

ARCH/GARCH models

Lecturer: Axel A. Araneda, Ph.D.

Literature

 Engle, Robert F. (1982). "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation". <u>Econometrica</u> 50 (4): 987–1007.

2.<u>Bollerslev, Tim</u> (1986). "Generalized Autoregressive Conditional Heteroskedasticity". *Journal of Econometrics* **31** (3): 307–327.

ARCH and GARCH models

$$\boldsymbol{\epsilon}_t = \boldsymbol{\sigma}_t \boldsymbol{w}_t$$
 $w_t \sim N(0, 1)$

ECON

ARCH/GARCH models

Assignment 4

- 1. Select two assets from two different sectors and download the last-year historical daily prices. Using the first 11 months (train data), calibrate 2-3 ARIMA models and examine the mean forecasting performance for each one of the approaches using the last-month data (out-of-sample or test data) by means of the mean squared error.
- 2. Consider that the random variable x_t is described by following process: $x_t = \varepsilon_t$ with:
 - (a) $\varepsilon_t \sim N(0, 1)$ (b) $\varepsilon_t = \sigma_t w_t$, $w_t \sim N(0, 1)$, $\sigma_t^2 = \alpha + \beta \varepsilon_{t-1}^2$ (c) $\varepsilon_t = \sigma_t w_t$, $w_t \sim N(0, 1)$, $\sigma_t^2 = \alpha + \beta \varepsilon_{t-1}^2 + \gamma \sigma_{t-1}^2$
 - Comment on each specification (main features).
 - Simulate a path (1000 values) for x_t using each specification and compare the models empirically.

Assignment 4 (1)

```
getSymbols('^AAPL',src='yahoo', from="2021-11-05"
    ,periodicity = 'daily')
AAPL<-AAPL[,6]
L<-length(AAPL)
m<-21
AAPL_train=AAPL[1:(L-m)]
AAPL_test=AAPL[(L-m+1):L]
```

```
A1<-accuracy(m1_test)
A2<-accuracy(m2_test)
A3<-accuracy(m3_test)
A4<-accuracy(m4_test)
RMSE<-c(A1[,2],A2[,2],A3[,2],A4[,2])
```

m1<-arima(AAPL_train,order = c(1,1,0))
m2<-arima(AAPL_train,order = c(0,1,1))
m3<-arima(AAPL_train,order = c(1,1,1))
m4<-arima(AAPL_train,order = c(0,1,0))</pre>

m1_test<-arima(AAPL_train, order=c(1,1,0),fixed=m1\$coef)
m2_test<-arima(AAPL_train, order=c(0,1,1),fixed=m2\$coef)
m3_test<-arima(AAPL_train, order=c(1,1,1),fixed=m3\$coef)
m4_test<-arima(AAPL_train, order=c(0,1,0),fixed=m4\$coef)</pre>

> RMSE

[1] 3.259902 3.259898 3.221729 3.259925

FCON

MUNI ECON

Assignment 4 (2c)

Normal Q-Q Plot

```
s2<-rep(0,1000); e<-rep(0,1000)
alpha0<-0.1; alpha1<-0.6; beta1<-0.25
for (i in 2:1000) {
    s2[i]<-alpha0+alpha1*(e[i-1])**2+beta1*(s2[i-1])
    e[i]<-sqrt(s2[i])*rnorm(1)
}
plot(sqrt(s2),type='l',ylab='Volatility')
qqnorm(e); qqline(e)</pre>
```

ECON

ARCH test

install.packages('aTSA') library('aTSA') mod <- arima(e,order = c(0,0,0)) arch.test(mod)

ARCH heteroscedasticity test for residuals alternative: heteroscedastic

Portmanteau-Q test:				Lagrange-Multiplier test:			
	order	PQ	p.value		order	LM	p.value
[1,]	4	356	0	[1,]	4	290.2	0.00e+00
[2,]	8	359	0	[2,]	8	143.3	0.00e+00
[3,]	12	360	0	[3,]	12	94.3	2.44e-15
[4,]	16	366	0	[4,]	16	68.7	7.53e-09
[5,]	20	371	0	[5,]	20	53.3	4.28e-05
[6,]	24	374	0	[6,]	24	44.1	5.15e-03

Time

Time

Order

MUNI

ECON

Fitting an ARCH model

ECON

ARCH/GARCH models

Fitting a GARCH model

ARCH/GARCH models

MUNI ECON

GARCH extensions

- GARCH-in-Mean
- GJR GARCH
- EGARCH
- And several ones

Fitting GARCH extensions

 Selecting GARCH-type, coefficients and mean-equation:

```
install.packages('rugarch')
library(rugarch)
```

```
garchSpec <- ugarchspec(
  variance.model=list(model="sGARCH",
   garchOrder=c(1,1)),
  mean.model=list(armaOrder=c(0,0)),
  distribution.model="std")</pre>
```

– Fit the model:

```
garchFit <- ugarchfit(spec=garchSpec, data=r.AAPL)
coef(garchFit)
r_hat <- garchFit@fit$fitted.values
plot.ts(r_hat)
vol_hat <- ts(garchFit@fit$sigma)
plot.ts(hhat)</pre>
```

F C O N

Fitting GARCH extensions

```
– EGARCH: model='eGARCH'
```

```
– GJR-GARCH:
model=''gjrGARCH'
```

```
# GARCH-in-mean
garchMod <- ugarchspec(</pre>
          variance.model=list(model="fGARCH",
                                 qarch0rder=c(1,1),
                                 submodel="APARCH")
           mean.model=list(arma0rder=c(0,0),
                           include.mean=TRUE,
                           archm=TRUE,
                           archpow=2
                           ),
           distribution.model="std"
```

MUNT

FCON

Assignment

- Considere two assets (one commodity and the S&P500):
 - 1. Assuming an ARIMA(0,0,0) model for the log-returns and determines if there are presence of heteroscedasticyt via ARCH disturbances.
- 2. Fit the best ARIMA model for the returns and determines if there are ARCH disturbances.
- 3. For each one of the previous cases, fit an ARCH(1) and GARCH(1,1)
- 4. In the case of S&P-500, can the GARCH modelling reproduce the VIX shape?