BKM_DATS: Databázové systémy 8. Relational DB Design

Vlastislav Dohnal

Relational Database Design

- Features of Good Relational Design \Box
- Atomic Domains and First Normal Form П
- Decomposition Using Functional Dependencies \Box
- Functional Dependency Theory \Box
- Algorithms for Functional Dependencies \Box

Combine Schemas?

- Suppose we combine *instructor(ID, name, salary, dept_name)* and \Box *department(dept_name, building, budget)* into *inst_dept*
	- No connection to a relationship set *inst_dept* ! \Box
- Result is possible repetition of information \Box

What About Smaller Schemas?

 \Box Suppose we had started with

inst_dept (ID, name, salary, dept_name, building, budget)

- How would we know to split up (**decompose**) it into *instructor* and П. *department*?
- \Box Write a rule "if there were a schema (*dept_name, building, budget*), then *dept_name* would be a candidate key"
	- Denote as a **functional dependency**: П

dept_name → *building, budget*

- \Box In *inst_dept*, because *dept_name* is not a candidate key, the building and budget of a department may have to be repeated.
	- This indicates the need to decompose *inst_dept*П

What About Smaller Schemas? (cont.)

- \Box *inst_dept (ID, name, salary, dept_name, building, budget)*
- Not all decompositions are good. \Box
	- Suppose we decompose *employee(ID, name, street, city, salary)* into Π.
		- *instructor(ID, name, salary)* and *department(dept_name, building, budget)*

- Do we lose information? П
	- We cannot reconstruct the original *employee* relation.
	- This is a **lossy decomposition**. \Box

A Lossy Decomposition

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 6

Example of Lossless Decomposition

Lossless decomposition \Box

Decomposition of \Box

$$
r = \prod_{A,B} (r) \bowtie \prod_{B,C} (r)
$$

A	B	C
α	1	A
β	2	B

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 7

Goal: Devise a Theory for the Following

- Decide whether a particular relation *R* is in a "good" form. \Box
- In the case that a relation *R* is not in "good" form, decompose it into a \Box set of relations $\{R_1, R_2, ..., R_n\}$ such that
	- each relation is in good form \Box
	- the decomposition is a lossless decomposition \Box
- Our theory is based on: \Box
	- functional dependencies \Box

Functional Dependencies

- Constraints on the set of legal relations. \Box
- Require that the value for a particular set of attributes determines the \Box value for another set of attributes uniquely.
	- □ E.g., employee_id determines employee name and address.
- A functional dependency is a generalization of the notion of a *key.*П

Functional Dependencies (Cont.)

- Let *R* be a relation schema $\alpha \subseteq R$ and $\beta \subseteq R$ are non-empty \Box
- \Box The **functional dependency**

$$
\alpha \to \beta
$$

holds on *R* if and only if for any legal relation *r*(R), whenever any two tuples t_1 and t_2 of *r* agree on the attributes α , they also agree on the attributes β . That is,

$$
t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\beta] = t_2[\beta]
$$

Read $\alpha \rightarrow \beta$ as *"* β *depends on* α " \Box

Example: \Box

> Consider *r*(*A,B*) with the following instance of *r.* \Box

$$
\begin{array}{c|cc}\n & A & B \\
\hline\n1 & 4 \\
1 & 5 \\
3 & 7\n\end{array}
$$

On this instance, $A \rightarrow B$ does **NOT** hold, but $B \rightarrow A$ does hold. O.

Use of Functional Dependencies

- We use functional dependencies to: \Box
	- test relations to see if they are legal under a given set of functional П dependencies.
		- If a relation *r* is legal under a set *F* of functional dependencies, we say that *r* **satisfies** *F.*
		- specify constraints on the set of legal relations
			- We say that *F* **holds on** *R* if all legal relations on *R* satisfy the set of functional dependencies *F.*
- **Note** П
	- A specific instance of a relation schema may satisfy a functional \Box dependency even if the functional dependency does not hold on all legal instances.
	- For example, a specific instance of *instructor(ID, name, salary)* \Box may, by chance, satisfy

 $name \rightarrow ID$.

Use of Functional Dependencies (Cont.)

- *K* is a superkey for a relation schema *R* if and only if $K \rightarrow R$ \Box
- *K* is a candidate key for *R* if and only if \Box
	- *, and*
	- for no $\alpha \subset K$, $\alpha \to R$ \Box
- *Meaning: there is only one value for each value of K.* \Box
- Functional dependencies allow us to express constraints that cannot \Box be expressed using superkeys.
	- Consider the schema: П *inst_dept* (*ID, name, salary, dept_name, building, budget*)
	- We expect these functional dependencies to hold: \Box

dept_name → building ID → *building ID* → *dept_name There is only one building for each department.*

but would not expect the following to hold:

dept_name → *salary*

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 12

Functional Dependencies (Cont.)

- A functional dependency is **trivial** if it is satisfied by all instances of a \Box relation
	- Example*:* \Box
		- *ID, name* \rightarrow *ID* \Box
		- *name* → *name* \Box
- In general, $\alpha \rightarrow \beta$ is trivial if $\beta \subset \alpha$ \Box

Closure of a Set of Functional Dependencies

- Given a set *F* of functional dependencies, there are certain other \Box functional dependencies that are logically implied by *F*.
	- Example \Box

If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$

- The set of **all** functional dependencies logically implied by *F* is the \Box **closure** of *F*.
	- We denote the *closure* of F by F^* .
	- *F+* is a superset of *F.*

Closure of a Set of Functional Dependencies

We can find F*+,* the closure of F, by repeatedly applying \Box **Armstrong's Axioms:**

- П These rules are
	- **sound** (generate only functional dependencies that actually hold), O. and
	- **complete** (generate all functional dependencies that hold). \Box

Example

$$
R = (A, B, C, G, H, I)
$$

\n
$$
F = \{ A \rightarrow B
$$

\n
$$
A \rightarrow C
$$

\n
$$
CG \rightarrow H
$$

\n
$$
CG \rightarrow I
$$

\n
$$
B \rightarrow H
$$

- some members of *F*⁺ П
	- $A \rightarrow H$
		- \Box by transitivity from *A* → *B* and *B* → *H*
	- \Box *AG → I*
		- by augmenting *A* → *C* with G, to get *AG* → *CG* and then transitivity with $CG \rightarrow I$
	- *CG* → *HI*
		- by augmenting *CG* → *I* to infer *CG* → *CGI,* and augmenting of $CG \rightarrow H$ to infer $CG \rightarrow H$, and then transitivity

Closure of Functional Dependencies (Cont.)

- Additional rules: \Box
	- If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds \Box **(union)**
	- If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds **(decomposition)**
	- \Box If α \rightarrow β holds and γ β \rightarrow δ holds, then α γ \rightarrow δ holds **(pseudotransitivity)**

The above rules can be inferred from Armstrong's axioms.

Closure of Attribute Sets

- Given a set of attributes α , define the *closure* of α under F as a set of \Box attributes that are functionally determined by α under F
	- Denoted by α^+ \Box
- Algorithm to compute α^* , the closure of α under F \Box

```
result := \alpha;
while (changes to result) do
       for each \beta \rightarrow \gamma in F do
          begin
              if \beta \subset result then result := result \cup \gammaend
```
Example of Attribute Set Closure

$$
R = (A, B, C, G, H, I)
$$

\n
$$
\Box F = \{A \rightarrow B
$$

\n
$$
A \rightarrow C
$$

\n
$$
CG \rightarrow H
$$

\n
$$
CG \rightarrow I
$$

\n
$$
B \rightarrow H
$$

- (*AG)*⁺ \Box
	- 1. *result = AG*
	- 2. *result* = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
	- 3. *result* = ABCGH $(CG \rightarrow H$ and $CG \subseteq AGBC)$
	- 4. *result* = ABCGHI $(CG \rightarrow I$ and $CG \subseteq AGBCH)$

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey: П
	- To test if α is a superkey, we compute α^{+} and check if α^{+} contains \Box all attributes of *R*.
- Testing functional dependencies \Box
	- To check if a functional dependency $\alpha \rightarrow \beta$ holds (or, in other \Box words, is in $F^{\scriptscriptstyle +}$), just check if $\beta \subseteq \alpha^{\scriptscriptstyle +}.$
		- \Box That is, we compute α^* by using attribute closure, and then check if it contains β .

 \Box It is a simple and cheap test, and very useful.

Computing closure of F (F⁺) \Box

For each $\gamma \subseteq R$, we find the closure γ^* , and for each $S \subseteq \gamma^*$, we \Box output a functional dependency $\gamma \rightarrow S$.

Example of Test for Candidate Key

$$
R = (A, B, C, G, H, I)
$$

\n
$$
\Box F = \{A \rightarrow B
$$

\n
$$
A \rightarrow C
$$

\n
$$
CG \rightarrow H
$$

\n
$$
CG \rightarrow I
$$

\n
$$
B \rightarrow H
$$

- Is *AG* a candidate key? \Box
	- 1. Is AG a super key?
		- 1. Does $AG \rightarrow R? \Leftrightarrow \text{Is } (AG)^{+} \supseteq R$?

(*AG)*⁺= *ABCGHI*

- 2. Is any subset of AG a superkey?
	- 1. Does $A \rightarrow R? \Leftrightarrow$ Is $(A)^{+} \supseteq R$?
	- 2. Does $G \rightarrow R? \Leftrightarrow \text{Is } (G)^{+} \supseteq R?$

Design Goals

Goal for a relational database design is: \Box

- BCNF, and \Box
- Lossless, and \Box
- Dependency preservation.
- \Box If we cannot achieve this, we accept one of
	- Lack of dependency preservation О.
	- \Box Redundancy due to use of 3NF
- Interestingly, SQL does not provide a direct way of specifying \Box functional dependencies other than super-keys.
	- Can specify functional dependences using assertions, but they are \Box expensive to test, and currently not supported by any of the widely used databases!
- \Box Even if we had a dependency preserving decomposition, using SQL we would not be able to efficiently test a functional dependency whose left hand side is not a key.

Lossless Decomposition

For the case of $R = (R_1, R_2)$, we require that for all possible relations *r* \Box on schema *R*

 $r = \prod_{R1} (r) \bowtie \prod_{R2} (r)$

A decomposition of R into R_1 and R_2 is lossless if at least one of the \Box following dependencies is in F^{\dagger} :

 $R_1 \cap R_2 \rightarrow R_1$

 $R_1 \cap R_2 \rightarrow R_2$

- \Box The above functional dependencies are a sufficient condition for lossless decomposition.
- The dependencies are a necessary condition only if all constraints are \Box functional dependencies.

Dependency Preservation

Let F_i be the set of dependencies F^+ that include only attributes in R_i . \Box

> A decomposition is **dependency preserving**, if \Box

> > $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$

□ If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive.

Example

- *R =* (*A, B, C*) \Box $F = \{ A \rightarrow B \}$ $B \rightarrow C$ } $Key = \{A\}$
- *R* is not in BCNF \Box
- \Box Decomposition $R_1 = (A, B), R_2 = (B, C)$
	- R_1 and R_2 in BCNF \Box

Lossless decomposition П

- Dependency preserving \Box
- Alternative decomposition $R_1 = (A, B)$, $R_2 = (A, C)$ \Box

Lossless decomposition? \Box

 $R_1 \cap R_2 = \{A\}$ and $A \rightarrow AB$

Dependency preserving? П

We cannot check $B \to C$ without computing $R_1 \bowtie R_2$

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 25

First Normal Form

- Domain is **atomic** if its elements are indivisible units \Box
	- Examples of non-atomic domains: \Box
		- □ Set of names, composite attributes
		- Identification numbers like *CS101* that can be broken up into parts (department code and course id)
- A relational schema R is in **first normal form** if the domains of all П attributes of R are atomic
- Non-atomic values complicate storage and encourage redundant \Box (repeated) storage of data
	- Example \Box
		- □ Set of accounts stored with each customer, and set of owners stored with each account
- We assume all relations are in first normal form \Box

First Normal Form (Cont.)

- Atomicity is a property of how the elements of the domain are used. \Box
	- Example \Box
		- Strings would normally be considered indivisible
	- Suppose that students are given roll numbers which are strings of \Box the form *CS0012* or *EE1127*
		- If the first two characters are extracted to find the department, the domain of roll numbers is not atomic.
		- Doing so is a bad idea:
			- leads to encoding of information in application program rather than in the database.

Boyce-Codd Normal Form

A relation schema *R* is in BCNF with respect to a set *F* of functional \Box dependencies if for all functional dependencies in *F***⁺** of the form

$$
\alpha \to \beta
$$

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

 \Box $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subset \alpha$)

- \Box α is a superkey for *R* (i.e., $\alpha \rightarrow R$)
- Example schema *not* in BCNF: \Box

instr_dept (*ID, name, salary, dept_name, building, budget*)

because *dept_name* → *building, budget* holds on *instr_dept,* \Box but *dept_name* is not a superkey.

Decomposing a Schema into BCNF

- \Box Suppose we have a schema *R*
- A non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF, so \Box we decompose *R* into:
	- $R_1 = (\alpha \cup \beta)$
	- $R_2 = (R (\beta \alpha))$
- \Box In our example, *dept_name* → *building, budget*
	- \Box α = *dept_name*
	- \Box β = *building, budget*

instr_dept (*ID, name, salary, dept_name, building, budget*)

and *inst_dept* is replaced by

 $R_1 = (\alpha \cup \beta) = ($ *dept_name, building, budget*)

 $R_2 = (R - (B - \alpha)) = (ID, name, salary, dept_name)$

BCNF and Dependency Preservation

- Constraints, including functional dependencies, are costly to check in \Box practice unless they pertain to only one relation
- A decomposition is *dependency preserving* \Box
	- If it is sufficient to test only dependencies on each individual O. relation of the decomposition in order to ensure that *all* functional dependencies hold.
- Because it is not always possible to achieve both BCNF and \Box dependency preservation, we consider a weaker normal form, known as *third normal form.*

Third Normal Form

A relation schema *R* is in **third normal form (3NF)** if for all: \Box

 $\alpha \rightarrow \beta$ in \mathbf{F}^+

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

 \Box $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)

- \Box α is a superkey for *R*
- Each attribute A in $\beta \alpha$ is contained in a candidate key for R. О. (NOTE*:* each attribute may be in a different candidate key)
- If a relation is in BCNF, it is in 3NF \Box
	- Since in BCNF one of the first two conditions above must hold. \Box
- Third condition is the minimal relaxation of BCNF to ensure \Box dependency preservation.

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is \Box dependency preserving.

Relation *dept_study_advisor* (*s_ID, a_ID, dept_name)* \Box $F = \{ s _ID, \n\text{dept_name} \rightarrow a _ID,$ *a* $ID \rightarrow$ *dept_name* } Two candidate keys = *s_ID, dept_name* and *s_ID, a_ID*

- *dept_study_advisor* is not in BCNF \Box
- Any decomposition of *dept_study_advisor* will fail to preserve \Box

s ID, dept $name \rightarrow a$ *ID*

This implies that testing for *s_ID, dept_name* → *a_ID* requires a join.

3NF Example

Relation *dept_study_advisor*: \Box

- *dept_study_advisor* (*s_ID, a_ID, dept_name)* \Box $F = \{s \mid ID, \text{depth} \text{ name} \rightarrow a \text{ ID}\}$ *a_ID* \rightarrow *dept_name*}
- Two candidate keys: \Box *s_ID, dept_name,*
	- *a_ID, s_ID*

dept_study_advisor is in 3NF О.

 \Box *s ID, dept* name \rightarrow *a ID*

- *s_ID, dept_name* is a superkey
- *a_ID* → *dept_name*
	- *a_ID* is not a superkey
	- *dept_name* is contained in a candidate key

Redundancy in 3NF

- There is some redundancy in this schema \Box
- Example of problems due to redundancy in 3NF \Box
	- *dept_study_advisor* (*s_ID, a_ID, dept_name)* \Box

 $F = \{s_l/D, \text{depth_name} \rightarrow a_l/D,$

a $ID \rightarrow$ *dept name*}

 \Box repetition of information (e.g., the relationship *Jane, FI*)

e.g., (*a_ID, dept_name)*

- need to use *null* values (e.g., to represent the relationship \Box *Karol, ESF* where there is no corresponding value for *s_ID*).
	- e.g., a relation (*a_ID, dept_name*) must exist if there is no other separate relation mapping instructors to departments

Second Normal Form

- A functional dependency $\alpha \rightarrow \beta$ is called **a partial dependency** \Box
	- if there is a subset γ of α , i.e., $\gamma \subset \alpha$, such that $\gamma \to \beta$. \Box
- We say that β is **partially dependent** on α . \Box
- A relation *R* is in **second normal form** (2NF) if it is in 1NF and \Box each attribute *A* in *R* meets one of the following:

A appears in a candidate key; О.

A is not partially dependent on any candidate key. О.

i.e., *A* is dependent on a complete candidate key, but it may be a transitive dependence.

Every 3NF is in 2NF. \Box

Testing for BCNF

- \Box To check if a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF
	- 1. compute α^+ (the attribute closure of α), and
	- 2. verify that it includes all attributes of *R*, that is, it is a superkey of *R*.
- \Box **Simplified test**: To check if a relation schema *R* is in BCNF, it suffices to check only the dependencies in the given set *F* for violation of BCNF, rather than checking all dependencies in *F*⁺ .
	- If none of the dependencies in *F* causes a violation of BCNF, then none of \Box the dependencies in *F*⁺ will cause a violation of BCNF either.
- However, **simplified test using only** *F* **is incorrect when testing a relation** \Box **in a decomposition of R**
	- Consider $R = (A, B, C, D, E)$, with $F = \{ A \rightarrow B, BC \rightarrow D \}$ \Box
		- **D** Decompose *R* into $R_1 = (A, B)$ and $R_2 = (A, C, D, E)$
		- Neither of the dependencies in *F* contain only attributes from (A, C, D, E) so we might be misled into thinking $R₂$ satisfies BCNF.
		- In fact, dependency $AC \rightarrow D$ in F^* shows R_2 is not in BCNF.

Testing Decomposition for BCNF

- To check if a relation R_i in a decomposition of R is in BCNF, \Box
	- Either test R_i for BCNF with respect to the **restriction** of F⁺ to R_i \Box (that is, all dependences in F^+ that contain only attributes from R_i)
	- or use the original set of dependencies *F* that hold on *R*, but with O. the following test: So it is a trivial FD.
		- for every set of attributes $\alpha \subseteq R_{\scriptscriptstyle \!\! E}$ check that $\alpha^{\scriptscriptstyle +}$ (the attribute closure of α) either includes no attribute of R_{i} - α , or includes all attributes of *Rⁱ* . So α is a superkey.
		- \Box If the condition is violated by some $\alpha \rightarrow \beta$ in *F*, the dependency

 $\alpha \rightarrow (\alpha^+ - \alpha) \cap R_i$

can be shown to hold on R ^{*i*}, and R _{*i*} violates BCNF.

We use above dependency to decompose *Rⁱ*

BCNF Decomposition Algorithm

```
result := \{R\}; -- a set of relational schemata
```

```
done := false;
```

```
compute F +
;
```
while (not *done)* **do**

if (there is a schema R ^{*i*} in *result* that is not in BCNF)

then begin

let $\alpha \rightarrow \beta$ be a nontrivial functional dependency that holds on R_i such that $\alpha \rightarrow R_i$ is not in $F^+,$ and $\alpha \cap \beta = \varnothing$; *result* := (*result* – R_i) \cup (R_i – β) \cup (α , β); **end else** *done* := **true;**

Note: each R_i is in BCNF, and decomposition is lossless.

Example of BCNF Decomposition

- *class* (*course_id*, *title*, *dept_name*, *credits*, *sec_id*, *semester*, *year*, \Box *building*, *room_number*, *capacity*, *time_slot_id*)
- Functional dependencies: \Box
	- *course_id* → *title*, *dept_name*, *credits*
	- *building*, *room_number* → *capacity*
	- *course_id*, *sec_id*, *semester*, *year* → *building*, *room_number*, *time_slot_id*
- A candidate key {*course_id*, *sec_id*, *semester*, *year*}. П
- BCNF Decomposition: П
	- *course_id* → *title*, *dept_name*, *credits* holds

□ but *course_id* is not a superkey.

- We replace *class* by: Π.
	- *course*(*course_id*, *title*, *dept_name*, *credits*)
	- *class-1* (*course_id*, *sec_id*, *semester*, *year*, *building*, *room_number, capacity*, *time_slot_id*)

BCNF Decomposition (Cont.)

- \Box *course*(*course_id*, *title*, *dept_name*, *credits*)
- \Box *class-1* (*course_id*, *sec_id*, *semester*, *year*, *building*, *room_number, capacity*, *time_slot_id*)
- *course* is in BCNF П
	- How do we know this?
- *building*, *room_number* → *capacity* holds on *class-1* \Box
	- but {*building*, *room_number*} is not a superkey for *class-1*. \Box
	- We replace *class-1* by: \Box
		- *classroom* (*building*, *room_number*, *capacity*)
		- *section* (*course_id*, *sec_id*, *semester*, *year*, *building*, *room_number*, *time_slot_id*)
- *classroom* and *section* are in BCNF. \Box

course_id → *title*, *dept_name*, *credits building*, *room_number* → *capacity course_id*, *sec_id*, *semester*, *year* → *building*, *room_number*, *time_slot_id*

Testing for 3NF

- **Optimization** \Box
	- Need to check only dependences in *F.* \Box
	- Need not check all dependences in *F⁺* . \Box
- Use attribute closure to check for each dependency $\alpha \rightarrow \beta$, if α is a П superkey.
- If α is not a superkey, we have to verify whether each attribute in β - α \Box is contained in a candidate key of *R*
	- This test is rather more expensive, since it involves finding \Box candidate keys.
	- Testing for 3NF has been shown to be NP-hard. \Box
	- Interestingly, decomposition into third normal form (described \Box shortly) can be done in polynomial time.