Microeconomics Dali Laxton

LECTURE 5

The Costs of Production Chapter 13

ACTIVE LEARNING 1 Brainstorming costs

You run Ford Motor Company.

- List three different costs you have.
- List three different business decisions that are affected by your costs.

©supergenijalac/Shutterstock.com

Lecture Today

- What is a production function? What is marginal product? How are they related?
- What are the various costs? How are they related to each other and to output?
- How are costs different in the short run vs. the long run?
- What are "economies of scale"?

We assume that the firm's goal is to maximize profit.

Profit = Total revenue - Total cost

the amount a firm receives from the sale of its output

the market value of the inputs a firm uses in production

Explicit vs. Implicit Costs: An Example

You need \$100,000 to start your business.

The interest rate is 5%.

Case 1: borrow \$100,000 explicit cost = \$5000 interest on loan

Case 2: use \$40,000 of your savings, borrow the other \$60,000 explicit cost = \$3000 (5%) interest on the loan

implicit cost = \$2000 (5%) *foregone* interest you could have earned on your \$40,000.

In both cases, total (exp + imp) costs are \$5000.

Economic Profit vs. Accounting Profit

ACTIVE LEARNING 2

Economic profit vs. accounting profit

The equilibrium rent on office space has just increased by \$500/month.

Determine the effects on accounting profit and economic profit if:

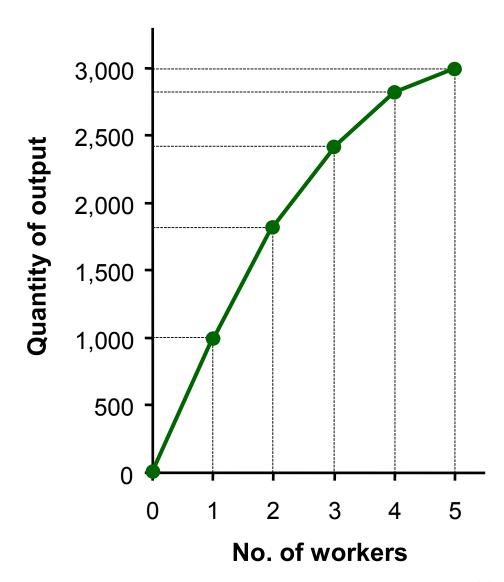
- a. you rent your office space
- b. you own your office space

ACTIVE LEARNING 2

The rent on office space increases \$500/month.

a. You rent your office space.

Explicit costs increase \$500/month.


Accounting profit & economic profit each fall \$500/month.

b. You own your office space.

Explicit costs do not change, so accounting profit does not change. Implicit costs increase \$500/month (opp. cost of using your space instead of renting it) so economic profit falls by \$500/month.

EXAMPLE 1: Farmer Slavko's Production Function

•	Q (bushels of wheat)
0	0
1	1000
2	1800
3	2400
4	2800
5	3000

Marginal Product

If Slavko hires one more worker, his output rises by the *marginal product of labor*.

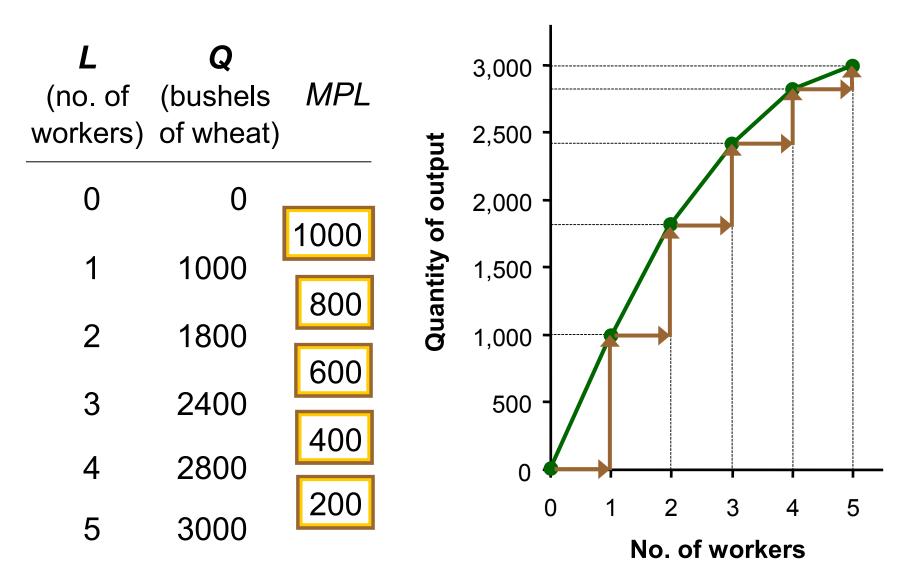
The marginal product of any input is the increase in output arising from an additional unit of that input, holding all other inputs constant.

Notation:

 Δ (delta) = "change in..."

Examples:

 ΔQ = change in output, ΔL = change in labor


Marginal product of labor (MPL) =

(no. of (bushels workers) of wheat)

$$\Delta L = 1$$
 $\Delta L = 1$
 $\Delta L =$

EXAMPLE 1: MPL = Slope of Prod Function

Why MPL Is Important

- Recall one of the Ten Principles:
 Rational people think at the margin.
- When Farmer Slavko hires an extra worker,
 - his costs rise by the wage he pays the worker
 - his output rises by MPL
- Comparing them helps Slavko decide whether he should hire the worker.

Why MPL Diminishes

- Farmer Slavko's output rises by a smaller and smaller amount for each additional worker. Why?
- As he adds workers, the average worker has less land to work with and will be less productive.
- In general, MPL diminishes as L rises whether the fixed input is land or capital (equipment, machines, etc.).
- Diminishing marginal product:
 The marginal product of an input declines as the quantity of the input increases (other things equal).

`	Q (bushels of wheat)	Cost of land	Cost of labor	Total cost	
0	0	\$1,000	\$0	\$1,000	
1	1000	\$1,000	\$2,000	\$3,000	
2	1800	\$1,000	\$4,000	\$5,000	
3	2400	\$1,000	\$6,000	\$7,000	
4	2800	\$1,000	\$8,000	\$9,000	
5	3000	\$1,000	\$10,000	\$11,000	

EXAMPLE 1: Slavko's Total Cost Curve

Q (bushels of wheat)	Total Cost	
0	\$1,000	
1000	\$3,000	OLE
1800	\$5,000	
2400	\$7,000	
2800	\$9,000	
3000	\$11,000	

$$MC = \frac{\Delta TC}{\Delta Q}$$

	Q (bushels of wheat)	Total Cost		Marginal Cost (<i>MC</i>)
	0	\$1,000		•
$\Delta Q = 1000$	1000	\$3,000	Δ TC = \$2000	\$2.00
$\Delta Q = 800$	(. ,	Δ TC = \$2000	\$2.50
$\Delta Q = 600$	1800	\$5,000	△TC = \$2000	\$3.33
∆ Q − 000	2400	\$7,000	Δ10 - ψ2000	ΨΟ.ΟΟ
$\Delta \mathbf{Q} = 400$	2000	·	Δ TC = \$2000	\$5.00
$\Delta Q = 200$	2800	\$9,000	Δ TC = \$2000	\$10.00
= - ▼	3000	\$11,000		

EXAMPLE 1: The Marginal Cost Curve

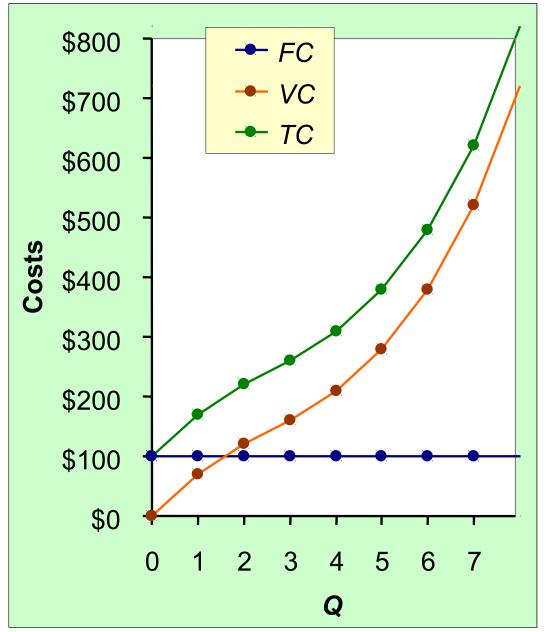
Q (bushels of wheat)	TC	MC
0	\$1,000	40.00
1000	\$3,000	\$2.00
4000		\$2.50
1800	\$5,000	\$3.33
2400	\$7,000	\$5.00
2800	\$9,000	•
3000	\$11,000	\$10.00

MC usually rises as Q rises, as in this example.

Why MC Is Important

- Farmer Slavko is rational and wants to maximize his profit. To increase profit, should he produce more or less wheat?
- To find the answer, he needs to "think at the margin."
- If the cost of an additional wheat (MC) is less than the revenue he would get from selling it, then Alejandro's profits rise if he produces more.

Fixed and Variable Costs


- Fixed costs (FC) do not vary with the quantity of output produced.
 - For Farmer Slavko, FC = \$1000 for his land
 - Other examples: cost of equipment, loan payments, rent
- Variable costs (VC) vary with the quantity produced.
 - For Farmer Slavko, VC = wages he pays workers
 - Other example: cost of materials
- Total cost (TC) = FC + VC

EXAMPLE 2

 Our second example is more general, applies to any type of firm producing any good with any types of inputs.

EXAMPLE 2: Costs

Q	FC	VC	TC
0	\$100	\$0	\$100
1	100	70	170
2	100	120	220
3	100	160	260
4	100	210	310
5	100	280	380
6	100	380	480
7	100	520	620

EXAMPLE 2: Marginal Cost

Q	TC	MC
0	\$100	
1	170	\$70
	170	50
2	220	40
3	260	
4	310	50
		70
5	380	100
6	480	
7	620	140
	020	

Recall, Marginal Cost (MC) is the change in total cost from producing one more unit:

$$MC = \frac{\Delta IC}{\Delta Q}$$

Usually, MC rise as Q rises, due to diminishing marginal product.

Sometimes (as here), *MC* falls before rising.

(In other examples, *MC* may be constant.)

EXAMPLE 2: Average Fixed Cost

Q	FC	AFC
0	\$100	n/a
1	100	\$100
2	100	50
3	100	33.33
4	100	25
5	100	20
6	100	16.67
7	100	14.29

Average fixed cost (AFC)

is fixed cost divided by the quantity of output:

$$AFC = FC/Q$$

Notice that AF alls as **Q** rises: The firm is spreading its fixed costs over a larger and larger number of units.

EXAMPLE 2: Average Variable Cost

Q	VC	AVC
0	\$0	n/a
1	70	\$70
2	120	60
3	160	53.33
4	210	52.50
5	280	56.00
6	380	63.33
7	520	74.29

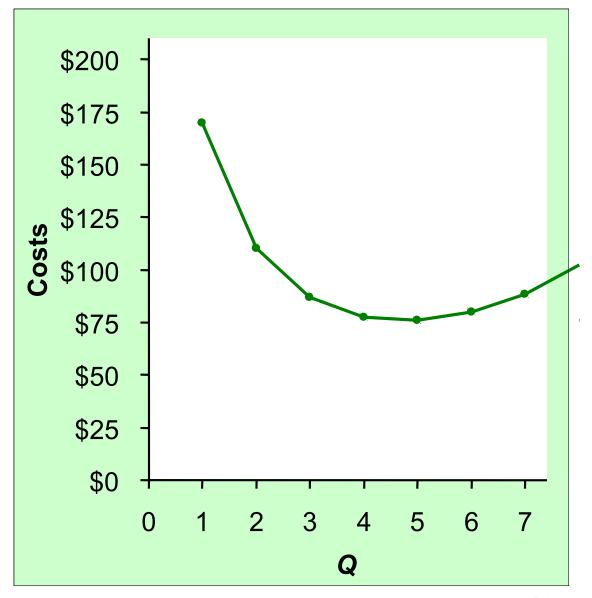
Average variable cost (AVC)

is variable cost divided by the quantity of output:

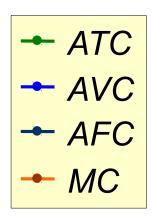
$$AVC = VC/Q$$

As **Q** rises, AV may fall initially. In most cases, AVC will eventually rise as output rises.

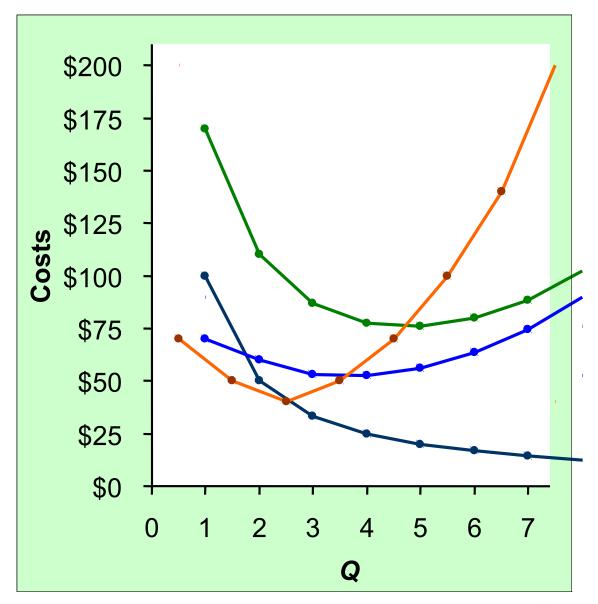
EXAMPLE 2: Average Total Cost


Q	TC	ATC	AFC	AVC
0	\$100	n/a	n/a	n/a
1	170	\$170	\$100	\$70
2	220	110	50	60
3	260	86.67	33.33	53.33
4	310	77.50	25	52.50
5	380	76	20	56.00
6	480	80	16.67	63.33
7	620	88.57	14.29	74.29

Average total cost (ATC)/cost per unit/unit cost equals total cost divided by the quantity of output:


$$ATC = TC/\mathbf{Q}$$

Also,
 $ATC = AFC + AVC$


EXAMPLE 2: Average Total Cost

Q	TC	ATC
0	\$100	n/a
1	170	\$170
2	220	110
3	260	86.67
4	310	77.50
5	380	76
6	480	80
7	620	88.57

EXAMPLE 2: The Various Cost Curves Together

ACTIVE LEARNING 3 Calculating costs

Fill in the blank spaces of this table.

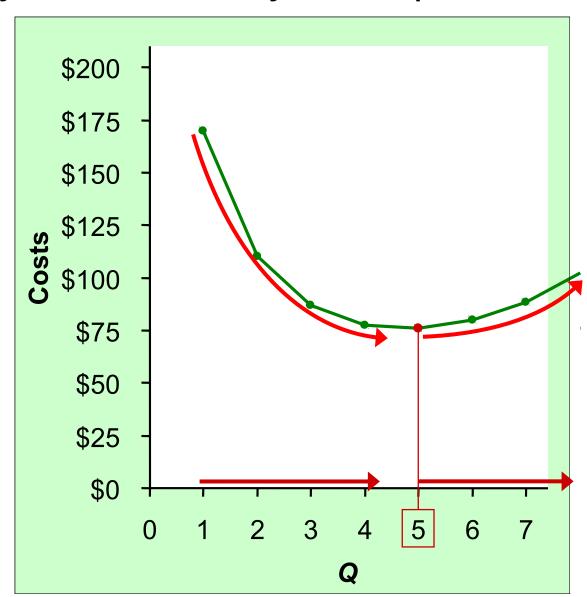
Q	VC	TC	AFC	AVC	ATC	MC
0		\$50	n/a	n/a	n/a	610
1	10			\$10	\$60.00	\$10
2	30	80				00
3			16.67	20	36.67	30
4	100	150	12.50		37.50	
5	150			30		
6	210	260	8.33	35	43.33	60

Answers

First, deduce FC = \$50 and use FC + VC = TC.

Q	VC	TC	AFC	AVC	ATC	MC
0	\$ 0	\$50	n/a	n/a	n/a	M40
1	10	60	\$50.00	\$10	\$60.00	\$10
2	30	80	25.00	15	40.00	20
3	60	110	16.67	20	36.67	30
4	100	150	12.50	25	37.50	40
5	150	200	10.00	30	40.00	50
6	210	260	8.33	35	43.33	60

EXAMPLE 2: Why ATC Is Usually U-Shaped

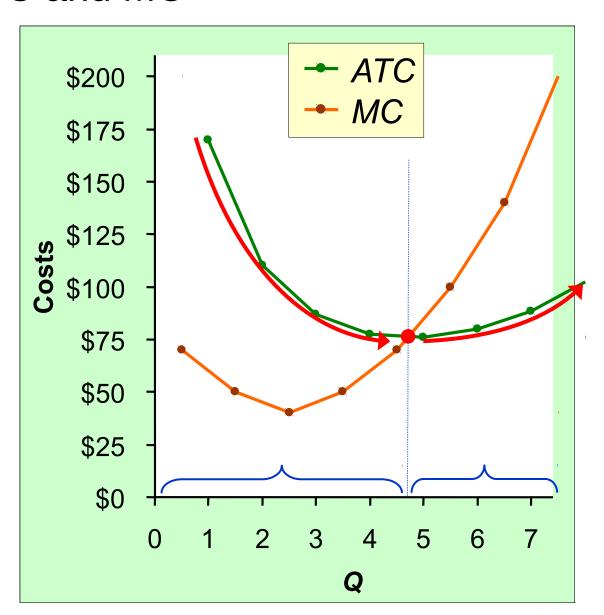

As **Q** rises:

Initially, falling *AFC* pulls *ATC* down.

Eventually, rising *AVC* pulls *ATC* up.

Efficient scale:

The quantity that minimizes ATC.

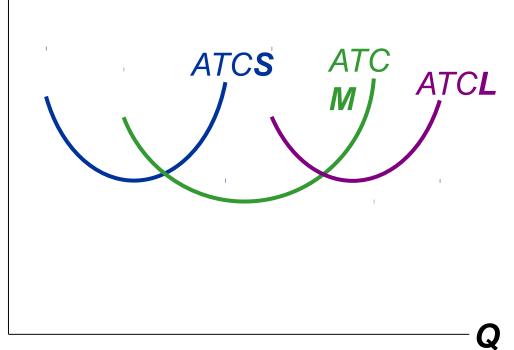


EXAMPLE 2: ATC and MC

When *MC* < *ATC*, *ATC* is falling.

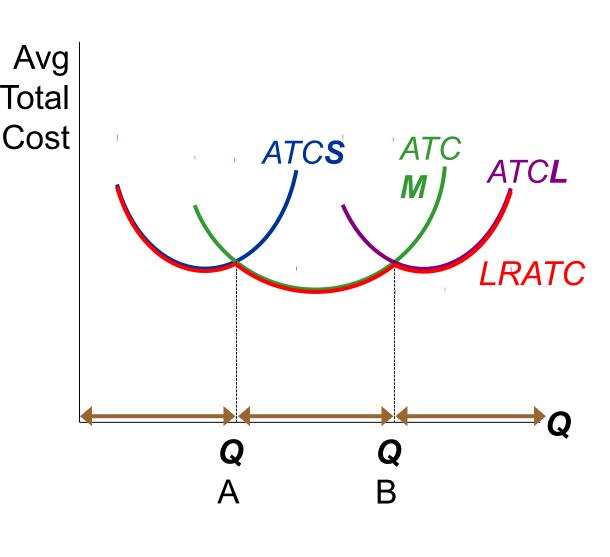
When *MC* > *ATC*, *ATC* is rising.

The MC curve crosses the ATC curve at the ATC curve's minimum.


EXAMPLE 3: LRATC with 3 factory sizes

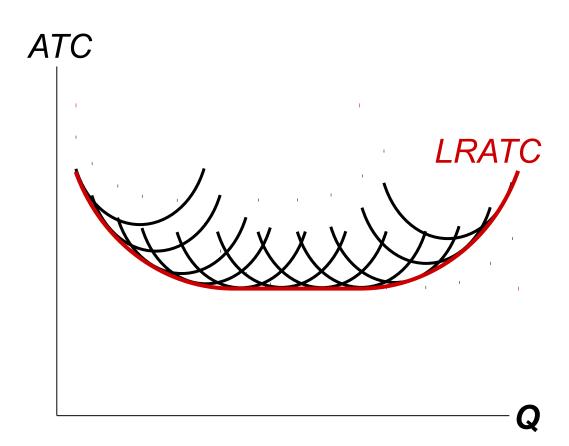
Firm can choose from three factory sizes: **S**, **M**, **L**.

Avg Total Cost


Each size has its own *SRATC* curve.

The firm can change to a different factory size in the long run, but not in the short run.

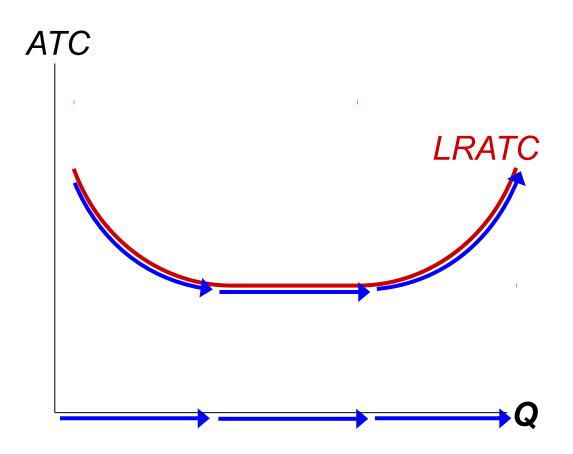
EXAMPLE 3: LRATC with 3 factory sizes


To produce less than **Q**A, firm will choose size S in the long run. To produce between **Q**A and QB, firm will choose size M in the long run. To produce more than **Q**B, firm will choose size L in the long run.

A Typical LRATC Curve

In the real world, factories come in many sizes, each with its own *SRATC* curve.

So a typical LRATC curve looks like this:



How ATC Changes as the Scale of Production Changes

Economies of scale: *ATC* falls as **Q** increases.

Constant returns to scale: ATC stays the same as **Q** increases.

Diseconomies of scale: *ATC* rises as **Q** increases.

How ATC Changes as the Scale of Production Changes

Economies of scale occur when increasing production allows greater specialization:

workers are more efficient when focusing on a narrow task. More common when \boldsymbol{Q} is low.

Diseconomies of scale are due to coordination problems in large organizations. E.g., management becomes stretched, can't control costs. More common when Q is high.

- Implicit costs do not involve a cash outlay, yet are just as important as explicit costs to firms' decisions.
- Accounting profit is revenue minus explicit costs.
 Economic profit is revenue minus total (explicit + implicit) costs.
- The production function shows the relationship between output and inputs.

- The marginal product of labor is the increase in output from a one-unit increase in labor, holding other inputs constant. The marginal products of other inputs are defined similarly.
- Marginal product usually diminishes as the input increases. Thus, as output rises, the production function becomes flatter and the total cost curve becomes steeper.
- Variable costs vary with output; fixed costs do not.

- Marginal cost is the increase in total cost from an extra unit of production. The MC curve is usually upward-sloping.
- Average variable cost is variable cost divided by output.
- Average fixed cost is fixed cost divided by output. AFC always falls as output increases.
- Average total cost (sometimes called "cost per unit") is total cost divided by the quantity of output. The ATC curve is usually U-shaped.

- The MC curve intersects the ATC curve at minimum average total cost.
 When MC < ATC, ATC falls as Q rises.
 When MC > ATC, ATC rises as Q rises.
- In the long run, all costs are variable.
- Economies of scale: ATC falls as Q rises.
 Diseconomies of scale: ATC rises as Q rises.
 Constant returns to scale: ATC remains constant as Q rises.