CHAPTER

StatisTicAL CONCEPTS
AND MARKET RETURNS

LEARNING OUTCOMES

After completing this chapter, you will be able to do the following:

® Differentiate between a population and a sample.

® Explain the concepts of a parameter and a sample statistic.

® Explain the differences among the types of measurement scales.

B Define and interpret a frequency distribution.

W Define, calculate, and interpret a holding period return (total return).

m Calculate relative frequencies and cumulative relative frequencies, given a
frequency distribution.

® Describe the properties of data presented as a histogram or a frequency
polygon.
m Define, calculate, and interpret measures of central tendency, including the

arithmetic mean, population mean, sample mean, weighted mean, geomeiric
mean, harmonic mean, median, and mode.

® Describe and interpret quartiles, quintiles, deciles, and percentiles.

m Define, calculate, and interpret (1) a weighted average or mean (including
portfolio return viewed as weighted mean), (2) a range and mean
absolute deviation, (3) a sample and a population variance and standard
deviation.

® Contrast variance with semivariance and target semivariance.

¥ Calculate the proportion of observations falling within a certain number of
standard deviations of the mean, using Chebyshev’s inequality.

m Define, calculate, and interpret the coefficient of variation.
® Define, calculate, and interpret the Sharpe ratio.

m Describe the relative locations of the mean, median, and mode for a
nonsymmetrical distribution.

® Define and interpret skew, and explain the meaning of a positively or
negatively skewed return distribution.

® Define and interpret kurtosis and explain the meaning of kurtosis in excess
of 3.

® Describe and interpret sample measures of skew and kurtosis.
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1 INTRODUCTION

Statistical methods provide a powerful set of tools for analyzing data and drawing con-
clusions from them. Whether we are analyzing asset returns, earnings growth rates, com-
modity prices, or any other financial data, statistical tools help us quantify and communi- .
cate the data’s important features. This chapter presents the basics of describing and
analyzing data, the branch of statistics known as descriptive statistics. The chapter supplies
a set of useful concepts and tools, illustrated in a variety of investment contexts. One theme
of our presentation, reflected in the chapter’s title, is the demonstration of the statistical
methods that allow us to summarize return distributions.' We explore four properties of
return distributions:

e where the returns are centered (central tendency),
* how far returns are dispersed from their center (dispersion),

o whether the distribution of returns is symmetrically shaped or lopsided (skewness),
and

* whether extreme outcomes are likely (kurtosis).

These same concepts are generally applicable to the distributions of other types of data, too.

The chapter is organized as follows. After defining some basic concepts in Sec-
tion 2, in Sections 3 and 4 we discuss the presentation of data: Section 3 describes the orga-
nization of data in a table format, and Section 4 describes the graphic presentation of data.
We then turn to the quantitative description of how data are distributed: Section 5 focuses
on measures that quantify where data are centered, or measures of central tendency. Sec-
tion 6 presents other measures that describe the location of data. Section 7 presents mea-
sures that quantify the degree to which data are dispersed. Sections 8 and 9 describe
additional measures that provide a more accurate picture of data. Section 10 discusses
investment applications of concepts introduced in Section 5.

2 SOME FUNDAMENTAL CONCEPTS

2.1 THE NATURE
OF STATISTICS

Before starting the study of statistics with this chapter, it may be helpful to examine a pic-
ture of the overall field. In the following, we briefly describe the scope of statistics and its
branches of study. We explain the concepts of population and sample. Data come in a vari-
ety of types, affecting the ways they can be measured and the appropriate statistical meth-
ods for analyzing them. We conclude by discussing the basic types of data measurement.

The term statistics can have two broad meanings, one referring to data and the other to
method. A company’s average earnings per share (EPS) for the last 20 quarters, or its aver-
age returns for the past 10 years, are statistics. We may also analyze historical EPS to fore-
cast future EPS, or use the company’s past returns to infer its risk. The totality of methods
we employ to collect and analyze data is also called statistics.

Statistical methods include descriptive statistics and statistical inference (inferential
statistics). Descriptive statistics is the study of how data can be summarized effectively
to describe the important aspects of large data sets. By consolidating a mass of numerical

! Ibbotson Associates (www.ibbotson.com) generously provided much of the data used in this chapter. We also
draw on Dimson, Marsh, and Staunton’s (2002) history and study of world markets as well as other sources.
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2.2 POPULATIONS
AND SAMPLES

2.3  MEASUREMENT
SCALES

details, descriptive statistics turns data into information. Statistical inference involves
making forecasts, estimates, or judgments about a larger group from the smaller group
actually observed. The foundation for statistical inference is probability theory, and both
statistical inference and probability theory will be discussed in later chapters. Our focus in
this chapter is solely on descriptive statistics.

Throughout the study of statistics we make a critical distinction between a population
and a sample. In this section, we explain these two terms as well as the related terms

“parameter” and “sample statistic.”

* Definition of Population. A population is defined as all members of a specified
group.

Any descriptive measure of a population characteristic is called a parameter. Although a
population can have many parameters, investment analysts are usually concerned with
only a few, such as the mean value, the range of investment returns, and the variance.

Even if it is possible to observe all the members of a population, it is often too expen-
sive in terms of time or money to attempt to do so. For example, if the population is all
telecommunications customers worldwide and an analyst is interested in their purchasing
plans, she will find it too costly to observe the entire population. The analyst can address
this situation by taking a sample of the population.

* Definition of Sample. A sample is a subset of a population.

In taking a sample, the analyst hopes it is characteristic of the population. The field of
statistics known as sampling deals with taking samples in appropriate ways to achieve
the objective of representing the population well. A later chapter addresses the details of
sampling.

Earlier, we mentioned statistics in the sense of referring to data. Just as a parameter
is a descriptive measure of a population characteristic, a sample statistic (staistic, for
short) is a descriptive measure of a sample characteristic.

* Definition of Sample Statistic. A sample statistic (or statistic) is a quantity com-
puted from or used to describe a sample.

We devote much of this chapter to explaining and illustrating the use of statistics in
this sense. The concept is critical also in statistical inference, which addresses such prob-
lems as estimating an unknown population parameter using a sample statistic.

To choose the appropriate statistical methods for summarizing and analyzing data, we need
to distinguish among different measurement scales or levels of measurement. All data
measurements are taken on one of four major scales: nominal, ordinal, interval, or ratio.

Nominal scales represent the weakest level of measurement: They categorize data
but do not rank them. If we assigned integers to mutual funds that follow different invest-
ment strategies, the number 1 might refer to a small-cap value fund, the number 2 to a
large-cap value fund, and so on for each possible style. This nominal scale categorizes the
funds according to their style but does not rank them.

% This chapter introduces many statistical concepts and formulas. To make it easy to locate them, we have set
off some of the more important ones with bullet points.
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Ordinal scales reflect a stronger level of measurement. Ordinal scales sort data into
categories that are ordered with respect to some characteristic. For example, the Morn-
ingstar and Standard & Poor’s star ratings for mutual funds represent an ordinal scale in
which one star represents a group of funds judged to have had relatively the worst perfor-
mance, with two, three, four, and five stars representing groups with increasingly better
performance, as evaluated by those services.

An ordinal scale may also involve numbers to identify categories. For example, in
ranking balanced mutual funds based on their five-year cumulative return, we might assign
the number 1 to the top 10 percent of funds, and so on, s that the number 10 represents
the bottom 10 percent of funds. The ordinal scale is stronger than the nominal scale
because it reveals that a fund ranked 1 performed better than a fund ranked 2. The scale
tells us nothing, however, about the difference in performance between funds ranked 1 and
2 compared with the difference in performance between funds ranked 3 and 4, or 9 and 10.

Interval scales provide not only ranking but also assurance that the differences
between scale values are equal. As aresult, scale values can be added and subtracted mean-
ingfully. The Celsius and Fahrenheit scales are interval measurement scales. The differ-
ence in temperature between 10°C and 11°C is the same amount as the difference between
40°C and 41°C. We can state accurately that 12°C = 9°C + 3°C, for example. Neverthe-
less, the zero point of an interval scale does not reflect complete absence of what is being
measured: it is not a true zero point or natural zero. Zero degrees Celsius corresponds to
the freezing point of water, not the absence of temperature. As a consequence of the
absence of a true zero point, we cannot meaningfully form ratios on interval scales.

As an example, 50°C, although five times as large a number as 10°C, does not rep-
resent five times as much temperature. Also, questionnaire scales are often treated as inter-
val scales. If an investor is asked to rank his risk aversion on a scale from 1 (extremely
risk-averse) to 7 (extremely risk-loving), the difference between a response of 1 and a
response of 2 is sometimes assumed to represent the same difference in risk aversion as the
difference between a response of 6 and a response of 7. When that assumption can be jus-
tified, the data are measured on interval scale.

Ratio scales represent the strongest level of measurement. They have all the charac-
teristics of interval measurement scales as well as a true ero point as the origin. With ratio
scales, we can meaningfully compute ratios as well as meaningfully add and subtract
amounts within the scale. As a result, we can apply the widest range of statistical tools to
data measured on a ratio scale. Rates of return are measured on a ratio scale, as is money.
If we have twice as much money, then we have twice the purchasing power. Note that the
scale has a natural zero—zero means no money.

EXAMPLE 3-1. ldentifying Scales of Measurement.

State the scale of measurement for each of the following:

1. Credit ratings for bond issues.’

2. Cash dividends per share.

3 Credit ratings for a bond issue gauge the bond issuer’s ability to meet the promised principal and interest
payments on the bond. For example, one rating agency, Standard & Poor’s, assigns bond issues to one of the
following ratings, given in descending order of credit quality (increasing probability of default): AAA, AA+,
AA,AA—, A+, A, A~, BBB+, BBB, BBB—, BB+, BB, BB—, B, CCC+, CCC—, CC, C, CI, D. For more
information on credit risk and credit ratings, see Fabozzi (2004a).
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3. Hedge fund classification types.*

4. Bond maturity in years.

Solution to 1.  Credit ratings are measured on an ordinal scale. A rating places
a bond issue in a category, and the categories are ordered with respect to the expected
probability of default. But the difference in the expected probability of default
between AA— and A+, for example, is not necessarily equal to that between BB~
and B+. In other words, letter credit ratings are not measured on an interval scale,

Solution to 2. Cash dividends per share are measured on a ratio scale. For
this variable, 0 represents the complete absence of dividends; it is a true zero point.

Solution to 3. Hedge fund classification types are measured on a nominal
scale. Bach type groups together hedge funds with similar investment strategies.
In contrast to credit ratings for bonds, however, hedge fund classification schemes
do not involve a ranking. Thus such classification schemes are not measured on an
ordinal scale.

Solution to 4. Bond maturity is measured on a ratio scale.

Now that we have addressed the important preliminaries, we can discuss summariz-
ing and describing data.

3 SUMMARIZING DATA USING FREQUENCY DISTRIBUTIONS

In this section, we discuss one of the simplest ways to summarize data—the frequency
distribution.

* Definition of Frequency Distribution. A frequency distribution is a tabular dis-
play of data summarized into a relatively small number of intervals.

Frequency distributions help in the analysis of large amounts of statistical data, and they
work with all types of measurement scales.

Rates of return are the fundamental units that analysts and portfolio managers use
for making investment decisions and we can use frequency distributions to summarize
rates of return. When we analyze rates of retumn, our starting point is the holding period
return (also called the total return).

* Holding Period Return Formula. The holding period return for time period ¢,
R, is '

_Pt_Pt—l-l-Dt

R
! P,

3-1)

# “Hedge fund” refers to investment vehicles with legal structures that result in less regulatory oversight than
other pooled investment vehicles such as mutual funds. Hedge fund classification types group hedge funds by
the kind of investment strategy they pursue.
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where

P, = price per share at the end of time period ¢

P,_, = price per share at the end of time period ¢ — 1, the time period immedi-
ately preceding time period ¢

D, = cash distributions received during time period ¢

Thus the holding period return for time period ¢ is the capital gain (or loss) plus distribu-
tions divided by the beginning-period price. (For common stocks, the distribution is a div-
idend; for bonds, the distribution is a coupon payment.) Equation 3-1 can be used to define
the holding period return on any asset for a day, week, month, or year simply by changing
the interpretation of the time interval between successive values of the time index, f.

The holding period retum, as defined in Equation 3-1, has two important character-
istics. First, it has an element of time attached to it. For example, if a monthly time inter-
val is used between successive observations for price, then the rate of return is a monthly
figure. Second, rate of return has no currency unit attached to it. For instance, suppose that
prices are denominated in euros. The numerator and denominator of Equation 3-1 would
be expressed in euros, and the resulting ratio would not have any units because the units
in the numerator and denominator would cancel one another. This result holds regardless
of the currency in which prices are denominated.”

With these concerns noted, we now turn to the frequency distribution of the holding
period returns on the S&P 500 Index.® First, we examine annual rates of return; then we
look at monthly rates of return. The annual rates of return on the S&P 500 calculated with
Equation 3-1 span the period January 1926 to December 2002, for a total of 77 annual
observations. Monthly return data cover the period January 1926 to December 2002, for a
total of 924 monthly observations.

We can state a basic procedure for constructing a frequency distribution as follows.

e Construction of a Frequency Distribution.

1. Sort the data in ascending order.

2. Calculate the range of the data, defined as Range = Maximum value —
Minimum value.

3. Decide on the number of intervals in the frequency distribution, k.

4. Determine interval width as Range/k.

5. Determine the intervals by successively adding the interval width to the
minimum value, to determine the ending points of intervals, stopping after
reaching an interval that includes the maximum value.

6. Count the number of observations falling in each interval.

7. Construct a table of the intervals listed from smallest to largest that shows the
number of observations falling in each interval. -

In Step 4, when rounding the interval width, round up rather than down, to ensure
that the final interval includes the maximum value of the data.

S Note, however, that if price and cash distributions in the expression for holding period return were not in
one’s home currency, one would generally convert those variables to one’s home currency before calculating
the holding period return. Because of exchange rate fluctuations during the holding period, holding period
returns on an asset computed in different currencies would generally differ.

6 We use the total return series on the S&P 500 from January 1926 to December 2002 provided by Ibbotson
Associates. ‘
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As the above procedure makes clear, a frequency distribution groups data into a set of inter-
vals.” An interval is a set of values within which an observation falls. Each observation falls
into only one interval, and the total number of intervals covers all the values represented in
the data. The actual number of observations in a given interval is called the absolute fre-
quency, or simply the frequency. The frequency distribution is the list of intervals together
with the corresponding measures of frequency.

To illustrate the basic procedure, suppose we have 12 observations sorted in ascend-
ing order: —4.57, —4.04, —1.64, 0.28, 1.34, 2.35, 2.38, 4.28, 4.42, 4.68, 7.16, and 11.43.
The minimum observation is —4.57 and the maximum observation is +11.43, so the range
is +11.43 — (—4.57) = 16. If we set k = 4, the interval width is 16/4 = 4. Table 3-1 shows
the repeated addition of the interval width of 4 to determine the endpoints for the intervals
(Step 5).

TABLE 3-1 Endpoints
of Intervals

—4.57 + 400 = —0.57
-0.57+4.00= 343
3434+4.00= 743
743 +4.00= 1143

Thus the intervals are [—4.57 to —0.57), [—0.57 to 3.43), [3.43 to 7.43), and [7.43 to
11.431.% Table 3-2 summarizes Steps 5 through 7.

TABLE 3-2 Frequency Distribution

Interval Absolute Frequency
A —4.57 < observation < —0.57 3
B —0.57 < observation < 3.43 4
C 3.43 < observation < 7.43 4
D 7.43 < observation < 11.43 1

Note that the intervals do not overlap, so each observation can be placed uniquely into one
interval.

In practice, we may want to refine the above basic procedure. For example, we may
want the intervals to begin and end with whole numbers for ease of interpretation. We also
need to explain the choice of the number of intervals, k. We turn to these issues in dis-
cussing the construction of frequency distributions for the S&P 500.

We first consider the case of constructing a frequency distribution for the annual
returns on the S&P 500 over the period 1926 to 2002. During that period, the return on the

7 Intervals are also sometimes called classes, ranges, or bins.

8 The notation [—4.57 to —0.57) means —4.57 =< observation < —0.57. In this context, a square bracket
indicates that the endpoint is included in the interval.
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S&P 500 had a minimum value of —43.34 percent (in 1931) and a maximum value of
+53.99 percent (in 1933). Thus the range of the data was +54% — (—43%) = 97%,
approximately. The question now is the number £ of intervals into which we should group
observations. Although some guidelines for setting k have been suggested in statistical lit-
erature, the setting of a useful value for & often involves inspecting the data and exercising
judgment. How much detail should we include? If we use too few intervals, we will sum-
marize too much and lose pertinent characteristics. If we use too many intervals, we may
not summarize enough.

We can establish an appropriate value for k by evaluating the usefulness of the result-
ing interval width. A large number of empty intervals may indicate that we are trying to
organize the data to present too much detail. Starting with a relatively small interval width,
we can see whether or not the intervals are mostly empty and whether or not the value of
k associated with that interval width is too large. If intervals are mostly empty or k is very
large, we can consider increasingly larger intervals (smaller values of k) until we have a
frequency distribution that effectively summarizes the distribution. For the annual S&P
500 series, return intervals of 1 percent width would result in 97 intervals and many of
them would be empty because we have only 77 annual observations. We need to keep in
mind that the purpose of a frequency distribution is to summarize the data. Suppose that
for ease of interpretation we want to use an interval width stated in whole rather than frac-
tional percents. A 2 percent interval width would have many fewer empty intervals than a
1 percent interval width and effectively summarize the data. A 2 percent interval width
would be associated with 97/2 = 48.5 intervals, which we can round up to 49 intervals.
That number of intervals will cover 2% X 49 = 98%. We can confirm that if we start the
smallest 2 percent interval at the whole number —44.0 percent, the final interval ends at
—44.0% + 98% = 54% and includes the maximum return in the sample, 53.99 percent.
In so constructing the frequency distribution, we will also have intervals that end and begin
at a value of 0 percent, allowing us to count the negative and positive returns in the data.
Without too much work, we have found an effective way to summarize the data. We will
use return intervals of 2 percent, beginning with —44% < R, < —42% (given as “—44%
to —42%” in the table) and ending with 52% < R, = 54%. Table 3-3 shows the frequency
distribution for the annual total returns on the S&P 500.

Table 3-3 includes three other useful ways to present data, which we can compute
once we have established the frequency distribution: the relative frequency, the cumulative
frequency (also called the cumulative absolute frequency), and the cumulative relative
frequency.

* Definition of Relative Frequency. The relative frequency is the absolute fre-
quency of each interval divided by the total number of observations.

The cumulative relative frequency cumulates (adds up) the relative frequencies as we
move from the first to the last interval. It tells us the fraction of observations that are less
than the upper limit of each interval. Examining the frequency distribution given in Table
3-3, we see that the first return interval, —44 percent to —42 percent, has one observation;
its relative frequency is 1/77 or 1.30 percent. The cumulative frequency for this interval is
1 because only one observation is less than —42 percent. The cumulative relative fre-
quency is thus 1/77 or 1.30 percent. The next return interval has zero observations; there-
fore, its cumulative frequency is O plus 1 and its cumulative relative frequency is 1.30
percent (the cumulative relative frequency from the previous interval). We can find the
other cumulative frequencies by adding the (absolute) frequency to the previous cumula-
tive frequency. The cumulative frequency, then, tells us the number of observations that are
less than the upper limit of each return interval.
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As Table 3-3 shows, return intervals have frequencies from 0 to 7 in this sample. The
interval encompassing returns between — 10 percent and —8 percent (—10% = R, <—8%)
has the most observations, seven. Next most frequent are returns between 18 percent and
20 percent (18% < R, < 20%), with six observations. From the cumulative frequency col-
umn, we see that the number of negative returns is 23. The number of positive returns must
then be equal to 77 — 23, or 54. We can express the number of positive and negative out-
comes as a percentage of the total to get a sense of the risk inherent in investing in the stock
market. During the 77-year period, the S&P 500 had negative annual returns 29.9 percent
of the time (that is, 23/77). This result appears in the fifth column of Table 3-3, which
reports the cumulative relative frequency.

The frequency distribution gives us a sense of not only where most of the observa-
tions lie but also whether the distribution is evenly distributed, lopsided, or peaked. In the
case of the S&P 500, we can see that more than half of the outcomes are positive and most
of those annual returns are larger than 10 percent. (Only 11 of the 54 positive annual
returns—about 20 percent—were between 0 and 10 percent.)

Table 3-3 permits us to make an important further point about the choice of the num-
ber of intervals related to equity returns in particular. From the frequency distribution in
Table 3-3, we can see that only five outcomes fall between —44 percent to — 16 percent
and between 38 percent to 54 percent. Stock return data are frequently characterized by a
few very large or small outcomes. We could have collapsed the return intervals in the tails
of the frequency distribution by choosing a smaller value of , but then we would have lost
the information about how extremely poorly or well the stock market had performed. A
risk manager may need to know the worst possible outcomes and thus may want to have
detailed information on the tails (the extreme values). A frequency distribution with a rel-
atively large value of k is useful for that. A portfolio manager or analyst may be equally
interested in detailed information on the tails; however, if the manager or analyst wants a
picture only of where most of the observations lie, he might prefer to use an interval width
of 4 percent (25 intervals beginning at —44 percent), for example.

The frequency distribution for monthly returns on the S&P 500 looks quite different
from that for annual returns. The monthly return series from January 1926 to December
2002 has 924 observations. Returns range from a minimum of approximately —30 percent
to a maximum of approximately +43 percent. With such a large quantity of monthly data
we must summarize to get a sense of the distribution, and so we group the data into 37
equally spaced return intervals of 2 percent. The gains from summarizing in this way are
substantial. Table 3-4 presents the resulting frequency distribution. The absolute frequen-
cies appear in the second column, followed by the relative frequencies. The relative fre-
quencies are rounded to two decimal places. The cumulative absolute and cumulative
relative frequencies appear in the fourth and fifth columns, respectively.

The advantage of a frequency distribution is evident in Table 3-4, which tells us that
the vast majority of observations (599/924 = 65 percent) lie in the four intervals spanning
—2 percent to +6 percent. Altogether, we have 355 negative returns and 569 positive
returns. Almost 62 percent of the monthly outcomes are positive. Looking at the cumula-
tive relative frequency in the last column, we see that the interval —2 percent to 0 percent
shows a cumulative frequency of 38.42 percent, for an upper return limit of 0 percent. This
means that 38.42 percent of the observations lie below the level of 0 percent. We can also
see that not many observations are greater than +12 percent or less than —12 percent. Note
that the frequency distributions of annual and monthly returns are not directly comparable.
On average, we should expect the returns measured at shorter intervals (for example,
months) to be smaller than returns measured over longer periods (for example, years).

Next, we construct a frequency distribution of average inflation-adjusted returns
over 1900-2000 for 16 major equity markets.
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TABLE 3-4  Frequency Distribution for the Monthly Total Return on the S&P 500,
January 1926 to December 2002

Cumulative Cumulative
Absolute Relative Absolute Relative

Return Interval Frequency Frequency Frequency Frequency
—-30.0% to —28.0% 1 0.11% 1 0.11%
—28.0% to —26.0% 0 0.00% 1 0.11%
—26.0% to —24.0% 1 0.11% 2 0.22%
—24.0% to —22.0% 1 0.11% 3 0.32%
~22.0% to —20.0% 2 0.22% 5 0.54%
—20.0% to —18.0% 2 0.22% 7 0.76%
—18.0% to —16.0% 2 0.22% 9 0.97%
—16.0% to —14.0% 3 0.32% 12 1.30%
—14.0% to —12.0% 5 0.54% 17 1.84%
—=12.0% to —10.0% 6 0.65% 23 2.49%
—10.0% to —8.0% 20 2.16% 43 4.65%
—8.0% to —6.0% 30 3.25% 73 7.90%
—=6.0% to —4.0% 54 5.84% 127 13.74%
—4.0% to —2.0% 90 9.74% 217 23.48%
—2.0% to 0.0% 138 14.94% 355 38.42%
0.0% to0 2.0% 182 19.70% 537 58.12%
2.0% to 4.0% 153 16.56% 690 74.68%
4.0% to 6.0% 126 13.64% 816 88.31%
6.0% t0 8.0% 38 6.28% 874 94.59%
8.0% to 10.0% 21 227% 895 96.86%
10.0% to 12.0% 14 1.52% 909 98.38%
12.0% to 14.0% 6 0.65% 915 99.03%
14.0% to 16.0% 2 0.22% 917 99.24%
16.0% to 18.0% 3 0.32% 920 99.57%
18.0% to 20.0% 0 0.00% 920 99.57%
20.0% to 22.0% 0 0.00% 920 99.57%
22.0% to 24.0% 0 0.00% 920 99.51%
24.0% to 26.0% 1 0.11% 921 99.68%
26.0% to 28.0% 0 0.00% 921 99.68%
28.0% to 30.0% 0 0.00% 921 99.68%
30.0% to 32.0% 0 0.00% 921 99.68%
32.0% to 34.0% 0 0.00% 921 99.68%
34.0% to 36.0% 0. 0.00% 921 99.68%
36.0% to 38.0% 0 0.00% 921 99.68%
38.0% to 40.0% 2 0.22% 923 99.89%
40.0% to 42.0% 0 0.00% 923 99.89%
42.0% to 44.0% 1 0.11% 924 100.00%

Note: The lower class limit is the weak inequality (<) and the upper class limit is the strong inequality (<), The relative frequency is the absolute frequency or
cumulative frequency divided by the total number of observations.
Source: Frequency distribution generated with Ibbotson Associates EnCorr Analyzer.
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EXAMPLE 3-2. Constructing a Frequency Distribution.

How have equities rewarded investors in different countries in the long run" To
answer this question, we could examine the average annual returns directly.” The
worth of a nominal level of return depends on changes in the purchasing power of
money, however, and internationally there have been a variety of experiences with
price inflation. It is preferable, therefore, to compare the average real or inflation-
adjusted returns earned by investors in different countries. Dimson, Marsh, and
Staunton (2002) presented authoritative evidence on asset returns in 16 countries for
the 101 years 1900-2000. Table 3-5 excerpts their findings for average inflation-

adjusted returns.
TABLE 3-5 Real (Inflation-Adjusted) Equity
Returns: Sixteen Major Equity
Markets, 1900-2000

Country Arithmetic Mean
Australia 9.0%
Belgium 4.8%
Canada 7.7%
Denmark 6.2%
France 6.3%
Germany 8.8%
Ireland 7.0%
Italy 6.8%
Japan 9.3%
Netherlands 1.1%
South Africa 9.1%
Spain ' 5.8%
Sweden 9.9%
Switzerland 6.9%
United Kingdom 7.6%
United States 8.7%

1911

10 percent.

Source: Dimson, Marsh, and Staunton (2002), Table 4-3. Swiss equities date from

Table 3-6 summarizes the data in Table 3-5 into six intervals spanning 4 percent to

9 The average or arithmetic mean of a set of values equals the sum of the values divided by the number of
values summed. To find the arithmetic mean of 101 annual returns, for example, we sum the 101 annual
returns and then divide the total by 101. Among the most familiar of statistical concepts, the arithmetic mean is
explained in more detail later in the chapter.
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TABLE 3-6 Frequency Distribution of Average Real Equity Returns

Cumulative Cumulative

Return Absolute Relative Absolute Relative
Interval Frequency Frequency Frequency Frequency
4.0% to0 5.0% 1 6.25% 1 6.25%
5.0% to 6.0% 1 6.25% 2 12.50%
6.0% to 7.0% 4 25.00% 6 37.50%
7.0% to 8.0% 4 25.00% 10 62.50%
8.0% to 9.0% 2 12.50% 12 75.00%
9.0% to 10% 4 25.00% 16 100.00%

Note: Relative frequencies are rounded to sum to 100%.

As Table 3-6 shows, there is substantial variation internationally of average
real equity returns. Three-fourths of the observations fall in one of three intervals:
6.0 to 7.0 percent, 7.0 to 8.0 percent, or 9.0 to 10.0 percent. Most average real equity
returns are between 6.0 percent and 10 percent; the cumulative relative frequency of
returns less than 6.0 percent was only 12.50 percent.

4 THE GRAPHIC PRESENTATION OF DATA

4.1 Tue
HistToGrRAM

A graphical display of data allows us to visualize important characteristics quickly. For
example, we may see that the distribution is symmetrically shaped, and this finding may
influence which probability distribution we use to describe the data. In this section, we dis-
cuss the histogram, the frequency polygon, and the cumulative frequency distribution as
methods for displaying data graphically. We construct all of these graphic presentations
with the information contained in the frequency distribution of the S&P 500 shown in
either Table 3-3 or Table 3-4.

A histogram is the graphical equivalent of a frequency distribution.

* Definition of Histogram. A histogram is a bar chart of data that have been grouped
into a frequency distribution.

The advantage of the visual display is that we can see quickly where most of the observa-
tions lie. To see how a histogram is constructed, look at the return interval 18% =< R, <20%
in Table 3-3. This interval has an absolute frequency of 6. Therefore, we erect a bar or rec-
tangle with a height of 6 over that return interval on the horizontal axis. Continuing with
this process for all other return intervals yields a histogram. Figure 3-1 presents the his-
togram of the annual total return series on the S&P 500 from 1926 to 2002.

In the histogram in Figure 3-1, the height of each bar represents the absolute fre-
quency for each return interval. The return interval —10% < R, < —8% has a frequency
of 7 and is represented by the tallest bar in the histogram. Because there are no gaps
between the interval limits, there are no gaps between the bars of the histogram. Many of
the return intervals have zero frequency; therefore, they have no height in the histogram.
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FIGURE 3-1 Histogram of S&P 500 Annual Total Returns: 1926 to 2002
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Figure 3-2 presents the histogram for the distribution of monthly returns on the S&P
500. Somewhat more symmetrically shaped than the histogram of annual returns shown in
Figure 3-1, this histogram also appears more bell-shaped than the distribution of annual
returns.
4.2 THE Two other graphical tools for displaying data are the frequency polygon and the cumula-
FREQUENCY tive frequency distribution. To construct a frequency polygon, we plot the midpoint of
POLYGON AND THE each interval on the x-axis and the absolute frequency for that interval on the y-axis; we

CUMULATIVE
FREQUENCY
DISTRIBUTION

then connect neighboring points with a straight line. Figure 3-3 shows the frequency poly-
gon for the 924 monthly returns for the S&P 500 from January 1926 to December 2002.

In Figure 3-3, we have replaced the bars in the histogram with points connected with
straight lines. For example, the return interval O percent to 2 percent has an absolute fre-
quency of 182. In the frequency polygon, we plot the return-interval midpoint of 1 percent
and a frequency of 182. We plot all other points in a similar way.'* This form of visual dis-
play adds a degree of continuity to the representation of the distribution.

1 Even though the upper limit on the interval is not a return falling in the interval, we still average it with the
lower limit to determine the midpoint.
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FIGURE 3-2 Histogram of S&P 500 Monthly Total Returns:
January 1926 to December 2002
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Another form of line graph is the cumulative frequency distribution. Such a graph
can plot either the cumulative absolute or cumulative relative frequency against the upper
interval limit. The cumulative frequency distribution allows us to see how many or what
percent of the observations lie below a certain value. To construct the cumulative fre-
quency distribution, we graph the returns in the fourth or fifth column of Table 3-4 against
the upper limit of each return interval. Figure 3-4 presents a graph of the cumulative
absolute distribution for the monthly returns on the S&P 500. Notice that the cumulative
distribution tends to flatten out when returns are extremely negative or extremely positive.
The steep slope in the middle of Figure 3-4 reflects the fact that most of the observations
lie in the neighborhood of -2 percent to 6 percent.

We can further examine the relationship between the relative frequency and the cumu-
lative relative frequency by looking at the two return intervals reproduced in Table
3-7. The first return interval (O percent to 2 percent) has a cumulative relative frequency of
58.12 percent. The next return interval (2 percent to 4 percent) has a cumulative relative fre-
quency of 74.68 percent. The change in the cumulative relative frequency as we move from
one interval to the next is the next interval’s relative frequency. For instance, as we go from
the first return interval (0 percent to 2 percent) to the next return interval (2 percent to 4 per-
cent), the change in the cumulative relative frequency is 74.68% — 58.12% = 16.56%. (Val-
ues in the table have been rounded to two decimal places.) The fact that the slope is steep
indicates that these frequencies are large. As you can see in the graph of the cumulative dis-
tribution, the slope of the curve changes as we move from the first return interval to the last.
A fairly small slope for the cumulative distribution for the first few return intervals tells us
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FIGURE 3-3 Frequency Polygon of S&P 500 Monthly Total Returns:
January 1926 to December 2002
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FIGURE 3-4 Cumulative Absolute Frequency Distribution of S&P 500 Monthly
Total Returns: January 1926 to December 2002
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that these return intervals do not contain many observations. You can go back to the frequency
distribution in Table 3-4 and verify that the cumulative absolute frequency is only 23 obser-
vations (the cumulative relative frequency is 2.49 percent) up to the 10th return interval
(—12 percent to ~ 10 percent). In essence, the slope of the cumulative absolute distribution at
any particular interval is proportional to the number of observations in that interval.

TABLE 3-7 Selected Class Frequencies for the S&P 500 Monthly Returns

Cumulative Cumulative
Absolute Relative Absolute Relative
Return Interval Frequency Frequency Frequency Frequency
0.0% to 2.0% 182 19.70% 537 58.12%
2.0% to 4.0% 153 16.56% 690 74.68%

5 MEASURES OF CENTRAL TENDENCY

So far, we have discussed methods we can use to organize and present data so that they are
more understandable. The frequency distribution of an asset class’s return series, for exam-
ple, reveals the nature of the risks that investors may encounter in a particular asset class.
As an illustration, the histogram for the annual returns on the S&P 500 clearly shows that
large positive and negative annual returns are common. Although frequency distributions
and histograms provide a convenient way to summarize a series of observations, these
methods are just a first step toward describing the data. In this section we discuss the use
of quantitative measures that explain characteristics of data. Our focus is on measures of
central tendency and other measures of location or location parameters. A measure of cen-
tral tendency specifies where the data are centered. Measures of central tendency are
probably more widely used than any other statistical measure because they can be com-
puted and applied easily. Measures of location include not only measures of central ten-
dency but other measures that illustrate the location or distribution of data.

In the following subsections we explain the common measures of central tendency—
the arithmetic mean, the median, the mode, the weighted mean, and the geometric mean.
We also explain other useful measures of location, including quartiles, quintiles, deciles,
and percentiles.

5.1 THE Analysts and portfolio managers often want one number that describes a representative
ARITHMETIC MEAN  possible outcome of an investment decision. The arithmetic mean is by far the most fre-
quently used measure of the middle or center of data.

* Definition of Arithmetic Mean. The arithmetic mean is the sum of the observa-
tions divided by the number of observations.

We can compute the arithmetic mean for both populations and samples, known as the pop-
ulation mean and the sample mean, respectively.

5.1.1 THe POPULATION MEAN

The population mean is the arithmetic mean computed for a population. If we can define a
population adequately, then we can calculate the population mean as the arithmetic mean of
all the observations or values in the population. For example, analysts examining the fiscal
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2002 year-over-year growth in same-store sales of major U.S. wholesale clubs might define
the population of interest to include only three companies: BJ’s Wholesale Club (NYSE: BJ),
Costco Wholesale Corporation (Nasdaq: COST), and Sam’s Club, part of Wal-Mart Stores
(NYSE: WMT).!! As another example, if a portfolio manager’s investment universe (the set
of securities she must choose from) is the Nikkei-Dow Jones Average, the relevant population
is the 225 shares on the First Section of the Tokyo Stock Exchange that compose the Nikkei.

* Population Mean Formula. The population mean, y, is the arithmetic mean value
of a population. For a finite population, the population mean is

p==— (3-2)

where N is the number of observations in the entire population and X; is the ith
observation.

The population mean is an example of a parameter. The population mean is unique; that
is, a given population has only one mean. To illustrate the calculation, we can take the case
of the population mean of current price-to-earnings ratio (P/E) of stocks of U.S. compa-
nies running major wholesale clubs as of the beginning of September 2003. As of that date,
the current P/Es for BI, COST, and WMT were 16.73, 22.02, and 29.30, respectively,
according to First Call/Thomson Financial. Thus the population mean current P/E on that
date was p. = (16.73 + 22.02 + 29.30)/3 = 68.05/3 = 22.68.

5.1.2  THe SAMPLE MEAN

The sample mean is the arithmetic mean computed for a sample. Many times we cannot
observe every member of a set; instead, we observe a subset or sample of the population.
The concept of the mean can be applied to the observations in a sample with a slight
change in notation.

* Sample Mean Formula. The sample mean or average, X (read “X-bar”), is the
arithmetic mean value of a sample:

> X
= (3-3)
n

-

X=

where n is the number of observations in the sample.

Equation 3-3 tells us to sum the values of the observations (X;) and divide the sum by the
number of observations. For example, if the sample of P/E multiples contains the values
35, 30, 22, 18, 15, and 12, the sample mean P/E is 132/6 = 22. The sample mean is also
called the arithmetic average.'? As we discussed earlier, the sample mean s a statistic (that
is, a descriptive measure of a sample).

' A wholesale club implements a store format dedicated mostly to bulk sales in warehouse-sized stores to
customers who pay membership dues. As of the early 2000s, those three wholesale clubs dominated the
segment in the United States.

12 Statisticians prefer the term “mean” to “average.” Some writers refer to all measures of central tendency
(including the median and mode) as averages. The term “mean” avoids any possibility of confusion.
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Means can be computed for individual units or over time. For instance, the sample
might be the 2003 return on equity (ROE) for the 300 companies in the Financial Times
Stock Exchange (FTSE) Eurotop 300, an index of Europe’s 300 largest companies. In this
case, we calculate mean ROE in 2003 as an average across 300 individual units. When we
examine the characteristics of some units at a specific point in time (such as ROE for the
FTSE Eurotop 300), we are examining cross-sectional data. The mean of these observa-
tions is called a cross-sectional mean. On the other hand, if our sample consists of the his-
torical monthly returns on the FTSE Eurotop 300 for the past five years, then we have
time-series data. The mean of these observations is called a time-series mean. We will
examine specialized statistical methods related to the behavior of time series in the chap-
ter on times-series analysis.

Next, we show an example of finding the sample mean return for equities in 16 Euro-
pean countries for 2002. In this case, the mean is cross-sectional because we are averag-
ing individual country returns.

EXAMPLE 3-3. Calculating a Cross-Sectional Mean.

The MSCI EAFE (Europe, Australasia, and Far East) Index is a free float-adjusted
market capitalization index designed to measure developed-market equity perfor-
mance excluding the United States and Canada.'® As of the end of 2002, the EAFE
consisted of 21 developed market country indexes, including indexes for 16 Euro-
pean markets, 2 Australasian markets (Australia and New Zealand), and 3 Far East-
ern markets (Hong Kong, Japan, and Singapore).

Suppose we are interested in the local currency performance of the 16 European
markets in the EAFE in 2002, a severe bear market year. We want to find the sample
mean total return for 2002 across these 16 markets. The return series reported in Table
3-8 are in local currency (that is, returns are for investors living in the country). Because
this return is not stated in any single investor’s home currency, it is not a return any sin-
gle investor would earn. Rather, it is an average of returns in 16 local currencies.

TABLE 3-8 Total Returns for European Equity

Markets, 2002
Total Return
Market in Local Currency
Austria —2.97%
Belgium -29.711%
Denmark —29.67%
Finland -41.65%
France -33.99%
Germany —44.05%
Greece ~39.06%
Ireland . -3897%

** The term “free float adjusted” means that the weights of companies in the index reflect the value of the
shares actually available for investment. Pao Yue- kon g Libr ary
@ PolyU o Hong Kong

AN -




106

Chapter 3 Statistical Concepts and Market Returns

TABLE 3-8 Total Returns for European Equity
Markets, 2002 (Continued)

Total Return

Market in Local Currency
Ttaly —23.64%
Netherlands —34.27%
Norway —29.73%
Portugal ~28.29%
Spain —29.47%
Sweden —43.07%
Switzerland —25.84%
United Kingdom —25.66%

Source: www.mscidata.com

Using the data in Table 3-8, calculate the sample mean return for the 16 equity mar-
kets in 2002.

Solution: The calculation applies Equation 3-3 to the returns in Table 3-8:
(—2.97 — 29.71 — 29.67 — 41.65 — 33.99 —~ 44.05 — 39.06 — 38.97 — 23.64
— 3427 — 29.73 — 2829 — 29.47 — 43.07 — 25.84 — 25.66)/16 = —500.04/16 =
—31.25 percent.

In Example 3-3, we can verify that seven markets had returns less than the mean and
nine had returns that were greater. We should not expect any of the actual observations to
equal the mean, because sample means provide only a summary of the data being analyzed.
As an analyst, you will often need to find a few numbers that describe the characteristics of

‘the distribution. The mean is generally the statistic that you will use as a measure of the typ-

ical outcome for a distribution. You can then use the mean to compare the performance of
two different markets. For example, you might be interested in comparing the stock market
performance of investments in Pacific Rim countries with investments in European countries.
You can use the mean returns in these markets to compare investment results.

5.1.3 PROPERTIES OF THE ARITHMETIC MEAN

The arithmetic mean can be likened to the center of gravity of an object. Figure 3-5
expresses this analogy graphically by plotting nine hypothetical observations on a bar. The
nine observations are 2, 4, 4, 6, 10, 10, 12, 12, and 12; the arithmetic mean is 72/9 = 8.
The observations are plotted on the bar with various heights based on their frequency (that
is, 2 is one unit high, 4 is two units high, and so on). When the bar is placed on a fulcrum,
it balances only when the fulcrum is located at the point on the scale that corresponds to
the arithmetic mean.

As analysts, we often use the mean retur as a measure of the typical outcome for
an asset. As in the example above, however, some outcomes are above the mean and some
are below it. We can calculate the distance between the mean and each outcome and call
it a deviation. Mathematically, it is always true that the sum of the deviations around the
mean equals to 0. We can see this by using the definition of the arithmetic mean shown in

LN
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FIGURE 3-5 Center of Gravity Analogy for the Arithmetic Mean
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When the fulcrum is placed at 8, the bar is perfectly balanced.

Equation 3-3, multiplying both sides of the equation by n: nX = Z X;. The sum of the
deviations from the mean can thus be calculated as follows: =1

i(Xi"X)ziXi“ii=iX;—n)_(=0
i=1 i=1 =1 =t

Deviations from the arithmetic mean are important information because they indi-
cate risk. The concept of deviations around the mean forms the foundation for the more
complex concepts of variance, skewness, and kurtosis, which we will discuss later in this
chapter.

An advantage of the arithmetic mean over two other measures of central tendency,
the median and mode, is that the mean uses all the information about the size and magni-
tude of the observations. The mean is also easy to work with mathematically.

A property and potential drawback of the arithmetic mean is its sensitivity to
extreme values. Because all observations are used to compute the mean, the arithmetic
mean can be pulled sharply upward or downward by extremely large or small observations,
respectively. For example, suppose we compute the arithmetic mean of the following seven
numbers: 1,2, 3, 4, 5, 6, and 1,000. The mean is 1,021/7 = 145.86 or approximately 146.
Because the magnitude of the mean, 146, is so much larger than that of the bulk of the
observations (the first six), we might question how well it represents the location of the
data. In practice, although an extreme value or outlier in a financial dataset may only rep-
resent a rare value in the population, it may also reflect an error in recording the value of
an observation, or an observation generated from a different population from that produc-
ing the other observations in the sample. In the latter two cases in particular, the arithmetic
mean could be misleading. Perhaps the most common approach in such cases is to report
the median in place of or in addition to the mean.'* We discuss the median next.

14 Other approaches to handling extreme values involve variations of the arithmetic mean. The trimmed mean
is computed by excluding a stated small percentage of the lowest and highest values and then computing an
arithmetic mean of the remaining values. For example, a 5 percent trimmed mean discards the lowest 2.5
percent and the largest 2.5 percent of values and computes the mean of the remaining 95 percent of values. A
trimmed mean is used in sports competitions when judges’ lowest and highest scores are discarded in
computing a contestant’s score. A Winsorized mean assigns a stated percent of the lowest values equal to one
specified low value, and a stated percent of the highest values equal to one specified high value, then computes
a mean from the restated data. For example, a 95 percent Winsorized mean sets the bottom 2.5 percent of
values equal to the 2.5th percentile value and the upper 2.5 percent of values equal to the 97.5th percentile
value. (Percentile values are defined later.)
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5.2 THe MEDIAN A second important measure of central tendency is the median.

* Definition of Median. The median is the value of the middle item of a set of items
that has been sorted into ascending or descending order. In an odd-numbered sam-
ple of n items, the median occupies the (n + 1)/2 position. In an even-numbered
sample, we define the median as the mean of the values of items occupying the n/2
and (n + 2)/2 positions (the two middle items).">

Earlier we gave the current P/Es of three wholesale clubs as 16.73, 22.02, and 29.30. With
an odd number of observations (n = 3), the median occupies the (n + 1)/2 = 4/2 = 2nd
position. The median P/E was 22.02. The P/E value of 22.02 is the “middlemost” obser-
vation: One lies above it, and one lies below it. Whether we use the calculation for an even-
or odd-numbered sample, an equal number of observations lie above and below the
median. A distribution has only one median.

A potential advantage of the median is that, unlike the mean, extreme values do not
affect it. The median, however, does not use all the information about the size and magni-
tude of the observations; it focuses only on the relative position of the ranked observations.
Calculating the median is also more complex; to do so, we need to order the observations
from smallest to largest, determine whether the sample size is even or odd and, on that
basis, apply one of two calculations. Mathematicians express this disadvantage by saying
that the median is less mathematically tractable than the mean.

To demonstrate finding the median, we use the data from Example 3-3, reproduced
in Table 3-9 in ascending order of the 2002 total return for European equities. Because this
sample has 16 observations, the median is the mean of the values in the sorted array that
occupy the 16/2 = 8th and 18/2 = 9th positions. Norway’s return occupies the eighth

position with a return of —29.73 percent, and Belgium’s return occupies the ninth posi-

tion with a return of —29.71 percent. The median, as the mean of these two retuns, is
(—29.73 — 29.71)/2 = —29.72 percent. Note that the median is not influenced by
extremely large or small outcomes. Had Germany’s total return been a much lower value
or Austria’s total return a much larger value, the median would not have changed.

TABLE 3-9 Total Returns for European Equity Markets,
2002 (in ascending order)

Total Return

No. Market in Local Currency
1 Germany —44.05%
2 Sweden -43.07%
3 Finland —41.65%
4 Greece —39.06%
5 Ireland -38.97%
6 Netherlands ~3427%

15 The notation M, is occasionaily used for the median, Just as for the mean, we may distinguish between a
population median and a sample median. With the understanding that a population median divides a population
in half while a sample median divides a sample in half, we follow general usage in using the term “median”
without qualification, for the sake of brevity.
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7 France —33.99%
Norway ~29.73%

Belgium —29.71%

10 Denmark —29.67%
11 Spain —~29.47%
12 Portugal -28.29%
13 Switzerland —25.84%
14 United Kingdom —25.66%
15 Italy —23.64%
16 Austria -2.97%

Source: www.mscidata.com

Using a context that arises often in practice, Example 3-4 shows how to use the mean and
median in a sample with extreme values.

EXAMPLE 3-4. Median and Arithmetic Mean: The Case
of the Price-Earnings Ratio.

Suppose a client asks you for a valuation analysis on the seven-stock U.S. common
stock portfolio given in Table 3-10. The stocks are equally weighted in the portfo-
lio. One valuation measure that you use is P/E, the ratio of share price to earnings
per share (EPS). Many variations exist for the denominator in the P/E, but you are
examining P/E defined as current price divided by the current mean of all analysts’
EPS estimates for the company for the current fiscal year (“Consensus Current
EPS” in the table).'® The values in Table 3-10 are as of 11 September 2003. For
comparison purposes, the consensus current P/E on the S&P 500 was 23.63 at that
time.

TABLE 3-10 P/Es for a Client Portfolio

Consensus Consensus
Current Current

Stock EPS P/E

Exponent Inc. (Nasdag: EXPO) 1.23 13.68
Express Scripts (Nasdaq: ESRX) 3.19 19.07
General Dynamics (NYSE: GD) 495 17.56
Limited Brands (NYSE: LTD) 1.06 15.60
Merant plc (Nasdag: MRNT) 0.03 44333
Microsoft Corporation (Nasdaq: MSFT) 1.11 25.61
O'Reilly Automotive, Inc. (Nasdag: ORLY) 1.84 21.01

Source: First Cal/Thomson Financial.

' For more information on price multiples, see Stowe, Robinson, Pinto, and McLeavey (2002).
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Using the data in Table 3-10, address the following:

1. Calculate the arithmetic mean P/E.
2. Calculate the median P/E.

3. Evaluate the mean and median P/Es as measures of central tendency for the
above portfolio.

Solution to 1. The mean P/E is (13.68 + 19.07 + 17.56 + 15.60 + 443.33
+ 25.61 + 21.01)/7 = 555.86/7 = 79.41.

Solution to 2. The P/Es listed in ascending order are:
13.68 1560 1756  19.07  21.01 2561 44333

The sample has an odd number of observations with n = 7, so the median occupies
the (n + 1)/2 = 8/2 = 4th position in the sorted list. Therefore, the median P/E is
19.07.

Solution to 3. Merant’s P/E of approximately 443 tremendously influences
the value of the portfolio’s arithmetic mean P/E. The mean P/E of 79 is much larger
than the P/E of six of the seven stocks in the portfolio. The mean P/E also mislead-
ingly suggests an orientation to stocks with high P/Es. The mean P/E of the stocks
excluding Merant, or excluding the largest- and smallest-P/E stocks (Merant and
Exponent), is below the S&P 500’s P/E of 23.63. The median P/E of 19.07 appears
to better represent the central tendency of the P/Es.

It frequently happens that when a company’s EPS is close to zero—at a low
point in the business cycle, for example—its P/E is extremely high. The high P/E in
those circumstances reflects an anticipated future recovery of earnings. Extreme P/E
values need to be investigated and handled with care. For reasons related to this
example, analysts often use the median of price multiples to characterize the valua-
tion of industry groups.

5.3 THe MODE The third important measure of central tendency is the mode.
* Definition of Mode. The mode is the most frequently occurring value in a distribution.”

A distribution can have more than one mode, or even no mode. When a distribution
has one most frequently occurring value, the distribution is said to be unimodal. If a distri-
bution has two most frequently occurring values, then it has two modes and we say it is
bimodal. If the distribution has three most frequently occurring values, then it is trimodal.
When all the values in a data set are different, the distribution has no mode because no value
occurs more frequently than any other value.

I The notation M, is occasionally used for the mode. Just as for the mean and the median, we may distinguish
between a population mode and a sample mode. With the understanding that a population mode is the value
with the greatest probability of occurrence, while a sample mode is the most frequently occurring value in the
sample, we follow general usage in using the term “mode” without qualification, for the sake of brevity.
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Stock return data and other data from continuous distributions may not have a modal
outcome. When such data are grouped into intervals, however, we often find an interval
(possibly more than one) with the highest frequency: the modal interval (or intervals). For
example, the frequency distribution for the monthly returns on the S&P 500 has a modal
interval of 0 percent to 2 percent, as shown in Figure 3-2; this return interval has 182 obser-
vations out of a total of 924. The modal interval always has the highest bar in the histogram.

The mode is the only measure of central tendency that can be used with nominal data.
When we categorize mutual funds into different styles and assign a number to each style,
the mode of these categorized data is the most frequent mutual fund style.

EXAMPLE 3-5. Calculating a Mode.

Table 3-11 gives the credit ratings on senior unsecured debt as of September 2002
of nine U.S. department stores rated by Moody’s Investors Service. In descending
order of credit quality (increasing expected probability of default), Moody’s ratings
are Aaa, Aal, Aa2, Aa3, Al, A2, A3, Baal, Baa2, Baa3, Bal, Ba2, Ba3, B1, B2, B3,
Caa, Ca, and C.'8

TABLE 3-11 Senior Unsecured Debt Ratings: U.S.
Department Stores, September 2002

Company Credit Rating
Dillards, Inc. Ba3
Federated Department Stores, Inc. Baal
Kohi’s Corporation A3

May’s Department Stores Company A2
Neiman Marcus Group, Inc. Baa2
Nordstom, Inc. Baal
Penney, JC, Company, Inc. Ba2

Saks Incorporated Bl

Sears, Roebuck and Co. Baal

Source: Moody’s Investors Service.

Using the data in Table 3-11, address the following concerning the senior unsecured
debt of U.S. department stores.

1. State the modal credit rating.
2. State the median credit rating.

Solution to 1. The group of companies represents seven distinct credit rat-
ings, ranging from A2 to B1. To make our task easy, we first organize the ratings into
a frequency distribution.

18 For more information on credit risk and credit ratings, see Fabozzi (2004a).
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TABLE 3-12 Senior Unsecured Debt
Ratings: U.S. Department
Stores, Distribution
of Credit Ratings

Credit Rating Frequency

A2
A3
Baal
Baa2
Ba2
Ba3
Bi

All credit ratings have a frequency of 1 except for Baal, which has a fre-
quency of 3. Therefore, the modal credit rating of U.S. department stores as of the
date of the Moody’s report was Baal. Moody’s considers bonds rated Baal to be
medium-grade obligations—they are neither highly protected nor poorly secured.

Solution to 2. For the group # = 9, an odd number. The group’s median occu-
pies the (n + 1)/2 = 10/2 = 5th position. We see from Table 3-12 that Baal occupies
the fifth position. Therefore the median credit rating at September 2002 was Baal.

5.4 OTHER Earlier we explained the arithmetic mean, which is a fundamental concept for describing the

CONCEPTS OF MEAN  central tendency of data. Other concepts of mean are very important in investments, however.

In the following, we discuss such concepts.

5.4.1 Tre WEIGHTED MEAN

The concept of weighted mean arises repeatedly in portfolio analysis. In the arithmetic
mean, all observations are equally weighted by the factor I/n (or 1/N). In working with
portfolios, we need the more general concept of weighted mean to allow different weights
on different observations.

To illustrate the weighted mean concept, an investment manager with $100 million
to invest might allocate $70 million to equities and $30 million to bonds. The portfolio has
a weight of 0.70 on stocks and 0.30 on bonds. How do we calculate the return on this port-
folio? The portfolio’s return clearly involves an averaging of the returns on the stock and
bond investments. The mean that we compute, however, must reflect the fact that stocks
have a 70 percent weight in the portfolio and bonds have a 30 percent weight. The way to
reflect this weighting is to multiply the return on the stock investment by 0.70 and the
return on the bond investment by 0.30, then sum the two results. This sum is an example
of a weighted mean. It would be incorrect to take an arithmetic mean of the return on the
stock and bond investments, equally weighting the returns on the two asset classes.

Consider a portfolio invested in Canadian stocks and bonds in which the stock com-
ponent is indexed on the S&P/TSX Composite Index and the bond component is indexed
on the RBC Capital Markets Canadian Bond Market Index. These indexes represent the
broad Canadian equity and bond markets, respectively. The portfolio manager allocates
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60 percent of the portfolio to Canadian stocks and 40 percent to Canadian bonds. Table 3-13
presents total returns for these indexes for 1998 to 2002.

TABLE 3-13  Total Returns for Canadian Equities and Bonds,

1998-2002
Year Equities Bonds
1998 —1.6% 9.1%
1999 31.7% -1.1%
2000 1.4% 10.3%
2001 —12.6% 8.0%
2002 =12.4% 8.7%

Source: www.fidelity.ca and www.money.msn.ca

* Weighted Mean Formula. The weighted mean )_fw (read “X-bar sub-w”), for a set
of observations X, X,, ..., X, with corresponding weights of wy, wa, ..., w, i8
computed as

X,= > wX, (3-4)
i=1

where the sum of the weights equals 1; that is, Z w; = 1.

In the context of portfolios, a positive weight represents an asset held long and a negative
weight represents an asset held short.””

The return on the portfolio under consideration is the weighted average of the return
on Canadian stocks and Canadian bonds (the weight on stocks is 0.60; that on bonds is
0.40). Apart from expenses, if the portfolio tracks the indexes perfectly, we find, using

Equation 3-4, that

Portfolio return for 1998 = wgouRsiock T WoondsRbonds
= 0.60(—1.6%) + 0.40(9.1%)

=2.7%

It should be clear that the correct mean to compute in this example is the weighted mean
and not the arithmetic mean. If we had computed the arithmetic mean for 1998, we would
have calculated a return equal to 4(—1.6%) + %(9.1%) = (—1.6% + 9.1%)/2 = 3.8%.
Given that the portfolio manager invested 60 percent in stocks and 40 percent in bonds,
the arithmetic mean would underweight the investment in stocks and overweight the
investment in bonds, resulting in a number for portfolio return that is too high by 1.1 per-
centage points (3.8% — 2.7%).

19 The formula for the weighted mean can be compared to the formula for the arithmetic mean. For a set of
observations X, X, . . ., X,,, let the weights w;, w, .. ., w, all equal 1/n. Under this assumption, the formula
n

for the weighted mean is (lln)ZXi. This is the formula for the arithmetic mean, Therefore, the arithmetic

=1
mean is a special case of the “"eighted mean in which all the weights are equal.
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Now suppose that the portfolio manager maintains constant weights of 60 percent in
stocks and 40 percent in bonds for all five years. This method is called a constant-proportions
strategy. Because value is price multiplied by quantity, price fluctuation causes portfolio
weights to change. As a result, the constant-proportions strategy requires rebalancing to
restore the weights in stocks and bonds to their target levels. Assuming that the portfolio man-
ager is able to accomplish the necessary rebalancing, we can compute the portfolio returns in
1999, 2000, 2001, and 2002 with Equation 3-4 as follows:

Portfolio return for 1999 = 0.60(31.7) + 0.40(—1.1) = 18.6%
Portfolio return for 2000 = 0.60(7.4) + 0.40(10.3) = 8.6%

Portfolio return for 2001 = 0.60(—12.6) + 0.40(8.0) = ~4.4%
Portfolio return for 2002 = 0.60(—12.4) + 0.408.7) = —4.0%

We can now find the time-series mean of the returns for 1998 through 2002 using
Equation 3-3 for the arithmetic mean. The time-series mean total return for the portfolio is
Q7+ 186+86—44-40)/5= 21.5/5 = 4.3 percent.

Instead of calculating the portfolio time-series mean return from portfolio annual
returns, we can calculate the arithmetic mean bond and stock returns for the five years and
then apply the portfolio weights of 0.60 and 0.40, respectively, to those values. The mean
stock return is (—=1.6 + 317 + 74 — 12.6 - 12.4)/5 = 12.5/5 = 2.5 percent. The mean
bond return is (9.1 — 1.1 + 103 + 8.0 + 8.7)/5 = 35.0/5 = 7.0 percent. Therefore, the
mean total return for the portfolio is 0.60(2.5) + 0.40(7.0) = 4.3 percent, which agrees
with our previous calculation.

EXAMPLE 3-6.  Portfolio Return as a Weighted Mean.

Table 3-14 gives information on the estimated average asset allocation of Canadian
pension funds as well as four-year asset class returns.?’

TABLE 3-14  Asset Allocation for Average Canadian Pension Fund,
as of 31 March 2003

Asset Class Asset Allocation (Weight) Asset Class Return (%)
Equities 34.6 0.6
U.S. equities 108 -93
International equities 6.4 -10.5
Bonds 340 6.0
Mortgages 1.3 9.0
Real estate 4.5 10.2
Cash and equivalents 8.4 42

Source: Standard Life Investments, Inc.

20 1, Table 3-14, equities are represented by the S&PITSX Composite Index, U.S. equities by the S&P 500,
international (non-North American) equities by the MSCI EAFE Index, bonds by the Scotia Capital Markets
Universe Bond Index, mortgages by the Scotia Capital Markets Mortgage Index, real estate by the Standard
Life Investments pooled real estate fund, and cash and equivalents by 91-day T-bills.
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Using the information in Table 3-14, calculate the mean return earned by the aver-
age Canadian pension fund over the four years ending 31 March 2003.

Solution: Converting the percent asset allocation to decimal form, we find the
mean return as a weighted average of the asset class returns. We have

Mean portfolio return = 0.346(0.6%) + 0.108(—9.3%) + 0.064(—10.5%) +
0.340(6.0%) + 0.013(9.0%) + 0.045(10.2%) +
0.084(4.2%)

= 0.208% — 1.004% — 0.672% + 2.040% +
0.117% + 0.459% + 0.353%
= 1.5 percent

The previous examples illustrate the general principle that a portfolio return is a
weighted sum. Specifically, a portfolio’s return is the weighted average of the returns on
the assets in the portfolio; the weight applied to each asset’s return is the fraction of the
portfolio invested in that asset.

Market indexes are computed as weighted averages. For market-capitalization
indexes such as the CAC-40 in France or the S&P 500 in the United States, each included
stock receives a weight corresponding to its outstanding market value divided by the total
market value of all stocks in the index.

Our illustrations of weighted mean use past data, but they might just as well use
forward-looking data. When we take a weighted average of forward-looking data, the
weighted mean is called expected value. Suppose we make one forecast for the year-end
level of the S&P 500 assuming economic expansion and another forecast for the year-end
level of the S&P 500 assuming economic contraction. If we multiply the first forecast by
the probability of expansion and the second forecast by the probability of contraction and
then add these weighted forecasts, we are calculating the expected value of the S&P 500
at year-end. If we take a weighted average of possible future returns on the S&P 500, we
are computing the S&P 500’s expected return. The probabilities must sum to 1, satisfy-
ing the condition on the weights in the expression for weighted mean, Equation 3-4.

5.4.2 Tre GEOMETRIC MEAN

The geometric mean is most frequently used to average rates of change over time or to
compute the growth rate of a variable. In investments, we frequently use the geometric
mean to average a time series of rates of return on an asset or a portfolio, or to compute
the growth rate of a financial variable such as earnings or sales. In the chapter on the time
value of money, for instance, we computed a sales growth rate (Example 1-17). That
growth rate was a geometric mean. Because of the subject’s importance, in a later section
we will return to the use of the geometric mean and offer practical perspectives on its use.
The geometric mean is defined by the following formula.

* Geometric Mean Formula. The geometric mean, G, of a set of observations
X1, Xs, ..., X, 18

G= Vn X1X2X3 - 'Xn (3'5)
withX; =0fori=1,2,...,n

Equation 3-5 has a solution, and the geometric mean exists, only if the product under
the radical sign is non-negative. We impose the restriction that all the observations X; in
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Equation 3-5 are greater than or equal to zero. We can solve for the geometric mean using
Equation 3-5 directly with any calculator that has an exponentiation key (on most calcu-
lators, y*). We can also solve for the geometric mean using natural logarithms. Equation
3-5 can also be stated as

InG = ‘:'I'IH(XIX2X3 NN Xn)

or as

n

> InX;
InG ==t
n

When we have computed In G, then G = ¢ (on most calculators, the key for this step is €*).

Risky assets can have negative returns up to —100 percent (if their price falls to
7er0), so we must take some care in defining the relevant variables to average in comput-
ing a geometric mean. We cannot just use the product of the returns for the sample and then
take the nth root because the returns for any period could be negative. We must redefine
the returns to make them positive. We do this by adding 1.0 to the returns expressed as dec-
imals. The term (1 + R,) represents the year-ending value relative to an initial unit of invest-
ment at the beginning of the year. As long as we use (1 + Ry), the observations will never be

 negative because the biggest negative return is —100 percent. The result is the geometric

mean of 1 + R;; by then subtracting 1.0 from this result, we obtain the geometric mean of
the individual returns R, For example, the returns on Canadian stocks as represented by
the S&P/TSX Composite Index during the 1998-2002 period were given in Table 3-13 as

 —0.016, 0.317, 0.074, —0.126, and —0.124, putting the returns into decimal form. Adding

1.0 to those returns produces 0.9840, 1.317, 1.074, 0.874, and 0.876. Using Equation 3-5
we have \5/(0.9840)(1.317)(1.074)(0.874)(0.876) = V/1.065616 = 1.012792. This num-
ber is 1 plus the geometric mean rate of return. Subtracting 1.0 from this result, we have
1.012792 — 1.0 = 0.012792 or approximately 1.3 percent. The geometric mean return for
Canadian stocks during the 1998-2002 period was 1.3 percent.

An equation that summarizes the calculation of the geometric mean return, R, is a
slightly modified version of Equation 3-5 in which the X; represent “1 + return in decimal
form.” Because geometric mean returns use time series, we use a subscript  indexing time
as well.

1+Rs=V{I+R)1+Ry)...(1 +Ry)

T T
1+RG=[H(1+RI)}

=1

which leads to the following formula.

o Geometric Mean Return Formula. Given a time series of holding period returns
R,t=1,2,..., T, the geometric mean return over the time period spanned by the
returns R, through Ry is

T T
Rg = [H 1+ R,)} -1 (3-6)

=]
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We can use Equation 3-6 to solve for the geometric mean return for any return data series.
Geometric mean returns are also referred to as compound returns. If the returns being
averaged in Equation 3-6 have a monthly frequency, for example, we may call the geo-
metric mean monthly return the compound monthly return. The next example illustrates
the computation of the geometric mean while contrasting the geometric and arithmetic

means.

EXAMPLE 3-7. Geometric and Arithmetic Mean Returns (1).

As a mutual fund analyst, you are examining, as of early 2003, the most recent five
years of total returns for two U.S. large-cap value equity mutual funds.

TABLE 3-15 Total Returns for Two Mutual Funds, 1998-2002

Selected American Shares T. Rowe Price Equity Income
Year (SLASX) (PRFDX)
1998 16.2% 9.2%
1999 20.3% 3.8%
2000 9.3% 13.1%
2001 -11.1% 1.6%
2002 -17.0% -13.0%

Source; American Association of Individual Investors (AAII).

Based on the data in Table 3-15, address the following:

1. Calculate the geometric mean return of SLASX.

2. Calculate the arithmetic mean return of SLASX and contrast it to the fund’s
geometric mean return.

3. Calculate the geometric mean return of PRFDX.

4. Calculate the arithmetic mean return of PRFDX and contrast it to the fund’s
geometric mean return.

Solution to 1. Converting the returns on SLASX to decimal form and
adding 1.0 to each return produces 1.162, 1.203, 1.093, 0.889, and 0.830. We use
Equation 3-6 to find SLASX’s geometric mean return:

Rg =\5/§1.162)(1.203)(1.093)(0.889)(0.830) -1
=V/1.127384 — 1 = 1.024270 — 1 = 0.024270

= 2.43%

Solution to 2. For SLASX, R = (162 + 203 + 9.3 — 11.1 = 17.0)/5 =
17.7/5 = 3.54%. The arithmetic mean return for SLASX exceeds the geometric
mean refurn by 3.54 — 2.43 = 1.11% or 111 basis points.
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Solution to 3. Converting the returns on PRFDX to decimal form and adding
1.0 to each return produces 1.092, 1.038, 1.131, 1.016, and 0.870. We use Equation
3.6 to find PRFDX’s geometric mean return:

Rg =V/(1.092)(1.038)(1.131)(1.016)(0.870) — 1
/1133171 — 1 = 1.025319 — 1 = 0.025319

=2.53%

Solution to 4. For PRFDX, R=(92+38+ 131+ 161305 =
147/5 = 2.94%. The arithmetic mean for PRFDX exceeds the geometric mean
return by 2.94 — 2.53 = 0.41% or 41 basis points. The table below summarizes the

findings.

TABLE 3-16 Mutual Fund Arithmetic and Geometric Mean
Returns: Summary of Findings

Fund Arithmetic Mean Geometric Mean
SLASX 3.54% 2.43%
PRFDX 2.94% 2.53%

In Example 3-7, for both mutual funds, the geometric mean refurn was less than the
arithmetic mean return. In fact, the geometric mean is always less than or equal to the
rithmetic mean.2! The only time that the two means will be equal is when there is no vari-
ability in the observations—that is, when all the observations in the series are the same.2
In Example 3-7, there was variability in the funds' returns; thus for both funds, the geo-
metric mean was strictly less than the arithmetic mean. In general, the difference between
the arithmetic and geometric means increases with the variability in the period-by-period
observations.2 This relationship is also illustrated by Example 3-7. Even casual inspection
reveals that the returns of SLASX are more variable than those of PRFDX, and conse-
quently, the spread between the arithmetic and geometric mean returns is larger for
SLASX (111 basis points) than for PRFDX (41 basis points).24 The arithmetic and geo-
metric mean also rank the two funds differently. Although SLASX has the higher arith-
metic mean return, PRFDX has the higher geometric mean return. How should the analyst
interpret this result?

The geometric mean return represents the growth rate or compound rate of return on
an investment. One dollar invested in SLASX at the beginning of 1998 would have grown

21 This statement can be proved using Jensen’s inequality that the average value of a function is less than or
equal to the function evaluated at the mean if the function is concave from below—the case for In(X).

22 For instance, suppose the return for each of the three years is 10 percent. The arithmetic mean is 10 percent.
To find the geometric mean, we first express the returns as (1 + R,) and then find the geometric mean:
[(1.10)(1.10)(1.10)]" — 1.0 = 10 percent. The two means are the same.

23 We will soon introduce standard deviation as a measure of variability. Holding the arithmetic mean return
constant, the geometric mean return decreases for an increase in standard deviation.

24 e will introduce formal measures of variability later. But note, for example, the 20.4 percentage point
swing in returns between 2000 and 2001 for SLASX versus the 11.5 percentage point for PRFDX.
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to (1.162)(1.203)(1.093)(0.889)(0.830) = $1.127, which is equal to 1 plus the geometric
mean return compounded over five periods: (1.0243)° = $1.127, confirming that the geo-
metric mean is the compound rate of return. For PRFDX, one dollar would have grown to
a larger amount, (1.092)(1.038)(1.131)(1.016)(0.870) = $1.133, equal to (1.0253)°. With
its focus on the profitability of an investment over a multiperiod horizon, the geometric
mean is of key interest to investors. The arithmetic mean return, focusing on average
single-period performance, is also of interest. Both arithmetic and geometric means have
a role to play in investment management, and both are often reported for return series.
Example 3-8 highlights these points in a simple context.

EXAMPLE 3-8. Geometric and Arithmetic Mean Returns (2).

A hypothetical investment in a single stock initially costs €100. One year later, the
stock is trading at €200. At the end of the second year, the stock price falls back to
the original purchase price of €100. No dividends are paid during the two-year
period. Calculate the arithmetic and geometric mean annual returns.

Solution. First, we need to find the Year 1 and Year 2 annual returns with
Equation 3-1.

Return in Year 1 = 200/100 -1 = 100%
Return in Year 2 = 100/200 —1 = -50%

The arithmetic mean of the annual returns is (100% — 50%)/2 = 25%.

Before we find the geometric mean, we must convert the percentage rates of
return to (1 + R,). After this adjustment, the geometric mean from Equation 3-6 is
V2.0X0.50 — 1 = 0 percent.

The geometric mean return of O percent accurately reflects that the ending
value of the investment in Year 2 equals the starting value in Year 1. The compound
rate of return on the investment is 0 percent. The arithmetic mean return reflects the
average of the one-year returns.

5.4.3 THe HARMONIC MtaN

The arithmetic mean, the weighted mean, and the geometric mean are the most frequently
used concepts of mean in investments. A fourth concept, the harmonic mean, Xy, is appro-
priate in a limited number of applications.”

¢ Harmonic Mean Formula. The harmonic mean of a set of observations
Xl,Xz,...,XniS

Xy = n/i (1X) (3-7)
i=1

withX; >0fori=1,2,...,n

2 The terminology “harmonic” arises from its use relative to a type of series involving reciprocals known as a
harmonic series.
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The harmonic mean is the value obtained by summing the reciprocals of the observa-
tions—terms of the form 1/X—then averaging that sum by dividing it by the number of
observations 7, and, finally, taking the reciprocal of the average.

The harmonic mean may be viewed as a special type of weighted mean in which an
observation’s weight is inversely proportional to its magnitude. The harmonic mean is a
relatively specialized concept of the mean that is appropriate when averaging ratios
(“amount per unit”) when the ratios are repeatedly applied to a fixed quantity to yield a
variable number of units. The concept is best explained through an illustration. A well-
known application arises in the investment strategy known as cost averaging, which
involves the periodic investment of a fixed amount of money. In this application, the ratios
we are averaging are prices per share at purchases dates, and we are applying those prices
to a constant amount of money to yield a variable number of shares.

Suppose an investor purchases €1,000 of a security each month for n = 2 months.
The share prices are €10 and €15 at the two purchase dates. What is the average price paid
for the security?

In this example, in the first month we purchase €1,000/€10 = 100 shares and in the sec-
ond month we purchase €1,000/€15 = 66.67, or 166.67 shares in total. Dividing the total euro
amount invested, €2,000, by the total number of shares purchased, 166.67, gives an average
price paid of €2,000/166.67 = €12. The average price paid is in fact the harmonic mean of
the asset’s prices at the purchase dates. Using Equation 3-7, the harmonic mean price is
2[(1/10) + (1/15)] = €12. The value €12 is less than the arithmetic mean purchase price
(€12 + €15)/2 = €12.5. However, we could find the correct value of €12 using the weighted
mean formula, where the weights on the purchase prices equal the shares purchased at a given
price as a proportion of the total shares purchased. In our example, the calculation would be
(100/166.67)€10.00 + (66.67/ 166.67)€15.00 = €12. If we had invested varying amounts of
money at each date, we could not use the harmonic mean formula. We could, however, still
use the weighted mean formula in a manner similar to that just described.

A mathematical fact concerning the harmonic, geometric, and arithmetic means is
that unless all the observations in a dataset have the same value, the harmonic mean is less
than the geometric mean, which in turn is less than the arithmetic mean. In the illustration
given, the harmonic mean price was indeed less than the arithmetic mean price.

6 OTHER MEASURES OF LOCATION: QUANTILES

6.1 QUARTILES,
QUuiNTILES, DECILES,
AND PERCENTILES

Having discussed measures of central tendency, we now examine an approach to describ-
ing the location of data that involves identifying values at or below which specified pro-
portions of the data lie. For example, establishing that 25, 50, and 75 percent of the annual
returns on a portfolio are at or below the values —0.05, 0.16, and 0.25, respectively, pro-
vides concise information about the distribution of portfolio returns. Statisticians use the
word quantile (or fractile) as the most general term for a value at or below which a stated
fraction of the data lies. In the following, we describe the most commonly used.quantiles—
quartiles, quintiles, deciles, and percentiles—and their application in investments.

We know that the median divides a distribution in half. We can define other dividing lines
that split the distribution into smaller sizes. Quartiles divide the distribution into quarters,
quintiles into fifths, deciles into tenths, and percentiles into hundredths. Given a set of
observations, the yth percentile is the value at or below which y percent of observations lie.
Percentiles are used frequently, and the other measures can be defined with respect to
them. For example, the first quartile (Q;) divides a distribution such that 25 percent of the
observations lie at or below it; therefore, the first quartile is also the 25th percentile. The
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second quartile (Q,) represents the 50th percentile, and the third quartile (Q3) represents
the 75th percentile because 75 percent of the observations lie at or below it.

When dealing with actual data, we often find that we need to approximate the value of
a percentile. For example, if we are interested in the value of the 75th percentile, we may find
that no observation divides the sample such that exactly 75 percent of the observations lie at
or below that value. The following procedure, however, can help us determine or estimate a
percentile. The procedure involves first locating the position of the percentile within the set of
observations and then determining (or estimating) the value associated with that position.

Let P, be the value at or below which y percent of the distribution lies, or the yth per-
centile. (For example, P;g is the point at or below which 18 percent of the observations lie;
100 — 18 = 82 percent are greater than Pyg.) The formula for the position of a percentile
in an array with n entries sorted in ascending order is

Yy
Ly=(m+1) ﬁ (3-8)

where y is the percentage point at which we are dividing the distribution and L, is the loca-
tion (L) of the percentile (P,) in the array sorted in ascending order. The value of L, may
or may not be a whole number. In general, as the sample size increases, the percentile loca-
tion calculation becomes more accurate; in small samples it may be quite approximate.

As an example of the case in which L, is not a whole number, suppose that we want
to determine the third quartile of returns for 2002 (Q5 or P;s) for the 16 European equity
markets given in Table 3-8. According to Equation 3-8, the position of the third quartile is
Lys = (16 + 1)75/100 = 12.75, or between the 12th and 13th items in Table 3-9, which
ordered the returns into ascending order. The 12th item in Table 3-9 is the return to equi-
ties in Portugal in 2002, —28.29 percent. The 13th item is the return to equities in Switzer-
land in 2002, —25.84 percent. Reflecting the “0.75” in “12.75,” we would conclude that
Py lies 75 percent of the distance between —28.29 percent and —25.84 percent.

To summarize:

* When the location, L,, is a whole number, the location corresponds to an actual
observation. For example, if Italy had not been included in the sample, then n + 1
would have been 16 and, with L;s = 12, the third quartile would be P75 = X, where
X, is defined as the value of the observation in the ith (i = L;s) position of the data
sorted in ascending order (i.e., P;s = —28.29).

* When L, is not a whole number or integer, L, lies between the two closest integer num-
bers (one above and one below), and we use linear interpolation between those two
places to determine P,. Interpolation means estimating an unknown value on
the basis of two known values that surround it (lie above and below it); the term “lin-
ear” refers to a straight-line estimate. Returning to the calculation of P55 for the equity
returns, we found that L, = 12.75; the next lower whole number is 12 and the next
higher whole number is 13. Using linear interpolation, P75 = X, + (12.75 — 12)
(X135 — X12). As above, in the 12th position is the return to equities in Portugal, so X,
= —28.29 percent; X;3 = —25.84 percent, the return to equities in Switzerland. Thus
our estimate is Pys = Xj, + (12.75 — 12)(Xy3 — X;p) = —28.29 + 0.75[-25.84 —
(—28.29)] = —28.29 + 0.75(2.45) = —28.29 + 1.84 = —26.45 percent. In words,
—28.29 and —25.84 bracket P55 from below and above, respectively. Because 12.75 —
12 = 0.75, using linear interpolation we move 75 percent of the distance from —28.29
to —25.84 as our estimate of P;5. We follow this pattern whenever L, is non-integer:
The nearest whole numbers below and above L, establish the positions of observations
that bracket P, and then interpolate between the values of those two observations.
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Example 3-9 illustrates the calculation of various quantiles for the dividend yield on the
components of a major European equity index.

EXAMPLE 3-9. Calculating Percentiles, Quartiles, and Quintiles.
The DJ EuroSTOXX 50 is an index of Europe’s 50 largest publicly traded com-
panies as measured by market capitalization. Table 3-17 shows the dividend yields
on the 50 component stocks in the index as of mid-2003, ranked in ascending
order.
TABLE 3-17 Dividend Yields on the Components of the D) EuroSTOXX 50
Dividend Dividend
No. Company Yield  No. Company Yield
1 AstraZeneca 0.00% 26 UBS 2.65%
2 BP 0.00% 27 Tesco 2.95%
3 Deutsche Telekom 0.00% 28 Total 3.11%
4  HSBC Holdings 0.00% 29  GlaxoSmithKline 3.31%
5  Credit Suisse Group 0.26% 30 BT Group 3.34%
6  LOréal 1.09% 31 Unilever 3.53%
7  SwissRe 1.27% 32  BASF 3.59%
8 Roche Holding 1.33% 33 Santander Central 3.66%
9  Munich Re Group 1.36% Hispano
10 General Assicurazioni 1.39% 34  Banco Bilbao Vizcaya  3.67%
11 Vodafone Group 1.41% Argentaria
12 Carrefour 1.51% 35 Diageo 3.68%
13 Nokia 1.75% 36 HBOS 3.78%
14 Novartis 1.81% 37 EON 3.87%
15  Allianz 1.92% 38 Shell Transport and Co.  3.88%
16  Koninklije Philips 2.01% 39  Barclays 4.06%
Electronics 40  Royal Dutch 4.21%
17 Siemens 2.16% Petroleum Co.
18  Deutsche Bank 2.27% 41  Fortis 428%
19  Telecom Italia 2.21% 42 Bayer 4.45%
20  AXA 2.39% 43 DaimlerChrysler 4.68%
21  Telefonica 2.49% 44 Suez 5.13%
22 Nestlé 2.55% 45  Aviva 5.15%
23 Royal Bank of Scotland ~ 2.60% 46  Eni 5.66%
Group 47  ING Group 6.16%
24  ABN-AMRO 2.65% 48  Prudential 6.43%
Holding 49  Lloyds TSB 7.68%
25  BNP Paribas 2.65% 50 AEGON 8.14%
Source: http://france.finance.yahoo.com accessed 8 July 2003.
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Using the data in Table 3-17, address the following:

1. Calculate the 10th and 90th percentiles.

2. Calculate the first, second, and third quartiles.
3. State the value of the median.
4,

How many quintiles are there, and to what percentiles do the quintiles
correspond?

5. Calculate the value of the first quintile.

Solution to 1. In this example, n = 50. Using Equation 3-8, L, =
(n + 1)y/100 for position of the yth percentile, so for the 10th percentile we have

Lo = (50 + 1)(10/100) = 5.1

Lo is between the fifth and sixth observations with values X5 = 0.26 and X = 1.09.
The estimate of the 10th percentile (first decile) for dividend yield is

Pio=Xs+ (5.1 — 5)(Xs — X5) = 0.26 + 0.1(1.09 — 0.26)
=0.26 + 0.1(0.83) = 0.34%

For the 90th percentile,
Log = (50 + 1)(90/100) = 45.9

Log i8 between the 45th and 46th observations with values Xs5 = 5.15 and X6 =
5.66, respectively. The estimate of the 90th percentile (ninth decile) is

Pgo =~ X45 + (459 - 45)(X46 - X45) = 515 + 09(566 - 515)
=5.15 + 0.9(0.51) = 5.61%

Solution to 2. The first, second, and third quartiles correspond to Pss, Pso,
and Pjs, respectively.

Lys = (51)(25/100) = 12.75 Lys is between the 12th and 13th entries
with values X}, = 1.51 and X;5 = 1.75.

Pys =0y = X5 + (12775 = 12)(X13 — X12)
= 1.51 + 0.75(1.75 — 1.51)
= 1.51 + 0.75(0.24) = 1.69%

Lsg = (51)(50/100) = 25.5 Lys is between the 25th and 26th entries.
But these entries share the same value,
Xos = Xo¢ = 2.65, s0 no interpolation is
needed.

P50 = Q2 = 2.65%

L5 = (51)(75/100) = 38.25 L;s is between the 38th and 39th entries
with values X35 = 3.88 and X3¢ = 4.06.

P75 = Q3 = X35 + (38.25 — 38)(X39 — X3g)
=388 + 0.25(4.06 — 3.88)
=388 + 0.25(0.18) = 3.93%
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6.2 QUANTILES IN
INVESTMENT
PRACTICE

Solution to 3. The median is the 50th percentile, 2.65 percent. This is the
same value that we would obtain by taking the mean of the n/2 = 50/2 = 25th item
and (n + 2)/2 = 52/2 = 26th items, consistent with the procedure given earlier for
the median of an even-numbered sample.

Solution to 4. There are four quintiles, and they correspond to Pag, Pag, Peos
and P 80-

Solution to 5. The first quintile is Pog.
Lyo = (50 + 1)(20/100) = 10.2 Ly is between the 10th and 11th

observations with values X;o = 1.39
andX” =141

The estimate of the first quintile is
Pyo = Xjo + (10.2 — 10)(Xy; — X)o)

=139 + 0.2(1.41 — 1.39)
= 1.39 + 0.2(0.02) = 1.394% or 1.39%.

In this section, we discuss the use of quantiles in investments. Quantiles are used in port-
folio performance evaluation as well as in investment strategy development and research.

Investment analysts use quantiles every day to rank performance—ifor example, the
performance of portfolios. The performance of investment managers is often characterized
in terms of the quartile in which they fall relative to the performance of their peer group
of managers. The Morningstar mutual fund star rankings, for example, associates the num-
ber of stars with percentiles of performance relative to similar-style mutual funds.

Another key use of quantiles is in investment research. Analysts refer to a group
defined by a particular quantile as that quantile. For example, analysts often refer to the set
of companies with returns falling below the 10th percentile cutoff point as the bottom
return decile. Dividing data into quantiles based on some characteristic allows analysts to
evaluate the impact of that characteristic on a quantity of interest. For instance, empirical
finance studies commonly rank companies based on the market value of their equity and
then sort them into deciles. The 1st decile contains the portfolio of those companies with
the smallest market values, and the 10th decile contains those companies with the largest
market value. Ranking companies by decile allows analysts to compare the performance
of small companies with large ones.

We can illustrate the use of quantiles, in particular quartiles, in investment research
using the example of Bauman, Conover, and Miller (1998). That study compared the per-
formance of international growth stocks to value stocks. Typically, value stocks are defined
as those for which the market price is relatively low in relation to earnings per share, book
value per share, or dividends per share. Growth stocks, on the other hand, have compara-
tively high prices in relation to those same measures. The Bauman et al. classification cri-
teria were the following valuation measures: price-to-earnings (P/E), price-to-cash flow
(PICF), price-to-book value (P/B), and dividend yield (D/P). They assigned one-fourth of
the total sample with the lowest P/E on 30 June of each year from 1986 to 1996 (the value
group) to Quartile 1, and the one-fourth with the highest P/E of each year (the growth
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group) to Quartile 4. The stocks with the second-highest P/E formed Quartile 3, and the
stocks with the second-lowest P/E, Quartile 2. The authors repeated this process for each
of the four fundamental factors. Treating each quartile group as a portfolio composed of
equally weighted stocks, they were able to compare the performance of the various
value/growth quartiles. Table 1 from their study is reproduced as Table 3-18 below.

TABLE 3-18 Mean Annual Returns of Value and Growth Stocks Based on Selected Characteristics,

1986-1996
Spread
Total o2 Q4 in Return,
Selection Criteria Observations (Value) Q Qs (Growth) Q10 Q4
Classification by P/E 28,463
Median P/E 8.7 152 242 72.5
Return 15.0% 13.6% 13.5% 10.6% +4.4%
Standard deviation 46.5 383 425 - 504
Classification by P/CF 30,240
Median P/CF 44 8.2 13.3 342
Return 15.5% 13.7% 12.9% 11.2% +4.3%
Standard deviation 48.7 41.2 419 514
Classification by P/B 32,265
Median P/B 0.8 14 2.2 43
Return 18.1% 14.4% 12.6% 12.4% +5.7%
Standard deviation 69.6 459 45.1 57.0
Classification by D/P 25,394
Median D/P 5.6% 3.2% 1.9% 0.6%
Return 14.1% 14.1% 12.5% 9.3% +4.83%
Standard deviation 40.5 38.7 38.9 42.0

Source: Bauman et al.

Table 3-18 reports each valuation factor’s median, mean return, and standard devia-
tion for each quartile grouping. Moving from Quartile 1 to Quartile 4, P/E, P/CF, and P/B
increase, but D/P decreases. Regardless of the selection criteria, international value stocks
outperformed international growth stocks during the sample period.

Bauman, Conover, and Miller also divided companies into one of four quartiles
based on market value of equity. Then they examined the returns to the stocks in the quar-
tiles. Table 7 from their article is reproduced here as Table 3-19. As the table shows, the
small-company portfolio had a median market value of $46.6 million and the large-
company portfolio had a median value of $2,472.3 million. Large companies were more
than 50 times larger than small companies, yet their mean stock returns were less than half
those of the small companies (small, 22.0 percent; large, 10.8 percent). Overall, Bauman
et al. found two effects. First, international value stocks (as the authors defined them) out-
performed international growth stocks. Second, international small stocks outperformed
international large stocks.
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TABLE 3-19  Mean Annual Returns of International Stocks Grouped by Market Capitalization, 1986-1996

' Spread
Total Q Q4 in Return,
Selection Criteria Observations (Small) Q, o} (Large) Q0 Q,
Classification by size 32,555
Median size (millions) $46.6 $209.9 $583.7 $2,472.3
Return 22.0% 13.6% 11.1% 10.8% +11.2%
Standard deviation 87.8 452 39.5 34.0

Source: Bauman et al.

The authors’ next step was to examine how value and growth stocks performed
while controlling for size. This step involved constructing 16 different value/growth and
size portfolios (4 X 4 = 16) and investigating the interaction between these two funda-
mental factors. They found that international value stocks outperformed international
growth stocks except when market capitalization was very small. For portfolio mana-
gers, these findings suggest that value stocks offered investors relatively more favorable
returns than did growth stocks in international markets during the specific time period
studied.

7 MEASURES OF DISPERSION

As the well-known researcher Fischer Black has written, “[t]he key issue in investments is
estimating expected return.”?® Few would disagree with the importance of expected return
or mean return in investments: The mean return tells us where returns, and investment
results, are centered. To completely understand an investment, however, we also need to
know how returns are dispersed around the mean. Dispersion is the variability around the
central tendency. If mean return addresses reward, dispersion addresses risk.

In this section, we examine the most cormmon measures of dispersion: range, mean
absolute deviation, variance, and standard deviation. These are all measures of absolute
dispersion. Absolute dispersion is the amount of variability present without comparison to
any reference point or benchmark.

These measures are used throughout investment practice. The variance or standard
deviation of return is often used as a measure of risk pioneered by Nobel laureate Harry
Markowitz. William Sharpe, another winner of the Nobel Prize in economics, developed
the Sharpe ratio, a measure of risk-adjusted performance. That measure makes use of stan-
dard deviation of return. Other measures of dispersion, mean absolute deviation and range,
are also useful in analyzing data.

71 Tue RANGE We encountered range earlier when we discussed the construction of frequency distribu-
tion. The simplest of all the measures of dispersion, range can be computed with interval
or ratio data.

26 Black (1993).
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* Definition of Range. The range is the difference between the maximum and mini-
mum values in a data set:

Range = Maximum value — Minimum value (3-9)

As an illustration of range, the largest monthly return for the S&P 500 in the period from
January 1926 to December 2002 is 42.56 percent (in April 1933) and the smallest is
—29.73 percent (in September 1931). The range of returns is thus 72.29 percent [42.56
percent — (—29.73 percent)]. An alternative definition of range reports the maximum and
minimum values. This alternative definition provides more information than does the
range as defined in Equation 3-9.

One advantage of the range is ease of computation. A disadvantage is that the range
uses only two pieces of information from the distribution. It cannot tell us how the data are
distributed (that is, the shape of the distribution). Because the range is the difference
between the maximum and minimum returns, it can reflect extremely large or small out-
comes that may not be representative of the distribution.”’

7.2 THE MEAN Measures of dispersion can be computed using all the observations in the distribution
ABSOLUTE rather than just the highest and lowest. The question is, how should we measure disper-
DEVIATION  sion? Our previous discussion on properties of the arithmetic mean introduced the notion
of distance or deviation from the mean (X; — X) as a fundamental piece of information
used in statistics. We could compute measures of dispersion as the arithmetic average of
the deviations around the mean, but we would encounter a problem: The deviations around
the mean always sum to 0. If we computed the mean of the deviations, the result would
also equal 0. Therefore, we need to find a way to address the problem of negative devia-

tions canceling out positive deviation.
One solution is to examine the absolute deviations around the mean as in the mean

absolute deviation.

¢ Mean Absolute Deviation Formula. The mean absolute deviation (MAD) for a
sample is:

i X; - Xi
MAD = &—— - (3-10)

where X is the sample mean and # is the number of observations in the sample.

In calculating MAD, we ignore the signs of the deviations around the mean. For example,
if X; = —11.0 and X = 4.5, the absolute value of the difference is|—-11.0 — 451 =
I—15.51 =15.5. The mean absolute deviation uses all of the observations in the sample and
is thus superior to the range as a measure of dispersion. One technical drawback of MAD

27 Apother distance measure of dispersion that we may encounter, the interquartile range, focuses on the
middle rather than the extremes. The interquartile range (IQR) is the difference between the third and first
quartiles of a dataset: IQR = Q5 — Q. The IQR represents the length of the interval containing the middle
50 percent of the data, with a larger interquartile range indicating greater dispersion, all else equal.
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is that it is difficult to manipulate mathematically compared with the next measure we will
introduce, variance.”® Example 3-10 illustrates the use of the range and the mean absolute

deviation in evaluating risk.

EXAMPLE 3-10. The Range and the Mean Absolute Deviation.

Having calculated mean returns for the two mutual funds in Example 3-7, the ana-
lyst is now concerned with evaluating risk.

TABLE 3-15 (repeated) Total Returns for Two Mutual Funds,

1998-2002
Selected American Shares T. Rowe Price Equity Income
Year (SLASX) (PRFDX)
1998 16.2% 9.2%
1999 20.3% 3.8%
2000 9.3% 13.1%
2001 -11.1% 1.6%
2002 —-17.0% -13.0%
Source: AAIL

Based on the data in Table 3-15 repeated above, answer the following:

1.

_ Calculate the mean absolute deviation of returns on (A) SLASX and (B)

. For SLASX, the largest return was 20.3 percent and the smallest was —17.0

. For PFRDX, the range is 13.1 — (—13.0) = 26.1%. With a larger range of

Calculate the range of annual returns for (A) SLASX and (B) PRFDX,
and state which mutual fund appears to be riskier based on these

ranges.

PRFDX, and state which mutual fund appears to be riskier based on
MAD.

Solution to 1.
percent. The range is thus 20.3 - (—17.0) = 37.3%.

returns than PREDX, SLASX appeared to be the riskier fund during the
1998-2002 period.

28 Iy some analytic work such as optimization, the calculus operation of differentiation is important. Variance
as a function can be differentiated, but absolute value cannot.
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Solutions to 2.

A. The arithmetic mean return for SLASX as calculated in Example 3-7 is 3.54
percent. The MAD of SLASX returns is

MAD =
1162 — 3.541+120.3 — 3.541+19.3 — 3.541+I-11.1 = 3.541+/-17.0 — 3.54
5
12,66 + 1676 + 5.76 + 14.64 + 20.54
- 5
= 105—39 = 14.1%

B. The arithmetic mean return for PRFDX as calculated in Example 3-7 is 2.94
percent. The MAD of PRFDX returns is

AD = 9.2 — 2.941+3.8 — 2.941+113.1 — 2.941+11.6 — 2.94/+1-13.0 — 2.94|

5
_ 626+ 0386+ 10.16 + 1.34 + 15.94
5
4.
SEC

SLASX, with a MAD of 14.1 percent, appears to be much riskier than PRFDX,
with a MAD of 6.9 percent.

7.3 POPULATION The mean absolute deviation addressed the issue that the sum of deviations from the mean
VARIANCE AND  equals zero by taking the absolute value of the deviations. A second approach to the treat-
POPULATION ment of deviations is to square them. The variance and standard deviation, which are based
STANDARD  on squared deviations, are the two most widely used measures of dispersion. Variance is
DEVIATION  defined as the average of the squared deviations around the mean. Standard deviation is
the positive square root of the variance. The following discussion addresses the calculation

and use of variance and standard deviation.

7.3.1 POPULATION VARIANCE

If we know every member of a population, we can compute the population variance.
Denoted by the symbol o”, the population variance is the arithmetic average of the squared
deviations around the mean.

* Population Variance Formula. The population variance is

X; — py

2 _i=l )
g ———-———N - (3-11)

Mz

where . is the population mean and N is the size of the population.
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Given knowledge of the population mean, i, We can use Equation 3-11 to calculate the
sum of the squared differences from the mean, taking account of all N items in the popu-
lation, and then to find the mean squared difference by dividing the sum by N. Whether a
difference from the mean is positive or negative, squaring that difference results in a pos-
itive number. Thus variance takes care of the problem of negative deviations from the mean
canceling out positive deviations by the operation of squaring those deviations. The P/Es
for BJ, COST, and WMT were given earlier as 16.73, 22.02, and 29.30, respectively. We
calculated the mean P/E as 22.68. Therefore, the population variance of the P/Es is
(131673 — 22.68 + (22.02 — 2268 + (2930 — 22.68)"] = (13)(=5.95% +
~0.66% + 6.623) = (1/3)(35.4025 + 0.4356 + 43.8244) = (1/3)(79.6625) = 26.5542.

7.3.2 POPULATION STANDARD DEVIATION

Because the variance is measured in squared units, we need a way to return to the original
units. We can solve this problem by using standard deviation, the square root of the vari-
ance. Standard deviation is more easily interpreted than the variance because standard
deviation is expressed in the same unit of measurement as the observations.

* Population Standard Deviation Formula. The population standard deviation,
defined as the positive square root of the population variance, is

(3-12)

where p is the population mean and N i the size of the population.

Using the example of the P/Es for BJ, COST, and WMT, according to Equation 3-12 we
would calculate the variance, 26.5542, then take the square root: V26.5542 = 5.1531 or
approximately 5.2.

Both the population variance and standard deviation are examples of parameters of
a distribution. In later chapters, we will introduce the notion of variance and standard devi-
ation as risk measures.

In investments, we often do not know the mean of a population of interest, usually
because we cannot practically identify or take measurements from each member of the popu-
Jation. We then estimate the population mean with the mean from a sample drawn from the pop-
ulation, and we calculate a sample variance or standard deviation using formulas different from
Equation 3-11 and 3-12. We shall discuss these calculations in subsequent sections. However,
in investments we sometimes have a defined group that we can consider to be a population.
With well-defined populations, we use Equations 3-11 and 3-12, as in the following example.

EXAMPLE 3-11. Calculating the Population Standard Deviation.

Table 3-20 gives the yearly portfolio turnover for the 10 U.S. equity funds that
composed the 2002 Forbes Magazine Honor Roll.Z® Portfolio turnover, a measure of

2 Forbes magazine annually selects U.S. equity mutual funds meeting certain criteria for its Honor Roll. The
criteria relate to capital preservation (performance in bear markets), continuity of management (the fund must
have a manager with at least six years’ tenure), diversification, accessibility (disqualifying funds that are closed
to new investors), and after-tax long-term performance.
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trading activity, is the lesser of the value of sales or purchases over a year divided
by average net assets during the year. The number and identity of the funds on the
Forbes Honor Roll changes from year to year.

TABLE 3-20 Portfolio Turnover: 2002 Forbes Honor Roll Mutual Funds

Fund Yearly Portfolio Turnover
FPA Capital Fund (FPPTX) 23%
Mairs & Power Growth Fund (MPGFX) 8%
Muhlenkamp Fund (MUHLX) 11%
Longleaf Partners Fund (LLPFX) 18%
Heartland Value Fund (HRTVX) 56%
Scudder—Dreman High Return Equity-A (KDHAX) 29%
Clipper Fund (CFIMX) 23%
- Weitz Value Fund (WVALX) 13%
Third Avenue Value Fund (TAVEFX) 16%
Dodge & Cox Stock Fund (DODGX) 10%

Source: Forbes (2003).

Based on the data in Table 3-20, address the following:
1. Calculate the population mean portfolio turnover for the period used by
Forbes for the ten 2002 Honor Roll funds.

2. Calculate the population variance and population standard deviation of port-
folio turnover.

3. Explain the use of the population formulas in this example.

Solutionto I. = (23 + 8 + 11 + 18 + 56 + 29 + 23 + 13 + 16 + 10)/
10 = 207/10 = 20.7 percent.

Solution to 2. Having established that p = 20.7, we can calculate o =

N
ZX w?

N by first calculating the numerator in the expression and then divid-

ing by N = 10. The numerator (the sum of the squared differences from the mean)
is
(23 — 20.7 +(8 20.7)* +(11—207) + (18 - 207) + (56 — 207) +
29 - 207) + (23 — 2072 + (13 = 20.7)* + (16 - 207 +
(10 — 20.7)°= 1,784.1

Thus o = 1,784.1/10 = 178.41.

To calculate standard deviation, ¢ = V' 178.41 = 13.357 percent. (The unit of vari-
ance is percent squared so the unit of standard deviation is percent.)

Solution to 3. If the population is clearly defined to be the Forbes Honor Roll
funds in one specific year (2002), and if portfolio turnover is understood to refer
to the specific one-year period reported upon by Forbes, the application of the




132 Chapter 3 Statistical Concepts and Market Returns

population formulas to variance and standard deviation is appropriate. The results of
178.41 and 13.357 are, respectively, the cross-sectional variance and standard devi-
ation in yearly portfolio turnover for the 2002 Forbes Honor Roll Funds.*

7.4 SAMPLE 7.4.1 SAMPLE VARIANCE
VARIANCE AND
SAMPLE STANDARD
DEviATION

In many instances in investment management, a subset or sample of the population is all
that we can observe. When we deal with samples, the summary measures are called sta-
tistics. The statistic that measures the dispersion in a sample is called the sample variance.

* Sample Variance Formula. The sample variance is

X; — X)*

P — (3-13)
n—1

s

[N
Il

where X is the sample mean and n is the number of observations in the sample.
Equation 3-13 tells us to take the following steps to compute the sample variance:

i. Calculate the sample mean, X.
ii. Calculate each observation’s squared deviation from the sample mean, (X; — X~

iii. Sum the squared deviations from the mean: Z X, - X%
i=1
iv. Divide the sum of squared deviations from the mean by n — 1: Z X - X)
(n=1. i=1

We will illustrate the calculation of the sample variance and the sample standard deviation
in Example 3-12.

We use the notation s for the sample variance to distinguish it from population vari-
ance, o>, The formula for sample variance is s nearly the same as that for population vari-
ance except for the use of the sample mean, X, in place of the population mean, p, and a
different divisor. In the case of the population variance, we divide by the size of the pop-
ulation, N. For the sample variance, however, we divide by the sample size minus 1, or
n — 1. By using n — 1 (rather than n) as the divisor, we improve the statistical properties
of the sample variance. In statistical terms, the sample variance defined in Equation 3-13
is an unbiased estimator of the population variance.>' The quantity n — 1 is also known as
the number of degrees of freedom in estimating the population variance. To estimate the
population variance with 5%, we must first calculate the mean. Once we have computed the
sample mean, there are only n — 1 independent deviations from it.

*® In fact, we could not properly use the Honor Roll funds to estimate the population variance of portfolio
turnover (for example) of any other differently defined population, because the Honor Roll funds are not a
random sample from any larger population of U.S, equity mutual funds.

3! We discuss this concept further in the chapter on sampling.
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7.4.2  SampLE STANDARD DEVIATION

Just as we computed a population standard deviation, we can compute a sample standard
deviation by taking the positive square root of the sample variance.

o Sample Standard Deviation Formula, The sample standard deviation, s, is

(3-14)

where X is the sample mean and n is the number of observations in the sample.

To calculate the sample standard deviation, we first compute the sample variance using the
steps given. We then take the square root of the sample variance. Example 3-12 illustrates
the calculation of the sample variance and standard deviation for the two mutual funds

introduced earlier.

EXAMPLE 3-12. Calculating Sample Variance and Sample
Standard Deviation.

After calculating the geometric and arithmetic mean returns of two mutual funds in
Example 3-7, we calculated two measures of dispersions for those funds, the range
and mean absolute deviation of returns, in Example 3-10. We now calculate the sam-
ple variance and sample standard deviation of returns for those same two funds.

TABLE 3-15 (repeated) Total Returns for Two Mutual Funds, 1998-2002

Selected American Shares T. Rowe Price Equity Income
Year (SLASX) (PRFDX)
1998 16.2% 9.2%
1999 20.3% 3.8%
2000 9.3% 13.1%
2001 -11.1% 1.6%
2002 -17.0% -13.0%

Source: AAIL

Based on the data in Table 3-15 repeated above, answer the following:

1. Calculate the sample variance of return for (A) SLASX and (B) PRFDX.
2. Calculate sample standard deviation of return for (A) SLASX and (B)
PRFDX.

3. Contrast the dispersion of returns as measured by standard deviation of
return and mean absolute deviation of return for each of the two funds.
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Solution to 1. To calculate the sample variance, we use Equation 3-13.
(Deviation answers are all given in percent squared.)

A. SLASX

1. ThesamplemeamsR =(162+203+93 - 11.1-17.0)/5 =
17.715 = 3.54%.

ii. The squared deviations from the mean are
(16.2 - 3. 54) = (12. 66) = 160.2756
(203 — 3. 54) = (16. 76) = 280.8976
(9.3 — 3.54)* = (5 76)* = 33.1776
(—11.1 - 354) = (- 1464) = 2143296
(=170 — 3.54)* = (—20. 54)* = 421.8916

iii. The sum of the squared deviations from the mean is 160.2756 +
280.8976 + 33.1776 + 214.3296 + 421.8916 = 1,110.5720.

iv. Divide the sum of the squared deviations from the mean by n — 1:
1,110.5720/(5 — 1) = 1,110.5720/4 = 277.6430

B. PRFDX

i. The sample mean is R= (92+38+13.1+1.6-13.0)5=
14.7/5 = 2.94%.

ii. The squared deviations from the mean are
92-2 94) = (6. 26) = 39.1876
(3.8 — 2.94)* = (0. 86)> = 0.7396
(13.1 - 294) = (10. 16) 103.2256
(1.6 — 2.94) —( 1.34)* = 1.7956
(=13.0 — 2,94 = (= 15. 94)* = 254.0836

iii. The sum of the squared deviations from the mean is 39.1876 +
0.7396 + 103.2256 + 1.7956 + 254.0836 = 399.032.

iv. Divide the sum of the squared deviations from the mean by n — 1:
399.032/4 = 99.758

Solution to 2. To find the standard deviation, we take the positive square root
of variance.
A. For SLASX, ¢ = V277.6430 = 16.66% or 16.7 percent.
B. For PRFDX, o = V99.758 = 9.99% or 10.0 percent.

Solution to 3. Table 3-21 summarizes the results from Part 2 for standard
deviation and incorporates the results for MAD from Example 3-10.

TABLE 3-21 Two Mutual Funds: Comparison of Standard Deviation
and Mean Absolute Deviation

Fund Standard Deviation Mean Absolute Deviation
SLASX 16.7% 14.1%
PRFDX 10.0% 6.9%

Note that the mean absolute deviation is less than the standard deviation. The
mean absolute deviation will always be less than or equal to the standard deviation
because the standard deviation gives more weight to large deviations than to small
ones (remember, the deviations are squared).
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7.5 SEMIVARIANCE,
SEMIDEVIATION,
AND RELATED
CoNCEPTS

Because the standard deviation is a measure of dispersion about the arithmetic mean,
we usually present the arithmetic mean and standard deviation together when summariz-
ing data. When we are dealing with data that represent a time series of percent changes,
presenting the geometric mean—representing the compound rate of growth—is also very
helpful. Table 3-22 presents the historical geometric and arithmetic mean returns, along
with the historical standard deviation of returns, for various equity return series. We pre-
sent these statistics for nominal (rather than inflation-adjusted) returns so we can observe
the original magnitudes of the returns.

TABLE 3-22  Equity Market Returns: Means and Standard Deviations

Geometric Arithmetic Standard
Return Series Mean Mean Deviation

. Ibbotson Associates Series: 1926-2002

S&P 500 (Annual) 10.20% 12.20% 20.49
S&P 500 (Monthly) 0.81% 0.97% 5.65

II. Dimson et al. (2002) Series (Annual): 1900-2000

Australia 11.9% 13.3% 18.2%
Belgium 8.2% 10.5% 24.1%
Canada 9.7% 11.0% 16.6%
Denmark 8.9% 10.7% 21.7%
France 12.1% 14.5% 24.6%
Germany 9.7% 15.2% 36.4%
Ireland 9.5% 11.5% 22.8%
Italy 12.0% 16.1% 34.2%
Japan 12.5% 15.9% 29.5%
Netherlands 9.0% 11.0% ' 22.7%
South Africa 12.0% 14.2% 23.7%
Spain 10.0% 12.1% 22.8%
Sweden 11.6% 13.9% 23.5%
Switzerland 1.6% 9.3% 19.7%
United Kingdom 10.1% 11.9% 21.8%
United States 10.1% 12.0% 19.9%

Source: Ibbotson EncorrAnalyzer; Dimson et al.

An asset’s variance or standard deviation of returns is often interpreted as a measure of
the asset’s risk. Variance and standard deviation of returns take account of returns above
and below the mean, but investors are concerned only with downside risk, for example
returns below the mean. As a result, analysts have developed semivariance, semideviation,
and related dispersion measures that focus on downside risk. Semivariance is defined
as the average squared deviation below the mean. Semideviation (sometimes called
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semistandard deviation) is the positive square root of semivariance. To compute the sam-
ple semivariance, for example, we take the following steps:

i, Calculate the sample mean.

ii. Identify the observations that are smaller than the mean (discarding observations
equal to and greater than the mean); suppose there are n* observations smaller
than the mean.

iii. Compute the sum of the squared negative deviations from the mean (using the n*
observations that are smaller than the mean).

iv. Divide the sum of the squared negative deviations from Step iii by n* — 1. A
formula for semivariance is

> K- XM = 1)

for all X;<X

To take the case of Selected American Shares with returns (in percent) of 16.2, 20.3, 9.3,
—11.1, and —17.0, we earlier calculated a mean return of 3.54 percent. Two returns, —11.1
and —17.0, are smaller than 3.54 (n* = 2). We compute the sum of the squared nega-
tive deviations from the mean as (—=11.1 — 3.54)> + (=17.0 — 3.54% = —14.64> +
—20.54% = 214.3296 + 421.8916 = 636.2212. With n* — 1 = 1, we conclude that semi-
variance is 636.2212/1 = 636.2212 and that semideviation is V' 636.2212 = 23.2 percent,
approximately. The semideviation of 25.2 percent is greater than the standard deviation of
16.7 percent. From this downside risk perspective, therefore, standard deviation under-
states risk.

In practice, we may be concerned with values of return (or another variable) below
some level other than the mean. For example, if our return objective is 10 percent annu-
ally, we may be concerned particularly with returns below 10 percent a year. We can call
10 percent the target. The name target semivariance has been given to average squared
deviation below a stated target, and target semideviation is its positive square root. To cal-
culate a sample target semivariance, we specify the target as a first step. After identifying
observations below the target, we find the sum of the squared negative deviations from the
target and divide that sum by the number of observations below the target minus 1. A for-
mula for target semivariance is

(X; = BYf(n* = 1)
for all X;<B

where B is the target and n* is the number of observations below the target. With a tar-
get return of 10 percent, we find in the case of Selected American Shares that three
returns (9.3, —11.1, and —17.0) were below the target. The target semivariance is [(9.3 -
10,02 + (=111 = 10.0)* + (~=17.0 — 10.0)* (3 — 1) = 587.35, and the target semi-
deviation is V'587.35 = 24.24 percent, approximately.

When return distributions are symmetric, semivariance is a constant proportion (one-
half) of variance and the two measures are effectively equivalent. For asymmetric distri-
butions, variance and semivariance rank prospects’ risk differently.’> Semivariance (or

32 For negatively skewed returns, semivariance is greater than one-half variance; for positively skewed returns,
semivariance is less than one-half variance. See Estrada (2003). We discuss skewness later in this chapter.
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7.6 CHEBYSHEV'S
INEQUALITY

semideviation) and target semivariance (or target semideviation) have intuitive appeal, but
they are harder to work with mathematically than variance.>® Variance or standard devia-
tion enters into the definition of many of the most commonly used finance risk concepts,
such as the Sharpe ratio and beta. Perhaps because of these reasons, variance (or standard
deviation) is much more frequently used in investment practice.

The Russian mathematician Pafnuty Chebyshev developed an inequality using standard
deviation as a measure of dispersion. The inequality gives the proportion of values within
k standard deviations of the mean.

« Definition of Chebyshev’s Inequality. According to Chebyshev’s inequality, the
proportion of the observations within  standard deviations of the arithmetic mean is

at least 1 — 1/k* forallk > 1.

Table 3-23 illustrates the proportion of the observations that must lie within a certain
number of standard deviations around the sample mean.

TABLE 3-23 Proportions from Chebyshev’s Inequality

k Interval Around the Sample Mean Proportion
125 X * 1255 36%
1.50 X *+ 1.50s 56%
2.00 X+ 75%
2.50 X +2.50s 84%
3.00 X +3s 89%
400 X + 4s 94%

Note: Standard deviation is denoted as s.

When k = 1.25, for example, the inequality states that the minimum proportion of the
observations that lie within = 1.25s is 1 — 1/(1.25)* = 1 — 0.64 = 0.36 or 36 percent.

The most frequently cited facts that result from Chebyshev’s inequality are that a
two-standard-deviation interval around the mean must contain at least 75 percent of the
observations, and a three standard deviation interval around the mean must contain at least
89 percent of the observations, no matter how the data are distributed.

The importance of Chebyshev’s inequality stems from its generality. The inequality
holds for samples and populations and for discrete and continuous data regardless of the
shape of the distribution. As we shall see in the chapter on sampling, we can make much
more precise interval statements if we can assume that the sample is drawn from a popu-
lation that follows a specific distribution called the normal distribution. Frequently, how-
ever, we cannot confidently assume that distribution.

The next example illustrates the use of Chebyshev’s inequality.

3 As discussed in the chapter on probability concepts and the chapter on portfolio concepts, we can finda
portfolio’s variance as a straightforward function of the variances and correlations of the component securities.
There is no similar procedure for semivariance and target semivariance. We also cannot take the derivative of
sernivariance or target semivariance.
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EXAMPLE 3-13.  Applying Chebyshev’s Inequality.

According to Table 3-22, the arithmetic mean monthly return and standard deviation
of monthly returns on the S&P 500 were 0.97 percent and 5.65 percent, respectively,
during the 1926-2002 period, totaling 924 monthly observations. Using this infor-
mation, address the following:

1. Calculate the endpoints of the interval that must contain at least 75 percent of
monthly returns according to Chebyshev’s inequality.

2. What are the minimum and maximum number of observations that must lie in
the interval computed in Part 1, according to Chebyshev’s inequality?

Solution to 1. According to Chebyshev’s inequality, at least 75 percent of the
observations must lie within two standard deviations of the mean, X * 2s. For the
monthly S&P 500 return series, we have 0.97% * 2(5.65%) = 0.97% * 11.30%.
Thus the lower endpoint of the interval that must contain at least 75 percent of the
observations is 0.97% — 11.30% = —10.33%, and the upper endpoint is 0.97% +
11.30% = 12.27%.

Solution to 2. For a sample size of 924, at least 0.75(924) = 693 observa-
tions must lie in the interval from —10.33% to 12.27% that we computed in Part 1.
Chebyshev’s inequality gives the minimum percentage of observations that must fall
within a given interval around the mean, but it does not give the maximum percent-
age. Table 3-4, which gave the frequency distribution of monthly returns on the S&P
500, is excerpted below. The data in the excerpted table are consistent with the pre-
diction of Chebyshev’s inequality. The set of intervals running from —10.0% to
12.0% is just slightly narrower than the two-standard-deviation interval —10.33% to
12.27%. A total of 886 observations (approximately 96 percent of observations) fall
in the range from —10.0% to 12.0%.

TABLE 3-4 (Excerpt) Frequency Distribution for
the Monthly Total Return on the S&P
500, January 1926 to December 2002

Return Interval Absolute Frequency
-10.0% to —8.0% 20
—8.0% to —6.0% 30
—6.0% to —4.0% 54
—4.0% to —2.0% 90
=2.0% to 0.0% 138
0.0% to 2.0% 182
2.0% to 4.0% 153
4.0% to 6.0% 126
6.0% to 8.0% 58
8.0% to 10.0% 21
10.0% to 12.0% 14

886
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7.7 COEFFICIENT
OF VARIATION

We noted earlier that standard deviation is more easily interpreted than variance because
standard deviation uses the same units of measurement as the observations. We may some-
times find it difficult to interpret what standard deviation means in terms of the relative
degree of variability of different sets of data, however, either because the data sets have
markedly different means or because the data sets have different units of measurement. In
this section we explain a measure of relative dispersion, the coefficient of variation that can
be useful in such situations. Relative dispersion is the amount of dispersion relative to a
reference value or benchmark.

We can illustrate the problem of interpreting the standard deviation of data sets with
markedly different means using two hypothetical samples of companies. The first sample,
composed of small companies, includes companies with 2003 sales of €50 million, €75
million, €65 million, and €90 million. The second sample, composed of large companies,
includes companies with 2003 sales of €800 million, €825 million, €815 million, and €840
million. We can verify using Equation 3-14 that the standard deviation of sales in both
samples is €16.8 million.** In the first sample, the largest observation, €90 million, is 80
percent larger than the smallest observation, €50 million. In the second sample, the Jargest
observation is only 5 percent larger than the smallest observation. Informally, a standard
deviation of €16.8 million represents a high degree of variability relative to the first sam-
ple, which reflects mean 2003 sales of €70 million, but a small degree of variability rela-
tive to the second sample, which reflects mean 2003 sales of €820 million.

The coefficient of variation is helpful in situations such as that just described.

o Coefficient of Variation Formula. The coefficient of variation, CV, is the ratio of
the standard deviation of a set of observations to their mean value:>

CV =sX (3-15)
where s is the sample standard deviation and X is the sample mean.

When the observations are returns, for example, the coefficient of variation measures the
amount of risk (standard deviation) per unit of mean return. Expressing the magnitude of
variation among observations relative to their average size, the coefficient of variation
permits direct comparisons of dispersion across different data sets. Reflecting the correc-
tion for scale, the coefficient of variation is a scale-free measure (that is, it has no units of
measurement).

We can illustrate the application of the coefficient of variation using our earlier
example of two samples of companies. The coefficient of variation for the first sample is
(€16.8 million)/(€70 million) = 0.24; the coefficient of variation for the second sample is
(€16.8 million)/(€820 million) = 0.02. This confirms our intuition that the first sample had
much greater variability in sales than the second sample. Note that 0.24 and 0.02 are pure
numbers in the sense that they are free of units of measurement (because we divided the
standard deviation by the mean, which is measured in the same units as the standard devi-
ation). If we need to compare the dispersion among data sets stated in different units of
measurement, the coefficient of variation can be useful because it is free from units of
measurement. Example 3-14 illustrates the calculation of the coefficient of variation.

34 The second sample was created by adding €750 million to each observation in the first sample. Standard
deviation (and variance) has the property of remaining unchanged if we add a constant amount to each observation.

35 The reader will also encounter CV defined as 100(s/X ), which states CV as a percentage.



140

Chapter 3 Statistical Concepts and Market Returns

EXAMPLE 3-14. Calculating the Coefficient of Variation.

Table 3-24 summarizes annual mean returns and standard deviations for several
major U.S. asset classes, using an option in Ibbotson Encorr Analyzer to convert
monthly return statistics to annual ones.

TABLE 3-24 Arithmetic Mean Annual Return and Standard Deviation of
Returns, U.S. Asset Classes, 1926-2002

Arithmetic Mean Standard Deviation
Asset Class Return of Return
S&P 500 12.3% 21.9%
U.S. small stock 16.9% 35.1%
U.S. long-term corporate 6.1% 1.2%
U.S. long-term government 5.8% 8.2%
U.S. 30-day T-bill 3.8% 0.9%

Source: Ibbotson EncorrAnalyzer.

Using the information in Table 3-24, address the following:

1. Calculate the coefficient of variation for each asset class given.

2. Rank the asset classes from most risky to least risky using CV as a measure
of relative dispersion.

3. Determine whether there is more difference between the absolute or the
relative riskiness of the S&P 500 and U.S. small stocks. Use the standard
deviation as a measure of absolute risk and CV as a measure of relative
risk.

Solution to 1.

S&P 500: CV = 21.9%/12.3% = 1.780

U.S. small stock: CV = 35.1%/16.9% = 2.077

U.S. long-term corporate: CV = 7.2%/6.1% = 1.180
U.S. long-term government: CV = 8.2%/5.8% = 1.414
U.S. 30-day T-bill: CV = 0.9%/3.8% = 0.237

Solution to 2. Based on CV, the ranking is U.S. small stocks (most risky),
S&P 500, U.S. long-term governments, U.S. long-term corporates, and U.S. 30-day

T-bills (least risky).

Solution to 3. As measured both by standard deviation and CV, U.S. small
stocks were riskier than the S&P 500. However, the CVs reveal less difference
between small-stock and S&P 500 return variability than that suggested by the stan-
dard deviations alone. The standard deviation of small stock returns was (35.1 —
21.9)/21.9 = 0.603 or about 60 percent larger than S&P 500 returns, compared with a
difference in the CV of (2.077 —1.780)/1.780 = 0.167 or 17 percent.
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7.8 THE SHARPE
Ratio

Although CV was designed as a measure of relative dispersion, its inverse reveals something
about return per unit of risk because the standard deviation of returns is commonly used as a
measure of investment risk. For example, a portfolio with a mean monthly return of 1.19 per-
cent and a standard deviation of 4.42 percent has an inverse CV of 1.19%/4.42% = 0.27. This
result indicates that each unit of standard deviation represents a 0.27 percent return.

A more precise return-risk measure recognizes the existence of a risk-free return, a
return for virtually zero standard deviation. With a risk-free asset, an investor can choose a
risky portfolio, p, and then combine that portfolio with the risk-free asset to achieve any
desired level of absolute risk as measured by standard deviation of return, s,. Consider a
graph with mean return on the vertical axis and standard deviation of return on the horizon-
tal axis. Any combination of portfolio p and the risk-free asset lies on a ray (line) with slope
equal to the quantity (Mean return — Risk-free return) divided by s,. The ray giving investors
choices offering the most reward (return in excess of the risk-free rate) per unit of risk is the
one with the highest slope. The Tatio of excess return to standard deviation of return for
a portfolio p—the slope of the ray passing through p—is a single-number measure of a port-
folio’s performance known as the Sharpe ratio, after its developer, William F. Sharpe.

* Sharpe Ratio Formula. The Sharpe ratio for a portfolio p, based on historical
returns, is defined as

5, = e (3-16)

where Ep is the mean return to the portfolio, Ry is the mean return to a risk-free asset,
and s, is the standard deviation of return on the portfolio.*

The numerator of the Sharpe measure is the portfolio’s mean return minus the mean return
on the risk-free asset over the sample period. The R, — Ry term measures the extra reward
that investors receive for the added risk taken. We call this difference the mean excess
return on portfolio p. Thus the Sharpe ratio measures the reward, in terms of mean excess
return, per unit of risk, as measured by standard deviation of return. Those risk-averse
investors who make decisions only in terms of mean return and standard deviation of
teturn prefer portfolios with larger Sharpe ratios to those with smaller Sharpe ratios.

To illustrate the calculation of the Sharpe ratio, consider the performance of the S&P
500 and U.S. small stocks during the 1926-2002 period, as given previously in Table 3-24.
Using the mean U.S. T-bill return to represent the risk-free rate, we find

123 - 3.8
S&P 500: S, = —:2—1‘52" = 0.39

169 ~338 _

U.S. small stocks: S, = w1 0.37

36 The equation presents the ex post or historical Sharpe ratio. We can also think of the Sharpe ratio for a
portfolio going forward based on our expectations for mean return, the risk-free return, and the standard
deviation of return; this would be the ex ante Sharpe ratio. One may also encounter an alternative calculation
for the Sharpe ratio in which the denominator is the standard deviation of the series (Portfolio return — Risk-
free return) rather than the standard deviation of portfolio return; in practice, the two standard deviation
calculations generally yield very similar results. For more information on the Sharpe ratio (which has also been
called the Sharpe measure, the reward-to-variability ratio, and the excess return to variability measure), see
Elton, Gruber, Brown, and Goetzmann (2003) and Sharpe (1994).
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Although U.S. small stocks earned higher mean returns, they performed slightly less well
than the S&P 500, as measured by the Sharpe ratio.

The Sharpe ratio is a mainstay of performance evaluation. We must issue two cau-
tions concerning its use, one related to interpreting negative Sharpe ratios and the other to
conceptual limitations.

Finance theory tells us that in the long run, investors should be compensated with
additional mean return above the risk-free rate for bearing additional risk, at least if the
risky portfolio is well diversified. If investors are so compensated, the numerator of the
Sharpe ratio will be positive. Nevertheless, we often find that portfolios exhibit negative
Sharpe ratios when the ratio is calculated over periods in which bear markets for equi-
ties dominate. This raises a caution when dealing with negative Sharpe ratios. With pos-
itive Sharpe ratios, a portfolio’s Sharpe ratio decreases if we increase risk, all else equal.
That result is intuitive for a risk-adjusted performance measure. With negative Sharpe
ratios, however, increasing risk results in a numerically larger Sharpe ratio (for example,
doubling risk may increase the Sharpe ratio from —1 to —0.5). Therefore, in a compar-
ison of portfolios with negative Sharpe ratios, we cannot generally interpret the larger
Sharpe ratio (the one closer to zero) to mean better risk-adjusted performance.”” Practi-
cally, to make an interpretable comparison in such cases using the Sharpe ratio, we
may need to increase the evaluation period such that one or more of the Sharpe ra-
tios becomes positive; we might also consider using a different performance evaluation
metric.

The conceptual limitation of the Sharpe ratio is that it considers only one aspect of
risk, standard deviation of return. Standard deviation is most appropriate as a risk measure
for portfolio strategies with approximately symmetric return distributions. Strategies with
option elements have asymmetric returns. Relatedly, an investment strategy may produce
frequent small gains but have the potential for infrequent but extremely large losses.*®
Such a strategy is sometimes described as picking up coins in front of a bulldozer; for
example, some hedge fund strategies tend to produce that return pattern. Calculated over
a period in which the strategy is working (a large loss has not occurred), this type of strat-
egy would have a high Sharpe ratio. In this case, the Sharpe ratio would give an overly
optimistic picture of risk-adjusted performance because standard deviation would incom-
pletely measure the risk assumed.” Therefore, before applying the Sharpe ratio to evalu-
ate a manager, we should judge whether standard deviation adequately describes the risk
of the manager’s investment strategy.

Example 3-15 illustrates the calculation of the Sharpe ratio in a portfolio perfor-
mance evaluation context.

37 1f the standard deviations are equal, however, the portfolio with the negative Sharpe ratio closer to zero is
SUperior.

38 This statement describes a return distribution with negative skewness. We discuss skewness later in this
chapter.

% For more information, see Amin and Kat (2003).
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EXAMPLE 3-15. Calculating the Sharpe Ratio.

In earlier examples, we computed the various statistics for two mutual funds, Selected
American Shares (SLASX) and T. Rowe Price Equity Income (PRFDX), for a five-
year period ending in December 2002. Table 3-25 summarizes selected statistics for
these two mutual funds for a longer period, the 10-year period ending in 2002.

TABLE 3-25 Mutual Fund Mean Return and Standard Deviation of Return,

1993-2002
Fund Arithmetic Mean Standard Deviation of Return
SLASX 12.58% 19.44%
PRFDX 11.64% 13.65%

Source: AAIL

The U.S. 30-day T-bill rate is frequently used as a proxy for the risk-free rate. Table
3-26 gives the annual return on T-bills for the 1993-2002 period.

TABLE 3-26 Annualized U.S.

30-Day T-Bill

Rates of Return,

1993-2002
Year Return
1993 2.90%
1994 3.90%
1995 5.60%
1996 5.21%
1997 5.26%
1998 4.86%
1999 4.68%
2000 5.89%
2001 3.83%
2002 1.65%

Source: Ibbotson Associates.

Using the information in Tables 3-25 and 3-26, address the following.

1. Calculate the Sharpe ratios for SLASX and PRFDX during the 1993-2002
period.
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2. State which fund had superior risk-adjusted performance during this period,
as measured by the Sharpe ratio.

Solution to 1. We already have in hand the means of the portfolio return and
standard deviations of returns. The mean annual risk-free rate of return from 1993
to 2002, using U.S. T-bills as a proxy, is (2.90 + 3.90 + 560 + 521 + 526+
4.86 + 4.68 + 5.89 + 3.83 + 1.65)/10 = 43.78/10 = 4.38 percent.

12.58 - 4.38 _

SLASX: §, = 0.42
h,SLASX 1944
11.64 — 4.38
PRFDX: §, =———=(.53
A, PRFDX 13.65

Solution to 2. PRFDX had a higher positive Sharpe ratio than SLASX during
the period. As measured by the Sharpe ratio, PRFDX’s performance was superior.

8 SYMMETRY AND SKEWNESS IN RETURN DISTRIBUTIONS

Mean and variance may not adequately describe an investment’s distribution of returns. In
calculations of variance, for example, the deviations around the mean are squared, so we
do not know whether large deviations are likely to be positive or negative. We need to go
beyond measures of central tendency and dispersion to reveal other important characteris-
tics of the distribution. One important characteristic of interest to analysts is the degree of
symumetry in return distributions.

If a return distribution is symmetrical about its mean, then each side of the distribu-
tion is a mirror image of the other. Thus equal loss and gain intervals exhibit the same fre-
quencies. Losses from —5 percent to —3 percent, for example, occur with about the same
frequency as gains from 3 percent to 5 percent.

One of the most important distributions is the normal distribution, depicted in
Figure 3-6. This symmetrical, bell-shaped distribution plays a central role in the mean—
variance model of portfolio selection; it is also used extensively in financial risk manage-
ment. The normal distribution has the following characteristics:

* Jts mean and median are equal.
o It is completely described by two parameters—its mean and variance.

~ Roughly 68 percent of its observations li between plus and minus one standard devia-
tion from the mean; 95 percent lie between plus and minus two standard deviations; and
99 percent lie between plus and minus three standard deviations.

A distribution that is not symmetrical is called skewed. A return distribution with positive
skew has frequent small losses and a few extreme gains. A return distribution with nega-
tive skew has frequent small gains and a few extreme losses. Figure 3-7 shows positively
and negatively skewed distributions. The positively skewed distribution shown has a long
tail on its right side; the negatively skewed distribution has a long tail on its left side. For
the positively skewed unimodal distribution, the mode is less than the median, which is
less than the mean. For the negatively skewed unimodal distribution, the mean is less than

o
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FIGURE 3-6 Properties of a Normal Distribution (EV = Expected Value)
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Reprinted with permission from Fixed Income Readings
for the Chartered Financial Analyst® Program.
Copyright 2000, Frank J. Fabozzi Associates, New Hope, PA.
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FIGURE 3-7 Properties of a Skewed Distribution

Distribution Skewed to the Right (Positively Skewed) Distribution Skewed to the Left (Negatively Skewed)

Reprinted with permission from Fixed Income Readings
for the Chartered Financial Analyst® Program.
Copyright 2000, Frank J. Fabozzi Associates, New Hope, PA.

the median, which is less than the mode.* Investors should be attracted by a positive skew
because the mean return falls above the median. Relative to the mean return, positive skew
amounts to a limited, though frequent, downside compared with a somewhat unlimited, but
less frequent, upside.

Skewness is the name given to a statistical measure of skew. (The word “skewness”
is also sometimes used interchangeably for “skew.”) Like variance, skewness is computed
using each observation’s deviation from its mean. Skewness (sometimes referred to as rel-
ative skewness) is computed as the average cubed deviation from the mean standardized
by dividing by the standard deviation cubed to make the measure free of scale.*' A sym-
metric distribution has skewness of 0, a positively skewed distribution has positive skew-
ness, and a negatively skewed distribution has negative skewness, as given by this measure.

We can illustrate the principle behind the measure by focusing on the numerator.
Cubing, unlike squaring, preserves the sign of the deviations from the mean. If a distribu-
tion is positively skewed with a mean greater than its median, then more than half of the
deviations from the mean are negative and less than half are positive. In order for the sum
to be positive, the losses must be small and likely, and the gains less likely but more
extreme. Therefore, if skewness is positive, the average magnitude of positive deviations
is larger than the average magnitude of negative deviations.

A simple example illustrates that a symmetrical distribution has a skewness measure
equal to 0. Suppose we have the following data: 1,2, 3,4, 5, 6,7, 8, and 9. The mean out-
come is 5, and the deviations are —4, —3, =2, —1,0, 1,2, 3, and 4. Cubing the deviations
yields —64, —27, -8, 1,0, 1, 8, 27, and 64, with a sum of 0. The numerator of skew-
ness (and so skewness itself) is thus equal to 0, supporting our claim. Below we give the
formula for computing skewness from a sample.

40 As 2 mnemonic, in this case the mean, median, and mode occur in the same order as they would be listed in
a dictionary.

4! We are discussing a moment coefficient of skewness. Some textbooks present the Pearson coefficient of
skewness, equal to 3(Mean — Median)/Standard deviation, which has the drawback of involving the calculation
of the median.
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* Sample Skewness Formula. Sample skewness (also called sample relative skew-
ness), Sk, is

> X -X°
SK=[( n } = (3-17)

n=1r-2) s

where n is the number of observations in the sample and s is the sample standard
deviation.*

The algebraic sign of Equation 3-17 indicates the direction of skew, with a negative Sx indicat-
ing a negatively skewed distribution and a positive S indicating a positively skewed distribu-
tion. Note that as n becomes large, the expression reduces to the mean cubed deviation,

n 3

>, (X~ X’ |
Sk ~ (l) i=t . A$aframe of reference, fora sample size of 100 or larger taken
s

from a normal distribution, a skewness coefficient of +0.5 would be considered unusually
large.

Table 3-27 shows several summary statistics for the annual and monthly returns on
the S&P 500. Earlier we discussed the arithmetic mean return and standard deviation of
return, and we shall shortly discuss kurtosis.

TABLE 3-27 S&P 500 Annual and Monthly Total Returns, 1926-2002: Summary Statistics

Number of Arithmetic Standard Excess
Return Series Periods Mean Deviation Skewness Kurtosis
S&P 500 (Annual) 77 12.20% 20.49% —0.2943 ~0.2207
S&P 500 (Monthiy) 924 0.97% 5.65% 0.3964 9.4645

Source: Ibbotson EncorrAnalyzer.

Table 3-27 reveals that S&P 500 annual returns during this period were negatively skewed
while monthly returns were positively skewed, and the magnitude of skewness was greater
for the monthly series. We would find for other market series that the shape of the distri-
bution of returns often depends on the holding period examined.

Some researchers believe that investors should prefer positive skewness, all else
equal—that is, they should prefer portfolios with distributions offering a relatively large
frequency of unusually large payoffs.** Different investment strategies may tend to intro-
duce different types and amounts of skewness into returns. Example 3-16 illustrates the
calculation of skewness for a managed portfolio.

42 The term nf{(n — 1)(n — 2)] in Equation 3-17 corrects for a downward bias in small samples.

43 For more on the role of skewness in portfolio selection, see Reilly and Brown (2003) and Elton et al. (2003)
and the references therein.
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EXAMPLE 3-16. Calculating Skewness for a Mutual Fund.

Table 3-28 presents 10 years of annual returns on the T. Rowe Price Equity Income
Fund (PRFDX).

TABLE 3-28 Annual Rates of
Return: T. Rowe
Price Equity
Income, 1993-2002

Year Return
1993 14.8%
1994 4.5%
1995 33.3%
1996 20.3%
1997 28.8%
1998 9.2%
1999 3.8%
2000 13.1%
2001 1.6%
2002 -13.0%
Source: AAIL

Using the information in Table 3-28, address the following.

1. Calculate the skewness of PRFDX showing two decimal places.

2. Characterize the shape of the distribution of PRFDX returns based on your
answer to Part 1.

Solution to 1. To calculate skewness, we find the sum of the cubed devia-

tions from the mean, divide by the standard deviation cubed, and then multiply that
result by n/[(n — 1)(n — 2)]. Table 3-29 gives the calculations.

TABLE 3-29 Calculating Skewness for PRFDX

Year R, R.—R R, ~ R’

1993 14.8% 3.16 31.554
1994 4.5% -7.14 —363.994
1995 33.3% 21.66 10,161.910
1996 20.3% 8.66 649.462
1997 28.8% 17.16 5,053.030
1998 9.2% -2.44 —-14.527
1999 3.8% -7.84 —481.890

2000 13.1% 1.46 3.112

-
R
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2001 1.6% ~10.04 -1,012.048
2002 —13.0% —24.64 ~14,959.673
n= 10
R= 11.64%
Sum = -033.064
5= 13.65% $= 2,543.302
Sum/s® = -0.3669
al(n — Din = 2)] = 0.1389
Skewness = —0.05
Source: AAIL

Using Equation 3-17, the calculation is:

10 | -933.064
K=[ } ) L = —0.05

O8] 1365

In this example, five deviations are negative and five are positive. Two large positive
deviations, in 1995 and 1997, are more than offset by a very large negative devia-
tion in 2002 and a moderately large negative deviation in 2001, both bear market
years. The result is that skewness is a very small negative number.

Solution to 2. Based on this small sample, the distribution of annual returns
for the fund appears to be approximately symmetric (or very slightly negatively
skewed). The negative and positive deviations from the mean are equally frequent,
and large positive deviations approximately offset large negative deviations.

9 KURTOSIS IN RETURN DISTRIBUTIONS

In the previous section, we discussed how to determine whether a return distribution deviates
from a normal distribution because of skewness. One other way in which a return distribution
might differ from a normal distribution is by having more returns clustered closely around the
mean (being more peaked) and more returns with large deviations from the mean (having fat-
ter tails). Relative to a normal distribution, such a distribution has a greater percentage of small
deviations from the mean return (more small surprises) and a greater percentage of extremely
Jarge deviations from the mean return (more big surprises). Most investors would perceive a
greater chance of extremely large deviations from the mean as increasing risk.

Kurtosis is the statistical measure that tells us when a distribution is more or less
peaked than a normal distribution. A distribution that is more peaked than normal is called
leptokurtic (lepto from the Greek word for slender); a distribution that is less peaked than
normal is called platykurtic (platy from the Greek word for broad); and a distribution
identical to the normal distribution in this respect is called mesokurtic (meso from the
Greek word for middle). The situation of more-frequent extremely large surprises that we
described is one of leptokurtosis.**

Figure 3-8 illustrates a leptokurtic distribution. It is more peaked and has fatter tails
than the normal distribution.

44 Kurtosis has been described as an illness characterized by episodes of extremely rude behavior.
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FIGURE 3-8 Leptokurtic: Fat Tailed

- - -~ Fat Tails Distribution

—— Normal Distribution

Standard Deviations

Reprinted with permission from Fixed Income Readings
for the Chartered Financial Analyst® Program.
Copyright 2000, Frank J. Fabozzi Associates, New Hope, PA.

The calculation for kurtosis involves finding the average of deviations from the mean
raised to the fourth power and then standardizing that average by dividing by the standard
deviation raised to the fourth power.*> For all normal distributions, kurtosis is equal to 3.
Many statistical packages report estimates of excess kurtosis, which is kurtosis minus 3.4
Excess kurtosis thus characterizes kurtosis relative to the normal distribution. A normal or
other mesokurtic distribution has excess kurtosis equal to 0. A leptokurtic distribution has
excess kurtosis greater than 0, and a platykurtic distribution has excess kurtosis less than
0. A return distribution with positive excess kurtosis—a leptokurtic return distribution—
has more frequent extremely large deviations from the mean than a normal distribution.
Below is the expression for computing kurtosis from a sample.

* Sample Excess Kurtosis Formula. The sample excess kurtosis is

_ 4
o= n(n + 1) ; *%= X 3(n — 1)?
=

(n—Dn—2)n-3) & T (-2n-3)

(3-18)

where n is the sample size and s is the sample standard deviation.

45 This measure is free of scale. It is always positive because the deviations are raised to the fourth power.

4 Tbbotson and some software packages, such as Microsoft Excel, label “excess kurtosis” as simply

“Kurtosis.” This highlights the fact that one should familiarize oneself with the description of statistical
quantities in any software packages that one uses.
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In Equation 3-18, sample kurtosis is the first term. Note that as n becomes large, Equa-

Y XX a2 1Y KX
tion 3-18 approximately equals n—3 —Z———4— - 1—17 =— —Z——z— — 3. Fora
n

5 n n §

sample of 100 or larger taken from a normal distribution, a sample excess kurtosis of 1.0
or larger would be considered unusually large.

Most equity return series have been found to be leptokurtic. If a return distribution
has positive excess kurtosis (leptokurtosis) and we use statistical models that do not
account for the fatter tails, we will underestimate the likelihood of very bad or very good
outcomes. For example, the return on the S&P 500 for 19 October 1987 was 20 standard
deviations away from the mean daily return. Such an outcome is possible with a normal
distribution, but its likelihood is almost equal to 0. If daily returns are drawn from a nor-
mal distribution, a return four standard deviations or more away from the mean is expected
once every 50 years; a return greater than five standard deviations away is expected once
every 7,000 years. The return for October 1987 is more likely to have come from a distri-
bution that had fatter tails than from a normal distribution. Looking at Table 3-27 given
earlier, the monthly return series for the S&P 500 has very large excess kurtosis, approxi-
mately 9.5. It is extremely fat-tailed relative to the normal distribution. By contrast, the
annual return series has very slightly negative excess kurtosis (roughly —0.2). The results
for excess kurtosis in the table are consistent with research findings that the normal distri-
bution is a better approximation for U.S. equity returns for annual holding periods than for
shorter ones (such as monthly).*’

The following example illustrates the calculations for sample excess kurtosis for one
of the two mutual funds we have been examining.

EXAMPLE 3-17.  Calculating Sample Excess Kurtosis.

Having concluded in Example 3-16 that the annual returns on T. Rowe Price Equity
Income Fund were approximately symmetrically distributed during the 19932002
period, what can we say about the kurtosis of the fund’s return distribution? Table
3-28 (repeated below) recaps the annual returns for the fund.

TABLE 3-28 (repeated) Annual
Rates of Return:
T. Rowe Price Equity
Income, 1993-2002

Year Return
1993 14.83%
1994 4.5%
1995 33.3%
1996 20.3%
1997 28.8%

47 See Campbell, Lo, and MacKinlay (1997) for more details.



152

Chapter 3 Statistical Concepts and Market Returns

TABLE 3-28  (repeated) Annual
Rates of Return:

T. Rowe Price Equity

Income, 1993-2002

(Continued)
Year Return
1998 9.2%
1999 3.8%
2000 13.1%
2001 1.6%
2002 -13.0%

Source: AAIL

Using the information from Table 3-28 repeated above, address the following.

1. Calculate the sample excess kurtosis of PREDX showing two decimal
places.

9. Characterize the shape of the distribution of PRFDX returns based on
your answer t0 Part 1 as leptokurtic, mesokurtic, or platykurtic.

Solution to 1. To calculate excess kurtosis, we find the sum of the deviations
from the mean raised to the fourth power, divide by the standard deviation raised to
the fourth power, and then multiply that result by n(n+ Diln — Dn — 2)(n — 3)].
This calculation determines Lurtosis. Excess kurtosis is kurtosis minus 3(n — %
[(n — 2)(n — 3] Table 3-30 gives the calculations.

TABLE 3-30 Calculating Kurtosis for PRFDX

Year R: R, - R (R, — R
1993 14.8% 3.16 99.712
1994 4.5% -7.14 2,598.920
1995 33.3% 21.66 220,106.977
1996 20.3% 8.66 5,624.340
1997 28.8% 17.16 86,709.990
1998 9.2% -244 35.445
1999 3.8% —7.84 3,778.020
2000 13.1% 1.46 4.544
2001 1.6% -10.04 10,160.963
2002 -13.0% —24.64 368,606.351

n= 10

R= 11.64%
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' Sum = 697,725.261
§= 13.65% st= 34,716.074
Sum/s* = 20.098
nin+ Dn—Dmr—-2)n-3)]= 0.2183
Kurtosis = 4.39
3(n— DH[(n ~ 2)(n = 3)] = 434
Excess Kurtosis = 0.05

Source: AAIL

Using Equation 3-18, the calculation is:

§ {1m 6wmm%q 3(9)%
KE=

OO 136 | B0
=439 — 4.34
= 0.05

Solution to 2. The distribution of PRFDX’s annual returns appears to be
mesokurtic, based on a sample excess kurtosis close to zero. With skewness and
excess kurtosis both close to zero, PRFDX’s annual returns appear to have been
approximately normally distributed during the period.*®

10 USING GEOMETRIC AND ARITHMETIC MEANS

With the concepts of descriptive statistics in hand, we will see why the geometric mean is
appropriate for making investment statements about past performance. We will also
explore why the arithmetic mean is appropriate for making investment statements in a
forward-looking context.

For reporting historical returns, the geometric mean has considerable appeal because
it is the rate of growth or return we would have had to earn each year to match the actual,
cumulative investment performance. In our simplified Example 3-8, for instance, we pur-
chased a stock for €100 and two years later it was worth €100, with an intervening year at
€200. The geometric mean of 0 percent is clearly the compound rate of growth during the
two years. Specifically, the ending amount is the beginning amount times (1 + Rg)*. The
geometric mean is an excellent measure of past performance.

Example 3-8 illustrated how the arithmetic mean can distort our assessment of his-
torical performance. In that example, the total performance for the two-year period was

“8 1t is useful to know that we can conduct a Jarque-Bera (JB) statistical test of normality based on sample
size n, sample skewness, and sample excess kurtosis. We can conclude that a distribution is not normal with no
more than a 5 percent chance of being wrong if the quantity JB = n[(S%/6) + (K%/24)] is 6 or greater for a
sample with at least 30 observations. In this mutual fund example, we have only 10 observations and the test
described is only correct based on large samples (as a guideline, for n = 30). Gujarati (2003) provides more
details on this test.
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unambiguously 0 percent. With a 100 percent return for the first year and —50 percent for
the second, however, the arithmetic mean was 25 percent. As we noted previously, the
arithmetic mean is always greater than or equal to the geometric mean. If we want to esti-
mate the average return over a one-period horizon, we should use the arithmetic mean
because the arithmetic mean is the average of one-period returns. If we want to estimate
the average returns over more than one period, however, we should use the geometric mean
of returns because the geometric mean captures how the total returns are linked over time.

As a corollary to using the geometric mean for performance reporting, the use of
semilogarithmic rather than arithmetic scales is more appropriate when graphing past per-
formance.*® In the context of reporting performance, a semilogarithmic graph has an
arithmetic scale on the horizontal axis for time and a logarithmic scale on the vertical axis
for the value of the investment. The vertical axis values are spaced according to the dif-
ferences between their logarithms. Suppose we want to represent £1, £10, £100, and
£1,000 as values of an investment on the vertical axis. Note that each successive value rep-
resents a 10-fold increase over the previous value, and each will be equally spaced on the
vertical axis because the difference in their logarithms is roughly 2.30; that is, In 10 — In
1=1n100 —In 10 = In 1,000 — In 100 = 2.30. On a semilogarithmic scale, equal move-
ments on the vertical axis reflect equal percentage changes, and growth at a constant com-
pound rate plots as a straight line. A plot curving upward reflects increasing growth rates
over time. The slopes of a plot at different points may be compared in order to judge rel-
ative growth rates.

In addition to reporting historical performance, financial analysts need to calculate
expected equity risk premiums in a forward-looking context. For this purpose, the arith-
metic mean is appropriate.

We can illustrate the use of the arithmetic mean in a forward-looking context with
an example based on an investment’s future cash flows. In contrasting the geometric and
arithmetic means for discounting future cash flows, the essential issue concerns uncer-
tainty. Suppose an investor with $100,000 faces an equal chance of a 100 percent return or
a —50 percent return, represented on the tree diagram as a 50/50 chance of a 100 percent
return or a —50 percent return per period. With 100 percent return in one period and
—50 percent return in the other, the geometric mean return is V2(0.5) — 1 =0.

The geometric mean return of 0 percent gives the mode or median of ending wealth after
two periods and thus accurately predicts the modal or median ending wealth of $100,000
in this example. Nevertheless, the arithmetic mean return better predicts the arithmetic
mean ending wealth. With equal chances of 100 percent or —50 percent returns, consider
the four equally likely outcomes of $400,000, $100,000, $100,000, and $25,000 as if they
actually occurred. The arithmetic mean ending wealth would be $156,250 = ($400,000 +
$100,000 + $100,000 + $25,000)/4. The actual returns would be 300 percent, 0 per-

4 See Campbell (1974) for more information.
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cent, 0 percent, and —75 percent for a two-period arithmetic mean return of (300 + 0 +
0 —75)/4 = 56.25 percent. This arithmetic mean return predicts the arithmetic mean end-
ing wealth of $100,000 X 1.5625 = $156,250. Noting that 56.25 percent for two periods
is 25 percent per period, we then must discount the expected terminal wealth of $156,250
at the 25 percent arithmetic mean rate to reflect the uncertainty in the cash flows.
Uncertainty in cash flows or returns causes the arithmetic mean to be larger than the
geometric mean. The more uncertain the returns, the more divergence exists between the
arithmetic and geometric means. The geometric mean return approximately equals the
arithmetic return minus half the variance of return.® Zero variance or zero uncertainty in
returns would leave the geometric and arithmetic return approximately equal, but real-
world uncertainty presents an arithmetic mean return larger than the geometric. For exam-
ple, Dimson et al. (2002) reported that from 1900 to 2000, U.S. equities had nominal
annual returns with an arithmetic mean of 12 percent and standard deviation of 19.9 per-
cent. They reported the geometric mean as 10.1 percent. We can see the geometric mean

is approximately the arithmetic mean minus half of the variance of returns: Rg =~ 0.12 —
(1/2)(0.199%) = 0.10.

In this chapter, we have presented descriptive statistics, the set of methods that permit us
to convert raw data into useful information for investment analysis.

* A population is defined as all members of a specified group. A sample is a subset of
a population.

* A parameter is any descriptive measure of a population. A sample statistic (statistic,
for short) is a quantity computed from or used to describe a sample.

* Data measurements are taken using one of four major scales: nominal, ordinal, inter-
val, or ratio. Nominal scales categorize data but do not rank them. Ordinal scales sort
data into categories that are ordered with respect to some characteristic. Interval
scales provide not only ranking but also assurance that the differences between scale
values are equal. Ratio scales have all the characteristics of interval scales as well as
a true zero point as the origin. The scale on which data are measured determines the
type of analysis that can be performed on the data.

* A frequency distribution is a tabular display of data summarized into a relatively
small number of intervals. Frequency distributions permit us to evaluate how data are
distributed.

* The relative frequency of observations in an interval is the number of observations
in the interval divided by the total number of observations. The cumulative relative
frequency cumulates (adds up) the relative frequencies as we move from the first
interval to the last, thus giving the fraction of the observations that are less than the
upper limit of each interval.

* A histogram is a bar chart of data that have been grouped into a frequency distribu-
tion. A frequency polygon is a graph of frequency distributions obtained by drawing
straight lines joining successive points representing the class frequencies.

%0 see Bodie, Kane, and Marcus (2001).
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* Sample statistics such as measures of central tendency, measures of dispersion,
skewness, and kurtosis help with investment analysis, particularly in making proba-
bilistic statements about returns.

* Measures of central tendency specify where data are centered and include the (arith-
metic) mean, median, and mode (most frequently occurring value). The mean is the
sum of the observations divided by the number of observations. The median is the
value of the middle item (or the mean of the values of the two middle items) when
the items in a set are sorted into ascending or descending order. The mean is the most
frequently used measure of central tendency. The median is not influenced by
extreme values and is most useful in the case of skewed distributions. The mode is
the only measure of central tendency that can be used with nominal data.

* A portfolio’s return is a weighted mean return computed from the returns on the indi-
vidual assets, where the weight applied to each asset’s return is the fraction of the
portfolio invested in that asset.

* The geometric mean, G, of a set of observations X;, X5, ... X, is G =
VX X.X5 ... X, with X; = 0fori =1,2,...,n The geometric mean is especially

important in reporting compound growth rates for time series data.

Quantiles such as the median, quartiles, quintiles, deciles, and percentiles are loca-
tion parameters that divide a distribution into halves, quarters, fifths, tenths, and hun-
dredths, respectively.

* Dispersion measures such as the variance, standard deviation, and mean absolute
deviation (MAD) describe the variability of outcomes around the arithmetic mean.

Range is defined as the maximum value minus the minimum value. Range has only
a limited scope because it uses information from only two observations.

i X,""X

MAD for a sample is R
n

where X is the sample mean and # is the num-

ber of observations in the sample.

The variance is the average of the squared deviations around the mean, and the stan-
dard deviation is the positive square root of variance. In computing sample variance
(s%) and sample standard deviation, the average squared deviation is computed using
a divisor equal to the sample size minus 1.

The semivariance is the average squared deviation below the mean; semideviation is
the positive square root of semivariance. Target semivariance is the average squared
deviation below a target level; target semideviation is its positive square root. All
these measures quantify downside risk.

* According to Chebyshev’s inequality, the proportion of the observations within k
standard deviations of the arithmetic mean is at least 1 — 1/k for all k > 1. Cheby-
shev’s inequality permits us to make probabilistic statements about the proportion of
observations within various intervals around the mean for any distribution. As a
result of Chebyshev’s inequality, a two-standard-deviation interval around the mean
must contain at least 75 percent of the observations, and a three-standard-deviation
interval around the mean must contain at least 89 percent of the observations, no
matter how the data are distributed.

¢ The coefficient of variation, CV, is the ratio of the standard deviation of a set of
observations to their mean value. A scale-free measure of relative dispersion, by
expressing the magnitude of variation among observations relative to their average
size, the CV permits direct comparisons of dispersion across different data sets.
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* The Sharpe ratio for a portfolio, p, based on historical returns, is defined as S, =

R,—R = - .
Zp___F where R, is the mean return to the portfolio, R is the mean return to a risk-

s

4

free and asset, and s, is the standard deviation of return on the portfolio.
Skew describes the degree to which a distribution is not symmetric about its mean.
A return distribution with positive skewness has frequent small losses and a few
extreme gains. A return distribution with negative skewness has frequent small
gains and a few extreme losses. Zero skewness indicates a symmetric distribution of
returns.

Kurtosis measures the peakedness of a distribution and provides information about
the probability of extreme outcomes. A distribution that is more peaked than the nor-
mal distribution is called leptokurtic; a distribution that is less peaked than the
normal distribution is called platykurtic; and a distribution identical to the normal
distribution in this respect is called mesokurtic. The calculation for kurtosis involves
finding the average of deviations from the mean raised to the fourth power and then
standardizing that average by the standard deviation raised to the fourth power.
Excess kurtosis is kurtosis minus 3, the value of kurtosis for all normal distributions.



