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Lukáš Lafférs
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Some math tools

random variable, expectation, variance, covariance

probability density function, cumulative density function

conditional expectation

law of large numbers

central limit theorem



New to R?

Here are some resources
W. N. Venables, D. M. Smith and the R Core Team. ”An Introduction to
R”
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

Wickham, Hadley, and Garrett Grolemund. R for data science: import,
tidy, transform, visualize, and model data. ” O’Reilly Media, Inc.”, 2016.
https://r4ds.had.co.nz

Wickham, Hadley. ”Elegant graphics for data analysis.” Springer.
https://ggplot2-book.org



Today

assumptions of the regression model
geometry of linear squares
confidence intervals
connection to t-test
stars and p-values - what do they mean
purpose: prediction vs explanation
correlated variables
weighted regression
heteroskedasticity
model selection: bias-variance trade-off
some practical considerations



Linear regression



Regression - What is it good for?

Prediction

(What will happen?)

easier, at least for repeated events

Explanation

(Why did something happen?)

difficult, requires deep institutional
knowledge and subject matter
expertise.

These are fundamentally very different objectives.



Regression

Prediction - easier, at least for repeated events.
Explanation - difficult, requires deep institutional knowledge and
subject matter expertise.



Data



Data



x- independent variable,
regressor, factor, feature

y - outcome, dependent
variable



Least squares



Least squares



Notation - Univariate regression
y = β0 + β1x + ε

or

yi = β0 + β1xi + εi

rewritten in matrix form

y = Xβ + ε

y =


y1

y2

...
yn

 , X =


1 x1

1 x2

...
1 xn

 , β =

(
β0

β1

)
, ε =


ε1

ε2

...
εn

 .

Basic linear regression



Notation - Multivariate regression
y = β0 + β1x1 + β2x2 + ...+ βpxp + ε

or

yi = β0 + β1xi + β1xip + ...+ βpxip + εi

rewritten in matrix form

y = Xβ + ε

y =


y1

y2

...
yn

 , X =


1 x11 x12 ... x1p

1 x21 x22 ... x2p

... ...
1 xn1 xn2 ... xnp

 , β =


β0

β1

β2

...
βp

 , ε =


ε1

ε2

...
εn

 .



Model - philosophical interlude
The purpose of the model is to be useful.
It is not to be correct.
Model should be right about the relevant parts.
It simplifies the parts that it does not aim to model.

Ingredients:
y ,x1,x2, ..., - observed random variables
ε - unobserved random variables
β0,β1, .... - unknown variables we wish to estimate
y = β0 + β1x1 + β2x2 + ...+ βpxp + ε - assumption about how the different
quantities are related to each other



Minimize sum of squares:
n

∑
i=1

(yi −Xiβ )2 = ε
T

ε = (y−Xβ )T (y−Xβ )

differentiating via β , we get:

X T X β̂ = X T y ,

if X T X is invertible, we get

β̂ = (X T X)−1X T︸ ︷︷ ︸
H

y = Hy



Back to the model

Ingredients:
y ,x1,x2, ..., - observed random variables
ε - unobserved random variables
β0,β1, .... - unknown (fixed!) variables we wish to estimate
y = β0 + β1x1 + β2x2 + ...+ βpxp + ε - assumption about how the different
quantities are related to each other
β̂ = (β̂0, β̂1, ...., β̂p)T - estimator = vector of random variables.

It is a function of our data sample, which is random.
Our best attempt to recover the true unknown β .
Different estimators possess different qualities (bias, variance,
robustness). OLS estimator is just one of them (but pretty good).



Linear model 6= simple

linear model can model non-linear relationships
linear = linear in parameters

Also a linear model
log(y) = β0 + β1x + β2x2 + ε

y = β0xβ1ε → log(y) = log(β0) + β1 log(x) + log(ε) = β
∗
0 + β

∗
1 x∗+ ε

∗



Goodness of fit measure

R2 = 1− ∑(yi − ŷi)
2

∑(yi − ȳ)2 = 1− RSS
TSS

=
ESS
TSS

=
∑(ȳ− ŷi)

2

∑(yi − ȳ)2 ,

RSS residual sum of squares
TSS total sum of squares

R2 = (cor(ŷ ,y))2 =
∑(ȳ− ŷi)

2

∑(yi − ȳi)2 .



R2 = 0.65 (for a simple linear model)

Figure: Similar R2 in completely different datasets. (Source: Faraway (2014))



Geometry: It is a simple projection.



Goodness of fit?

Prediction If you wish to predict well, you’d better explain the variation
in y .

Explanation Not necessary a problem if you have a small R2.



Projection

ŷ = X β̂ = X
(
X T X

)−1
X T y︸ ︷︷ ︸

β̂

= X
(
X T X

)−1
X T︸ ︷︷ ︸

P ≡ projection matrix

y = Py

ε̂ = y−X β̂ = (I−P)︸ ︷︷ ︸
M ≡ residual maker matrix

y = My

symmetric PT = P and MT = M

idempotent PP = P and MM = M

ŷ ⊥ ε̂



Different qualities Ordinary Least Squares estimator

geometric interpretation
easy analytic formula

β̂ = (X T X)−1X T y

among the linear, unbiased estimator it has the lowest variance
(Gauss-Markov theorem)

y = Xβ + ε

E[ε|X ] = 0
Var [ε|X ] = σ2In

=⇒ For any unbiased estimator β̃ of β we have var [β̃ |X ]≥ σ2(X T X)−1

Maximum Likelihood Estimator under normal errors (we will discuss
latter)



Stastical inference
Assume that errors are normally distributed:

ε ∼ N(0,σ2I) + y = Xβ + ε =⇒ y ∼ N(Xβ ,σ2I)

So we get that*

β̂ = (X T X)−1X T y ∼ N
(
β ,(X T X)−1

σ
2)

∗Var(Ay) = AVar(y)AT =⇒ Var(β̂ ) = (X T X)−1X T (σ
2I)((X T X)−1X T )T = (X T X)−1

σ
2



Hypothesis tests

H0 : βi = 0 can be tested:

ti =
β̂i

se(β̂i)
∼ tn−p.

where
se(β̂i) is the standard error - sq. root of the diagonal of the matrix
(X T X)−1σ̂2

σ̂2 = 1
n−p ∑i ε̂2

i

RSS = ∑i ε̂2
i is the residual sum of squares

tn−p is the Student’s t-distribution with n−p degrees of freedom



Hypothesis tests

H0 : βi=βj=0 can be tested:

F =
(RSSω −RSSΩ)/(2)

RSSΩ/(n−p)
∼ F2,n−p.

where
Ω denotes a large model with p parameters
ω denotes a small model with p−2 paramaters (a special case of Ω, the
two models are nested)



Confidence intervals

CIα = [β̂i− t(α/2)
n−p se(β̂i), β̂i + t(α/2)

n−p se(β̂i)]

Parameter is a fixed value a confidence interval is random interval.



CIs for expected/future values

ŷ0 = xT
0 β̂

CI for expected value

ŷ0± t(α/2)
n−p σ̂

√
xT

0 (X T X)−1x0

CI for future value

ŷ0± t(α/2)
n−p σ̂

√
1 + xT

0 (X T X)−1x0

why ”1+” ?
var(ŷ0 + ε0) = var(ŷ0) + var(ε0) = xT

0 (X T X)−1x0σ2 + σ2 =
(1+xT

0 (X T X)−1x0)σ2



CIs for expected/future values



: Returns to education.

log(wage) = β0 + β1education+ β2age+ ε

an increase of education by one year increases wage by β1 ·100% percent.

our model predicts, that for individuals of the same age, an increase of
education by 1 extra year is associated with an increase of wage by β1 ·100%

percent.

Be careful with causal interpretations based on observational data.



Interpretation of parameters

y = β0 + β1x1 + β2x2 + ε

log(y) = β0 + β1x1 + β2x2 + ε

y = β0 + β1 log(x1) + β2x2 + ε

log(y) = β0 + β1 log(x1) + β2x2 + ε



y = β0 + β1x1 + β2x2 + ε

[x1→ x1 + δ ] =⇒ [y → y + β1δ ]

our model predicts, that an increase of x1 by one unit is associated with an
increase in y by β1 units, if the x2 will not change.



log(y) = β0 + β1x1 + β2x2 + ε

[x1→ x1 + δ ] =⇒ [y → exp(β0 + β1(x1 + δ ) + β2x2 + ε)) =
y ·exp(β1δ ) ≈ y(1 + β1δ )]

our model predicts, that an increase in x1by one unit is associated with an
increase in y by approximately β1 ·100%, if x2 will not change.



y = β0 + β1 log(x1) + β2x2 + ε

[x1→ x1 · (1 + δ )] =⇒ [y → y + β1 log(1 + δ ) ≈ y + β1δ ]

our model predicts, that an increase in x1 by 1% is associated with an increase in
y by approximately β1/100 units, if x2 will not change.



log(y) = β0 + β1 log(x1) + β2x2 + ε

[x1→ x1 · (1 + δ )] =⇒ [y → y · exp(β1 log(1 + δ )) = y · (1 + δ )β1 ≈ y · (1 + β1δ )]

our model predicts, that an increase in x1 by 1% is associated with an increase in
y by approximately β1%, if x2 will not change.



Interaction terms

log(wage) = β0 + β1educ + β2south + β3south ·educ + ε

log(wage) = β0 + β1educ + ε

log(wage) = β0 + β2 + (β1 + β3)educ + ε



Collinearity
Why is it a problem?

Estimators have a high variance
numerically unstable

How to detect it
(1) Look at the correlation matrix of regressors and look for numbers close

to +1 or -1.
(2) Running a regression of xi on other regressors, measure of linear fit R2

i
is close to 1.

(3) Sort eigenvalues of X T X ,λ1 ≥ ·· · ≥ λp. Condition number κ =
√

λ1
λp
≥ 30

indicates problems.

How to quantify the effect of it

var(β̂j) = σ
2

(
1

1−R2
j

)
1

∑
n
i=1(xij − x̄j)2 ,

where 1
1−R2

j
is called variance inflation factor.



Collinearity

These two models

y = β0 + β1x1 + ε

y = β0 + β1x1 + β2x2 + ε

may lead to a completely different estimates of β1.

: Pearl’s Simpson Machine.
http://dagitty.net/learn/simpson/index.html



Simpson’s Simpson’s paradox



Ommitted variable bias

log(wage) = β0 + β1education+ β2age+ ε

log(wage) = β
∗
0 + β

∗
1 education+ β

∗
2 age+ β

∗
3 ability+ ε

ability = γ0 + γ1education+ ε
′

log(wage) = (β
∗
0 + β

∗
3 γ0) + (β

∗
1 + β

∗
3 γ1)︸ ︷︷ ︸

β1

education+ β
∗
2 age+ (β

∗
3 ε
′+ ε)

Does not matter as long as ability is either
β ∗3 = 0 - irrelevant
γ1 = 0 - uncorrelated with education



More on errors: Heteroskedasticity

yi = 1 + 3xi + xi · ε

The larger |xi | the larger
the error

But we typically assume
σ2

i = const



So far we have assumed:

var(ε) = σ
2I =


σ2 0 ... 0
0 σ2 ... 0
... . . .
0 0 ... σ2

 .

But what if

var(ε) = σ
2Σ?



Σ = SST .

Transform back

y = Xβ + ε

S−1y = S−1Xβ + S−1
ε

y ′ = X ′β + ε
′

Variance of the new transformed errors ε ′ is

var(ε
′) = var(S−1

ε) = S−1var(ε)S−T = σ
2I.



We apply OLS on the transformed data S−1y a S−1X .
We minimize

(y ′−X ′β )T (y ′−X ′β ) = (y−Xβ )T Σ−1(y−Xβ ),

which is solved by
β̂W = (X T Σ−1X)−1X T Σ−1y .

The variance of this estimator is

var(β̂W ) = σ
2(X T Σ−1X)−1.



var(ε) =


σ2

1 0 ... 0
0 σ2

2 ... 0
... . . .
0 0 ... σ2

n

=


1

w1
0 ... 0

0 1
w2

... 0
... . . .
0 0 ... 1

wn

 .

S =


1√
w1

0 ... 0

0 1√
w2

... 0
... . . .
0 0 ... 1√

wn

 S−1 =


√

w1 0 ... 0
0

√
w2 ... 0

... . . .
0 0 ...

√
wn

 .



Examples:
If var(εi) ∝ xi , we make use of wi = x−1

i .

If yi are averages based on ni obs, under LLN this is proportional to 1/ni .
Hence var(yi) = var(εi) = σ2/ni , so wi = ni . Example: average wage in
different countries.
In general we set wi = 1/var(yi).



The covariance matrix is generally unknown, it may be estimated in different
ways : HR standard errors :

HC0: V̂
β̂

= (X T X)−1
(
∑i XiX T

i ε̂2
i

)
(X T X)−1

HC1: V̂
β̂

=
( n

n−k

)
(X T X)−1

(
∑i XiX T

i ε̂2
i

)
(X T X)−1

HC2: V̂
β̂

= (X T X)−1
(
∑i XiX T

i
¯̄ε2

i

)
(X T X)−1

HC3: V̂
β̂

= (X T X)−1
(
∑i XiX T

i ε̃2
i

)
(X T X)−1

where (see Hansen 4.10 Residuals)
ε̂i = yi −X T

i β̂ is a vector of residuals
¯̄ε = (1−hii)

−1/2ε̂ is a vector of standardized residuals
hii is the leverage: the diagonal element of residual maker matrix M

ε̃ = yi −X T
i β̂(−i) = (1−hii)

−1ε̂ is a vector prediction error
β̂(−i) is estimated without i-th observation.



Weighting?
How do we deal with heteroskedasticity?

Calculate β̂W = (X T Σ̂−1X)−1X T Σ̂−1y for some estimate Σ̂

Calculate β̂ = (X T X)−1X T y and then use Σ̂ to adjust for standard errors

Angrist and Pischke (2008, section 3.4.1) argue for the second approach.

More efficient if Σ̂ is estimated well.
But this requires good model for
E [ε2|X ]

Estimator for E [ε2|X ] may have bad
finite sample properties.

Efficiency gains from using β̂W are
typically modest.
In case that E [yi |Xi ] is not linear, the
unweighted β̂ estimates are at least
the best linear minimum mean
squared error.



Clustered standard errors
G groups. Within these groups, errors are allowed to be correlated.
But not between the groups

Σ =



Σ1

0 ... 0
. . .

0 ... 0

 ...

0 ... 0
. . .

0 ... 0

0 ... 0
. . .

0 ... 0

 Σ2 ...

0 ... 0
. . .

0 ... 0


... . . .0 ... 0

. . .
0 ... 0


0 ... 0

. . .
0 ... 0

 ... ΣG





When should you cluster your standard errors

Assignment of a treatment is not on an individual level (but on a
different level, say school level, town level etc)
Sample is not random but first clusters are sampled and then
observations within clusters are sampled.



Diagnostics
Correct model Incorrect model



Model Selection - Occam’s razor
’Among competing hypotheses, the one with the fewest assumptions should
be selected.’
John Punch 1639: ’Entities must not be multiplied beyond necessity’
Aristoteles: ’We may assume the superiority ceteris paribus [other things
being equal] of the demonstration which derives from fewer postulates or
hypotheses.’
Ptolemaus: ’We consider it a good principle to explain the phenomena by
the simplest hypothesis possible.’
Madhva: ’To make two suppositions when one is enough is to err by way of
excessive supposition’
Isaac Newton: ’We are to admit no more causes of natural things than such
as are both true and sufficient to explain their appearances. Therefore, to
the same natural effects we must, as far as possible, assign the same causes.’



Small model vs Large model

If we wish to predict, we may prefer larger model even if the smaller
one is more parsimonious.
When explaining, we prefer smaller models.



Automatic model selection based on p-values

We add regressors with smallest p-values, until some threshold is met.
We remove regressors with the largest p-values, until some threshold is
met.
The use of any automatic model selection tool is very risky.
p-values are not valid as they are the result of multiple testing. Results
look better than reality.
removal 6= no association
model selection tools cannot replace deep subject matter expertise :
Model building



If you have too many regressors relative to the sample size (eg. p=50,
n=100).

You may find some patterns in the data just by chance!
: Model selection

Freedman, David A., and David A. Freedman. ”A note on screening
regression equations.” The American Statistician 37.2 (1983): 152-155.



IC =−([FIT ]− [COMPLEXITY])

Akkaike Information criterion (AIC)

AIC =−2L(θ̂ ) + 2p,

we prefer models with a small AIC.

An alternative to AIC is Bayes Information Criterion (BIC)

BIC =−2L(θ̂ ) + 2p log(n)

it penalizes large (more comples) models more.



Suppose you have a set of competing models with a similar fit
Do they give qualitatively similar results?
Do they predict similarly?
How difficult/expensive is data collection?
Are the model assumptions satisfied? (diagnostic graphs)



If we are in a situation, where models that fit data
similarly well lead to very different results, it may be
that we cannot answer the question of interest.

It is intelectually honest to appreciate this
uncertainty, no matter how inconvenient/impractical
it may be.



Model choice should not be data driven only (say looking at the statistical
significance).

Subject matter expertise is always appreciated.



Regression and t-test connection

yA ∼ N(µA,σ
2)

yB ∼ N(µB,σ
2)

H0 : µA = µB vs H1 : µA 6= µB

T =
(ȳA− ȳB)− (µA−µB)

Sp

√
1

nA
+ 1

nB

∼ tnA+nB−2,

where S2
p =

(nA−1)S2
A+(nB−1)S2

B
nA+nB−2 a S2

A a S2
B are sample variances.



yi = βAdiA + βBdiB + ε

yA ∼ N(βA,σ
2) and yB ∼ N(βB,σ

2).

These are identical assumptions to the t-test.

Linear regression with dummy variables is the same thing as a t-test.



Statistical significance
Statistical vs. Practical significance (a.k.a. is the effect economically
meaningful)



More on Statistical significance



Statistical significance - p-values and confidence intervals

What they are not!
Greenland, Sander, et al. ”Statistical tests, P values, confidence intervals, and
power: a guide to misinterpretations.” European journal of epidemiology
31.4 (2016): 337-350.

Statement of American Statistical Association:
Wasserstein, Ronald L., and Nicole A. Lazar. ”The ASA statement on
p-values: context, process, and purpose.” (2016): 129-133.



P-values: Common misconceptions
The P value for the null hypothesis is the probability that chance alone
produced the observed association; for example, if the P value for the
null hypothesis is 0.08, there is an 8 % probability that chance alone
produced the association.

No!
The P value is the probability that the test hypothesis is true; for exam-
ple, if a test of the null hypothesis gave P = 0.01, the null hypothesis
has only a 1 % chance of being true; if instead it gave P = 0.40, the null
hypothesis has a 40 % chance of being true.

Nope!
A significant test result (P≤ 0.05) means that the test hypothesis is false
or should be rejected.

Also no!
There are 15 more variations in Greenland et al. (2016)



Confidence intervals: Common misconceptions

The specific 95 % confidence interval presented by a study has a 95 %
chance of containing the true effect size.

No!
An effect size outside the 95 % confidence interval has been refuted (or
excluded) by the data.

Not this one!
If two confidence intervals overlap, the difference between two esti-
mates or studies is not significant.

Still no!

There are a few more in Greenland et al. (2016)



So what are they then??

These quantities are model based. They express a level of uncertainty about
a particular statement (a hypothesis) assuming that a particular model is
correct!

p-value: Assuming that the model assumptions are correct AND assuming
that a particular hypothesis is true, then in a repeated sampling setup, you
would observe more extreme values of a test-statistic in approximately
p.100% cases.
p-value is a measure od compatibility of the calculated test statistic with the
underlying model assumption and the null hypothesis.



So what are they then??
These quantities are model based. They express a level of uncertainty about
a particular statement (a hypothesis) assuming that a particular model is
correct!

95%CI: Assuming that the model assumptions are correct AND assuming
that a particular hypothesis is true, in a repeated sampling, 95% CI is an
interval estimate (that is, a random interval), that would cover the true effect
in approximately 95% cases.
CI summarises the results of a hypothesis tests for multiple effect sizes.

Beautiful vis here:
https://seeing-theory.brown.edu/frequentist-inference/index.html



Misc: Principal components analysis
We often wish to reduce the dimension of X .

Source: https://www.quora.com/What-is-an-intuitive-explanation-for-PCA



Misc: Principal components analysis

Find the linear combination of regressors that maximize the variance:

var(Xu1)→max subject to uT
1 u1 = 1

then

var(Xu2)→max subject to uT
2 u2 = 1 and uT

1 u2 = 1

· · ·

Xu1 is the first principal component
Xu2 is the second principal component



are orthogonal by construction
compress most information (in terms of variance) into fewer variables
may be interpretable
may help us to identify ”similar” points



Properties PCA examples



A few more comments...



Ask about the data. How it was collected, handled, updated?
Check for data discrepancies, summary statistics.
Do plot the data. Yes, always.
Talk to the experts.
Comment your code, make it easily reproducible.
Adhere to coding standards (http://adv-r.had.co.nz/Style.html).
Do not alter your source dataset, od any preprocessing in a separate file.
Consider interacting two most important regressors.



Thank you for your attention!
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