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Goodness-of-fit R²Goodness-of-fit R²

The quality of the model yi = xi'β + εi , i = 1, …, N, with K regressors 
can be measured by R2, the goodness-of-fit (GoF) statistic

� R2 is the portion of the variance in Y that can be explained by the 
linear regression with regressors Xk, k=1,…,K
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� If the model contains an intercept (as usual):  
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� Alternatively, R2 can be calculated as

{ }ii yycorrR ˆ,22 =
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Properties of R2Properties of R

R2 is the portion of the variance in Y that can be explained by the 
linear regression; 100R2 is measured in percent

0 ≤ R2 ≤ 1, if the model contains an intercept � 0 ≤ R2 ≤ 1, if the model contains an intercept 

� R2 = 1: all residuals are zero

� R2 = 0: for all regressors, b = 0, k = 2, …, K; the model explains � R2 = 0: for all regressors, bk = 0, k = 2, …, K; the model explains 
nothing

� R2 cannot decrease if a variable is added x� R cannot decrease if a variable is added

� Comparisons of R2 for two models makes no sense if the 
explained variables are different

x
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Example: Individ. Wages, cont’dExample: Individ. Wages, cont’d

OLS estimated wage equation (Table 2.1, Verbeek)

xx

only 3.17% of the variation of individual wages p.h. is due to the 
gendergender
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Individual Wages, cont’dIndividual Wages, cont’d

Wage equation with three regressors (Table 2.2, Verbeek)

R2 increased due to adding school and exper
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Other GoF MeasuresOther GoF Measures

� Uncentered R2: For the case of no intercept; the Uncentered R2

cannot become negative

Uncentered R2 = 1 – Σi ei²/ Σi yi²

� adj R2 (adjusted R2): For comparing models; compensated for � adj R (adjusted R ): For comparing models; compensated for 
added regressor, penalty for increasing K
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� For other than OLS estimated models

{ }ii yycorr ˆ,2

it coincides with R2 for OLS estimated models

{ }ii yycorr ˆ,
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Individual WagesIndividual Wages

OLS estimated wage equation (Table 2.1, Verbeek)

xx

b1 = 5.147, se(b1) = 0.081: mean wage p.h. for females: 5.15$,  
with std.error of 0.08$

b = 1.166, se(b ) = 0.112b2 = 1.166, se(b2) = 0.112
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OLS Estimator: Distributional OLS Estimator: Distributional 
Properties
Under the assumptions (A1) to (A5): 

� The OLS estimator b = (X’X)-1 X’y is normally distributed with mean � The OLS estimator b = (X’X) X’y is normally distributed with mean 
β and covariance matrix V{b} = σ2(X‘X)-1

b ~ N(β, σ2(X’X)-1),   bk ~ N(βk, σ
2ckk), k=1,…,Kk k kk

with ckk the k-th diagonal element of (X’X)
-1

� The statistic
bb ββ −−

follows the standard normal distribution N(0,1)
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follows the standard normal distribution N(0,1)

� The statistic
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follows the t-distribution with N-K degrees of freedom (df)
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follows the t-distribution with N-K degrees of freedom (df)
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Testing a Regression Testing a Regression 
Coefficient: t-Test
For testing a restriction on the (single) regression coefficient βk:

� Null hypothesis H0: βk = q (most interesting case: q = 0)� Null hypothesis H0: βk = q (most interesting case: q = 0)

� Alternative HA: βk > q

� Test statistic: (computed from the sample with known distribution � Test statistic: (computed from the sample with known distribution 
under the null hypothesis)

k
k

qb
t

−=

� tk is a realization of the random variable tN-K, which follows the t-
distribution with N-K degrees of freedom (df = N-K)

)( k

k
bse

t =

distribution with N-K degrees of freedom (df = N-K)

� under H0 and 
� given the Gauss-Markov assumptions and normality of the errors� given the Gauss-Markov assumptions and normality of the errors

� Reject H0, if the p-value P{tN-K > tk | H0} is small (tk-value is large)
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Individual Wages, cont’dIndividual Wages, cont’d

OLS estimated wage equation (Table 2.1, Verbeek)

Test of null hypothesis H0: β2 = 0 (no gender effect on wages, equal 
wages for males and females) against 

0 2 

wages for males and females) against HA: β2 > 0 

t2 = b2/se(b2) = 1.1661/0.1122 = 10.38

Under H , T follows the t-distribution with df = 3294-2 = 3292Under H0, T follows the t-distribution with df = 3294-2 = 3292

p-value = P{T3292 > 10.38 | H0} = 3.7E-25: reject H0!
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Individual Wages, cont’dIndividual Wages, cont’d

OLS estimated wage equation: Output from GRETL

Model 1: OLS, using observations 1-3294Model 1: OLS, using observations 1-3294
Dependent variable: WAGE

coefficient std. error t-ratio p-valuecoefficient std. error t-ratio p-value

const 5,14692 0,0812248 63,3664 <0,00001 ***
MALE 1,1661 0,112242 10,3891 <0,00001 ***

Mean dependent  var 5,757585 S.D. dependent  var 3,269186
Sum  squared  resid 34076,92 S.E. of regression 3,217364
R- squared 0,031746 Adjusted R- squared 0,031452R- squared 0,031746 Adjusted R- squared 0,031452
F(1, 3292) 107,9338 P-value(F) 6,71e-25
Log-likelihood -8522,228 Akaike criterion 17048,46
Schwarz criterion 17060,66 Hannan-Quinn 17052,82Schwarz criterion 17060,66 Hannan-Quinn 17052,82

p-value for tMALE-test: < 0.00001
„gender has a significant effect on wages, males earn more“
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Normal and t-DistributionNormal and t-Distribution

Standard normal distribution: Z ~ N(0,1)

� Distribution function Φ(z) = P{Z ≤ z}� Distribution function Φ(z) = P{Z ≤ z}

t-distribution: Tdf ~ t(df)

� Distribution function F(t) = P{Tdf ≤ t}

� p-value: P{TN-K > tk | H0} = 1 – FH0(tk)

For growing df, the t-distribution approaches the standard normal 
distribution, Tdf follows asymptotically (N → ∞) the N(0,1)-distributiondistribution, Tdf follows asymptotically (N → ∞) the N(0,1)-distribution

� 0.975-percentiles tdf,0.975 of the t(df)-distribution

df 5 10 20 30 50 100 200 ∞

� 0.975-percentile of the standard normal distribution: z0.975 = 1.96

df 5 10 20 30 50 100 200 ∞

tdf,0.025 2.571 2.228 2.085 2.042 2.009 1.984 1.972 1.96

� 0.975-percentile of the standard normal distribution: z0.975 = 1.96
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OLS Estimators: Asymptotic OLS Estimators: Asymptotic 
DistributionDistribution
If the Gauss-Markov (A1) - (A4) assumptions hold but not the 

normality assumption (A5): 

t-statistic

)(
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� follows asymptotically (N → ∞) the standard normal distribution

In many situations, the unknown true properties are substituted by 

)( k

k
bse

t =

In many situations, the unknown true properties are substituted by 
approximate results (asymptotic theory)

The t-statisticThe t-statistic

� follows the t-distribution with N-K d.f. 

� follows approximately the standard normal distribution N(0,1)� follows approximately the standard normal distribution N(0,1)

The approximation error decreases with increasing sample size N
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Two-sided t-TestTwo-sided t-Test

For testing a restriction wrt a single regression coefficient βk:

� Null hypothesis H0: βk = q� Null hypothesis H0: βk = q

� Alternative HA: βk ≠ q

� Test statistic: (computed from the sample with known distribution � Test statistic: (computed from the sample with known distribution 
under the null hypothesis)

k
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follows the t-distribution with N-K d.f.
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� Reject H0, if the p-value 

P{|TN-K| > |tk| | H0} N-K k 0

is small (|tk|-value is large)
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Individual Wages, cont’dIndividual Wages, cont’d

OLS estimated wage equation (Table 2.1, Verbeek)

Test of null hypothesis H0: β2 = 0 (no gender effect on wages, equal 
wages for males and females) against 

0 2 

wages for males and females) against HA: β2 ≠ 0 

t2 = b2/se(b2) = 1.1661/0.1122 = 10.38

Under H , T follows the t-distribution with df = 3294-2 = 3292Under H0, T follows the t-distribution with df = 3294-2 = 3292

p-value = P{T3292 < -10.38 or T3292 > 10.38 | H0} = 7.4E-25: reject H0!
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Significance TestsSignificance Tests

For testing a restriction wrt a single regression coefficient βk:

� Null hypothesis H0: βk = q� Null hypothesis H0: βk = q

� Alternative HA: βk ≠ q

� Test statistic: (computed from the sample with known distribution � Test statistic: (computed from the sample with known distribution 
under the null hypothesis)

k
k

qb
t

−=

� Determine the critical value tN-K,1-α/2 for the significance level α from 

)( k

k
bse

t =

N-K,1-α/2

P{|Tk| > tN-K,1-α/2 | H0} = α
� Reject H0, if |tk| > tN-K,1-α/20 k N-K,1-α/2

� Typically, the value 0.05 is taken for α
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Significance Tests, cont’dSignificance Tests, cont’d

One-sided test :

� Null hypothesis H0: βk = q� Null hypothesis H0: βk = q

� Alternative HA: βk > q (βk < q)

� Test statistic: (computed from the sample with known distribution � Test statistic: (computed from the sample with known distribution 
under the null hypothesis)

k
k
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−=

� Determine the critical value tN-K,α for the significance level α from 

)( k

k
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t =

N-K,α

P{Tk > tN-K,α | H0} = α
� Reject H0, if tk > tN-K,α (tk < -tN-K,α)0 k N-K,α k N-K,α
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Confidence Interval for βkConfidence Interval for βk

Range of values (bkl, bku) for which the null hypothesis on βk is not 
rejected 

bkl = bk - tN-K,1-α/2 se(bk) < βk < bk + tN-K,1-α/2 se(bk) = bku

� Refers to the significance level α of the test

� For large values of df and α = 0.05 (1.96 ≈ 2)

bk – 2 se(bk) < βk < bk + 2 se(bk)k k k k k

� Confidence level: γ = 1- α; typically γ = 0.95
Interpretation:

� A range of values for the true βk that are not unlikely (contain the 
true value with probability 100γ%), given the data (?)

A range of values for the true β such that 100γ% of all intervals � A range of values for the true βk such that 100γ% of all intervals 
constructed in that way contain the true βk 
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Individual Wages, cont’dIndividual Wages, cont’d

OLS estimated wage equation (Table 2.1, Verbeek)

The confidence interval for the gender wage difference (in USD p.h.)

� confidence level γ = 0.95
1.1661 – 1.96*0.1122 < β2 < 1.1661 + 1.96*0.1122 

β β0.946 < β2 < 1.386  (or 0.94 < β2 < 1.39) 

� γ = 0.99: 0.877 < β2 < 1.455
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Testing a Linear Restriction on Testing a Linear Restriction on 
Regression Coefficients
Linear restriction r’β = q

� Null hypothesis H0: r’β = q� Null hypothesis H0: r’β = q

� Alternative HA: r’β > q

� Test statistic� Test statistic

)'(

'

brse

qbr
t

−=

se(r’b) is the square root of V{r’b} = r’V{b}r 

� Under H0 and (A1)-(A5), t follows the t-distribution with df = N-K

)'( brse

� Under H0 and (A1)-(A5), t follows the t-distribution with df = N-K

GRETL: The option Linear restrictions from Tests on the output 
window of the Model statement Ordinary Least Squares allows to window of the Model statement Ordinary Least Squares allows to 
test linear restrictions on the regression coefficients
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Testing Several Regression Testing Several Regression 
Coefficients: F-test
For testing a restriction wrt more than one, say J with 1 < J < K, 

regression coefficients:

� Null hypothesis H0: βk = 0, K-J+1 ≤ k ≤ K

� Alternative HA: for at least one k, K-J+1 ≤ k ≤ K, βk ≠ 0A k

� F-statistic: (computed from the sample, with known distribution 
under H0; R0

2: R2 for restricted model; R1
2: R2 for unrestricted model)

/)( 22 JRR −

F follows the F-distribution with J and N-K d.f.
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F follows the F-distribution with J and N-K d.f.

� under H0 and given the Gauss-Markov assumptions (A1)-(A4) 
and normality of the εi (A5)and normality of the εi (A5)

� Reject H0, if the p-value P{FJ,N-K > F | H0} is small (F-value is large)

� The F-test with J = K-1 is a standard test in GRETL� The F-test with J = K-1 is a standard test in GRETL
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Individual Wages, cont’dIndividual Wages, cont’d

A more general model is

wagei = β1 + β2 malei + β3 schooli + β4 experi + εiwagei = β1 + β2 malei + β3 schooli + β4 experi + εi

β2 measures the difference in expected wages p.h. between males 
and females, given the other regressors fixed, i.e., with the same 
schooling and experience: ceteris paribus conditionschooling and experience: ceteris paribus condition

Have school or exper an explanatory power?

Test of null hypothesis H : β = β = 0 against Test of null hypothesis H0: β3 = β4 = 0 against HA: H0 not  true 

� R0
2 = 0.0317

R 2 = 0.1326 � R1
2 = 0.1326 

24.191
)43294/()1326.01(

2/)0317.01326.0( =
−−

−=F

� p-value = P{F2,3290 > 191.24 | H0} = 2.68E-79

24.191
)43294/()1326.01(

=
−−

=F
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Individual Wages, cont’dIndividual Wages, cont’d

OLS estimated wage equation (Table 2.2, Verbeek)
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Alternatives for Testing Alternatives for Testing 
Several Regression Coefficients
Test again

� H0: βk = 0, K-J+1 ≤ k ≤ K� H0: βk = 0, K-J+1 ≤ k ≤ K

� HA: at least one of these βk ≠ 0

1. The test statistic F can alternatively be calculated as1. The test statistic F can alternatively be calculated as

x)/(

/)(

1

10

KNS

JSS
F

−
−=

� S0 (S1): sum of squared residuals for the (un)restricted model

� F follows under H0 and (A1)-(A5) the F(J,N-K)-distribution

x)/(1 KNS −

� F follows under H0 and (A1)-(A5) the F(J,N-K)-distribution

2. If σ2 is known, the test can be based on 

F = (S0-S1)/σ2F = (S0-S1)/σ
under H0 and (A1)-(A5): Chi-squared distributed with J d.f.

� For large N, s2 is very close to σ2; test with F approximates F-test� For large N, s is very close to σ ; test with F approximates F-test
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Individual Wages, cont’dIndividual Wages, cont’d

A more general model is

wagei = β1 + β2 malei + β3 schooli + β4 experi + εiwagei = β1 + β2 malei + β3 schooli + β4 experi + εi

Have school and exper an explanatory power?

� Test of null hypothesis H0: β3 = β4 = 0 against HA: H0 not true � Test of null hypothesis H0: β3 = β4 = 0 against HA: H0 not true 

� S0 = 34076.92, S1 = 30527.87

� s = 3.046143� s = 3.046143

F(1) = [(34076.92 - 30527.87)/2]/[30527.87/(3294-4)] = 191.24

F(2) = [(34076.92 - 30527.87)/2]/3.046143 = 191.24F(2) = [(34076.92 - 30527.87)/2]/3.046143 = 191.24

Does any regressor contribute to explanation? 

� Overall F-test for H0: β2 = … = β4 = 0 against HA: H0 not  true (see � Overall F-test for H0: β2 = … = β4 = 0 against HA: H0 not  true (see 
Table 2.2 or GRETL-output): J=3

F = 167.63, p-value: 4.0E-101
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The General CaseThe General Case

Test of H0: Rβ = q 

Rβ = q: J linear restrictions on coefficients (R: JxK matrix, q: J-vector) Rβ = q: J linear restrictions on coefficients (R: JxK matrix, q: J-vector) 

Example: 
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Wald test: test statistic
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ξ = (Rb - q)’[RV{b}R’]-1(Rb - q) 

� follows under H0 for large N approximately the Chi-squared 
distribution with J d.f. distribution with J d.f. 

� Test based on F = ξ /J is algebraically identical to the F-test with
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p-value, Size, and Powerp-value, Size, and Power

Type I error: the null hypothesis is rejected, while it is actually true 

� p-value: the probability to commit the type I error� p-value: the probability to commit the type I error

� In experimental situations, the probability of committing the type I 
error can be chosen before applying the test; this probability is the 
significance level α, also denoted as the size of the testsignificance level α, also denoted as the size of the test

� In model-building situations, not a decision but learning from data is 
intended; multiple testing is quite usual; the use of p-values is more intended; multiple testing is quite usual; the use of p-values is more 
appropriate than using a strict α

Type II error: the null hypothesis is not rejected, while it is actually Type II error: the null hypothesis is not rejected, while it is actually 
wrong; the decision is not in favor of the true alternative

� The probability to decide in favor of the true alternative, i.e., not � The probability to decide in favor of the true alternative, i.e., not 
making a type II error, is called the power of the test; depends of 
true parameter values
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p-value, Size, and Power, cont’dp-value, Size, and Power, cont’d

� The smaller the size of the test, the smaller is its power (for a given 
sample size)

� The more HA deviates from H0, the larger is the power of a test of a 
given size (given the sample size)

The larger the sample size, the larger is the power of a test of a � The larger the sample size, the larger is the power of a test of a 
given size

Attention! Significance vs relevance
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OLS Estimators: Asymptotic OLS Estimators: Asymptotic 
Properties Properties 
Gauss-Markov assumptions (A1)-(A4) plus the normality assumption 

(A5) are in many situations very restrictive

An alternative are properties derived from asymptotic theory

� Asymptotic results hopefully are sufficiently precise 
approximations for large (but finite) Napproximations for large (but finite) N

� Typically, Monte Carlo simulations are used to assess the quality 
of asymptotic results of asymptotic results 

Asymptotic theory: deals with the case where the sample size N
goes to infinity: N → ∞goes to infinity: N → ∞
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Chebychev’s Inequality Chebychev’s Inequality 

Chebychev’s Inequality: Bound for the probability of deviations from 
its mean 

P{|z-E{z}| > rσ} < r- -2

for all r>0; true for any distribution with moments E{z} and σ2 = 
V{z}V{z}

For OLS estimator bk: 2

  }  |-bP{|
σδβ kkc<>

for all δ>0; ckk: the k-th diagonal element of (X’X)-1 = (Σi xi xi’)
-1

2kk   }  |-bP{|
δ

σδβ kkc<>

for all δ>0; ckk: the k-th diagonal element of (X’X) = (Σi xi xi’)

� For growing N: the elements of Σi xi xi’ increase, V{bk} decreases

� Given (A6) [see next slide], for all δ>0

bk converges in probability to βk for N → ∞; plimN → ∞ bk = βk

0}|{|lim =>−∞→ δβkkN bP
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Consistency of the OLS-Consistency of the OLS-
estimatorestimator
Simple linear regression

yi = β1 + β2xi + εiyi = β1 + β2xi + εi
Observations: (yi, xi), i = 1, …, N

OLS estimator OLS estimator 
2

2 1 1

1 1 2

( ) / ( )
N N

i i ii i

N N

b x x y x x

β ε

= =

− −

   = − −
   

   = + − −

∑ ∑

∑ ∑

� and  converge in probability to 
1 ( )

N

i iN x x ε−
=

−∑

1 1 2

2 1 1
( ) / ( )

N N

i i ii i
N x x N x xβ ε− −

= =
   = + − −
   ∑ ∑

1 2( )
N

iN x x−
=

−∑� and  converge in probability to 
Cov {x, ε} and V{x}, respectively

� Due to (A2), Cov {x, ε} = 0; with V{x} > 0 follows 

1
( )i ii

N x x ε
=

−∑ 1
( )ii

N x x
=

−∑

� Due to (A2), Cov {x, ε} = 0; with V{x} > 0 follows 
plimN → ∞ b2 = β2 + Cov {x, ε}/V{x} = β2
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OLS Estimators: ConsistencyOLS Estimators: Consistency

If (A2) from the Gauss-Markov assumptions (exogenous xi, all xi and 
εi are independent) and the assumption (A6) are fulfilled:

A6 1/N (ΣN
i=1xi xi’) = 1/N (X’X) converges with growing N to 

a finite, nonsingular matrix Σxx

bk converges in probability to βk for N → ∞

Consistency of the OLS estimators b:

� For N → ∞, b converges in probability to β, i.e., the probability 
that b differs from β by a certain amount goes to zero for N → ∞

The distribution of b collapses in β� The distribution of b collapses in β

� plimN → ∞ b = β

Needs no assumptions beyond (A2) and (A6)!Needs no assumptions beyond (A2) and (A6)!
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OLS Estimators: Consistency, OLS Estimators: Consistency, 
cont’d

Consistency of OLS estimators can also be shown to hold under 
weaker assumptions: 

The OLS estimators b are consistent, 

plimN → ∞ b = β,

if the assumptions (A7) and (A6) are fulfilled

x
A7 The error terms have zero mean and are uncorrelated 

Follows from

x
A7 The error terms have zero mean and are uncorrelated 

with each of the regressors: E{xi εi} = 0

Follows from

and 

∑∑
−








+=
i iii ii x

N
xx

N
b εβ 1

'
1

1

and 

plim(b - β) = Σxx
-1E{xi εi}

 NN
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Consistency of s2Consistency of s

The estimator s2 for the error term variance σ2 is consistent, 

plimN → ∞ s
2 = σ2,plimN → ∞ s = σ ,

if the assumptions (A3), (A6), and (A7) are fulfilled
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Consistency: Some PropertiesConsistency: Some Properties

� plim g(b) = g(β)

� if plim s2 = σ2, then plim s = σ

� The conditions for consistency are weaker than those for 
unbiasedness
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OLS Estimators: Asymptotic OLS Estimators: Asymptotic 
NormalityNormality
� Distribution of OLS estimators mostly unknown 

� Approximate distribution, based on the asymptotic distributionApproximate distribution, based on the asymptotic distribution

� Many estimators in econometrics follow asymptotically the normal 
distribution

� Asymptotic distribution of the consistent estimator b: distribution 
of 

N1/2(b - β) for N → ∞N1/2(b - β) for N → ∞

� Under the Gauss-Markov assumptions (A1)-(A4) and assumption 
(A6), the OLS estimators b fulfill(A6), the OLS estimators b fulfill

“→” means “is asymptotically distributed as”

( )12,0)( −ΣΝ→− xxbN σβ
“→” means “is asymptotically distributed as”
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OLS Estimators: Approximate OLS Estimators: Approximate 
NormalityNormality
Under the Gauss-Markov assumptions (A1)-(A4) and assumption 

(A6), the OLS estimators b follow approximately the normal 
distributiondistribution

( )( )12,
−

∑ ′Ν
i iixxsβ

The approximate distribution does not make use of assumption (A5), 
i.e., the normality of the error terms!

( )( ), ∑ ′Ν
i iixxsβ

i.e., the normality of the error terms!

Tests of hypotheses on coefficients βk, 

� t-test� t-test

� F-test

can be performed by making use of the approximate normal can be performed by making use of the approximate normal 
distribution
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Assessment of Approximate Assessment of Approximate 
NormalityNormality
Quality of 

� approximate normal distribution of OLS estimatorsapproximate normal distribution of OLS estimators

� p-values of t- and F-tests

� power of tests, confidence intervals, etc.power of tests, confidence intervals, etc.

depends on sample size N and factors related to Gauss-Markov 
assumptions etc.

Monte Carlo studies: simulations that indicate consequences of 
deviations from ideal situations

Example: y = β + β x + ε ; distribution of b under classical Example: yi = β1 + β2xi + εi; distribution of b2 under classical 
assumptions?

� 1) Choose N; 2) generate x , ε , calculate y , i=1,…,N; 3) estimate b� 1) Choose N; 2) generate xi, εi, calculate yi, i=1,…,N; 3) estimate b2

� Repeat steps 1)-3) R times: the R values of b2 allow assessment of 
the distribution of b2the distribution of b2
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ContentsContents

� Goodness-of-Fit

� Hypothesis Testing� Hypothesis Testing

� Testing Linear Restrictions

� Asymptotic Properties of the OLS Estimator� Asymptotic Properties of the OLS Estimator

� Multicollinearity

� Prediction
x

� Prediction
x
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Individual Wages: Variable AgeIndividual Wages: Variable Age

Define the variableDefine the variable

agei = 6 + schooli + experi

For the modelFor the model

wagei = β1 + β2 malei + β3 agei + β4 schooli + β5 experi + εi

� the Nx5 design matrix X has rank 4 � the Nx5 design matrix X has rank 4 

� it has not full rank 5! 

� X’X cannot be inverted� X’X cannot be inverted
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MulticollinearityMulticollinearity

OLS estimators b = (X’X)-1X’y for regression coefficients β require 
that the KxK matrix 

X’X or Σi xi xi’

can be inverted

In real situations, regressors may be correlated, such asIn real situations, regressors may be correlated, such as

� age and experience (measured in years)

� experience and schooling � experience and schooling 

� inflation rate and nominal interest rate 

� common trends of economic time series, e.g., in lag structures � common trends of economic time series, e.g., in lag structures 

Multicollinearity: between the explanatory variables exists 

an exact linear relationship (exact collinearity)� an exact linear relationship (exact collinearity)

� an approximate linear relationship 
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Multicollinearity: ConsequencesMulticollinearity: Consequences

Approximate linear relationship between regressors: 

� When correlations between regressors are high: difficult to 
identify the individual impact of each of the regressors

� Inflated variances 

If x can be approximated by the other regressors, variance of b is � If xk can be approximated by the other regressors, variance of bk is 
inflated; 

� Smaller tk-statistic, reduced power of t-test� Smaller tk-statistic, reduced power of t-test

� Example: yi = β1xi1 + β2xi2 + εi
� with sample variances of X1 and X2 equal 1 and correlation r12,  

 −1 rσ
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r12 0,3 0,5 0,7 0,9

1/(1-r12
2) 1,10 1,33 1,96 5,26
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Exact CollinearityExact Collinearity

Exact linear relationship between regressors

� Example: Wage equation

� Regressor age defined as age = 6 + school + exper

� Regressors male and female in addition to intercept

Σ x x ’ is not invertible� Σi xi xi’ is not invertible

� Econometric software reports ill-defined matrix Σi xi xi’

� GRETL drops regressor� GRETL drops regressor

Remedy:

� Exclude (one of the) regressors � Exclude (one of the) regressors 

� Example: Wage equation, male and female in addition to intercept

� Drop regressor female, use only regressor male in addition to intercept� Drop regressor female, use only regressor male in addition to intercept

� Alternatively: use female and intercept

� Not good: use of male and female, no intercept
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Variance Inflation FactorVariance Inflation Factor

Variance of bk

{ } [ ] 1211 )(
2

−

∑ −= N
xxbV σ

Rk
2: R2 of the regression of xk on all other regressors

If x can be approximated by a linear combination of the other 

{ } [ ]
1

211

1
)(2 =− ∑ −=

i kikNNRk xxbV
k

σ

� If xk can be approximated by a linear combination of the other 
regressors, Rk

2 is close to 1, the variance of bk inflated

Variance inflation factor: VIF(b ) = (1 - R 2)-1 xVariance inflation factor: VIF(bk) = (1 - Rk
2)-1

Large values for some or all VIFs indicate multicollinearity

Warning! Large values of the variance of b (and reduced power of 

x

Warning! Large values of the variance of bk (and reduced power of 
the t-test) can have various causes

� Multicollinearity� Multicollinearity

� Small value of variance of Xk

� Small number N of observations� Small number N of observations
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Other Indicators for Other Indicators for 
MulticollinearityMulticollinearity
Large values for some or all variance inflation factors VIF(bk) are an

indicator for multicollinearity

Other indicators: 

� At least one of the Rk
2, k = 1, …, K, has a large value

� Large values of standard errors se(bk) (low t-statistics), but 
reasonable or good R2 and F-statistic

Effect of adding a regressor on standard errors se(b ) of � Effect of adding a regressor on standard errors se(bk) of 
estimates bk of regressors already in the model: increasing 
values of se(bk) indicate multicollinearityvalues of se(bk) indicate multicollinearity
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ContentsContents

� Goodness-of-Fit

� Hypothesis Testing� Hypothesis Testing

� Testing Linear Restrictions

� Asymptotic Properties of the OLS Estimator� Asymptotic Properties of the OLS Estimator

� Multicollinearity

� Prediction
x

� Prediction
x
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The PredictorThe Predictor

Given the relation yi = xi’β + εi
Given estimators b, predictor for the expected value of Y at x0, i.e., Given estimators b, predictor for the expected value of Y at x0, i.e., 

y0 = x0’β + ε0: ŷ0 = x0’b 
Prediction error: f0 = ŷ0 - y0 = x0’(b – β) + ε0
Some properties of ŷ0

� Under assumptions (A1) and (A2), E{b} = β and ŷ0 is an unbiased 
predictorpredictor

� Variance of ŷ0 (due to variation of b)

V{ŷ } = V{x ’b} = x ’ V{b} x = σ2 x ’(X’X)-1x = s 2V{ŷ0} = V{x0’b} = x0’ V{b} x0 = σ2 x0’(X’X)
-1x0 = s0

2

� Variance of  the prediction error f0
V{f } = V{x ’(b – β) + ε } = σ2(1 + x ’(X’X)-1x ) = s ²V{f0} = V{x0’(b – β) + ε0} = σ2(1 + x0’(X’X)

-1x0) = sf0²

given that ε0 and b are uncorrelated
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Prediction IntervalsPrediction Intervals

100γ% prediction interval 

� for the expected value of Y at x0, i.e., y0 = x0’β + ε0: ŷ0 = x0’b for the expected value of Y at x0, i.e., y0 = x0’β + ε0: ŷ0 = x0’b 
ŷ0 – z(1+γ)/2 s0  ≤ y0 ≤ ŷ0 + z(1+γ)/2 s0 

with the standard error s0 of ŷ0 from s0
2 = σ2 x0’(X’X)

-1x00 0 0 0 0

� for the prediction Y at x0
ŷ0 – z(1+γ)/2 sf0  ≤ y0 ≤ ŷ0 + z(1+γ)/2 sf0 

σ εwith sf0 from sf0
2 = σ2 (1 + x0’(X’X)

-1x0); takes the error term ε0 into 
account

Calculation of sCalculation of sf0
� OLS estimate s2 of σ2 from regression output (GRETL: “S.E. of 

regression”)regression”)

� Substitution of s2 for σ2: s0 = s[x0’(X’X)
-1x0]

0.5, sf0 = [s
2 + s0

2]0.5 

Oct 11, 2019 Hackl, Econometrics, Lecture 2 52



Example: Simple RegressionExample: Simple Regression

Given the relation yi = β1 + xiβ2 + εi
Predictor for Y at x0, i.e., y0 = β1 + x0β2 + ε0: Predictor for Y at x0, i.e., y0 = β1 + x0β2 + ε0: 

ŷ0 = b1 + x0’b2

Variance of  the prediction error 


Variance of  the prediction error 
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Individual Wages: PredictionIndividual Wages: Prediction

The fitted model is

wagei = −3.3800 + 1.3444 malei + 0.6388 schooli + 0.1248 experiwagei = −3.3800 + 1.3444 malei + 0.6388 schooli + 0.1248 experi

For a male with school = 12 and exper = 5, the predicted wage is

wage0 = 6.25405 ≈ 6.25 wage0 = 6.25405 ≈ 6.25 

Calculation of variance s0
2: 

� Based on variance s0
2 = x0’ V{b} x0 = σ2 x0’(X’X)

-1x0 is laborious� Based on variance s0 = x0’ V{b} x0 = σ x0’(X’X) x0 is laborious

� Re-estimating the model for regressors m1 = male–1, s1 = school–
12, e1 = exper –5 gives

wage = 6.25405+ 1.3444 m1 + 0.6388 s1 + 0.1248 e1

with a std.err. of the intercept of 0.10695. 

� The std.err. of the intercept, i.e., of the expected wage wage0 , is 
s0
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Individual Wages: Prediction, Individual Wages: Prediction, 
cont’d

The 95% confidence interval for wage0 is

6.25405 – 1.96* 0.10695 ≤ wage0 ≤ 6.25405 + 1.96* 0.10695 6.25405 – 1.96* 0.10695 ≤ wage0 ≤ 6.25405 + 1.96* 0.10695 

or 6.04 ≤ wage0 ≤ 6.47

The 95% prediction interval for wage0: The 95% prediction interval for wage0: 

� From model fit: s = 3.046143

� sf0 = [s
2 + s0

2]0.5 = [3.0461432 + 0.106952]0.5 = 3.048� sf0 = [s + s0 ] = [3.046143 + 0.10695 ] = 3.048

� 95% prediction interval

6.254 – 1.96* 3.048 ≤ wage0 ≤ 6.254 + 1.96* 3.0486.254 – 1.96* 3.048 ≤ wage0 ≤ 6.254 + 1.96* 3.048

or 0.16 ≤ wage0 ≤ 12.35
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Your HomeworkYour Homework

1. For Verbeek’s data set “bwages” use GRETL (a) for estimating a 
linear regression model with intercept for wage p.h. with 
explanatory variables male and educ; (b) interpret the coefficients explanatory variables male and educ; (b) interpret the coefficients 
of the model; (c) test the hypothesis that men and women, on 
average, have the same wage p.h., against the alternative that average, have the same wage p.h., against the alternative that 
women‘s wage p.h. are different from men’s wage p.h.; (d) repeat 
this test against the alternative that women earn less; (e) calculate 
a 95% confidence interval for the wage difference of males and a 95% confidence interval for the wage difference of males and 
females.

2. Generate a variable exper_b by adding the Binomial random 2. Generate a variable exper_b by adding the Binomial random 
variable BE ~ B(2,0.5) to exper; (a) estimate two linear regression 
models with intercept for wage p.h. with explanatory variables (i) models with intercept for wage p.h. with explanatory variables (i) 
male and exper, and (ii) male, exper_b, and exper; compare the 
standard errors of the estimated coefficients; 
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Your HomeworkYour Homework

(b) compare the VIFs for the variables of the two models; (c) 
check the correlations of the involved regressors.

3. The goodness-of-fit statistic R2 is the portion of the variance in Y
that can be explained by the linear regression; 100R2 is 
measured in percent; show thatmeasured in percent; show that

0 ≤ R2 ≤ 1, if the model contains an intercept. 

4. Show for a linear regression with intercept that  R2 > adj R2.4. Show for a linear regression with intercept that  R2 > adj R2.
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