: Some Properties

- $\overline{\mathbb{R}^n}$ \blacksquare plim g(*b*) = g(β)
	- **a** if plim $s^2 = \sigma^2$, then plim $s = \sigma$
- $\mathcal{L}_{\mathcal{A}}$ The conditions for consistency are weaker than those for unbiasedness

OLS Estimators: Asymptotic Normality

- Distribution of OLS estimators mostly unknown
- Approximate distribution, based on the asymptotic distribution
- Many estimators in econometrics follow asymptotically the normal distribution
- $\mathcal{L}_{\mathcal{A}}$ ■ Asymptotic distribution of the consistent estimator *b*: distribution of

N1/2(bβ) for $N\!\rightarrow \infty$

■ Under the Gauss-Markov assumptions (A1)-(A4) and assumption $\mathcal{L}_{\mathcal{A}}$ (A6), the OLS estimators b fulfill

() $(b-\beta)\rightarrow \text{N}\big(0,\sigma^2\Sigma_{xx}^{-1}$ $N(b-\beta)\to \mathrm{N}(0,\sigma^2\Sigma_{xx}^{-1})$

" \rightarrow " means "is asymptotically distributed as" eane "ie aevmntotically c

OLS Estimators: Approximate Normality

 Under the Gauss-Markov assumptions (A1)-(A4) and assumption (A6), the OLS estimators b follow approximately the normal distribution

> $\Big($ $\Big($)) $, s^2(\sum x_i x'_i)^{-1}$ − $N(\beta,s^2(\sum_i x_i x_i')$ β , s² $\sum_i x_i x_i'$ $S \cup \mathcal{X}$. \mathcal{X} \sum_{l}

 The approximate distribution does not make use of assumption (A5), i.e., the normality of the error terms!

Tests of hypotheses on coefficients β_{k} ,

- t-test
- **■** *F*-test

can be performed by making use of the approximate normal distribution

Assessment of Approximate Normality

Quality of

- approximate normal distribution of OLS estimators
- p-values of ^t and F-tests
- $\overline{}$ power of tests, confidence intervals, etc.

depends on sample size N and factors related to Gauss-Markov assumptions etc.

Monte Carlo studies: simulations that indicate consequences of deviations from ideal situations

- Example: $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$; distribution of b_2 under classical iiassumptions?
- $\left\vert \cdot \right\vert$ ■ 1) Choose N ; 2) generate x_{i} , ε_{i} , calculate y_{i} , *i*=1,…, N ; 3) estimate b_{2}
- Repeat steps 1)-3) R times: the R values of b_2
the distribution of b_2 $_{\rm 2}$ allow assessment of <u>the distribution of b_2 </u>

Contents

- $\mathbb{R}^{\mathbb{Z}_2}$ Goodness-of-Fit
- $\overline{\mathcal{A}}$ Hypothesis Testing
- $\overline{\mathcal{A}}$ Testing Linear Restrictions
- $\overline{\mathcal{A}}$ Asymptotic Properties of the OLS Estimator
- $\mathcal{L}_{\mathcal{A}}$ Multicollinearity
- **Prediction**

Individual Wages: Variable Age

Define the variable

age_i = 6 + school_i + exper_i i

For the model

wage_i = β₁ + β 2 $_{2}$ male_i + β₃ age_i + β 4 $_{4}$ school_i + β₅ i $_{5}$ exper $_{\mathsf{i}}$ + ε_{i}

п **I** the Nx5 design matrix X has rank 4

- H it has not full rank 5!
- H X'X cannot be inverted

Multicollinearity

OLS estimators $b = (X'X)^{-1}X'y$ for regression coefficients β require that the *K*x*K* matrix

 $X'X$ or Σ _i x _i x _i'

can be inverted

In real situations, regressors may be correlated, such as

- \mathbb{R}^n age and experience (measured in years)
- \mathbf{r} experience and schooling
- $\mathcal{C}^{\mathcal{A}}$ inflation rate and nominal interest rate
- common trends of economic time series, e.g., in lag structures

Multicollinearity: between the explanatory variables exists

- an exact linear relationship (exact collinearity)
- an approximate linear relationship

Multicollinearity: Consequences

Approximate linear relationship between regressors:

- When correlations between regressors are high: difficult to identify the *individual* impact of each of the regressors
- $\mathcal{L}_{\mathcal{A}}$ Inflated variances
	- \Box **If** x_k can be approximated by the other regressors, variance of b_k is inflated;
	- \Box \Box Smaller t_{k} -statistic, reduced power of t -test
- Example: $y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$
	- **u** with sample variances of X_1 and X_2 equal 1 and correlation r_{12} , \Box

$$
V\{b\} = \frac{\sigma^2}{N} \frac{1}{1 - r_{12}^2} \begin{pmatrix} 1 & -r_{12} \\ -r_{12} & 1 \end{pmatrix}
$$

 r_{12} $\begin{array}{|c|c|c|c|c|c|c|c|} \hline 2 & \quad & 0,3 & \quad 0,5 & \quad 0,7 & \quad 0,9 \ \hline \end{array}$ 1/(1 $-r_{12}^2$ 2) $1,10$ 1,33 1,96 5,26

Exact Collinearity

Exact linear relationship between regressors

- Example: Wage equation
	- □ Regressor age defined as age = 6 + school + exper \Box
	- \Box □ Regressors *male <u>and</u> female* in addition to *intercept*
- \blacktriangleright $\boldsymbol{\Sigma}_\text{i}$ $\boldsymbol{\mathsf{x}}_\text{i}$ $\boldsymbol{\mathsf{x}}_\text{j}'$ is not invertible
- **Econometric software reports ill-defined matrix Σ**_i x_i x_i ²
- GRETL drops regressor

Remedy:

- Exclude (one of the) regressors
- $\overline{}$ ■ Example: Wage equation, *male <u>and</u> female* in addition to *intercept*
	- \Box □ Drop regressor *female,* use only regressor *male* in addition to *intercept*
	- \Box □ Alternatively: use *female* and *intercept*
	- \Box □ Not good: use of *male* and *female*, no *intercept*

Variance Inflation Factor

Variance of b_{k}

$$
V\{b_k\} = \frac{\sigma^2}{1 - R_k^2} \frac{1}{N} \left[\frac{1}{N} \sum_{i=1}^N (x_{ik} - \overline{x}_k)^2 \right]^{-1}
$$

 $\mathsf{R_{k}^{\,2}}{\rm{:\,}}\mathsf{R\!{\rm{2}}}$ of the regressors

If x_k can be approximated by a linear combination of the other $\overline{\mathcal{A}}$ regressors, $R_{\rm k}$ ² is close to 1, the variance of b_{k} inflated

Variance inflation factor: VIF($b_{\rm k}$) = (1 - $R_{\nu}{}^2$)-1k/ $^{-}$ \ 1 $^{-}$ 1 1 2

Large values for some or all VIFs indicate multicollinearity

- Warning! Large values of the variance of b_{k} (and reduced power of the *t*-test) can have various causes
- $\overline{\mathcal{A}}$ **Multicollinearity**
- **S** Small value of variance of X_k
- Small number N of observations

Other Indicators for Multicollinearity

Large values for some or all variance inflation factors VIF(b_{k}) are an
indicator for multipollinearity indicator for multicollinearity

Other indicators:

- \blacksquare At least one of the R_{k} 2 $2, k = 1, ..., K$, has a large value
- **Large values of standard errors se(** b_k **) (low t-statistics), but** \mathbf{r} reasonable or good \mathcal{R}^2 and $\mathcal{F}\text{-}$ statistic
- **Effect of adding a regressor on standard errors** $se(b_k)$ **of** \mathbb{R}^3 estimates b_k of regressors already in the model: increasing values of se($b_{\rm k}$) indicate multicollinearity

Contents

- \mathcal{L}^{max} Goodness-of-Fit
- $\overline{\mathbb{R}}$ Hypothesis Testing
- $\overline{\mathbb{R}^n}$ Testing Linear Restrictions
- $\overline{\mathcal{A}}$ Asymptotic Properties of the OLS Estimator
- $\mathcal{L}_{\mathcal{A}}$ Multicollinearity
- $\overline{\mathcal{A}}$ Prediction

The Predictor

Given the relation $y_i = x_i$ [']β + ε _i

Given estimators *b*, predictor for the expected value of Y at x_0 , i.e.,

$$
y_0 = x_0' \beta + \varepsilon_0
$$
: $\hat{y}_0 = x_0' b$

$$
prediction error: f_0 = \hat{y}_0 - y_0 = x_0'(b - \beta) + \varepsilon_0
$$

Some properties of $\hat{\mathsf{y}}_0$

- \mathbf{r} ■ Under assumptions (A1) and (A2), $E{b} = β$ and \hat{y}_0 is an unbiased predictor
- $\mathcal{L}_{\mathcal{A}}$ **N** Variance of \hat{y}_0 (due to variation of *b*)

$$
\mathsf{V}\{\hat{y}_0\} = \mathsf{V}\{x_0\}'b\} = x_0'\ \mathsf{V}\{b\}\ x_0 = \sigma^2\ x_0'(\mathsf{X}'\mathsf{X})^{-1}x_0 = s_0^2
$$

 $\overline{\mathcal{A}}$ **N** Variance of the prediction error f_0

$$
V{f_0} = V{x_0'(b - \beta) + \varepsilon_0} = \sigma^2(1 + x_0'(X'X)^{-1}x_0) = s_{f0}^2
$$

given that $\bm{\mathop{\varepsilon}}_0$ $_{\rm 0}$ and b are uncorrelated

Prediction Intervals

100γ% prediction interval

■ for the expected value of Y at x_0 , i.e., $y_0 = x_0$ ²β + ε₀: $\hat{y}_0 = x_0$ ²*b*

 $\hat{\mathcal{Y}}_0$ $-z_{(1+\gamma)/2}$ $S_0 \le y_0 \le \hat{y}_0 + z_{(1+\gamma)/2}$ S_0

with the standard error \mathbf{s}_0^+ ₀ of \hat{y}_0 from $s_0^2 = \sigma^2$ 2 X₀'(X'X)⁻¹X₀

F for the prediction Y at x_0

 $\hat{\mathcal{Y}}_0$ $-z_{(1+\gamma)/2}$ S_{f0} $\leq y_0 \leq \hat{y}_0 + z_{(1+\gamma)/2}$ S_{f0}

with s_{f0} from $s_{f0}^2 = \sigma^2 (1 + x_0'(X'X)^{-1}x_0)$; takes the error term ε_0 account $_{0}$ into

Calculation of s_{f0}

- **OLS** estimate s^2 of σ^2 from regression output (GRETL: "S.E. of regression")
- $\overline{\mathbb{R}^n}$ ■ Substitution of s² for σ²: s₀ = s[x₀'(X'X)⁻¹x₀]^{0.5}, s_{f0} = [s² + s₀ 2]0.5

Example: Simple Regression

Given the relation $y_i = \beta_1 + x_i \beta_2 + \varepsilon_i$ Predictor for Y at x_0 , i.e., $y_0 = \beta_1 + x_0 \beta_2 + \varepsilon_0$: $\hat{y}_0 = b_1 + x_0'b_2$ Variance of the prediction error 2

$$
V\{\hat{y}_0 - y_0\} = \sigma^2 \left(1 + \frac{1}{N} + \frac{(x_0 - \overline{x})^2}{(N - 1)s_x^2}\right)
$$

 Figure: Prediction intervals for various $x_{0}^{\cdot}\!\!$ s (indicated as "x") for γ = 0.95

Oct 11, 2019

Individual Wages: Prediction

The fitted model is

wage_i = −3.3800 + 1.3444 male_i + 0.6388 school_i + 0.1248 exper_i i

For a male with sc*hool* = 12 and *exper =* 5, the predicted wage is

wag ${\rm e}_{\rm 0}$ $_0$ = 6.25405 ≈ 6.25

Calculation of variance s_0^2 :

- H **Based on variance** s_0 $2 = x_0'$ V{b} $x_0 = \sigma^2$ 2 x_0 ′(X′X)⁻¹ x_0 is laborious
- H Re-estimating the model for regressors $m1 = male-1$, s1 = school–
12, e1 = exper-5 gives $1 =$ exper-5 gives

wage = 6.25405+ 1.3444 m1 + 0.6388 s1 + 0.1248 e1

with a std.err. of the intercept of 0.10695.

H \blacksquare The std.err. of the intercept, i.e., of the expected wage $wage_0$ $_{\rm 0}$, is \mathcal{S}_0

Individual Wages: Prediction, cont'd

The 95% confidence interval for $wage_0$ is

6.25405 – $-$ 1.96* 0.10695 ≤ wage $_0$ $_o$ ≤ 6.25405 + 1.96* 0.10695</sub>

or 6.04 ≤ *wage*₀ $_o$ ≤ 6.47</sub>

The 95% prediction interval for $wage_0$:

- \Box From model fit: s = 3.046143
- \Box $s_{f0} = [s^2 + s_0]$ 2²]^{0.5} = [3.046143² + 0.10695² $S^2 + S_0^2$]^{0.5} = [3.046143² + 0.10695²]^{0.5} = 3.048
- H 95% prediction interval

6.254 –– 1.96* 3.048 ≤ *wage*_o $_o$ ≤ 6.254 + 1.96* 3.048</sub>

```
or 0.16 ≤ wage<sub>0</sub>
                    <sub>o</sub> ≤ 12.35</sub>
```
Your Homework

- 1. For Verbeek's data set "bwages" use GRETL (a) for estimating a linear regression model with intercept for wage p.h. with explanatory variables *male* and educ; (b) interpret the coefficients of the model; (c) test the hypothesis that men and women, on average, have the same wage p.h., against the alternative that women's wage p.h. are different from men's wage p.h.; (d) repeat this test against the alternative that women earn less; (e) calculate a 95% confidence interval for the wage difference of males and females.
- 2. Generate a variable $exper_b$ by adding the Binomial random variable $BE \sim B(2,0.5)$ to exper; (a) estimate two linear regression models with intercept for wage p.h. with explanatory variables (i) male and exper, and (ii) male, exper_b, and exper; compare the standard errors of the estimated coefficients;

Your Homework

(b) compare the VIFs for the variables of the two models; (c) check the correlations of the involved regressors.

3. The goodness-of-fit statistic R^2 is the portion of the variance in Y that can be explained by the linear regression; 100 \mathcal{R}^2 is measured in percent; show that

> $0 \leq R^2$ $2 \leq 1$, if the model contains an intercept.

4. Show for a linear regression with intercept that $\,R^2$ > adj R^2 \cdots adj \cdots