MUNI ECON

Artificial Intelligence in Finance

Supervised learning - discrete outcomes part B

Štefan Lyócsa

Department of Finance, Faculty of Economics and Administration

November 21, 2024

Štefan Lyócsa • Artificial Intelligence in Finance • November 21, 2024

Outline for Section 1

Introduction

Regularized logistic regression LASSO logistic regression RIDGE logistic regression Elastic Net logistic regression

Bagging for classification purposes

Tree-based methods: classification trees

Introduction Splitting a decision tree Prunning

Bagging decision trees

Random classification forest

Introduction

The logistic regression is a **popular benchmark**:

- It is simple to interpret.
- It is fast to estimate no tuning required.
- It leads to nonlinearities along and across features.
- You can still attempt to **enhance** the model via:
 - Feature transformations (although difficult to interpret see Mood (2010, [3]).
 - Feature interactions.
 - Bagging.

There are some **limitations** if many features are included:

- Estimation uncertainty too many parameters.
- Over-fitting is likely.

Following the regularization approach for regression one can **adjust the logistic regression** as well:

- LASSO logistic regression (LLR).
- RIDGE logistic regression (RLR).
- Elastic Net logistic regression (ENLR).
- Complete subset logistic regression.

Regularized logistic regression

Outline for Section 2

Introduction

Regularized logistic regression

LASSO logistic regression RIDGE logistic regression Elastic Net logistic regression

Bagging for classification purposes

Tree-based methods: classification trees

Introduction Splitting a decision tree Prunning

Bagging decision trees

Random classification forest

LASSO logistic regression

Recall that the **log-likelihood to maximize** for logistic regression is given by:

$$\max_{\beta} \to LL(\beta) = \sum_{i=1}^{n} Y_i \left(\sum_{j=1}^{k} \beta_j X_{i,j} \right) - \log \left(1 + e^{\sum_{j=1}^{k} \beta_j X_{i,j}} \right) \quad (1)$$

After adding the **penalty term**, the expression becomes:

$$\max_{\beta} \to LL(\beta) = \left[\sum_{i=1}^{n} Y_i \left(\sum_{j=1}^{k} \beta_j X_{i,j} \right) - \log \left(1 + e^{\sum_{j=1}^{k} \beta_j X_{i,j}} \right) \right] -\lambda \sum_{j=1}^{k} |\beta_j|$$
(2)

LASSO logistic regression

As before the λ parameter needs to be estimated \rightarrow **cross-validation**:

$$\max_{\beta} \to LL(\beta) = \left[\sum_{i=1}^{n} Y_i \left(\sum_{j=1}^{k} \beta_j X_{i,j} \right) - \log \left(1 + e^{\sum_{j=1}^{k} \beta_j X_{i,j}} \right) \right]$$
$$-\lambda \sum_{j=1}^{k} |\beta_j|$$
(3)

What classification accuracy measure to use?

LASSO logistic regression

What classification accuracy measure to use?

Deviance (cross-entropy):

$$D_i = -2 \left[log(\hat{p}_i) Y_i + log(1 - \hat{p}_i)(1 - Y_i) \right]$$
(4)

AUC - does not require explicit threshold.

Custom based:

- Profit, revenue.
- Balanced accuracy.
- Precision (depends)....

RIDGE logistic regression

Using the **penalty term** from RIDGE leads to:

$$\max_{\beta} \to LL(\beta) = \left[\sum_{i=1}^{n} Y_i \left(\sum_{j=1}^{k} \beta_j X_{i,j} \right) - \log \left(1 + e^{\sum_{j=1}^{k} \beta_j X_{i,j}} \right) \right] -\lambda \sum_{j=1}^{k} \beta_j^2$$
(5)

Elastic Net logistic regression

Combining the LASSO and RIDGE penalty terms leads to:

$$\max_{\beta} \to LL(\beta) = \left[\sum_{i=1}^{n} Y_i \left(\sum_{j=1}^{k} \beta_j X_{i,j} \right) - \log \left(1 + e^{\sum_{j=1}^{k} \beta_j X_{i,j}} \right) \right]$$
$$-\lambda \left[\frac{1 - \alpha}{2} \sum_{j=1}^{k} \beta_j^2 + \alpha \sum_{j=1}^{k} |\beta_j| \right]$$
(6)

Apart from λ we need to estimate or assume $\alpha \in (0, 1)$ as well.

Titanic dataset

How are regularization methods doing in our datasets? **Titanic** dataset:

- Predicting the survival of a passenger.
- No imbalance procedures.
- Threshold set to 0.427 the proportion of survived passengers.
- 1046 obs. originally, 836 in mildly unbalanced training and 210 in testing dataset with 5 features.

Models	Sensitivity	Specificity	Balanced Acc
LR	0.828	0.743	0.786
LLR	0.829	0.743	0.786
RLR	0.814	0.750	0.782
ENLR	0.829	0.743	0.786

P2P Zopa dataset

How are regularization methods doing in our datasets? **Zopa** dataset:

- Predicting the default of a loan.
- **8%** bad loans \rightarrow unbalanced data!
- We have enough 20000 observations \rightarrow under-sample the majority.
- 2609 in training and 653 in testing data with 160 features.

Models	Sensitivity	Specificity	Balanced Acc
LR	0.73	0.75	0.74
LLR	0.68	0.82	0.75
RLR	0.70	0.76	0.73
ENLR	0.68	0.82	0.75

Firm defaults

How are regularization methods doing in our datasets? **Firm defaults** dataset:

- Predicting the default of a firm in next period.
- Random under-sampling of majority and random over-sampling of minority.
- 6819 obs. originally, 1400 in balanced training and 1364 in testing dataset and 91 features.

Models	Sensitivity	Specificity	Balanced Acc
LR	0.73	0.87	0.80
LLR	0.82	0.86	0.84
RLR	0.82	0.85	0.84
ENLR	0.82	0.86	0.84

Bagging for classification purposes

Outline for Section 3

Introduction

Regularized logistic regression LASSO logistic regression RIDGE logistic regression Elastic Net logistic regression

Bagging for classification purposes

Tree-based methods: classification trees Introduction Splitting a decision tree Prunning

Bagging decision trees

Random classification forest

Bagging revisited

Bagging is based on estimating a model on a **bootstrapped** sample. That is, we create a *new* dataset by randomly selecting (with replacement) observations from the original dataset. Repeating the bootstrapping (sampling) \rightarrow estimation \rightarrow prediction. Sampling *B* times, leads to a **distribution** of predictions for every testing observation *i*. Specifically, i.e. $\hat{p}_{i,b}$, i = 1, 2, ...; b = 1, 2, ..., B.

Why is a distribution of the predicted probability in **classification** tasks useful?

Bagging for classification purposes

Bagging revisited

Why is a distribution of the predicted probability in **classification** tasks useful?

- Bagging can improve prediction accuracy averaging many over-fitted models.
- It gives us an estimate of confidence in our predictions. The P2P loan default:

P2P loan

As an investor, you invest if $\hat{Y}_i = 0$, which happens on a balanced sample if $\hat{p}_i < 0.5$: Using LASSO you face:

	Observed $Y_i = 0$	Observed $Y_i = 1$
Predicted $\hat{Y}_i = 0$	262	105
Predicted $\hat{Y}_i = 1$	59	227

This leads to a 71.39% success across 367 loans. Let's be more conservative and:

■ Invest **only** into loans, where the 95th quantile of the predicted probability is below the threshold, i.e. $\sum_{b=1}^{B} I(\hat{p}_{i,b} > 0.5) \le 0.95$.

The confusion matrix investor faces is:

	Observed $Y_i = 0$	Observed $Y_i = 1$
Predicted $\hat{Y}_i = 0$	169	50
Predicted $\hat{Y}_i = 1$	0	0

The success goas to 77.16% but **only** across 219 loans.

Štefan Lyócsa • Artificial Intelligence in Finance • November 21, 2024

P2P loan

The higher the confidence the higher the expected precision (identify a default correctly) - **there is a price we pay**.

Does that mean that loan market is **inefficient** see Lyócsa and Výrost (2018, [2])? Or that we are going to have **higher profits**?

Štefan Lyócsa • Artificial Intelligence in Finance • November 21, 2024

Tree-based methods: classification trees

Outline for Section 4

Introduction

Regularized logistic regression LASSO logistic regression RIDGE logistic regression Elastic Net logistic regression

Bagging for classification purposes

Tree-based methods: classification trees

Introduction Splitting a decision tree Prunning

Bagging decision trees

Random classification forest

Introduction

- Involve stratifying a feature space into simpler regions subsets of data.
- Prediction for a specific observation from the testing sample is usually the **most occurring class** in the **terminal region**.
- Simple decision trees can be improved via:
 - pre-prunning.
 - post-prunning.
 - bagging.
 - bagging and randomization random forest.
 - boosting.

Example

Shallow tree

Example

Example

Deeper tree

Štefan Lyócsa • Artificial Intelligence in Finance • November 21, 2024

Splitting the nodes

How do we find splitting points?

To split a node (*t*), measures employed are based on **degree of impurity** of a node(s). Highest impurity is (0.5, 0.5), lowest is (0.0, 1.0) or (1.0, 0.0), i.e. the smaller the degree of impurity, the more **skewed** the **class distribution** (Tan et al., 2016, [4]).

Let p(c|t) denote the proportion of observations of class *c* in node *t*: **Classification error** for given node (*t*):

$$I_{CE} = 1 - \max_{c} p(c|t) \tag{7}$$

Gini index (we will use) for node (t):

$$I_{CE} = 1 - \sum_{c} p(c|t)^2$$
 (8)

Entropy for node (*t*):

$$I_{CE} = -\sum_{c} p(c|t) log_2 p(c|t)$$
(9)

Štefan Lyócsa • Artificial Intelligence in Finance • November 21, 2024

24 / 40

Splitting the nodes

Splitting the nodes

Similarly as for regression trees, in **decission trees** the ultimate goal is to find terminal regions - $R_1, R_2, ..., R_J$ that minimize some loss functions (James et al., 2013, [1]). As before, a greedy approach is used, the **recursive binary splitting** algorithm.

A split is decided by **comparing the degree of impurity of the parent node with child nodes**. Let *k* be number of classes (2 for **binary splits**), N_j number of observations in child node *j* and $I(t_j)$ the impurity measure of child note *j*. The goal is to find a split that maximizes:

$$\Delta = I(t) - \sum_{j=1}^{k} I(t_j) \frac{N_j}{N}$$
(10)

Splitting the nodes - Example

$$\Delta = l(t) - \sum_{j=1}^{k} l(t_j) \frac{N_j}{N}$$

0.489 - $\frac{0.429 \times 61}{836} - \frac{0.482 \times 775}{836} = 0.0107$

Štefan Lyócsa • Artificial Intelligence in Finance • November 21, 2024

Prunning

The **pre-pruning** approach (early stopping rules):

- Limit the **maximum depth** of the tree.
- Set a **minimum number** needed to consider a **split**.
- Set a minimum number of observations in a terminal region (bucket size).
- The **post-pruning** approach (bottom-up from a deep tree):
 - Introducing penalization for too complex trees.

Bagging decision trees

Outline for Section 5

Introduction

Regularized logistic regression LASSO logistic regression

RIDGE logistic regression Elastic Net logistic regressior

Bagging for classification purposes

Tree-based methods: classification trees

Introduction Splitting a decision tree Prunning

Bagging decision trees

Random classification forest

Bagging decision trees

Bagging for decision trees

Recall that bagging is based on the idea that averaging unbiased but potentially over-fitted model's predictions will reduce the out-of-sample error.

Let's have data denoted as Z with i = 1, 2, ..., N observations. In a non-parametric bootstrap:

- 1. Each observation in *Z* has the same probability of being selected.
- 2. **Randomly** select *N* observations from *Z*, **with replacement** and create a new dataset *Z*^{*}.
- 3. Estimate a given model/statistics using the dataset Z^* .
- 4. Repeat step 2 and 3 until we have *B* models/statistics.

Bagging decision trees

Bagging: Introduction

Using data from the training sample, for each bootstrap sample you estimate a complete (deep) tree T^{*b} and generate a corresponding forecast for observation *i* that belongs to the testing dataset, $\hat{p}_i^{*,b} \in (0,1)$. The prediction using **bagging** is given by a simple average:

$$\hat{p}_i = B^{-1} \sum_{b=1}^{B} \hat{p}_i^{*,b}$$
(11)

This approach should work well for deep trees - why? Predictions from such trees have **low bias but high variance**.

Titanic dataset

How are regularization methods doing in our datasets? **Titanic** dataset:

- Predicting the survival of a passenger.
- No imbalance procedures.
- Threshold set to 0.427 the proportion of survived passengers.
- 1046 obs. originally, 836 in mildly unbalanced training and 210 in testing dataset with 5 features.

Models	Sensitivity	Specificity	Balanced Acc
LR	0.828	0.743	0.786
LLR	0.829	0.743	0.786
RLR	0.814	0.750	0.782
ENLR	0.829	0.743	0.786
DC-BAG	0.757	0.821	0.789

P2P Zopa dataset

How are regularization methods doing in our datasets? **Zopa** dataset:

- Predicting the default of a loan.
- **8%** bad loans \rightarrow unbalanced data!
- We have enough 20000 observations → under-sample the majority.
- 2609 in training and 653 in testing data with 160 features.

Models	Sensitivity	Specificity	Balanced Acc
LR	0.73	0.75	0.74
LLR	0.68	0.82	0.75
RLR	0.70	0.76	0.73
ENLR	0.68	0.82	0.75
DC-BAG	0.80	0.75	0.78

Firm defaults

How are regularization methods doing in our datasets? **Firm defaults** dataset:

- Predicting the default of a firm in next period.
- Random under-sampling of majority and random over-sampling of minority.
- 6819 obs. originally, 1400 in balanced training and 1364 in testing dataset and 91 features.

Models	Sensitivity	Specificity	Balanced Acc
LR	0.73	0.87	0.80
LLR	0.82	0.86	0.84
RLR	0.82	0.85	0.84
ENLR	0.82	0.86	0.84
DC-BAG	0.82	0.90	0.86

Random classification forest

Outline for Section 6

Introduction

Regularized logistic regression LASSO logistic regression RIDGE logistic regression Elastic Net logistic regression

Bagging for classification purposes

Tree-based methods: classification trees

Introduction Splitting a decision tree Prunning

Bagging decision trees

Random classification forest

Random classification forest

Similarly as with random forest for regressions, random forest combines bagging with a random selection of features to consider at each split \rightarrow **decorrelated trees**. Key parameters to hyper-tune:

- Depth of the trees (should be deep).
- Number of random features selected at each split.
- Number of trees.

Other pre-prunning parameters can be tuned as well.

Titanic dataset

How are regularization methods doing in our datasets? **Titanic** dataset:

- Predicting the survival of a passenger.
- No imbalance procedures.
- Threshold set to 0.427 the proportion of survived passengers.
- 1046 obs. originally, 836 in mildly unbalanced training and 210 in testing dataset with 5 features.

Models	Sensitivity	Specificity	Balanced Acc
LR	0.828	0.743	0.786
LLR	0.829	0.743	0.786
RLR	0.814	0.750	0.782
ENLR	0.829	0.743	0.786
DC-BAG	0.757	0.821	0.789
RF	0.814	0.778	0.796

P2P Zopa dataset

How are regularization methods doing in our datasets? **Zopa** dataset:

- Predicting the default of a loan.
- **8%** bad loans \rightarrow unbalanced data!
- We have enough 20000 observations \rightarrow under-sample the majority.
- 2609 in training and 653 in testing data with 160 features.

Models	Sensitivity	Specificity	Balanced Acc
LR	0.73	0.75	0.74
LLR	0.68	0.82	0.75
RLR	0.70	0.76	0.73
ENLR	0.68	0.82	0.75
DC-BAG	0.80	0.75	0.78
RF	0.80	0.72	0.76

Firm defaults

How are regularization methods doing in our datasets? **Firm defaults** dataset:

- Predicting the default of a firm in next period.
- Random under-sampling of majority and random over-sampling of minority.
- 6819 obs. originally, 1400 in balanced training and 1364 in testing dataset and 91 features.

Models	Sensitivity	Specificity	Balanced Acc
LR	0.73	0.87	0.80
LLR	0.82	0.86	0.84
RLR	0.82	0.85	0.84
ENLR	0.82	0.86	0.84
RF	0.78	0.93	0.85

- [1] Gareth James et al. *An introduction to statistical learning*. Springer, 2013.
- [2] Štefan Lyócsa and Tomáš Výrost. "To bet or not to bet: a reality check for tennis betting market efficiency". In: *Applied Economics* 50.20 (2018), pp. 2251–2272.
- [3] Carina Mood. "Logistic regression: Why we cannot do what we think we can do, and what we can do about it". In: *European sociological review* 26.1 (2010), pp. 67–82.
- [4] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining. Pearson Education India, 2016.

Random classification forest

MUNI ECON

Artificial Intelligence in Finance

Supervised learning - discrete outcomes part B

Štefan Lyócsa

Department of Finance, Faculty of Economics and Administration

November 21, 2024

Štefan Lyócsa • Artificial Intelligence in Finance • November 21, 2024

M A S A R Y K U N I V E R S I T Y