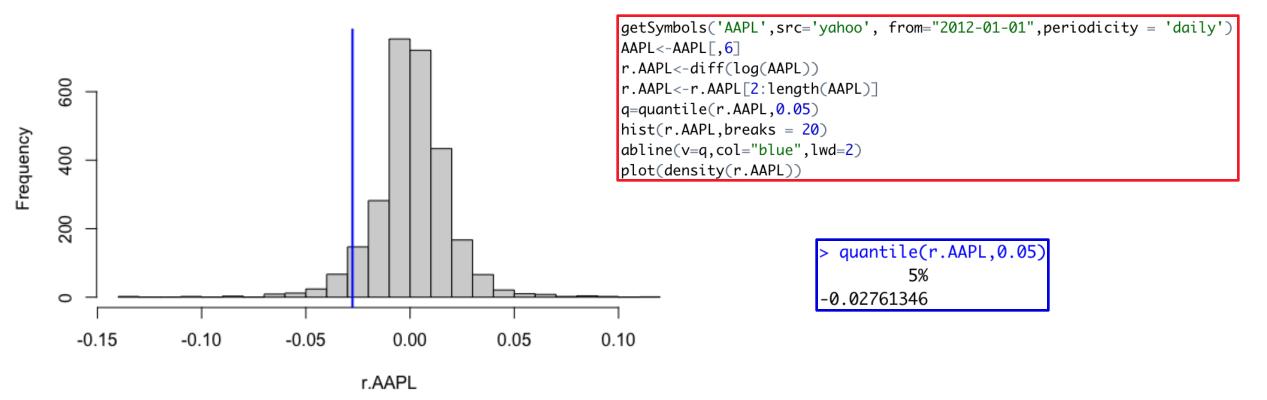


Applied Financial Econometrics

Value at Risk (VaR)


Lecturer: Axel A. Araneda, Ph.D.

Risk measures: Value at Risk (VaR)

- Probability of (potential) losses given some probability.
- Downside risk based on current levels and normal market conditions.
- For a computed *T*-horizon *p*-VaR, a loss (*L*) will not exceed p-VaR with *p* probability *T*-periods ahead. $Prob(L>VaR) \le 1-p$.
- Example: One-day 95% VaR of 100.
 - 5% of losses falls over 100.
 - Expected losses greater than 100 for 1 day over 20 days.
 - 95% of confidence of don't have losses greater than 100.

Computing VaR

Histogram of r.AAPL

MUNT

Estimating VaR (in-sample)

– Assuming normality:

 $VaR(a) = \bar{x} + \sigma * N^{-1}(1 - a)$ $VaR(95) = \bar{x} - \sigma * 1.644854$

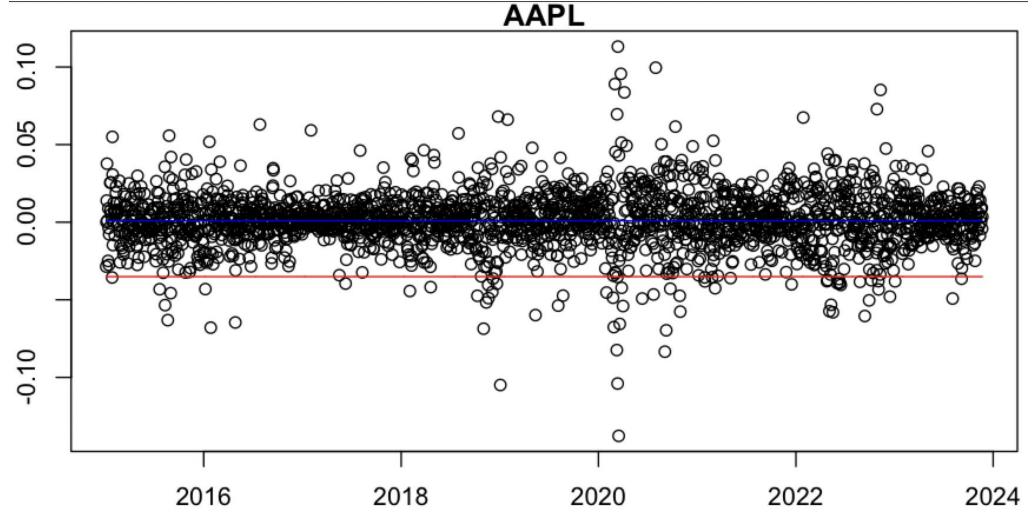
Estimating 97.5-VaR for AAPL, assuming the asset follows an ARMA(0,0) process;
 i.e., constant drift plus constant volatility, with normal disturbances.

 $r.AAPL_{t} = \mu + \sigma * \epsilon_{t}$ $\epsilon_{t} \sim N(0,1)$ $VaR(97.5) = \mu - \sigma * 1.96$

Example: 97.5-VaR for AAPL

#log-returns
r.AAPL<-diff(log(AAPL[,6]))
r.AAPL<-r.AAPL[2:length(r.AAPL)]
or equivalently:
#r.APPL<-na.omit(r.AAPL)</pre>

97.5-VAR under normality
VaR_AAPL<-mu-1.96*sigma</pre>


VaR_AAPL: 0.03510028

The model
arima0<-arima(r.AAPL,order=c(0,0,0))
mu<-arima0\$coef
sigma<-sqrt(arima0\$sigma2)
or equivalently
#mu<mean(r.AAPL)
#sigma<-sqrt(var(r.AAPL))</pre>

par(mfrow=c(2,1),mar=c(2.5,2.5,1,1))
plot(time(r.AAPL),r.AAPL,title('AAPL'))
lines(time(r.AAPL),rep(mu,
 length(r.AAPL)),col="blue")
lines(time(r.AAPL),rep(VaR_AAPL,
 length(r.AAPL)),col="red")

FCON

Example: 97.5-VaR for AAPL

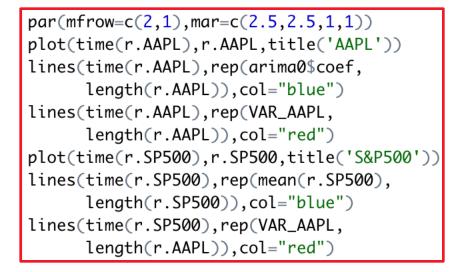
Applied Financial Econometrics Value at Risk

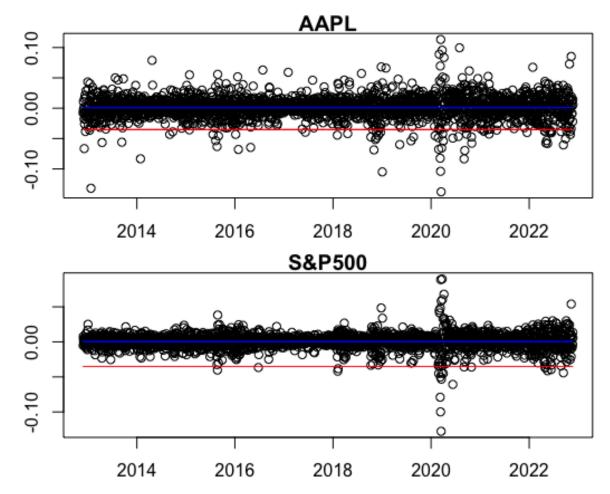
Assignment

- 1. For the S&P500 and another asset of your choice, estimate the in-sample 1-day 95%VaR assuming normality and:
 - a) Constant volatility and ARIMA(0,0,0) for the returns
 - b) Constant volatility, finding the best ARIMA model possible for the returns, if any (auto.arima)
 - c) GARCH(1,1) volatility.
- 2. Compare the results.

Assignment

- 1. For the S&P500 and another asset of your choice, estimate the in-sample 1-day 97.5%VaR assuming normality and:
 - a) Constant volatility and ARIMA(0,0,0) for the returns
 - b) Constant volatility, finding the best ARIMA model possible for the returns, if any (auto.arima)
 - c) GARCH(1,1) volatility.
- 2. Compare the results.


Review of the assignment (1.a)

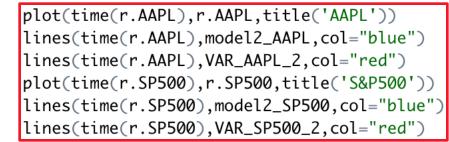

arima0<-arima(r.AAPL,order=c(0,0,0))
res0AAPL<-arima0\$residuals
arima0SP500<-mean(r.SP500)
res0SP500<r.SP500-mean(r.SP500)
vol0AAPL<-sqrt(arima0\$sigma2)
vol0SP500<-sqrt(var(r.SP500))</pre>

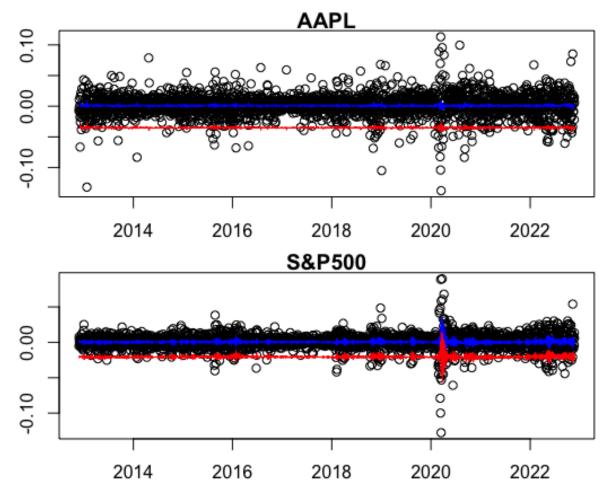
VAR_AAPL<-arima0\$coef-1.96*vol0AAPL VAR_SP500<-mean(r.SP500)-1.96*vol0SP500</pre>

FCON

Review of the assignment 7 (1.a)

Review of the assignment (1.b)

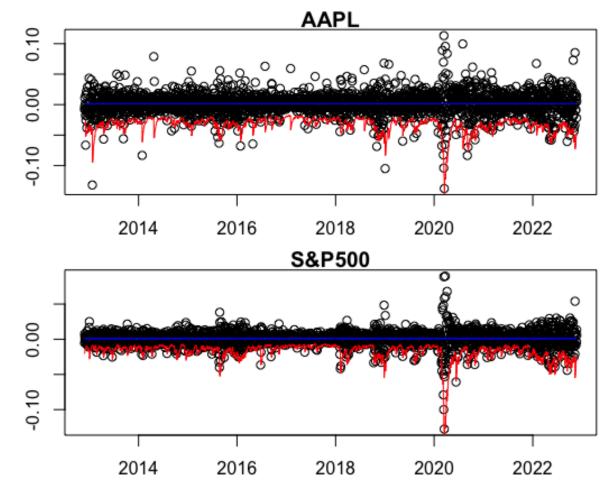

library(forecast)
arimaAAPL<-auto.arima(r.AAPL)
arimaSP500<-auto.arima(r.SP500)
arimaAAPL; arimaSP500</pre>


	Series: r.AAPL ARIMA(0,0,1) with non-zero mean		s: r.SP50 (3,0,3) w		zero mea	n			
)	Coefficients: ma1 mean -0.0637 8e-04 s.e. 0.0200 3e-04	Coeff s.e.	icients: ar1 -0.7649 0.0317	ar2 0.8182 0.0344	ar3 0.8577 0.0276	ma1 0.6572 0.0373	ma2 -0.8582 0.0273	ma3 -0.7461 0.0327	mean 4e-04 1e-04

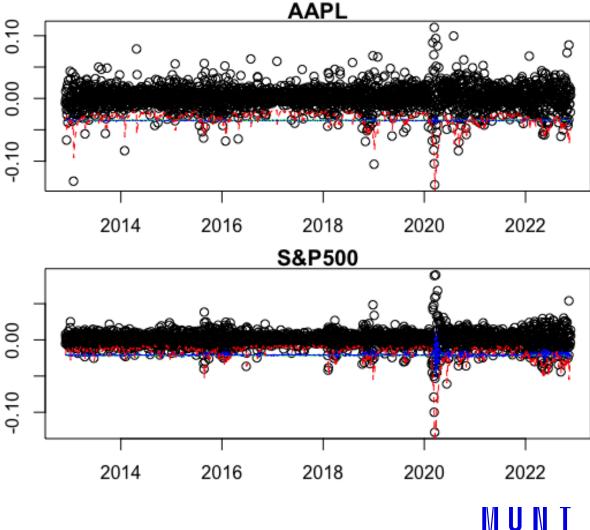
vol2AAPL<-sqrt(arimaAAPL\$sigma2)
vol2SP500<-sqrt(arimaSP500\$sigma2)
model2_AAPL<-arimaAAPL\$fitted
model2_SP500<-arimaSP500\$fitted</pre>

VAR_AAPL_2<-model2_AAPL-1.96*vol2AAPL
VAR_SP500_2<-model2_SP500-1.96*vol2SP500</pre>

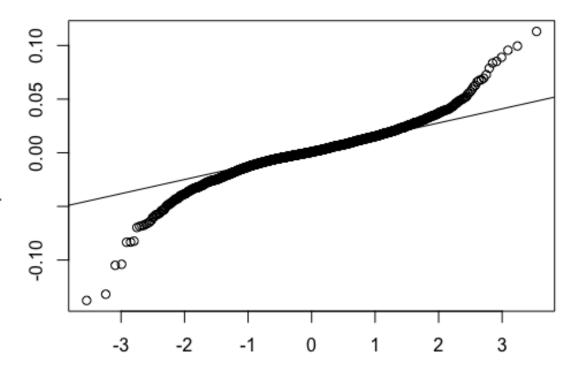
Review of the assignment (1.b)



Review of the assignment (1.c)


VAR_AAPL_3<-AAPL_hat-1.96*AAPL_vol_hat
VAR_SP500_3<-SP_hat-1.96*SP_vol_hat

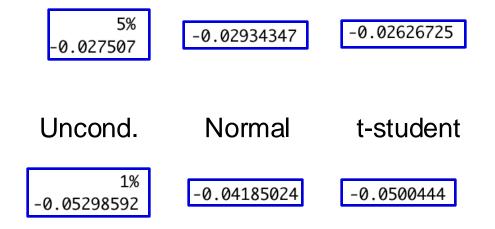
plot(time(r.AAPL),r.AAPL,title('AAPL'))
lines(time(r.AAPL),AAPL_hat,col="blue")
lines(time(r.AAPL),VAR_AAPL_3,col="red")
plot(time(r.SP500),r.SP500,title('S&P500'))
lines(time(r.SP500),SP_hat,col="blue")
lines(time(r.SP500),VAR_SP500_3,col="red")



Review of the assignment (2)

- Returns exhibits heavy tails than normal distribution.
- t-student distribution: Similar shape than normal distribution with heavy tails.

Normal Q-Q Plot


Theoretical Quantiles

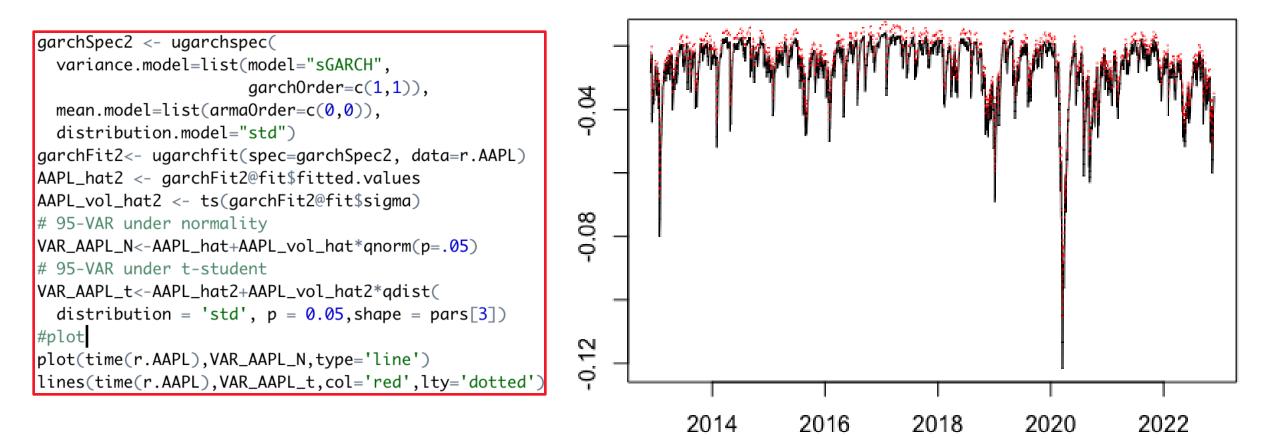
ECON

Applied Financial Econometrics Value at Risk

pars<-fitdist(distribution = 'std' , x = r.AAPL)\$pars</pre>

> pars		
mu	sigma	shape
0.001187087	0.019318014	3.284576519

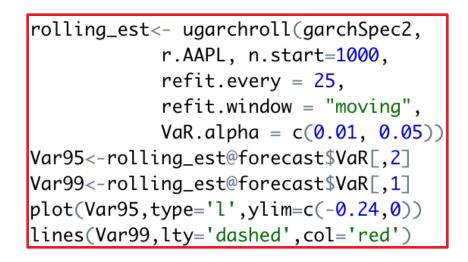
<pre>quantile(r.AAPL,0.01)</pre>
<pre>qnorm(p = 0.01,mean=mean(r.AAPL), sd=sqrt(var(r.AAPL)))</pre>
<pre>qdist(distribution = 'std' ,mu=pars[1], sigma=pars[2],</pre>
shape = pars[3] , $p = 0.01$)

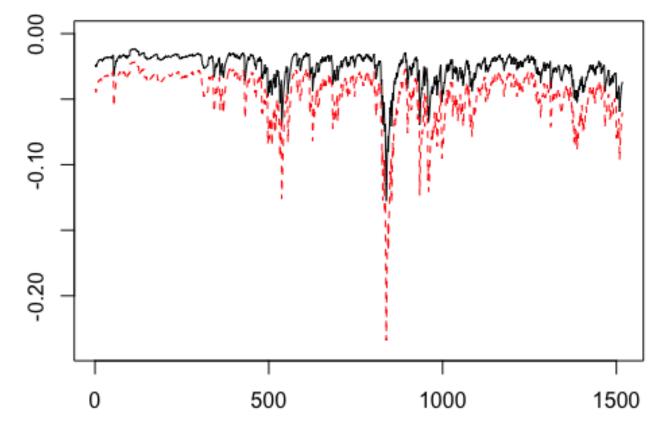

- Delta normal VaR
$$VaR(a) = N^{-1}(a, \mu, \sigma)$$

= $\mu + \sigma * N^{-1}(a)$

– GARCH(1,1) VaR with student's t-distribution in the underlying:

$$VaR(a)_t = \mu + \sigma_{t|t-1} * F^{-1}(a)$$


MUNI ECON


Applied Financial Econometrics Value at Risk

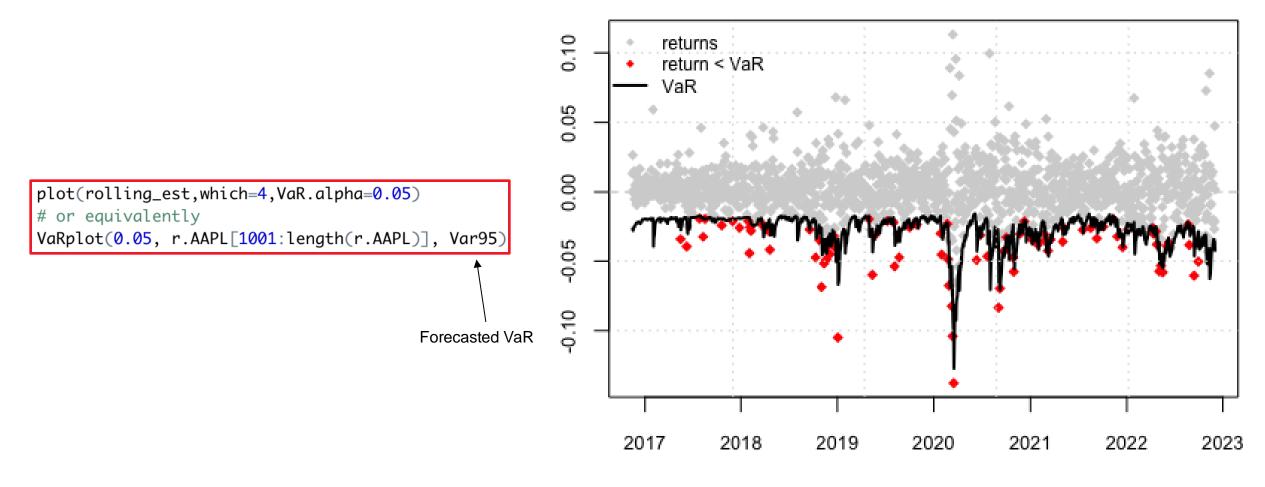
Out of sample GARCH/VaR forecasting

– ugarchroll: Rolling estimation and forecasting via GARCH family.

Out of sample GARCH/VaR performance: Backtesting

How good/bad was our volatility forecasting?
 Compare the forecasted value with the model realized value

How good/bad is the forecasted VaR?
 Unconditional and conditional Coverage tests


Realized vs forecasted volatility

prediction<-as.data.frame(rolling_est)
head(prediction)
#Prediction error for the mean
error_mean<-prediction\$Realized-prediction\$Mu
#Prediction error for the variance
error_var<-error_mean^2-prediction\$Sigma^2
mean(error_mean^2)
mean(error_var^2)

	Mu	Sigma	Skew	Shape	Shape(GIG)	Realized
2016-11-15	0.000747833	0.01650391	0	4.214219	0	0.0131567844
2016-11-16	0.000747833	0.01623713	0	4.214219	0	0.0265334138
2016-11-17	0.000747833	0.01720848	0	4.214219	0	-0.0003638326
2016-11-18	0.000747833	0.01648021	0	4.214219	0	0.0009998037
2016-11-21	0.000747833	0.01584315	0	4.214219	0	0.0150597476
2016-11-22	0.000747833	0.01580330	0	4.214219	0	0.0006262995

```
> mean(error_mean^2)
[1] 0.00038391
> mean(error_var^2)
[1] 0.0003852829
```

Backtesting VaR models

Backtesting VaR
models

report(rolling_est,VaR.alpha=0.05) #analogously VaRTest(0.05, r.AAPL[1001:length(r.AAPL)], Var95,0.95)

Model: Backtest Length:	1522	sGARCH-norm
Data:	1922	
alpha:		======== 5%
Expected Exceed:	76.1	
Actual VaR Exceed:	91	
Actual %:		6%
Unconditional Coverag	ge (Kupiec)	
Null-Hypothesis:	Correct	Exceedances
LR.uc Statistic:	2.898	
LR.uc Critical:	3.841	
LR.uc p-value:	0.089	
Reject Null:	NO	
Conditional Coverage	(Christoff	ersen)
Null-Hypothesis:	Correct	Exceedances and
		Independence of Failures
LR.cc Statistic:	2.96	
LR.cc Critical:	5.991	
LR.cc p-value:	0.228	
Reject Null:	NO	

MUNI

report(rolling_est,VaR.alpha=0.01)

ECON

Backtesting VaR models

Model:		sGARCH-norm
Backtest Length:	1522	
Data:		
======================================		 1%
•	15.2	1/0
Actual VaR Exceed:	30	
Actual %:	50	2%
Unconditional Coverag	e (Kupiec)	
Null-Hypothesis:	Correct	Exceedances
LR.uc Statistic:	11.301	
LR.uc Critical:	3.841	
LR.uc p-value:	0.001	
Reject Null:	YES	
Conditional Coverage	(Christoff	ersen)
Null-Hypothesis:	Correct	Exceedances and
		Independence of Failures
LR.cc Statistic:	11.545	
LR.cc Critical:	5.991	
LR.cc p-value:	0.003	
Reject Null:	YES	

Applied Financial Econometrics Value at Risk