
BKM_DATS: Databázové systémy

8. Relational DB Design

Vlastislav Dohnal

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 2

Relational Database Design

Features of Good Relational Design

Atomic Domains and First Normal Form

Decomposition Using Functional Dependencies

Functional Dependency Theory

Algorithms for Functional Dependencies

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 3

Combine Schemas?

Suppose we combine instructor(ID, name, salary, dept_name) and

department(dept_name, building, budget) into inst_dept

No connection to a relationship set inst_dept !

Result is possible repetition of information

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 4

What About Smaller Schemas?

Suppose we had started with

inst_dept (ID, name, salary, dept_name, building, budget)

How would we know to split up (decompose) it into instructor and

department?

Write a rule “if there were a schema (dept_name, building, budget), then

dept_name would be a candidate key”

Denote as a functional dependency:

dept_name → building, budget

In inst_dept, because dept_name is not a candidate key, the building and

budget of a department may have to be repeated.

This indicates the need to decompose inst_dept

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 5

What About Smaller Schemas? (cont.)

inst_dept (ID, name, salary, dept_name, building, budget)

Not all decompositions are good.

Suppose we decompose employee(ID, name, street, city, salary) into

instructor(ID, name, salary) and department(dept_name, building, budget)

Do we lose information?

We cannot reconstruct the original employee relation.

This is a lossy decomposition.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 6

A Lossy Decomposition

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 7

Example of Lossless Decomposition

Lossless decomposition

Decomposition of

R = (A, B, C) into R1 = (A, B) R2 = (B, C)

r =? A,B (r) B,C (r)

B

1

2

B,C(r)

C

A

B

A B

1

2

C

A

B

A B

1

2

r

C

A

B

A

B

1

2

A,B(r)

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 8

Goal: Devise a Theory for the Following

Decide whether a particular relation R is in a “good” form.

In the case that a relation R is not in “good” form, decompose it into a

set of relations {R1, R2, ..., Rn} such that

each relation is in good form

the decomposition is a lossless decomposition

Our theory is based on:

functional dependencies

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 9

Functional Dependencies

Constraints on the set of legal relations.

Require that the value for a particular set of attributes determines the

value for another set of attributes uniquely.

E.g., employee_id determines employee name and address.

A functional dependency is a generalization of the notion of a key.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 10

Functional Dependencies (Cont.)
Let R be a relation schema R and R are non-empty

The functional dependency

 →
holds on R if and only if for any legal relation r(R), whenever any
two tuples t1 and t2 of r agree on the attributes , they also agree
on the attributes . That is,

t1[] = t2 [] t1[] = t2 []

Read → as “ depends on ”

Example:

Consider r(A,B) with the following instance of r.

On this instance, A → B does NOT hold, but B → A does hold.

1 4

1 5

3 7

A B

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 11

Use of Functional Dependencies

We use functional dependencies to:

test relations to see if they are legal under a given set of functional

dependencies.

If a relation r is legal under a set F of functional dependencies,

we say that r satisfies F.

specify constraints on the set of legal relations

We say that F holds on R if all legal relations on R satisfy the

set of functional dependencies F.

Note

A specific instance of a relation schema may satisfy a functional

dependency even if the functional dependency does not hold on

all legal instances.

For example, a specific instance of instructor(ID, name, salary)

may, by chance, satisfy

name → ID.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 12

Use of Functional Dependencies (Cont.)

K is a superkey for a relation schema R if and only if K → R

K is a candidate key for R if and only if

K → R, and

for no K, → R

Meaning: there is only one value for each value of K.

Functional dependencies allow us to express constraints that cannot

be expressed using superkeys.

Consider the schema:

inst_dept (ID, name, salary, dept_name, building, budget)

We expect these functional dependencies to hold:

dept_name → building

ID → building

ID → dept_name

but would not expect the following to hold:

dept_name → salary

There is only one building

for each department.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 13

Functional Dependencies (Cont.)

A functional dependency is trivial if it is satisfied by all instances of a

relation

Example:

ID, name → ID

name → name

In general, → is trivial if

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 14

Closure of a Set of Functional Dependencies

Given a set F of functional dependencies, there are certain other

functional dependencies that are logically implied by F.

Example

If A → B and B → C, then we can infer that A → C

The set of all functional dependencies logically implied by F is the

closure of F.

We denote the closure of F by F+.

F+ is a superset of F.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 15

Closure of a Set of Functional Dependencies

We can find F+, the closure of F, by repeatedly applying

Armstrong’s Axioms:

if , then → (reflexivity)

if → , then → (augmentation)

if → , and → , then → (transitivity)

These rules are

sound (generate only functional dependencies that actually hold),

and

complete (generate all functional dependencies that hold).

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 16

Example

R = (A, B, C, G, H, I)

F = { A → B

A → C

CG → H

CG → I

B → H}

some members of F+

A → H

by transitivity from A → B and B → H

AG → I

by augmenting A → C with G, to get AG → CG

and then transitivity with CG → I

CG → HI

by augmenting CG → I to infer CG → CGI,

and augmenting of CG → H to infer CGI → HI,

and then transitivity

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 17

Closure of Functional Dependencies (Cont.)

Additional rules:

If → holds and → holds, then → holds

(union)

If → holds, then → holds and → holds

(decomposition)

If → holds and → holds, then → holds

(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 18

Closure of Attribute Sets

Given a set of attributes , define the closure of under F as a set of

attributes that are functionally determined by under F

Denoted by +

Algorithm to compute +, the closure of under F

result := ;

while (changes to result) do

for each → in F do

begin

if result then result := result

end

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 19

Example of Attribute Set Closure

R = (A, B, C, G, H, I)

F = {A → B

A → C

CG → H

CG → I

B → H}

(AG)+

1. result = AG

2. result = ABCG (A → C and A → B)

3. result = ABCGH (CG → H and CG AGBC)

4. result = ABCGHI (CG → I and CG AGBCH)

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 20

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

Testing for superkey:

To test if is a superkey, we compute +, and check if + contains

all attributes of R.

Testing functional dependencies

To check if a functional dependency → holds (or, in other

words, is in F+), just check if +.

That is, we compute + by using attribute closure, and then

check if it contains .

It is a simple and cheap test, and very useful.

Computing closure of F (F+)

For each R, we find the closure +, and for each S +, we

output a functional dependency → S.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 21

Example of Test for Candidate Key

R = (A, B, C, G, H, I)

F = {A → B

A → C

CG → H

CG → I

B → H}

Is AG a candidate key?

1. Is AG a super key?

1. Does AG → R? Is (AG)+ R ?

(AG)+ = ABCGHI

2. Is any subset of AG a superkey?

1. Does A → R? Is (A)+ R ?

2. Does G → R? Is (G)+ R ?

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 22

Design Goals
Goal for a relational database design is:

BCNF, and

Lossless, and

Dependency preservation.

If we cannot achieve this, we accept one of

Lack of dependency preservation

Redundancy due to use of 3NF

Interestingly, SQL does not provide a direct way of specifying
functional dependencies other than super-keys.

Can specify functional dependences using assertions, but they are
expensive to test, and currently not supported by any of the widely
used databases!

Even if we had a dependency preserving decomposition, using SQL
we would not be able to efficiently test a functional dependency whose
left hand side is not a key.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 23

Lossless Decomposition

For the case of R = (R1, R2), we require that for all possible relations r

on schema R

r = R1 (r) R2 (r)

A decomposition of R into R1 and R2 is lossless if at least one of the

following dependencies is in F+:

R1 R2 → R1

R1 R2 → R2

The above functional dependencies are a sufficient condition for

lossless decomposition.

The dependencies are a necessary condition only if all constraints are

functional dependencies.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 24

Dependency Preservation

Let Fi be the set of dependencies F + that include only attributes in Ri.

A decomposition is dependency preserving, if

(F1 F2 … Fn)
+ = F +

If it is not, then checking updates for violation of functional

dependencies may require computing joins, which is

expensive.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 25

Example
R = (A, B, C)

F = { A → B

B → C }

Key = {A}

R is not in BCNF

Decomposition R1 = (A, B), R2 = (B, C)

R1 and R2 in BCNF

Lossless decomposition

Dependency preserving

Alternative decomposition R1 = (A, B), R2 = (A, C)

Lossless decomposition?

R1 R2 = {A} and A → AB

Dependency preserving?

We cannot check B → C without computing R1 R2

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 26

First Normal Form

Domain is atomic if its elements are indivisible units

Examples of non-atomic domains:

Set of names, composite attributes

Identification numbers like CS101 that can be broken up into

parts (department code and course id)

A relational schema R is in first normal form if the domains of all

attributes of R are atomic

Non-atomic values complicate storage and encourage redundant

(repeated) storage of data

Example

Set of accounts stored with each customer, and set of owners

stored with each account

We assume all relations are in first normal form

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 27

First Normal Form (Cont.)

Atomicity is a property of how the elements of the domain are used.

Example

Strings would normally be considered indivisible

Suppose that students are given roll numbers which are strings of

the form CS0012 or EE1127

If the first two characters are extracted to find the department,

the domain of roll numbers is not atomic.

Doing so is a bad idea:

leads to encoding of information in application program

rather than in the database.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 28

Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional

dependencies if for all functional dependencies in F+ of the form

 →

where R and R, at least one of the following holds:

 → is trivial (i.e.,)

 is a superkey for R (i.e., → R)

Example schema not in BCNF:

instr_dept (ID, name, salary, dept_name, building, budget)

because dept_name → building, budget holds on instr_dept,

but dept_name is not a superkey.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 29

Decomposing a Schema into BCNF
Suppose we have a schema R

A non-trivial dependency → causes a violation of BCNF, so
we decompose R into:

R1 = ()

R2 = (R - (-))

In our example, dept_name → building, budget

 = dept_name

 = building, budget

and inst_dept is replaced by

R1 = () = (dept_name, building, budget)

R2 = (R - (-)) = (ID, name, salary, dept_name)

instr_dept (ID, name, salary, dept_name, building, budget)

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 30

BCNF and Dependency Preservation

Constraints, including functional dependencies, are costly to check in

practice unless they pertain to only one relation

A decomposition is dependency preserving

If it is sufficient to test only dependencies on each individual

relation of the decomposition in order to ensure that all functional

dependencies hold.

Because it is not always possible to achieve both BCNF and

dependency preservation, we consider a weaker normal form, known

as third normal form.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 31

Third Normal Form

A relation schema R is in third normal form (3NF) if for all:

 → in F+

where R and R, at least one of the following holds:

 → is trivial (i.e.,)

 is a superkey for R

Each attribute A in – is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

If a relation is in BCNF, it is in 3NF

Since in BCNF one of the first two conditions above must hold.

Third condition is the minimal relaxation of BCNF to ensure

dependency preservation.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 32

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is

dependency preserving.

Relation dept_study_advisor (s_ID, a_ID, dept_name)

F = { s_ID, dept_name → a_ID,

a_ID → dept_name }

Two candidate keys = s_ID, dept_name and

s_ID, a_ID

dept_study_advisor is not in BCNF

Any decomposition of dept_study_advisor will fail to preserve

s_ID, dept_name → a_ID

This implies that testing for s_ID, dept_name → a_ID

requires a join.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 33

3NF Example

Relation dept_study_advisor:

dept_study_advisor (s_ID, a_ID, dept_name)

F = {s_ID, dept_name → a_ID,

a_ID → dept_name}

Two candidate keys:

s_ID, dept_name,

a_ID, s_ID

dept_study_advisor is in 3NF

s_ID, dept_name → a_ID

s_ID, dept_name is a superkey

a_ID → dept_name

a_ID is not a superkey

dept_name is contained in a candidate key

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 34

Redundancy in 3NF
There is some redundancy in this schema

Example of problems due to redundancy in 3NF

dept_study_advisor (s_ID, a_ID, dept_name)
F = {s_ID, dept_name → a_ID,

a_ID → dept_name}

repetition of information (e.g., the relationship Jane, FI)

e.g., (a_ID, dept_name)

need to use null values (e.g., to represent the relationship
Karol, ESF where there is no corresponding value for s_ID).

e.g., a relation (a_ID, dept_name) must exist if there is no other
separate relation mapping instructors to departments

s_ID

Adam

Bob

Joe

null

a_ID

Jane

Jane

Jane

Karol

dept_name

FI

FI

FI

ESF

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 35

Second Normal Form

A functional dependency → is called a partial dependency

if there is a subset of , i.e., , such that → .

We say that is partially dependent on .

A relation R is in second normal form (2NF) if it is in 1NF and

each attribute A in R meets one of the following:

A appears in a candidate key;

A is not partially dependent on any candidate key.

i.e., A is dependent on a complete candidate key, but it may be

a transitive dependence.

Every 3NF is in 2NF.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 36

Testing for BCNF

To check if a non-trivial dependency → causes a violation of BCNF

1. compute + (the attribute closure of), and

2. verify that it includes all attributes of R, that is, it is a superkey of R.

Simplified test: To check if a relation schema R is in BCNF, it suffices to

check only the dependencies in the given set F for violation of BCNF, rather

than checking all dependencies in F+.

If none of the dependencies in F causes a violation of BCNF, then none of

the dependencies in F+ will cause a violation of BCNF either.

However, simplified test using only F is incorrect when testing a relation

in a decomposition of R

Consider R = (A, B, C, D, E), with F = { A → B, BC → D}

Decompose R into R1 = (A,B) and R2 = (A,C,D,E)

Neither of the dependencies in F contain only attributes from

(A,C,D,E) so we might be misled into thinking R2 satisfies BCNF.

In fact, dependency AC → D in F+ shows R2 is not in BCNF.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 37

Testing Decomposition for BCNF

To check if a relation Ri in a decomposition of R is in BCNF,

Either test Ri for BCNF with respect to the restriction of F+ to Ri

(that is, all dependences in F+ that contain only attributes from Ri)

or use the original set of dependencies F that hold on R, but with

the following test:

for every set of attributes Ri, check that + (the

attribute closure of) either includes no attribute of Ri - ,

or includes all attributes of Ri.

If the condition is violated by some → in F,

the dependency

 → (+ -) Ri

can be shown to hold on Ri, and Ri violates BCNF.

We use above dependency to decompose Ri

So it is a trivial FD.

So is a superkey.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 38

BCNF Decomposition Algorithm
result := {R }; -- a set of relational schemata

done := false;

compute F +;

while (not done) do

if (there is a schema Ri in result that is not in BCNF)

then begin

let → be a nontrivial functional dependency that

holds on Ri such that → Ri is not in F +,

and = ;

result := (result – Ri) (Ri –) (,);

end

else done := true;

Note: each Ri is in BCNF, and decomposition is lossless.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 39

Example of BCNF Decomposition
class (course_id, title, dept_name, credits, sec_id, semester, year,

building, room_number, capacity, time_slot_id)

Functional dependencies:

course_id → title, dept_name, credits

building, room_number → capacity

course_id, sec_id, semester, year → building, room_number,
time_slot_id

A candidate key {course_id, sec_id, semester, year}.

BCNF Decomposition:

course_id → title, dept_name, credits holds

but course_id is not a superkey.

We replace class by:

course(course_id, title, dept_name, credits)

class-1 (course_id, sec_id, semester, year, building,
room_number, capacity, time_slot_id)

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 40

BCNF Decomposition (Cont.)
course(course_id, title, dept_name, credits)

class-1 (course_id, sec_id, semester, year, building,
room_number, capacity, time_slot_id)

course is in BCNF

How do we know this?

building, room_number → capacity holds on class-1

but {building, room_number} is not a superkey for class-1.

We replace class-1 by:

classroom (building, room_number, capacity)

section (course_id, sec_id, semester, year, building,

room_number, time_slot_id)

classroom and section are in BCNF.

course_id → title, dept_name, credits
building, room_number → capacity
course_id, sec_id, semester, year → building, room_number, time_slot_id

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 41

Testing for 3NF

Optimization

Need to check only dependences in F.

Need not check all dependences in F+.

Use attribute closure to check for each dependency → , if is a

superkey.

If is not a superkey, we have to verify whether each attribute in -

is contained in a candidate key of R

This test is rather more expensive, since it involves finding

candidate keys.

Testing for 3NF has been shown to be NP-hard.

Interestingly, decomposition into third normal form (described

shortly) can be done in polynomial time.

