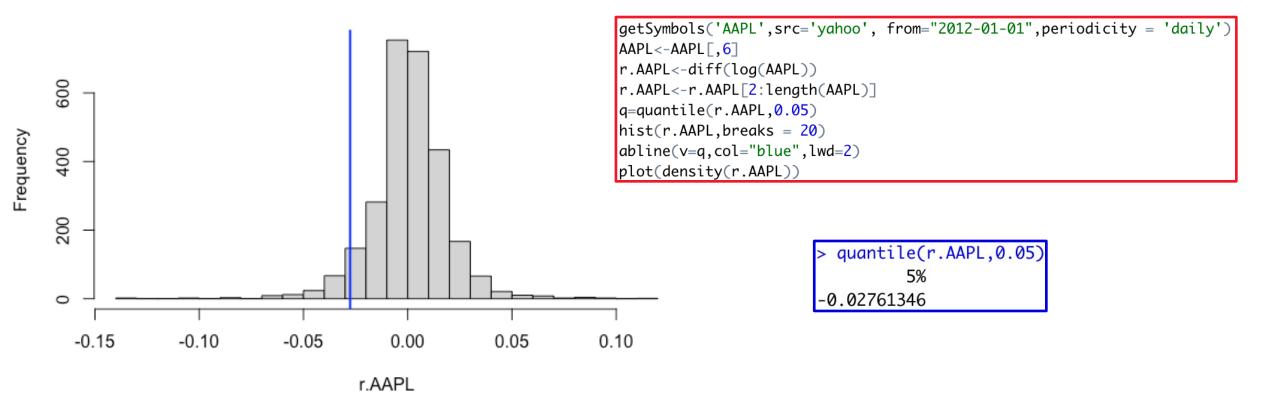


Applied Financial Econometrics

Class 8: GARCH and Value at Risk (VaR)

Lecturer: Axel A. Araneda, Ph.D.

Risk measures: Value at Risk (VaR)


- Probability of (potential) losses given some probability.
- Downside risk based on current levels and normal market conditions.
- For a computed *T*-horizon *p*-VaR, a loss (*L*) will not exceed p-VaR with *p* probability *T*-periods ahead. $Prob(L>VaR) \le 1-p$.

 $F \cap O$

- Example: One-day 95% VaR of 100.
 - 5% of losses falls over 100.
 - Expected losses greater than 100 for 1 day over 20 days.
 - 95% of confidence of don't have losses greater than 100.

Computing VaR

Histogram of r.AAPL

MUNT

ECON

Estimating VaR (in-sample)

– Assuming normality:

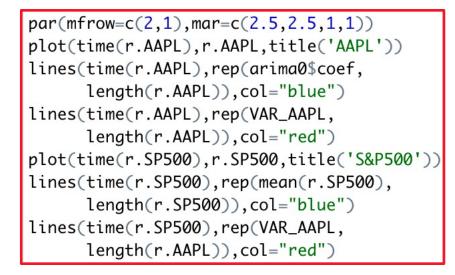
$$VaR(a) = \bar{x} + \sigma * N^{-1}(a)$$
$$VaR(95) = \bar{x} - \sigma * 1.96$$

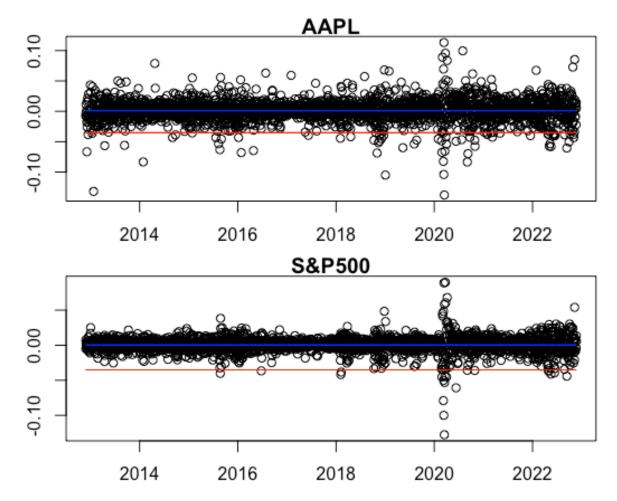
MUNI

Assignment 6

- 1. For the S&P500 and another asset of your choice, estimate the in-sample 1-day 95%VaR assuming normality and:
 - a) Constant volatility and ARIMA(0,0,0) for the returns
 - b) Constant volatility (finding the best ARIMA model possible for the returns, if any)
 - c) GARCH(1,1) volatility.
- 2. Compare the results.

Review of the assignment 6 (1.a)


arima0<-arima(r.AAPL,order=c(0,0,0))
res0AAPL<-arima0\$residuals
arima0\$P500<-mean(r.\$P500)
res0\$P500<r.\$P500-mean(r.\$P500)
vol0AAPL<-sqrt(arima0\$sigma2)
vol0\$P500<-sqrt(var(r.\$P500))</pre>


95-VAR under normality
VAR_AAPL<-arima0\$coef-1.96*vol0AAPL
VAR_SP500<-mean(r.SP500)-1.96*vol0SP500</pre>

MUNT

FCON

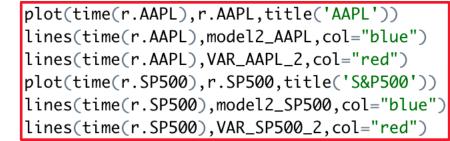
Review of the assignment 6 (1.a)

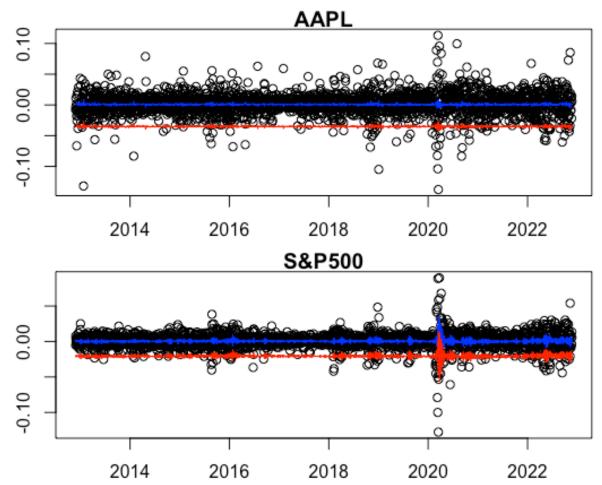
MUNT

Review of the assignment 6 (1.b)

library(forecast)
arimaAAPL<-auto.arima(r.AAPL)
arimaSP500<-auto.arima(r.SP500)
arimaAAPL; arimaSP500</pre>

	Series: r.AAPL ARIMA(0,0,1) with non-zero mean	Series: r.SP500 ARIMA(3,0,3) with non-zero mean							
<u> </u>	Coefficients: ma1 mean -0.0637 8e-04 s.e. 0.0200 3e-04	Coeff s.e.	icients: ar1 -0.7649 0.0317	ar2 0.8182 0.0344	ar3 0.8577 0.0276	ma1 0.6572 0.0373	ma2 -0.8582 0.0273	ma3 -0.7461 0.0327	mean 4e-04 1e-04


vol2AAPL<-sqrt(arimaAAPL\$sigma2)
vol2SP500<-sqrt(arimaSP500\$sigma2)
model2_AAPL<-arimaAAPL\$fitted
model2_SP500<-arimaSP500\$fitted</pre>


95-VAR under normality
VAR_AAPL_2<-model2_AAPL-1.96*vol2AAPL
VAR_SP500_2<-model2_SP500-1.96*vol2SP500</pre>

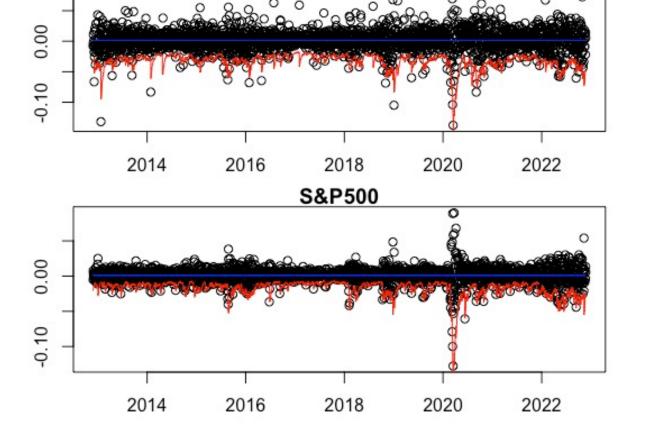
MUNT

ECON

Review of the assignment 6 (1.b)

Applied Financial Econometrics / Class 8: GARCH and Value at Risk

muni E C O N

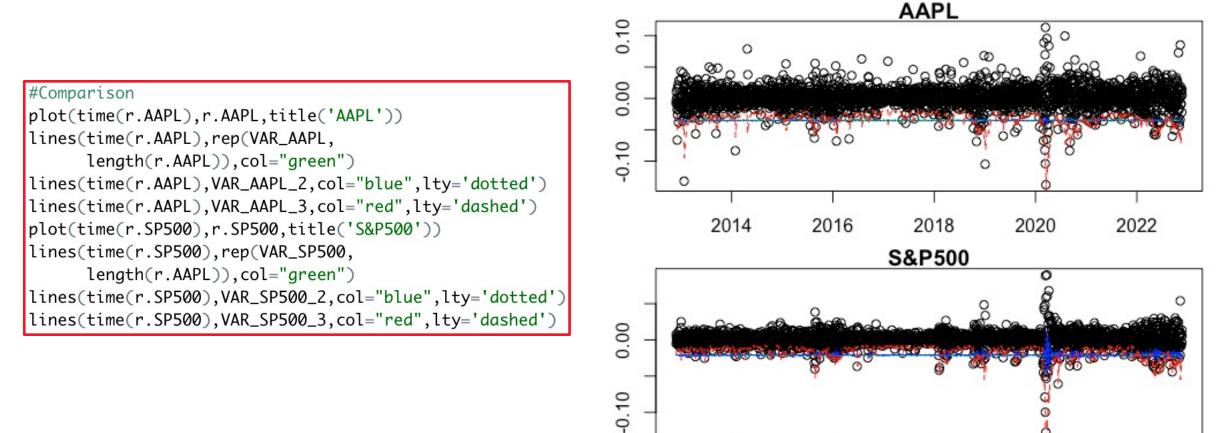

Review of the assignment 6 (1.c)

0.10

95-VAR under normality

VAR_AAPL_3<-AAPL_hat-1.96*AAPL_vol_hat VAR_SP500_3<-SP_hat-1.96*SP_vol_hat

plot(time(r.AAPL),r.AAPL,title('AAPL'))
lines(time(r.AAPL),AAPL_hat,col="blue")
lines(time(r.AAPL),VAR_AAPL_3,col="red")
plot(time(r.SP500),r.SP500,title('S&P500'))
lines(time(r.SP500),SP_hat,col="blue")
lines(time(r.SP500),VAR_SP500_3,col="red")



MUNT

ECON

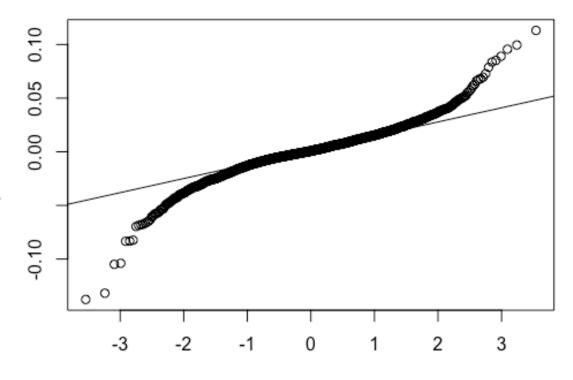
AAPL

Review of the assignment 6 (2)

2014

2016

Applied Financial Econometrics / Class 8: GARCH and Value at Risk


MUNI ECON

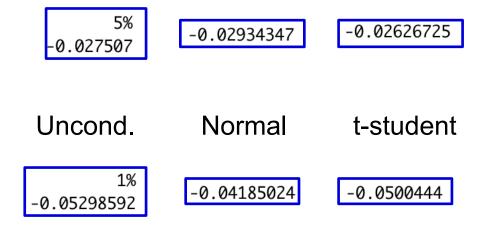
2022

2020

2018

- Returns exhibits heavy tails than normal distribution.
- t-student distribution: Similar shape than normal distribution with heavy tails.

Theoretical Quantiles

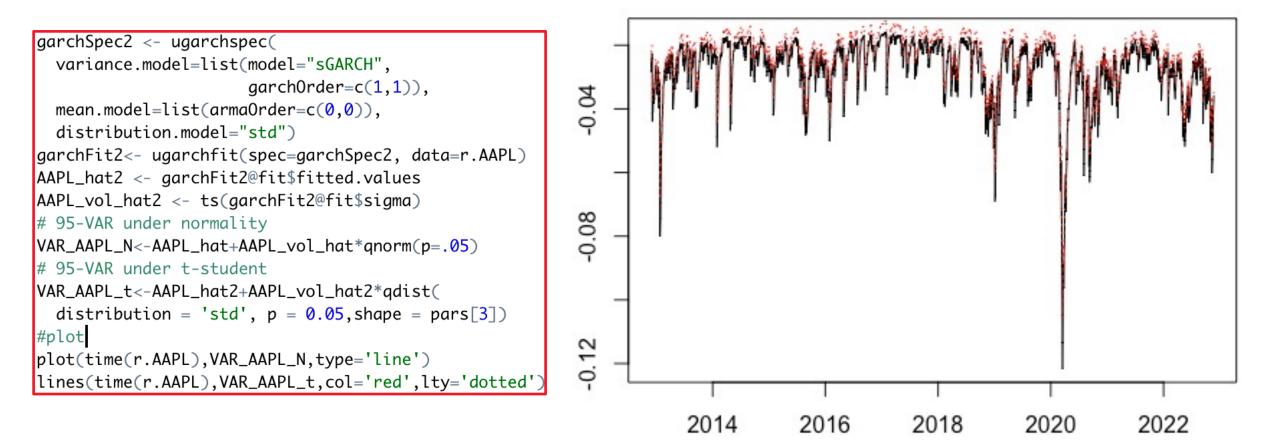

ECON

Normal Q-Q Plot

pars<-fitdist(distribution = 'std' , x = r.AAPL)\$pars</pre>

> pars		
mu	sigma	shape
0.001187087	0.019318014	3.284576519

ECON

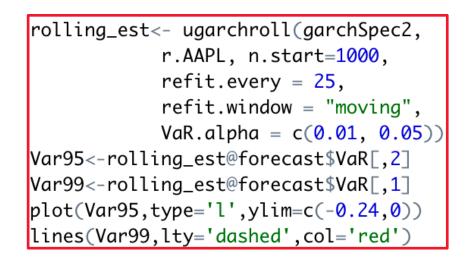

<pre>quantile(r.AAPL,0.01)</pre>
<pre>qnorm(p = 0.01,mean=mean(r.AAPL), sd=sqrt(var(r.AAPL)))</pre>
<pre>qdist(distribution = 'std' ,mu=pars[1], sigma=pars[2],</pre>
shape = pars[3] , $p = 0.01$)

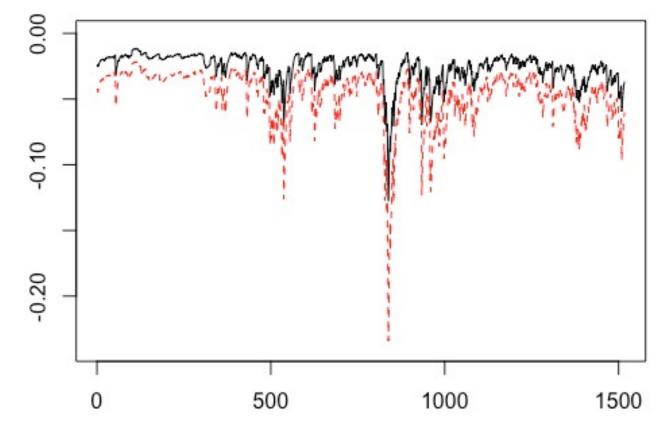
- Delta normal VaR
$$VaR(a) = N^{-1}(a, \mu, \sigma)$$

= $\mu + \sigma * N^{-1}(a)$

– GARCH(1,1) VaR with student's t-distribution in the underlying:

$$VaR(a)_t = \mu + \sigma_{t|t-1} * F^{-1}(a)$$


MUNI ECON



MUNT

Out of sample GARCH/VaR forecasting

– ugarchroll: Rolling estimation and forecasting via GARCH family.

MUNT

Errors of the model

prediction<-as.data.frame(rolling_est)
head(prediction)
#Prediction error for the mean
error_mean<-prediction\$Realized-prediction\$Mu
#Prediction error for the variance
error_var<-error_mean^2-prediction\$Sigma^2
mean(error_mean^2)
mean(error_var^2)

	Ми	Sigma	Skew	Shape	Shape(GIG)	Realized
2016-11-15	0.000747833	0.01650391	0	4.214219	0	0.0131567844
2016-11-16	0.000747833	0.01623713	0	4.214219	0	0.0265334138
2016-11-17	0.000747833	0.01720848	0	4.214219	0	-0.0003638326
2016-11-18	0.000747833	0.01648021	0	4.214219	0	0.0009998037
2016-11-21	0.000747833	0.01584315	0	4.214219	0	0.0150597476
2016-11-22	0.000747833	0.01580330	0	4.214219	0	0.0006262995

```
> mean(error_mean^2)
[1] 0.00038391
> mean(error_var^2)
[1] 0.0003852829
```

MUNI

Assignment 7

 Considere two assets (S&P500 and one stock of your preference) compute the 95-VaR & 99-VaR, and compare the out-of-sample accuracy for the following models

 $\vdash [] \cap [$

- Constant and normal volatility.
- GARCH (1,1) with normal distributional assumption for the underlying.
- GARCH (1,1) with t-student distributional assumption for the underlying.
- GARCH-GJR with t-student distributional assumption for the underlying.
- E-GARCH with t-student distributional assumption for the underlying.

Note: For all the cases assume an ARIMA(0,0,0) model for the log-returns.