MUNT ECON

Artificial Intelligence in Finance

Introduction - part B

Štefan Lyócsa

Department of Finance, Faculty of Economics and Administration

October 3, 2024

Štefan Lyócsa · **[Artificial Intelligence in Finance](#page-43-0)** · October 3, 2024 1 / 41

Outline for Section 1

[Data structures](#page-1-0)

- [Missing observations](#page-5-0)
- **[Outliers](#page-12-0)**
- [Data transformation](#page-19-0)
- [Feature engineering part A](#page-34-0)
- [Other data considerations](#page-36-0)

[Datasets](#page-38-0)

How much **effort** (time) used, in a data-related project, consumes data collection and data pre-processing?

How much **effort** (time) from the start to the finish of the problem solving, is taken by data collection?

```
from 50% to 80% [6].
```
Guess (2016, [\[2\]](#page-40-0)) reports results from a survey from CrowdFlower:

- \blacksquare 60% cleaning and organizing data,
- \blacksquare 19% collecting data,
- 9% modelling & machine learning,
- \blacksquare 4% refining algorithms,
- \blacksquare 3% building training data sets,
- 5% other.

Depending on the problem at hand, we work with four data structures:

- 1. **cross sectional** independent units all observations are assumed to be retrieved at the same time/moment.
- 2. cross sectional **dependent** (spatial) units observations are dependent (etc., geographically, households, families, ...).
- 3. **time-series** units observations are ordered according to time.
- 4. combination of previous structures.

Some other notable data (obs. unit) type challenges:

- **Multiple dependent** variables?
- Unobserved, **latent**, variables of interest?

Outline for Section 2

[Data structures](#page-1-0)

[Missing observations](#page-5-0)

[Outliers](#page-12-0)

[Data transformation](#page-19-0)

[Feature engineering - part A](#page-34-0)

[Other data considerations](#page-36-0)

[Datasets](#page-38-0)

Štefan Lyócsa · **[Artificial Intelligence in Finance](#page-0-0)** · October 3, 2024 6 / 41

Data collection often leads to **missing observations**:

- We can miss **full units** of observations \rightarrow **sample selection bias** (see Heckman [\[5\]](#page-41-1)), e.g.:
	- Non-response bias in surveys.
	- **Application criteria.**
- We only **miss certain attribute** of a unit, e.g. we do not observe the age or the gender of a customer.

The later is of interest today.

Missing observations

Here we have a snapshot of a dataset with characteristics of apartments in Prague:

Missing observations are highlighted with red.

- Should we even care?
- \blacksquare What to do with missing observations?

The **choice** of a **specific approach** to missing data depends on the **reasons behind** the missing values.

Missing observations

Assume that the parameter of interest is θ (e.g. credit score, profit). Missing data can be classified as [\[10\]](#page-42-0):

- **Missing completely at random** (MCAR) suggests, that there are no systematic differences between missing values. Alternatively, the estimate of θ is independent of whether data are missing or not.
- **Missing at random** (MAR) suggests, that part of the missingness can be explained by **known** variables. Alternatively, missingness is conditionally independent of the estimate θ .
- **Missing not at random** (MNAR) suggest that part of the missingness can be explained by **unknown** or **not measured** variables.

Missing observations List-wise deletion

If we assume missing completely at random (MCAR), we can remove all units that have a missing value, perform **list-wise deletion**. However, in some instances, this can lead to drastic reductions, e.g.:

Only 2.77% (6) of data-points are missing (out of 216), but we remove 5 units (rows) or 52.7% (114) of all data-points. Huge **sacrifice** (not a good trade-off) if you ask me.

Single imputation methods

You impute a single value, e.g. [\[8\]](#page-41-2):

- 1. **Random** imputation ignores potential patterns in missingness and imputes a random value from a possible range of values or from a given probability distribution.
- 2. **Mean/median** imputation substitutes the unconditional mean (continuous variable) or median (for dummy variables).
- 3. **Match-based** imputation.
	- **hot-deck** imputation substitutes the missing value with one from a similar unit from the **same** dataset.
	- **cold-deck** imputation substitutes the missing value with one from a similar unit from a **different** dataset.
- 4. **Predictive** (model based) imputations is based on a statistical model (regression, random forest,...). To be discussed later.

Multiple imputation methods

Single imputation methods **do not assume errors** in the predictions of the missing values. An alternative is to create **multiple datasets**. A possible procedure is as follows [\[10\]](#page-42-0):

- 1. Start with an initial dataset $Z^{b=1}$ with missing values and $k = 1, 2, ..., p$ features.
- 2. Perform single imputation (random, mean/median).
- **3.** For each feature $k = 1, 2, ..., p$:
	- **Estimate an imputation model** M_k **.**
	- **Use model** M_k **to predict the value of the missing observations of** the *k th* feature.
- 4. Save the new dataset $Z^{*,b=1}$ with no missing values.
- 5. Use appropriate **re-sampling** method to $Z^{b=1}$ and repeat steps 2 and 4 until you have $b = 1, 2, ..., B$ datasets ($Z^{*,1}, Z^{*,2}, ..., Z^{*,B}$).

Outline for Section 3

[Data structures](#page-1-0)

[Missing observations](#page-5-0)

[Outliers](#page-12-0)

[Data transformation](#page-19-0)

[Feature engineering - part A](#page-34-0)

[Other data considerations](#page-36-0)

[Datasets](#page-38-0)

Štefan Lyócsa · **[Artificial Intelligence in Finance](#page-0-0)** · October 3, 2024 13 / 41

The issue:

- \blacksquare A detailed definition of an outlier requires quite specific assumptions about the underling data (e.g. distributional assumptions).
- A more **general** approach views outliers as data point(s) that is (are) significantly different from other observations within a dataset [\[8\]](#page-41-2).
- Outliers might be **valid** data (from a different distribution), but also **mistakes**, which makes identification complicated.

Outlier Grubbs's

If data are from normal distribution (a dream you should rarely assume) you can use **Grubbs' test** [\[3\]](#page-40-1). Let *Xⁱ* , *i* = 1, 2, ..., *n* denote observations from a normal distribution. The H_0 (null hypothesis) of no outlier is tested as:

$$
ESD = \max_{i=1,2,...n} \frac{|X_i - \bar{X}|}{s}
$$
 (1)

with *s* being the sample standard deviation. The critical value is given via Student's t-distribution.

Outlier

Hampel identifier/filter

Non-parametric approach to label '*potential*' outliers:

$$
R_i = |X_i - \tilde{X}| \tag{2}
$$

$$
MAD = \tilde{R} \tag{3}
$$

An unbiased estimate of the standard deviation for Gaussian data is found after scaling [\[9\]](#page-41-3):

$$
MADN = \frac{MAD}{0.6745} \tag{4}
$$

Given significance level α, **a potential outlier** *Xⁱ* **meets** the following:

$$
H_i = \frac{R_i}{MADN} > \sqrt{\chi^2_{1-\alpha/2,1}}
$$
 (5)

Štefan Lyócsa · **[Artificial Intelligence in Finance](#page-0-0)** · October 3, 2024 16 / 41

 \star

*

Outlier

Box-plot rule

 \blacksquare A popular method (rule of thumb) to identify outliers is to use the **box-plot rule** (e.g. [\[7\]](#page-41-4)):

Outlier

Outlier

Outlier

Multivariate outliers

- Asset from utilities sector is a likely 'return' outlier.
- \blacksquare BTC/USD is likely an outlier from both return and risk perspective.

Štefan Lyócsa · **[Artificial Intelligence in Finance](#page-0-0)** · October 3, 2024 18 / 41

Further issues

- **Inspect each continuous variable if possible.**
- Be aware of the **masking effect**, which happens when there is a group of outliers; as the outlier is not alone, they mask each other.
- Alongside of testing, consider:
	- **Trimming** removing observations, i.e. everything above the 99.99% percentile is removed.
	- **Winsorization** substituing extremes, i.e. everything above the 99.99% percentiles is substituted with the 99.99% percentile.
	- data transformation (next section).
- If data are susceptible to outliers (market risk measures), use methods that are less affected by the presence of outliers.

Outline for Section 4

[Data structures](#page-1-0)

[Missing observations](#page-5-0)

[Outliers](#page-12-0)

[Data transformation](#page-19-0)

[Feature engineering - part A](#page-34-0)

[Other data considerations](#page-36-0)

[Datasets](#page-38-0)

Štefan Lyócsa · **[Artificial Intelligence in Finance](#page-0-0)** · October 3, 2024 20 / 41

Conversion to dummy variable

Let $X_i, i=1,2,...,n$ denote the size of the apartment in $m^2.$ You would like to understand price setting Y_i , represented by rent (CZK) per m^2 . Standard linear regression yields estimates:

$$
\hat{Y}_i = 581.13 - 7.2\hat{X}_i \tag{6}
$$

We could **introduce non-linearity** by converting X_i into dummies. This type of conversion is simple and variables are easy to interpret. However, such transformation might lead to an excessive increase in the number of variables.

Data transformation

Conversion to dummy variable

Let $Q(X, k)$ be returning k^{th} quintile and $I(.)$ be a signalling function returning 1 if the condition holds and 0 otherwise:

$$
X_{1,i} = I(X_i \le Q(X, 1))
$$

\n
$$
X_{2,i} = I(X_i > Q(X, 1) \land X_i \le Q(X, 2))
$$

\n
$$
X_{3,i} = I(X_i > Q(X, 2) \land X_i \le Q(X, 3))
$$

\n
$$
X_{4,i} = I(X_i > Q(X, 3) \land X_i \le Q(X, 4))
$$

\n
$$
X_{5,i} = I(X_i > Q(X, 4))
$$

\n(7)

The estimates from a linear model are:

$$
\hat{Y}_i = 273.47 + 175.74\hat{X}_{1,i} + 82.49\hat{X}_{2,i} + 92.19\hat{X}_{3,i} + 41.44\hat{X}_{4,i} \quad (8)
$$

Data transformation

Conversion to dummy variable

 $\hat{Y}_i = 273.47 + 175.74\hat{X}_{1,i} + 82.49\hat{X}_{2,i} + 92.19\hat{X}_{3,i} + 41.44\hat{X}_{4,i}$ The two models can be visualized:

Data transformation Binning, data bucketing

Similar to the approach before is **binning**, where instead of a 1/0 dummy a representative value is used. Continuing the example before, for the first 'bin', the values would be:

$$
X_i = \begin{cases} \left[\sum_{i=1}^n I(X_i \leq Q(X,1)) \right]^{-1} \sum_{i=1}^n X_i \times I(X \leq Q(X,1)) & X_i \leq Q(X,1) \\ 0 & X_i > Q(X,1) \end{cases}
$$

In this case, binning and using dummies leads to the same model.

Data transformation Smoothing

Noise in data may refer to random fluctuations around the **signal**. Some applications:

- Asset prices (bid-ask spread, liquidity, lot size constraints, decimal places,...).
- **Measurement uncertainty (google trends data, surveys....).**

The idea of smoothing is to mitigate the effect of noise and recover the signal. **Methods for time-series**:

- Rolling median & mean.
- Kálmán filter (more advanced will not cover here).
- **Extracting deterministic trends, see [\[1,](#page-40-2) [4\]](#page-40-3).**

Data transformation Smoothing: Rolling mean

Let $X_t, t = K, K + 1, ..., T$ denote a time-series and $K \in \mathbb{N}$ being the smoothing window size parameter. The rolling mean:

$$
Y_t(K) = K^{-1} \sum_{j=t-K+1}^t X_j
$$
 (9)

Štefan Lyócsa · **[Artificial Intelligence in Finance](#page-0-0)** · October 3, 2024 26 / 41

Data transformation

Smoothing: Rolling mean with exponential weights

Let $\delta \in [0, 1]$ be a **memory parameter**, and the vector of weights is given as:

$$
w_q(K,\delta)=\delta^q\left[\sum_{r=1}^K\delta^r\right]^{-1}
$$

exponential smoothing can be expressed as:

$$
Y_t(K,\delta)=\sum_{j=t-K+1}^t X_j w_{t-j+1}(K,\delta) \qquad (10)
$$

What happens if we let $K = 1$? What happens if we $\uparrow K$? What happens if $\delta \rightarrow 1$?

Data transformation

Smoothing: Rolling mean with exponential weights

Let's take a look:

Data transformation

Data standardization

Data standardization is performed to make variables similar in scale or to achieve some desired data property:

- **Decimal scaling.**
- **Z-score.**
- **Min-Max normalization.**
- Box-Cox transformation.

Data transformation Decimal scaling

Let X_i , $i = 1, 2, ..., n$ be the original variable and $c \in R$ a constant. Scaled variable derived by **decimal scaling** is achieved by multiplying each value using the scaling constant 10*^j* , where *j* satisfies [\[8\]](#page-41-2):

$$
X_i^{(s)} = 10^j \times X_i, \; max_i |X_i^{(s)}| \le c \tag{11}
$$

Štefan Lyócsa · **[Artificial Intelligence in Finance](#page-0-0)** · October 3, 2024 30 / 41

Z-score normalization

Let $X_i, i=1,2,...,n$ be the raw variable, \bar{X} the average and σ_{X_i} standard deviation. **Z-score** scaling is achieved by:

$$
X_i^{(s)} = \frac{X_i - \bar{X}}{\sigma_{X_i}}
$$
 (12)

The
$$
\bar{X}_i^{(s)} = 0
$$
 and $\sigma_{X_i^{(s)}} = 1$.

- **Popular standardization.**
- **If It might change time-series properties.** (cond. heteroscedasticity changes).

Data transformation Min-Max normalization

Let X_i , $i = 1, 2, ..., n$ be the raw variable, min_{X_i} and max_{X_i} the corresponding minimum and maximum values, and *U* and *L* the new maximum and minimum. The **Min-Max transformation** leads to [\[8\]](#page-41-2):

$$
X_i^{(s)} = \frac{X_i - \min_{X_i}}{\max_{X_i} - \min_{X_i}} \times (U - L) + L \tag{13}
$$

It might distort the time-series properties.

Data transformation Box-Cox transformation

Let X_i , $i=1,2,...,n$, be the raw variable and λ a transformation parameter (with $\lambda = 1$ essentially untransformed variable).

$$
X_i^{(s)} = \begin{cases} \frac{X_i^{\lambda} - 1}{\lambda} & \lambda \neq 0\\ ln(X_i) & \lambda = 0 \end{cases}
$$

- \blacksquare Transformations can mitigate the size of extreme observations asymmetric distributions, common in the literature.
- Sometimes $ln(X_i + 1)$ is used.
- It might change time-series properties.
- I use the *ln* transformations for right-skewed distributions **a lot**.

Data transformation

Box-Cox transformation

Let's compare the distributions:

[Feature engineering - part A](#page-34-0)

Outline for Section 5

[Data structures](#page-1-0)

[Missing observations](#page-5-0)

[Outliers](#page-12-0)

[Data transformation](#page-19-0)

[Feature engineering - part A](#page-34-0)

[Other data considerations](#page-36-0)

[Datasets](#page-38-0)

Štefan Lyócsa · **[Artificial Intelligence in Finance](#page-0-0)** · October 3, 2024 35 / 41

Feature engineering

Feature engineering involves three major decisions:

- 1. Feature **selection** what variables to chose?
	- \blacksquare Curse of dimensionality.
- 2. Feature **extraction** how to combine variables?
- 3. Feature **creation** involves lot of creativity.
	- \blacksquare averages in time-series,
	- calendar effects.
	- \blacksquare adding ratios,
	- creating dummies (non-linear transformation),
	- de-trending, etc.

[Other data considerations](#page-36-0)

Outline for Section 6

[Data structures](#page-1-0)

[Missing observations](#page-5-0)

[Outliers](#page-12-0)

[Data transformation](#page-19-0)

[Feature engineering - part A](#page-34-0)

[Other data considerations](#page-36-0)

[Datasets](#page-38-0)

Štefan Lyócsa · **[Artificial Intelligence in Finance](#page-0-0)** · October 3, 2024 37 / 41

Other data considerations

Naming conventions.

- **Exclude variable that highly correlate with others (bi-variate** correlations).
	- **Pearson's correlation.**
	- Spearman's correlation.
	- **Kendall** τ correlations.
- \blacksquare How much data should we have? Hardware constraints and power of the tests.
- **Ethical consideration when working with data.**

Outline for Section 7

[Data structures](#page-1-0)

[Missing observations](#page-5-0)

[Outliers](#page-12-0)

[Data transformation](#page-19-0)

[Feature engineering - part A](#page-34-0)

[Other data considerations](#page-36-0)

[Datasets](#page-38-0)

Štefan Lyócsa · **[Artificial Intelligence in Finance](#page-0-0)** · October 3, 2024 39 / 41

Datasets

Cross-sectional:

- Offered rental price on apartments.
- Offered price for apartments.
- **Price of used cars: different models.**
- Credit risk on loans.
- Household income and expenses.
- \blacksquare Profitability of a business.
- Time-series:
	- **Unemployment rate, GDP growth.**
	- Oil and Gold price.
	- Stock price variation.

- [1] Jushan Bai and Pierre Perron. "Computation and analysis of multiple structural change models". In: *Journal of applied econometrics* 18.1 (2003), pp. 1–22.
- [2] *Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says*. https://www.forbes.com/sites/gilpress/2016/03/23/datapreparation-most-time-consuming-least-enjoyable-datascience-task-survey-says/. Accessed: 2023-10-02.
- [3] Frank E Grubbs. "Sample criteria for testing outlying observations". In: *The Annals of Mathematical Statistics* (1950), pp. 27–58.
- [4] Alastair R Hall, Denise R Osborn, and Nikolaos Sakkas. "Inference on structural breaks using information criteria". In: *The Manchester School* 81 (2013), pp. 54–81.

- [5] James J Heckman. "Sample selection bias as a specification error". In: *Econometrica: Journal of the econometric society* (1979), pp. 153–161.
- [6] R Karthik and S Abhishek. "Machine Learning Using R: With Time Series and Industry-Based Use Cases in R". In: *Apress* 2.321 (2019), p. 1.
- [7] Sang Kyu Kwak and Jong Hae Kim. "Statistical data preparation: management of missing values and outliers". In: *Korean journal of anesthesiology* 70.4 (2017), pp. 407–411.
- [8] Fred Nwanganga and Mike Chapple. *Practical machine learning in R*. John Wiley & Sons, 2020.
- [9] Ronald K Pearson et al. "Generalized hampel filters". In: *EURASIP Journal on Advances in Signal Processing* 2016 (2016), pp. 1–18.

[10] Matt Wiley and Joshua F Wiley. *Advanced R Statistical Programming and Data Models*. Springer, 2019.

MUNT ECON

Artificial Intelligence in Finance

Introduction - part B

Štefan Lyócsa

Department of Finance, Faculty of Economics and Administration

October 3, 2024

Štefan Lyócsa · **[Artificial Intelligence in Finance](#page-0-0)** · October 3, 2024 41 / 41

MASARYK UNIVERSITY