Annuities with focus on future values

Luděk Benada

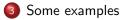
Department of Finance, office - 402

e-mail: benada@econ.muni.cz

Luděk Benada

Annuities I

November 15, 2024


Content

1 The basic concept of annuities

2 The magic hidden in the concept of Annuities

	1	4×I	, D	one	d-
Luděk Benada					

Image: Image:

э

Content

1 The basic concept of annuities

The magic hidden in the concept of Annuities

(日) (四) (日) (日) (日)

Ludě	L D	000	da	
Luue	:r D	ena	ua	

э

In the understanding of finance, in the case of an annuity, it is a regular payment in terms of amount and frequency.

In the understanding of finance, in the case of an annuity, it is a regular payment in terms of amount and frequency.

Applying annuity calculations following must be respected:

1	JYL.	: Be	

In the understanding of finance, in the case of an annuity, it is a regular payment in terms of amount and frequency.

Applying annuity calculations following must be respected:

Time value of money

L	ud	ěŀ	< F	Ser	าลด	fa

In the understanding of finance, in the case of an annuity, it is a regular payment in terms of amount and frequency.

Applying annuity calculations following must be respected:

- Time value of money
- Constant method of interest calculation (r, IP)

In the understanding of finance, in the case of an annuity, it is a regular payment in terms of amount and frequency.

Applying annuity calculations following must be respected:

- Time value of money
- Constant method of interest calculation (r, IP)
- Regularity of the payment period

In the understanding of finance, in the case of an annuity, it is a regular payment in terms of amount and frequency.

Applying annuity calculations following must be respected:

- Time value of money
- Constant method of interest calculation (r, IP)
- Regularity of the payment period
- Constant Cash Flow (... or geometric or arithmetic growth)

In the understanding of finance, in the case of an annuity, it is a regular payment in terms of amount and frequency.

Applying annuity calculations following must be respected:

- Time value of money
- Constant method of interest calculation (r, IP)
- Regularity of the payment period
- Constant Cash Flow (... or geometric or arithmetic growth)
- The calculation can be focused on the sum of future values at a certain point in time

In the understanding of finance, in the case of an annuity, it is a regular payment in terms of amount and frequency.

Applying annuity calculations following must be respected:

- Time value of money
- Constant method of interest calculation (r, IP)
- Regularity of the payment period
- Constant Cash Flow (... or geometric or arithmetic growth)
- The calculation can be focused on the sum of future values at a certain point in time
 - The calculation can be focused on the sum of present values

	Lud	ĕk	Ben	ada
--	-----	----	-----	-----

• • • • • • • •

2

Payment period:

Luc	Ă٢	Re	nada
Luu	ICK.	Dei	laua

< □ > < 同 >

э

Payment period:

< □ > < 同 >

	Benad	

э

Payment period:

Note: $t_0 \dots$ Beginning of the Payment period, $t_1 \dots$ End of the Payment periods

uděk	Benada		
------	--------	--	--

Payment period:

Note: $t_0 \dots$ Beginning of the Payment period, $t_1 \dots$ End of the Payment periods

Interest period:

Note: $t_0 \dots$ Beginning of the Interest period, $t_1 \dots$ End of the Interest periods - when the interest is paid.

	•	모 / 소리 / 소문 / 소문 / 문	≣ ~) Q (*
Luděk Benada	Annuities I	November 15, 2024	5 / 24

• • • • • • • •

2

Payment period & Interest period:

Lud		

< □ > < 凸

3 N 3

Payment period & Interest period:

	Lud	ěk	Ben	iada
--	-----	----	-----	------

3 N 3

Payment period & Interest period:

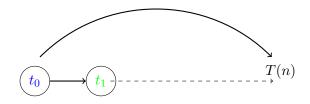
Note: The simplest case is if the interest and payment period are the same length. However, in practice the relationship may be different.

	Lud	ĕk	Ben	ada
--	-----	----	-----	-----

Graphic illustration of the annuity concept - FV's

	٠		500
Luděk Benada	Annuities I	November 15, 2024	7 / 24

Graphic illustration of the annuity concept - FV's

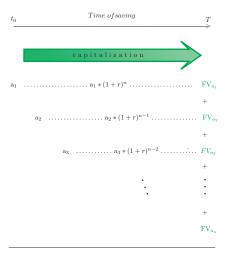

Annuities over time:

Lud		

э

Graphic illustration of the annuity concept - FV's

Annuities over time:


	Luc	lěk	Ben	iada
--	-----	-----	-----	------

Sequence of annuities - $\mathsf{FV}\mathsf{'s}$

	٠		 ★ 문 ► ★ 문 ► . 	2	୬୯୯
Luděk Benada	Annuities I	N	ovember 15, 2024		8 / 24

Sequence of annuities - FV's

Luděk

Saving: $S = \sum_{i=1}^{n} FV_i = FV_{a_1} + FV_{a_2} + \ldots + FV_{a_n}$

Benada	Annuities I	November 15, 2024	8/3

A D > A B > A B > A B >

3

24

Saving plan

Luděk Benada	Lud	ěk	Ber	nada	
--------------	-----	----	-----	------	--

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Saving plan represents a practical use of the annuity calculation, where the aggregate sum of partial capitalized annuities is applied.

9/24

< 日 > < 同 > < 回 > < 回 > .

2 The magic hidden in the concept of Annuities

JCI	e۲	ίВ	en	a	

э

10/24

イロト イヨト イヨト

	Lud	ěk E	Senad	la
--	-----	------	-------	----

문 🛌 🖻

The magic is hidden in:

Lud		

э

The magic is hidden in:

GEOMETRIC SERIES

Luděk Benada

Annuities I

November 15, 2024

→

3

The magic is hidden in:

GEOMETRIC SERIES

, and its properties . . .

Luděk Benada

Annuities I

November 15, 2024

★ 3 → 3

Geometric serie

Luděk Benada		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Geometric serie

An example:

	Luc	lěk –	Ben	iada
--	-----	-------	-----	------

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Geometric serie

An example: 2, 4, 8, 16, 32, ...

Lu			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Geometric serie

An example: 2, 4, 8, 16, 32, ...

In general:

 a_1

 $a_2 = a_1 * q$

Luděk Benada

$$a_3=a_2*q$$
 , where $q=rac{a_n}{a_{n-1}}$, and $S_n=rac{q^n-1}{q-1}$

•	미 에 에 해 에 에 해 이 에 해 이 하는 것 같아.	$\mathcal{O} \land \mathcal{O}$
Annuities I	November 15, 2024	12 / 24

 \mathbf{n}

Geometric serie

An example: 2, 4, 8, 16, 32, ...

In general:

 a_1

 $a_2 = a_1 * q$

$$a_3 = a_2 * q$$
 , where $q = \frac{a_n}{a_{n-1}}$, and $S_n = \frac{q^n - 1}{q - 1}$
: , or $S_n = \frac{1 - q^n}{1 - q}$

 $a_n = a_{n-1} * q$

	4	< 🗗 >	< ≣ >	< 差 ▶	2	500
Luděk Benada	Annuities I	No	vember	15, 2024		12 / 24

Geometric serie

An example: 2, 4, 8, 16, 32, ...

In general:

 a_1

 $a_2 = a_1 * q$

$$a_3 = a_2 * q$$
 , where $q = \frac{a_n}{a_{n-1}}$, and $S_n = \frac{q^n - 1}{q - 1}$
: , or $S_n = \frac{1 - q^n}{1 - q}$

 $a_n = a_{n-1} * q$

Note: A geometric serie can be finite or infinite.

	٠	미 🛛 🖉 🕨 🤘 필 🕨 🖉 👘	E
Luděk Benada	Annuities I	November 15, 2024	12 / 24

Application on annuities

	4		୬୯୯
Luděk Benada	Annuities I	November 15, 2024	13 / 24

The FV's of annuities (PV's) are representing a geometric sequence.

Lud	ěk.	Ren	ada	5
Luu	C.C.	DCI	auc	

<20 € ► 20

The FV's of annuities (PV's) are representing a geometric sequence.

Assuming annuity = 1 we get:

	Bena	

イロト 不得 トイヨト イヨト 二日

The FV's of annuities (PV's) are representing a geometric sequence.

Assuming annuity = 1 we get:

$$\frac{(1+r)^n}{(1+r)^{n-1}} = \frac{(1+r)^{n-1}}{(1+r)^{n-2}} = \dots = (1+r) = q$$

Luděk Benada

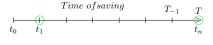
13/24

イロト 不得 トイヨト イヨト 二日

Types of annuities

	•	< ₽ >	< ≣ >		ヨト	₹.
Luděk Benada	Annuities I	No	vember	15,	2024	

The basic criterion in the division of annuities is the moment when the first annuity occurs. According to this concept, we distinguish between ordinary annuity and annuity-due.


Ordinary annuity

Benada

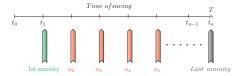
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ordinary annuity

Luděk

Annuity-ordinary (S^1) : $S^1 = a * \frac{(1+r)^n - 1}{r}$

Benada Annuities I November 15, 2024


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

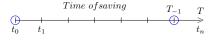
Ordinary annuity - sequence in time

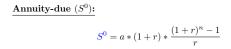
Luděk Benada	Annuities I	□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ November 15. 2024	৩৫৫ 16/24
Ludek Benada	Annuities I	November 15, 2024	10/24

Ordinary annuity - sequence in time

	Luc	lěk	Ben	iada
--	-----	-----	-----	------

A D N A B N A B N A B N

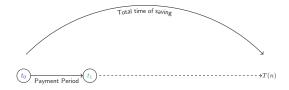

э

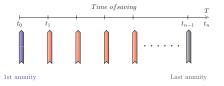

Annuity-due

Luděk Benada

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Annuity-due


Luděk Benada	Annuities I	November 15


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Annuity-due - sequence in time

Luděk Benada		 < □ > < □	
Luděk Benada	Annuities I	November 15, 2024	18 / 24

Annuity-due - sequence in time

	Lud	ĕk	Ben	ada
--	-----	----	-----	-----

November 15, 2024

A D N A B N A B N A B N

э

The magic hidden in the concept of Annuities

Some examples

	Lud	ĕk	Ber	nada
--	-----	----	-----	------

э

・ロト ・四ト ・ヨト ・ヨト

Saving plans

Luděk Benada	1 171	D 1
	Ludek	Benada

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

Every parameter can be calculated in the annuity concept. Most often, it is the value of the **amount saved**. With the target amount *(the goal of the savings plan)*, it is possible to search for the amount of the **annuity** under the given conditions.

Or how long it is necessary to save, i.e. how many annuities must be saved. The most **complex** thing is to find out the **interest rate** when the annuity, the target amount and the savings period are known. Every parameter can be calculated in the annuity concept. Most often, it is the value of the **amount saved**. With the target amount *(the goal of the savings plan)*, it is possible to search for the amount of the **annuity** under the given conditions.

Or how long it is necessary to save, i.e. how many annuities must be saved. The most **complex** thing is to find out the **interest rate** when the annuity, the target amount and the savings period are known.

Note: Every parameter except the interest rate can be easily expressed from the basic formula by algebraic modification.

Example 01 - Total amount of saving

2

イロト イヨト イヨト イヨト

Example 01 - Total amount of saving

How much will be the **amount** on the saving account for a client that starts with saving in his age of **22** and will regularly save **until** his **50**. He will **save** regularly **750.00** at the **end** of each **month**. The bank offers an interest rate of **1.6% p.s.** for the entire savings period. The interest is calculated by every deposited annuity. **How much** would be saved if we used the **annuity-due** concept?

Example 01 - Total amount of saving

How much will be the **amount** on the saving account for a client that starts with saving in his age of **22** and will regularly save **until** his **50**. He will **save** regularly **750.00** at the **end** of each **month**. The bank offers an interest rate of **1.6% p.s.** for the entire savings period. The interest is calculated by every deposited annuity. **How much** would be saved if we used the **annuity-due** concept?

First of all we just put all information to the general formula:

How much will be the **amount** on the saving account for a client that starts with saving in his age of **22** and will regularly save **until** his **50**. He will **save** regularly **750.00** at the **end** of each **month**. The bank offers an interest rate of **1.6% p.s.** for the entire savings period. The interest is calculated by every deposited annuity. **How much** would be saved if we used the **annuity-due** concept?

First of all we just put all information to the general formula:

$$S^{1} = 750 * \frac{\left(1 + \frac{0.016}{6}\right)^{6*2*28} - 1}{\frac{0.016}{6}}$$

How much will be the **amount** on the saving account for a client that starts with saving in his age of **22** and will regularly save **until** his **50**. He will **save** regularly **750.00** at the **end** of each **month**. The bank offers an interest rate of **1.6% p.s.** for the entire savings period. The interest is calculated by every deposited annuity. **How much** would be saved if we used the **annuity-due** concept?

First of all we just put all information to the general formula:

$$S^{1} = 750 * \frac{\left(1 + \frac{0.016}{6}\right)^{6*2*28} - 1}{\frac{0.016}{6}}$$

How much will be the **amount** on the saving account for a client that starts with saving in his age of **22** and will regularly save **until** his **50**. He will **save** regularly **750.00** at the **end** of each **month**. The bank offers an interest rate of **1.6% p.s.** for the entire savings period. The interest is calculated by every deposited annuity. **How much** would be saved if we used the **annuity-due** concept?

First of all we just put all information to the general formula:

$$S^{1} = 750 * \frac{\left(1 + \frac{0.016}{6}\right)^{6*2*28} - 1}{\frac{0.016}{6}}$$

$$S^1 = 406, 93.7$$

Example 02 - Annuity

Lud	ěk	Ben	ada

3

イロト イヨト イヨト イヨト

First of all we just put all information to the general formula:

First of all we just put all information to the general formula:

$$100000 = a * \frac{\left(1 + \frac{0.04}{4}\right)^{4*10} - 1}{\frac{0.04}{4}}$$

Luděk Benada

First of all we just put all information to the general formula:

$$100000 = a * \frac{\left(1 + \frac{0.04}{4}\right)^{4*10} - 1}{\frac{0.04}{4}}$$

	Lud	ěk	Bei	nac	la
--	-----	----	-----	-----	----

First of all we just put all information to the general formula:

$$100000 = a * \frac{\left(1 + \frac{0.04}{4}\right)^{4*10} - 1}{\frac{0.04}{4}}$$

$$a = 2,045.56$$

		Ludě	kΕ	Bei	٦ad	a
--	--	------	----	-----	-----	---

Example 03 - Time of saving

	•	미 🛛 🖉 🕨 🔸 글 🕨 👋 글 🛌 😑	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Luděk Benada	Annuities I	November 15, 2024	23 / 24

First of all we just put all information to the general formula:

Lud		

First of all we just put all information to the general formula:

$$92476.17 = 5000 * \frac{(1 + \frac{0.038}{2})^{2*n} - 1}{\frac{0.038}{2}}$$

	Luc	lěk	Ber	ıada
--	-----	-----	-----	------

First of all we just put all information to the general formula:

$$92476.17 = 5000 * \frac{(1 + \frac{0.038}{2})^{2*n} - 1}{\frac{0.038}{2}}$$

	Luc	lěk	Ber	ıada
--	-----	-----	-----	------

First of all we just put all information to the general formula:

$$92476.17 = 5000 * \frac{(1 + \frac{0.038}{2})^{2*n} - 1}{\frac{0.038}{2}}$$

$$0.351409 + 1 = (1 + 0.019)^{2*n}$$

$$n=8$$
 years $_{\bullet}$

	Lu	děk	Ber	nada
--	----	-----	-----	------

GUTHRIE, Gary a Larry LEMON. *Mathematics of Interest Rates and Finance*. Pearson New International Edition, 2013. ISBN 978-1-292-03983-1.

DRAKE, P., FABOZZI, F.: Foundations and applications of the time value of money, John Wiley & Sons, 2009. ISBN 978-0-470-40736-3

DAHLQUIST, J., KNIGHT, R. *Principles of Finance*. OpenStax College, 2022.

24 / 24