

Applied Financial Econometrics

Multivariate volatility models

Lecturer: Axel A. Araneda, Ph.D.

Single asset case

$r_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0, 1)$

$\sigma_t^2 = f\left(\epsilon_{t-1}^2, \sigma_{t-1}^2\right)$

MUNI ECON

Multivariate case

$$r_{i,t} = \sigma_{i,t}\epsilon_{i,t}, \quad \epsilon_t \sim MVN(0,1)$$

$$cov(r_{i,t}, r_{j,t}) = \sigma_{ij,t} = \sigma_{i,t}\sigma_{j,t}\rho_{ij,t}$$

$$\sigma_{i,t}^2 = f\left(\epsilon_{i,t-1}^2, \sigma_{i,t-1}^2\right)$$

MUNI

ECON

Covariance matrix

$$\Sigma_{t} = \begin{bmatrix} \sigma_{1,t}^{2} & \sigma_{1,t}\sigma_{2,t}\rho_{12,t} & \cdots & \sigma_{1,t}\sigma_{N,t}\rho_{1N,t} \\ \sigma_{2,t}\sigma_{1,t}\rho_{21,t} & \sigma_{2,t}^{2} & \cdots & \sigma_{2,t}\sigma_{N,t}\rho_{2N,t} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{N,t}\sigma_{1,t}\rho_{N1,t} & \sigma_{N,t}\sigma_{2,t}\rho_{N2,t} & \cdots & \sigma_{N,t}^{2} \end{bmatrix}$$

MUNI

ECON

- Symmetric and semi-positive definite!

Common Approaches: GARCH-CCC

-Covariance
$$\sigma_{ij,t} = \sigma_{i,t}\sigma_{j,t}
ho_{ij}$$

– Formally (matrix notation):

 $\mathbf{y}_t = \mathbf{C}\mathbf{x}_t + \boldsymbol{\epsilon}_t$ $\boldsymbol{\epsilon}_t = \mathbf{H}_t^{1/2} \boldsymbol{\nu}_t$ $\mathbf{H}_t = \mathbf{D}_t^{1/2} \mathbf{R} \mathbf{D}_t^{1/2}$

FCON

Common Approaches: GARCH-CCC

$$\mathbf{D}_{t} = \begin{pmatrix} \sigma_{1,t}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{2,t}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{m,t}^{2} \end{pmatrix} \qquad \mathbf{R} = \begin{pmatrix} 1 & \rho_{12} & \cdots & \rho_{1m} \\ \rho_{12} & 1 & \cdots & \rho_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1m} & \rho_{2m} & \cdots & 1 \end{pmatrix}$$

in which each $\sigma_{i,t}^2$ evolves according to a univariate GARCH model of the form $\sigma_{i,t}^2 = s_i + \sum_{j=1}^{p_i} \alpha_j \epsilon_{i,t-j}^2 + \sum_{j=1}^{q_i} \beta_j \sigma_{i,t-j}^2$

FCON

Common Approaches: GARCH-DCC

-Covariance
$$\sigma_{ij,t}=\sigma_{i,t}\sigma_{j,t}
ho_{ij,t}$$

– Formally (matrix notation):

$$\begin{aligned} \mathbf{y}_t &= \mathbf{C} \mathbf{x}_t + \boldsymbol{\epsilon}_t \\ \boldsymbol{\epsilon}_t &= \mathbf{H}_t^{1/2} \boldsymbol{\nu}_t \\ \mathbf{H}_t &= \mathbf{D}_t^{1/2} \mathbf{R}_t \mathbf{D}_t^{1/2} \\ \mathbf{R}_t &= \operatorname{diag}(\mathbf{Q}_t)^{-1/2} \mathbf{Q}_t \operatorname{diag}(\mathbf{Q}_t)^{-1/2} \\ \mathbf{Q}_t &= (1 - \lambda_1 - \lambda_2) \mathbf{R} + \lambda_1 \, \widetilde{\boldsymbol{\epsilon}}_{t-1} \widetilde{\boldsymbol{\epsilon}}_{t-1}' + \lambda_2 \mathbf{Q}_{t-1} \end{aligned}$$

Applied Financial Econometrics / Multivariate volatility modelling

MUNI ECON

Common Approaches: GARCH-CCC

$$\mathbf{D}_{t} = \begin{pmatrix} \sigma_{1,t}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{2,t}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{m,t}^{2} \end{pmatrix} \quad \mathbf{R}_{t} = \begin{pmatrix} 1 & \rho_{12,t} & \cdots & \rho_{1m,t} \\ \rho_{12,t} & 1 & \cdots & \rho_{2m,t} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1m,t} & \rho_{2m,t} & \cdots & 1 \end{pmatrix}$$

 $\widetilde{\boldsymbol{\epsilon}}_t$ is an $m \times 1$ vector of standardized residuals, $\mathbf{D}_t^{-1/2} \boldsymbol{\epsilon}_t$; and

 λ_1 and λ_2 are parameters that govern the dynamics of conditional quasicorrelations. λ_1 and λ_2 are nonnegative and satisfy $0 \le \lambda_1 + \lambda_2 < 1$.

Common Approaches: EWMA

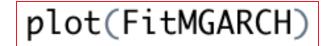
- Covariance

$$egin{aligned} \sigma_{ij,t+1} &=& (1-\lambda)\sum_{n=0}^{\infty}\lambda^n r_{i,t-n}r_{j,t-n} \ &=& (1-\lambda)\,r_{i,t-n}r_{j,t-n}+\lambda\sigma_{ij,t-n} \end{aligned}$$

MUNI

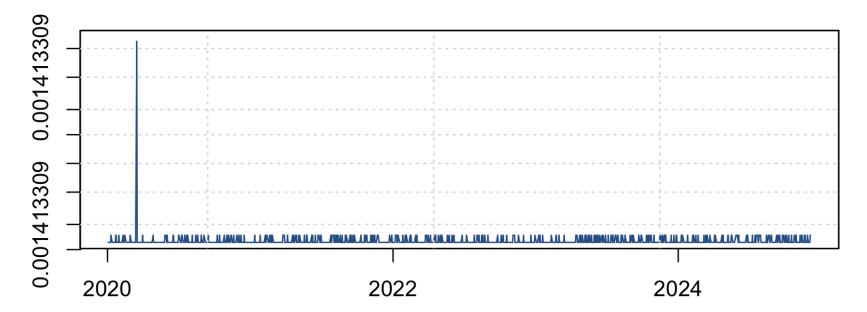
ECON

```
rm(list=ls())
#install.packages('rmgarch')
library('rmgarch')
library('rugarch')
getSymbols('AAPL',src='yahoo', from="2020-01-01",periodicity = 'daily')
getSymbols('MSFT',src='yahoo', from="2020-01-01",periodicity = 'daily')
r.AAPL<-diff(log(AAPL[,6]))
r.AAPL<-r.AAPL[2:length(r.AAPL)]
r.MSFT<-diff(log(MSFT[,6]))
r.MSFT<-r.MSFT[2:length(r.MSFT)]</pre>
```


MUNI ECON

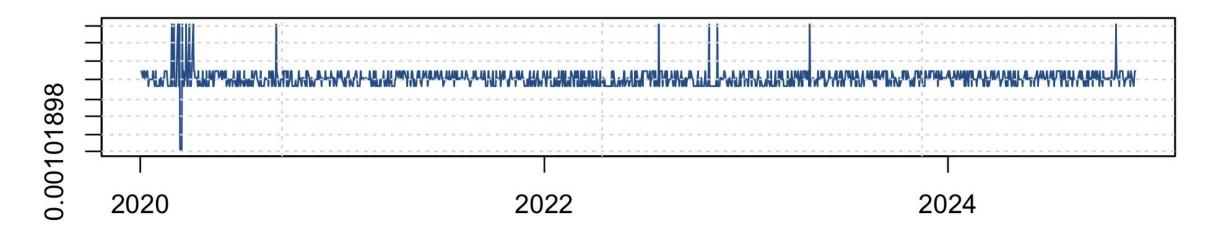
> FitMGARCH		
*		*
* DCC GARCH *	F1 	Lt *
Distribution	:	mvnorm
Model No. Parameters	: :	DCC(1,1) 11
[VAR GARCH DCC UncQ] No. Series	: :	2
No. Obs. Log-Likelihood	: :	1240 6898.451
Av.Log-Likelihood	:	5.56

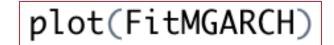
Optimal Parameters						
	Estimate	Std. Error	t value Pr(> t)			
[AAPL.Adjusted].mu	0.001413	0.000483	2.9252 0.003442			
[AAPL.Adjusted].omega	0.000011	0.00003	4.3202 0.000016			
[AAPL.Adjusted].alpha1	0.087273	0.011519	7.5762 0.000000			
[AAPL.Adjusted].beta1	0.882140	0.012459	70.8018 0.000000			
[MSFT.Adjusted].mu	0.001019	0.000482	2.1152 0.034413			
[MSFT.Adjusted].omega	0.000013	0.00002	6.3298 0.000000			
[MSFT.Adjusted].alpha1	0.094510	0.011758	8.0382 0.000000			
[MSFT.Adjusted].beta1	0.867577	0.013422	64.6386 0.000000			
[Joint]dcca1	0.076845	0.040745	1.8860 0.059298			
[Joint]dccb1	0.841842	0.123231	6.8314 0.000000			


> FitMGARCH		
*		*
* DCC GARCH *	F1 	Lt *
Distribution	:	mvnorm
Model No. Parameters	: :	DCC(1,1) 11
[VAR GARCH DCC UncQ] No. Series	: :	2
No. Obs. Log-Likelihood	: :	1240 6898.451
Av.Log-Likelihood	:	5.56

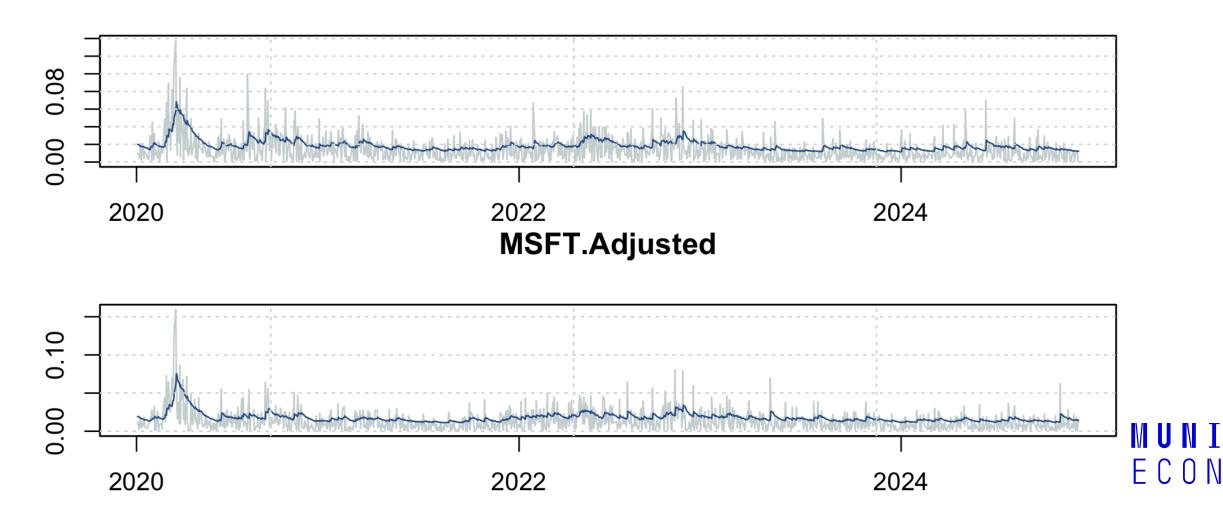
Optimal Parameters						
	Estimate	Std. Error	t value Pr(> t)			
[AAPL.Adjusted].mu	0.001413	0.000483	2.9252 0.003442			
[AAPL.Adjusted].omega	0.000011	0.00003	4.3202 0.000016			
[AAPL.Adjusted].alpha1	0.087273	0.011519	7.5762 0.000000			
[AAPL.Adjusted].beta1	0.882140	0.012459	70.8018 0.000000			
[MSFT.Adjusted].mu	0.001019	0.000482	2.1152 0.034413			
[MSFT.Adjusted].omega	0.000013	0.00002	6.3298 0.000000			
[MSFT.Adjusted].alpha1	0.094510	0.011758	8.0382 0.000000			
[MSFT.Adjusted].beta1	0.867577	0.013422	64.6386 0.000000			
[Joint]dcca1	0.076845	0.040745	1.8860 0.059298			
[Joint]dccb1	0.841842	0.123231	6.8314 0.000000			

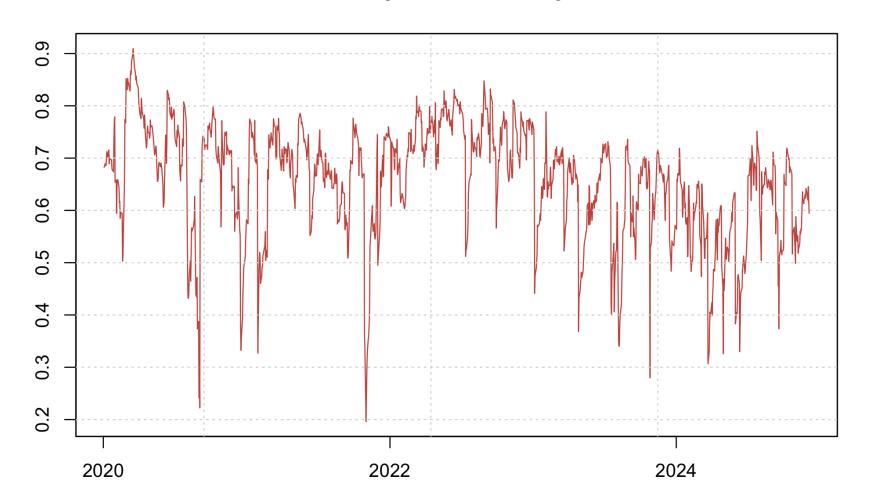
ECON


AAPL.Adjusted



ECON


MSFT.Adjusted



DCC Conditional Sigma vs |returns| AAPL.Adjusted

DCC Conditional Correlation MSFT.Adjusted-AAPL.Adjusted

MUNI ECON