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Introduction

The problem

Is there a single ’best model’?

Not sure ..., but even if, are we able to find it? That might not be easy
Petropoulos et al. (2018, [8]; Kourentzes et al (2019,[5]):

m Data uncertainty - we observe a specific finite sample.

m Parameter uncertainty - with finite sample we are unsure about
the estimated parameters.

m Model uncertainty - do we have the right model (specification)?
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Introduction

The solution

In 1906, sir F. Galton observed that an average of 787 estimates of ox’s
weight is quite close to the ox’s actual weights (Surowiecki, 2005 [10])
— wisdom in crowds?

Solution to the ‘one ring that rule them all’ problem is to combine mul-
tiple forecasts (from different forecasting models) into a prediction —
combination forecasts or ensemble forecast. Why it might work?

m Partial/incomplete overlap of information from different models.
m Structural breaks in model parameters.

m Parameter uncertainty reduction, e.g. forecast bias and variance
reduction.
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Introduction

The solution

The research has since evolved with studies of Bates and Granger (1969,
[2]) or Timmermann, (2006,[11]) being highly influential. The solution
leads to the following tasks:
m How to combine model forecasts?
m Point forecasts:
B Simple models.

B Linear combinations - optimal weights, regression based,
performance based.
® Non-linear combinations.

m Probabilistic forecasts.
m What models to combine?

m The ‘good’ ones.
m Diverse models.
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Point forecasts
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Point forecasts Simple ensembles

Simple ensembles

Let Fp,; be a forecast from model m = 1,2,...,M of observation i =
1,2, ...,N. Combination that ignores past performance and dependence
between forecasts is a simple combination forecast.

m Average forecast:

M
=M1 Fni (1)
m=1

m Median forecast (Ox), let F(,) ; denote ordered forecasts from the
lowest (r = 1) to the highest (r = M) value:

_1 .
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m Winsorized average:
M laM|

r=aM|
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Point forecasts Simple ensembles

Simple ensembles

Why such simple methods may work, according to Pam and Zellner
(1992, [7)):

m Averaging reduces bias and variance of errors.

m No need to estimate weights — what method to employ?

m No need to worry about weight estimation error.

m No need for extra observations for calibrating the weights.

Makridakis et al (2020, [6]) reports that these methods still offer com-
petitive forecasts. However, a known downside is that the result de-
pends on the ‘quality’ of the models employed. Why?
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Point forecasts Linear combinations

Linear combinations: Optimal weights

Instead of using equally weighted averages, one wants to find weights
Wm that minimize the variance of the combined forecasts — ‘optimal’
weights (Bates and Granger, 1969, [2]).

If the individual forecasts are unbiased and forecast error variances are
stable, the combined forecast is unbiased.

Optimal weights are given via a restricted OLS estimation of (Granger
and Ramanathan, 1984, [3]):

M M
Fi=> WnFni+e, sty =1 (4)
m=1 m=1
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Point forecasts Linear combinations

Linear combinations: regression based forecasts

An unrestricted model is possible:

M
Fi=> WnFni+e€i (5)

m=1

Often, forecasts are highly correlated — collinearity issues — RIDGE.

Some of the forecasts might work well for a specific subspace of the
features space. You can add features to the model:

M K
Fi=> WnFmni+ Y BiXix+ e, (6)
m=1 k=1

Stefan Ly6csa - Artificial Intelligence in Finance « December 11, 2024 10/19



Point forecasts Linear combinations

Linear combinations: principal components

Often, forecasts are highly correlated — collinearity issues — appli-
cation of the principal components regression - PRC (see Stock and
Watson, 2004, [9]). In the first step extracting first S principal compo-
nents, P;,s =1,2,...,5 < M could:

m Describe the forecasts well (high explained variance), while

reducing the noise.

m Principal components are orthogonal.
The later is useful in the second step, where the following model is
being estimated via OLS:

s
Fi= wPsi+e, (7)
s=1

The true out-of-sample forecast is found by using estimated loadings
to estimate the principal components (Ps;) and using weights ws to
arrive at the final forecast.
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Point forecasts Performance-based combinations

Performance-based combinations

Shouldn’t forecasts from more accurate models receive higher
weights?

Regression-based forecasts might enforce this principle. A popular
alternative given by Bates and Granger (1969, [2]) is a performance-
based weight. Let V; be the predicted value:

Iy
- M 7-1
St Iy

with [, being the sum (average) of forecast loss values, i.e. mean
square error N1 S N(V,—F,))2, mean absolute error N1 SN |(Vi—Fp).

(8)

Wm
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Point forecasts Performance-based combinations

Performance-based combinations

Averages (sum) are sensitive to outliers. A more robust and less sensi-
tive to outliers approach is based on the ranking of individual forecasts
(Wang et al, 2023 [12]), that was suggested by Aiolfi and Timmermann
(2006, [1]).
Let R, denote the rank of the ordered average loss values ((), where
Rm = 1 corresponds to the model with lowest errors and R, = M to
the model with highest errors. The rank performance-based weights
are given:

R

= ——— )
Yy R

Wm
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Point forecasts Non-linear combination forecasts

Non-linear combination forecasts

Many regression based models can be enhanced by non-linear coun-
terparts, where we map individual forecasts to observed values using
non-linear methods:

m Bagged tree.

m Random forest.
m Boosted tree.

m Neural networks.
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Forecast model choices

Outline for Section 3

Forecast model choices
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Forecast model choices Identify good models: K-means

Identify good models: K-means

'Many could be better than all’ (Zhou et al 2002, [13])

In case of many forecasts, one can use k-means to find groups of fore-
casts that tend to produce similar forecasting accuracy; for a given loss
function (e.g. mean square error, mean absolute error,...).

Aiolfi and Timmermann (2006, [1]) suggest to create such clusters and
use simple combination forecasts:

m Average.
m Median.
m Trimmed average.
or performance-based forecasts.
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Forecast model choices Identify good models: Model confidence set

Identify good models: Model confidence set

'Many could be better than all’ (Zhou et al 2002, [13])

With not that many models (otherwise it takes long on larger samples)
one could rely on statistical test.

Using the model confidence set approach of Hansen et al (2011, [4])
identify a set of superior models. One could use simple combination
forecasts with the set of superior models:

m Average.
m Median.
m Trimmed average.
or performance-based forecasts.
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Forecast model choices Identify good models: Diverse models

Identify good models: Diverse models

'Many could be better than all’ (Zhou et al 2002, [13])

It is usually useful to combine individual forecasts from models that
are similarly accurate, but forecast are not correlated — diverse mod-
els.

This should motivate you to try many different types of models:
m different model types,
m different information (feature) sets.

Even if you do not have a clear winner, combinations might prove to
be beneficial with diverse models.
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