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Introduction

The problem

Challenges working with data:
m Dimensionality reduction:

m feature reduction (curse of dimensionality).
m feature creation.

m Imperfect collinearity - problem of correlated predictors.

m Signal extraction — remove the noise.
Useful methods to help out:
m Averaging of standardized variables.
m Principal Component Analysis (PCA).
m Graph (Network) theory to identify complex structures.
m (Dynamic) factor models,...
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Outline for Section 2
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Averaging

Averaging standardized variables
Example

Monthly BTC/USD:
m We plot Risk and Volume over-time.

m Seem to behave similarly - can we extract what is similar in the
behavior of the two series (underlying component)?

In order not to have a single variable excessive influence on the anal-
ysis, we standardize each variable.

m Z-Score standardization (already defined before).
m Rank standardization (outlier robust approach).
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Averaging

Rank standardization

Let X; x be k™ variable at month t = 1,2, oy T. Variables are trans-
formed to Z; = (Z1+,25, ...)T, where given k" indicator and X[,k Or-
dered X; x we have:

L Xg: < X X
Zy=14T (i = Atk < A[r+1] .k (L)
1 Ximu < Xek
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Averaging

Averaging of standardized variables

Let’s take a look at the time-series dynamics:
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Averaging

Averaging of standardized variables

Let’s take a look at the scatter-plot:

Raw data i Mean standardized data .
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Averaging

Averaging standardized variables
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m Z-Score: p(Risk, Vol.) = 0.45; p(Risk, Ave.) = p(Vol., Ave.) = 0.85.
m Rank: p(Risk, Vol.) = 0.28; p(Risk, Ave.) = p(Vol., Ave.) = 0.80.
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Outline for Section 3

Principal component analysis
The intuition behind PCA
Estimation
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Analyze results
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Principal component analysis The intuition behind PCA

Principal component analysis
Intuition

Averaging is simple, but there is a price for simplicity:
m All variables receive the same weight. Is that a reasonable
assumption? Well if it works...
m What if there is more then just one underlying factor?

m Many reasons why a firm goes bankrupt — no single underlying
reason.

m Risk, Volume, Extreme returns of stock prices might co-move be-
cause of multiple factors at play, e.g. market-, global-level uncer-
tainty.
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Principal component analysis The intuition behind PCA

Principal component analysis

Principal component analysis is a process of transforming the (i =
1,2,..,Nk=1,2,....K) N x K, Z-score standardized matrix X of fea-
tures to Z (N x K) that contains K uncorrelated columns and includes
same information as the original matrix X.

Matrix Z might be useful:

m If variables (features) have common unobserved factors, one of
the columns of the Z matrix describes most of the movement (vari-
ation) in the data.

m One can decide to use k < K (e.g. 1 or 2) such informative
columns — reducing the dimensionality of the feature space.

Stefan Ly6csa - Artificial Intelligence in Finance - December 4, 2024 12/39



Principal component analysis The intuition behind PCA

Principal component analysis
Intuition

Assume zero mean variables. What is a characteristic pattern in these
data?

Volume

1. Find a line such, that the projection of each observation on the
line (from origin to the point on line) will result in a highest
variation; sum of squares of the projected points on that line.

2. Find a line orthogonal to the first line.
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Principal component analysis The intuition behind PCA

Principal component analysis
Intuition
The projection:

line that maximizes the variance of projected points (minimizes
orthogonal distance to the line) — but why?
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Principal component analysis The intuition behind PCA

Principal component analysis

Intuition

Lines in the figure characterize the co-movement of data. Eigenvec-
tors is a vector in the feature space that represent the direction along
which max. variance in data is represented. Eigenvalues represent the
magnitude of the variance which is explained in a specific direction.
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Principal component analysis The intuition behind PCA

Principal component analysis

In the PCA we are searching for (unit) vectors that create lines with
these properties — eigenvectors. The directions of these eigenvectors
are principal components.

Note that we can view these principal components as new axes.
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Principal component analysis The intuition behind PCA

Principal component analysis
Intuition

Finally, given these lines, we can retrieve the artificial data - the
unobserved factors.
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Principal component analysis Estimation

Algorithm in PCA

Common algorithm to find the eigenvectors and eigenvalues is
singular value decomposition (prcomp() in R) or covariance matrix
estimation (princomp() in R).

1. Standardize data (e.g. remove mean or go for Z-Score). In the
following we assume Z-score standardization.

2. Estimate covariance matrix.

3. Find eigenvalues (determined by the magnitude of variation, i.e.
the one maximized while searching for the vector) and eigenvec-
tors of the covariance matrix.

4. Analyze results:

m Feature vector and loadings (weights).
m Explained variance.
m How many common factors to select?
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Principal component analysis Estimation of eigenvectors and eigenvalues

Estimation of eigenvectors and eigenvalues

Let A be a (square and symmetric) K x K covariance matrix of the stan-
dardized variables, i.e. g;; are variances and a;, i # j are covariances
between variables. The eigenvalue is given as A and eigenvector (K x 1)
as v and are defined as:

Av = )v (2)

Let / be an a K x K identity matrix with diagonal elements equal to 1
and 0 otherwise.
Av = Mv (3)
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Principal component analysis Estimation of eigenvectors and eigenvalues

Estimation of eigenvectors and eigenvalues

(A—X)v =0 (4)

We want non-trivial solution to eigenvector v, i.e. should be a non-
zero vector. That would be a solution if we could isolate vector v by
simplifying the equation with (A — Al)~1. In order to avoid that, we
should not able to the the simplification, i.e. the matrix (A — \)~!
should not exists, which means that:

det/A — M| =0 (5)

Finding the solution leads to eigenvalues. Substituting each eigen-
value one-by-one to Eq. (2) leads to eigenvectors. Recall, that eigen-
vectors show the direction of the relationship in the data, while eigen-
values the magnitude.
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Principal component analysis Analyze results

Feature vector and loadings (weights)

m The elements of the eigenvector v (K x 1) can be understood as
weights (or contributions) of each of the features (k =1,2,....,K)
to the artificially created feature variable (sometimes referred to
as principal component).

m If data were Z-Score standardized (or have similar variance) we
can interpret these elements as weights, i.e. how much weight
contributes the given variable to the new feature, relative to the
rest of the variables.

m The values allow us to interpret the new feature vector.
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Principal component analysis Analyze results

Feature vector and loadings (weights)

Let X be a N x K matrix of Z-Score standardized features and let’s stack
the column vectors v (for each component) into a K x K matrix Y. The
artificial variables can be extracted as:

Z=XY (6)

The (N x K) matrix Z is the transformed matrix of the original dataset
(X) — the goal of the principal component analysis.
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Principal component analysis Analyze results

Feature vector and loadings (weights)

Continuing the example above, the two eigenvectors are:
B v = (0.707,0.707)T
B v = (—0.707,0.707)T

The relative magnitude of the relationship is given by eigenvalues that
are 1.473 and 0.527. The two principal component scores found as:

Pi1 = Xj1 X 0.707 + Xj2 X 0.707
pi2 = xi1 x (=0.707) + x;; x 0.707

If variables have similar variance or were Z-score standardized, the
elements of the eigenvector can be interpreted as loadings - weights.
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Principal component analysis Analyze results

Explained variance

m Note, that the variance of Z-score standardize features stored in
matrix X as columns, is 1. Thus the overall variance is K (i.e. equal
to number of columns/features).

m Let denote the variance of a column (principal component score)
of matrix Z as D[Z}],j = 1,2, ...,K. For Z-score standardized fea-
tures, the sum of variances Zj’;l D[Zj] = K as well.

m Importance of a principal score variable can be defined by the
amount of variance it explains:

D|Z;
> j—1DlZ]]
for Z-score standardized variables:
D|Z;
& _ 1oz (8)

Vie — 28—
TN Diz)
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Principal component analysis Analyze results

How many common factors to select?

Couple of rules-of-thumbs:
m Select first n scores that explain at least 80% of the total variance.

m Guttman - Kaiser criterion to use scores that have eigenvalues
greater as 1 [3, 5, 4] (or more general, the explained variance is
above the average).

m Use a scree-plot, where on x-axisarej = 1, 2, ..., K principal com-
ponents and on y-axis variance D[Z}], but values are ordered from
highest variance to lowest. Select only factors on the steep part
of the resulting line (before the kink).
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Principal component analysis Analyze results
How many common factors to select?

From the previous example:
m Variance explained is 72.60% and 27.40%.

Scree plot

60~

Percentage of explained variances

Dimensions
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Network based dimensionality reduction

Outline for Section 4

Network based dimensionality reduction
Complete graph
Minimum spanning tree
Asset (Threshold) graph
Notes on the use of networks
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Network based dimensionality reduction

Intuition

The idea is to identify hidden complex structures. The setup:

m We have data X,/ = 1,2,...,N,k=1,2,....K, where / is an ob-
servation and k is a given feature.

m Similarly to cluster analysis, we select some distance measure and
construct a N x N, similarity matrix, D, between observations (e.g.
distance matrix, correlation matrix, ....).
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Network based dimensionality reduction

Intuition

Given the similarity matrix and some rules we create a graph; which
we hope uncovers hidden relationships (e.g. clusters of risky assets,
profitable clients,....). A graph G = (V, W) is a mathematical object
where V is a set of vertices (nodes) and W is a set of (weighted edges).

P75

® o0
:)\:.@,rf. o—%o
@

Vertices tend to be given, how about edges?
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Network based dimensionality reduction

Intuition
Example

What type of an asset is Bitcoin? Let P; ; be the closing price of asset
i=1,2,..,attimet =1, 2,....;T. Daily returns are defined as:

Pii— P
Rij =100 x bt 9)
Pe_1

The elements of the N x N correlation matrix ¢;; € C correspond to
correlations p;; € [-1, 1] between daily returns of assets / and j.
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Network based dimensionality reduction

Intuition
Example

In our case of N = 27 assets:

1 014 .. 031 0.29
014 1 .. 0.28 0.15

0.31 028 ... 1 043
0.29 0.15 .. 043 1

We have N x (N — 1) x 27 = 351 correlations — a complex system
of relationships. How to select relevant correlations?

m Minimum spanning tree, e.g. [7].
m Asset graphs, e.g. [8].
m Granger causality graphs, e.g. [6, 2].
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Network based dimensionality reduction

Intuition
Example

Correlations are not distances (...), we use the transformation from
Mategna [7] to arrive at D:

dij =/2(1 = pij) € [0,2] (10)

Lower valued of d;; — similar objects. The matrix from above now
looks as:

0 131 ... 117 1.19
131 0 .. 1.20 1.30

117 120 .. 0 1.07
119 130 ... 1.07 O
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Network based dimensionality reduction Complete graph
Complete graph
Example

Now we can create a graph, vertices are financial assets, edges are
distances:

©0:0.g.
® ©

@
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This mess is called a complete graph and is not very useful.
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Network based dimensionality reduction Minimum spanning tree

Minimum spanning tree
Example

A sub-graph of the complete graph, that retains only N — 1 edges
which connect all the vertices together, with the minimum possible
total edge weight and no cycles:
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Network based dimensionality reduction Minimum spanning tree

Minimum spanning tree

How do we create such graphs?
m Prim’s algorithm [9].
m Kruskal's algoritm [9].

m Boruvka’s algoritm [1]: BorUvka, O. (1926). O jistém problému
minimalnim. Prace Mor. Ptirodovéd. Spol. V Brné IIl 3: 37-58.
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Network based dimensionality reduction Asset (Threshold) graph

Asset graph

MST has one topological property - the resulting tree (graph) must
be connected. This requirement does not make much sense in eco-

nomics/finance [10]. A much simpler alternative is to retain r% lowest
distances. For example 10%:
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Network based dimensionality reduction Asset (Threshold) graph

Asset graph

MST has one topological property - the resulting tree (graph) must
be connected. This requirement does not make much sense in eco-

nomics/finance [10]. A much simpler alternative is to retain r% lowest
distances. For example 30%:
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Network based dimensionality reduction Notes on the use of networks

Notes on the use of networks

Networks allow us to extract some useful information, e.q.:
m vertex degree (local centrality measure),
m betweeness (global centrality measures),
m clusters of observations,
[ I
These can be used as features.
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Network based dimensionality reduction Notes on the use of networks
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