Drsná matematika Martin Panák, Jan Slovák Pokus o učební text pro začínající studenty informatiky přibližující podstatnou část matematiky v rozsahu čtyř semestrálních přednášek. Prozatím jsou zaznamenány první tři semestry přibližně v odpředneseném rozsahu. Poslední semestr je zapisován průběžně. i Obsah Kapitola 1. Úvod a motivace 1 1. Čísla a funkce 1 2. Kombinatorické formule 3 3. Diferenční rovnice 7 4. Pravděpodobnost 14 5. Geometrie v rovině 23 6. Relace a zobrazení 31 Kapitola 2. Elementární lineární algebra 37 1. Vektory a matice 37 2. Determinanty 45 3. Vektorové prostory a lineární zobrazení 51 4. Vlastnosti lineárních zobrazení 62 Kapitola 3. Linární modely 73 1. Lineární rovnice a procesy 73 2. Lineární diferenční rovnice a filtry 76 3. Markovovy procesy 81 4. Více maticového počtu 83 5. Rozklady matic a pseudoinverze 88 Kapitola 4. Analytická geometrie 95 1. Afinní geometrie 95 2. Euklidovská geometrie 105 3. Projektivní geometrie 120 Kapitola 5. Zřízení ZOO 125 1. Interpolace polynomy 125 2. Spojité funkce 133 3. Derivace 146 4. Mocninné řady 155 Kapitola 6. Diferenciální a integrální počet 167 1. Derivování 167 2. Integrování 179 3. Nekonečné řady 195 Kapitola 7. Spojité modely 201 1. Aproximace pomocí Fourierových řad 201 2. Integrální operátory 207 iii iv OBSAH Kapitola 8. Spojité modely s více proměnnými 213 1. Funkce a zobrazení na Rn 213 2. Integrování podruhé 242 3. Diferenciální operátory 250 4. Poznámky o numerických metodách 259 Kapitola 9. Kombinatorické metody 261 1. Grafy a algoritmy 261 2. Aplikace kombinatorických postupů 282 Kapitola 10. Algebraické strukury a techniky 303 1. Grupy 303 2. Kódy a šifry 307 3. Svazy 307 Kapitola 11. Statistické metody 309 1. Pravděpodobnost 309 2. Statistika 309 Literatura 167 OBSAH v Předmluva Tento učební text vzniká průběžně při přípravě přednášek pro předměty Ma- tematika I­IV na Fakultě informatiky MU. Text se snaží prezentovat standardní výklad matematiky s akcentem na smysl a obsah prezentovaných matematických metod. Řešené úlohy pak procvičují základní pojmy, ale zároveň se snažíme dávat co nejlepší příklady užití matematických modelů. Studenti navíc mají řešit a odevzdá- vat každý týden zadávané příklady. Seminární skupiny pak obdobně standardním ,,cvičením vytváří podporu pro řešení domácích úloh. V tomto textu podáváme formální výklad proložený řešenými příklady. Ne vše se daří průběžně naplňovat tak, jak bychom si představovali. Samotný te- oretický text by měl být podrobnější a lépe formulovaný, řešených příkladů bychom chtěli mít podstatně více a měly by pokrývat celou škálu složitosti, od banálních až po perličky ke skutečnému přemýšlení. Posluchače bychom rádi naučili: ˇ přesně formulovat definice základních pojmů a dokazovat jednoduchá matema- tická tvrzení, ˇ vnímat obsah i přibližně formulovaných závislostí, vlastností a výhledů použití, ˇ vstřebat návody na užívání matematických modelů a osvojit si jejich využití. K těmto ambiciózním cílům nelze dojít lehce a pro většinu lidí to znamená hledat si vlastní cestu s tápáním různými směry (s potřebným překonáváním odporu či nechutě). I proto je celý výklad strukturován tak, aby se pojmy a postupy vždy několikrát vracely s postupně rostoucí složitostí a šíří diskuse. Jsme si vědomi, že tento postup se může jevit jako chaotický, domníváme se ale, že dává mnohem lepší šanci na pochopení u těch, kteří vytrvají. Vstup do matematiky je skoro pro každého obtížný ­ pokud už ,,víme , nechce se nám přemýšlet, pokud ,,nevíme , je to ještě horší. Jediný spolehlivý postup pro orientaci v matematice je hledat porozumnění v mnoha pokusech a hledat je při četbě v různých zdrojích. Určitě nepovažujeme tento text za dostatečný jediný zdroj pro každého. Pro ulehčení vícekolového přístupu ke čtení je text strukturován také pomocí barev, resp. sazby, takto ˇ normální text je sázen černě ˇ řešené příklady jsou sázeny barvou ˇ složitější text, který by měl být čten pozorněji, ale určitě ne přeskakován, je sázen barvou ˇ náročné pasáže, které mohou (nebo by raději měly být) být při studiu přinejmen- ším napoprvé přeskakovány jsou sázeny v barvě . První tři semestry výuky už jednou proběhly a výsledných 9 kapitol máte v rukou. Popišme tedy nyní stručně obsah a také výhled na semestr následující. vi OBSAH 1. semestr: Úvodní motivační kapitola se snaží v rozsahu přibližně 4­5 týdnů přednášek ilustrovat několik přístupů k matematickému popisu problémů. Začí- náme nejjednoduššími funkcemi (základní kombinatorické formule), naznačujeme jak pracovat se závislostmi zadanými pomocí okamžitých změn (jednoduché dife- renční rovnice), užití kombinatoriky a množinové algebry diskutujeme prostřednic- tvím konečné klasické pravděpodobnosti, předvádíme maticový počet pro jednodu- ché úlohy rovinné geometrie (práce s pojmem pozice a transformace) a závěrem vše trochu zformalizujeme (relace, uspořádní, ekvivalence). Nenechte se zde uvrhnout do chaotického zmatku příliš rychlým střídáním témat ­ cílem je nashromáždit něco málo netriviálních námětů k přemýšlení a hledání jejich souvislostí i použití, ještě než zabředneme do úrovně problémů a teorií složitějších. Ke všem tématům této úvodní kapitoly se časem vrátíme. Dalších přibližně 5 týdnů přednášek je věnováno základům počtu, který umož- ňuje práci s vícerozměrnými daty i grafikou. Jde o postupy tzv. lineární algebry, které jsou základem a konečným výpočetním nástrojem pro většinu matematických modelů. Jednoduché postupy pro práci s vektory a maticemi jsou obsahem kapitoly druhé, další kapitola je pak věnována aplikacím maticového počtu v různých li- neárních modelech (systémy lineárních rovnic, lineární procesy, lineární diferenční rovnice, Markovovy procesy, lineární regrese). Poslední 2­3 přednášky prvního semestru jsou věnovány použitím maticového počtu v geometrických úlohách a lze se z nich dozvědět něco málo o afinní, eukli- dovské a projektivní geometrii. 2. semestr: Další semestr je věnován tzv. spojitým modelům. Chceme co nej- názorněji ukázat, že základní ideje, jak s funkcemi pracovat, bývají jednoduché. Stručně řečeno, hledáme cesty, jak složitější věci nelineární povahy řešit pomocí jednoduchých lineárních triků a postupů lineární algebry. Složitosti se pojí skoro výhradně se zvládnutím rozumně velké třídy funkcí, pro které mají naše postupy být použitelné. Prvně proto přišla na řadu kapitola pátá, kde diskutujeme jaké funkce potřebu- jeme pro nelineární modely. Začínáme s polynomy a spliny, pak postupně diskutu- jeme pojmy spojitosti, limity posloupoností a funkcí a derivace funkcí a seznámíme se se všemi základními elementárními funkcemi a s mocninnými řadami. Tím je připravena půda pro klasický diferenciální a integrální počet. Ten pre- zentujeme v kaptole šesté s důrazem na co nejjednodušší pochopení aproximací, integračních procesů a limitních procesů. Poslední sedmá kapitola se věnuje náznakům aplikací a snaží se co nejvíce připo- mínat analogie k postupům jednoduché lineární algebry z minulého semestru. Místo lineárních zobrazení mezi konečně rozměrnými vektorovými prostory tak pracujeme s lineárními operacemi mezi nekonečně rozměrnými vektorovými prostory funkcí, definovaných buď integrálními nebo diferenciálními operátory. Zatímco studium diferenciální rovnic ponecháváme do semestru dalšího, zde studujeme nejprve apro- ximace funkcí s pomocí vzdálenosti definované integrálem (tzv. Fourierovy řady) abychom vzápětí mohli ukázat souvislost s některými integrálními transformacemi (Fourirerova transformace). 3. semestr: Zde nejprve pokračujeme v našem stručném nastínění analytických metod pro modely s mnoha proměnnými. Nejprve v osmé kapitole rozšíme základní postupy a výsledky týkající se derivací na funkce více proměnných, včetně funkcí OBSAH vii zadaných implicitně a tzv. vázaných extrémů. Hned poté rozšíříme teorii integrování o tzv. násobné integrály. Poté se věnujeme stručně modelům zachycujím známou zněnu našich obejktů, tj. diferenciálním rovnicím. Závěrem této kapitoly pak uvá- díme několik poznámek o odhadech a numerických příblíženích. Devátá kapitola směřuje zpět do světa diskrétních metod. Zabýváme se v ní základními pojmy poznatky teorie grafů a jejich využitím v praktických problémech (např. prohledávání do šířky a hloubky, minimální pokrývající kostry, toky v sítích, hry popisované stromy). Závěrem uvádíme pár poznámek o vytvořujících funkcích. 4. semestr: V posledním semestru celého cyklu přednášek se hodláme zabývat nejprve obecné algebraickými strukturami s důrazem na teorii grup a náznaky jejích aplikací. Tomuto tématu budeme věnovat 5­6 přednášek. Konečně, závěrečná jedenáctá kapitola je věnována matematické pravděpodo- dobnosti a statistice v rozsahu 6-7 přednášek. Seznámíme se s pojmy pravděpo- dobnostní prostor, hustota pravděpodobnosti, normální rozdělení, střední hodnota, medián, kvantil, rozptyl, příklady diskrétních a spojitých rozdělení a budeme se ná- znakem věnovat statistickému zpracování dat. Únor 2007, Martin Panák, Jan Slovák KAPITOLA 1 Úvod a motivace ,,hodnota, změna, poloha ­ co to je a jak to uchopit? 1. Čísla a funkce Lidé trpí chorobnou snahou mít jasno ,,kolik něco je , případně ,,za kolik , ,,jak dlouho apod. Výsledkem takových úvah je většinou nějaké "číslo", říkejme učeněji ,,hodnota . Za číslo se přitom považuje něco, co umíme sčítat a násobit a splňuje to obvyklé zákonitosti, ať už všechny nebo jen některé. Nejjednodušším příkladem jsou tzv. čísla přirozená, budeme je značit N = {1, 2, 3, . . . }, často zvláště v informatice brána včetně nuly, a čísla celá Z = {. . . , -2, -1, 0, 1, 2, . . . }. Kdo si libuje ve formálním přístupu v rámci některé z korektních teorií množin a ví, co to je prázdná množina , může definovat e1.1 (1.1) 0 := , 1 := {}, 2 := {, 1}, . . . , n + 1 := {0, 1, . . . , n}. Pak lze snadno formálně definovat sčítání a násobení celých čísel, uspořádání, uká- zat, že každá podmnožina v N má nejmenší prvek a spoustu dalších vlastností o kterých zpravidla už dávno nepřemýšlíme a máme je za samozřejmé. Např. o číslu a řekneme, že je menší než b tehdy a jen tehdy, když a = b a a b. Nebudeme se tu tím podrobně zabývat a předpokládáme, že čtenář i čísla racionální (Q), reálná (R) a komplexní (C) důvěrně zná.1 Prakticky budeme připomínat teoretické i prak- tické souvislosti při dalším výkladu, viz příklad 1.4(1). Podobně bude konstrukce racionálních čísel z přirozených diskutována v 1.61, konstrukci reálných čísel bude vhodné zmínit při studiu limitních procesů později a již dříve budeme z různých algebraických pohledů zkoumat čísla komplexní. Pro náš další rozlet ale bude teď užitečné vyjmenovat obvyklé vlastnosti, které sčítání a násobení čísel má. Navíc, jak je v matematice obvyklé, budeme místo s čísly manipulovat s písmeny abecedy, případně jinými znaky, ať už jejich hodnota je nebo není předem známá. 1.1 1.1. Vlastnosti sčítání. (a + b) + c = a + (b + c), pro všechny a, b, c(KG1) a + b = b + a, pro všechny a, b(KG2) existuje prvek 0 takový, že pro všechny a platí a + 0 = a(KG3) pro všechny a existuje prvek (-a) takový, že platí a + (-a) = 0.(KG4) 1Podrobně lze formální základy matematiky nalézt např. ve skriptech Pavla Horáka [3]. 1 2 1. ÚVOD A MOTIVACE Vlastnostem (KG1) ­ (KG4) říkáme vlastnosti komutativní grupy. Celá čísla Z jsou dobrým příkladem komutativní grupy, přirozená čísla nikoliv, protože nesplňují KG4 (a případně neobsahují nulu pokud ji do N nezahrnujeme). 1.2 1.2. Vlastnosti násobení. (a b) c = a (b c), pro všechny a, b, c(O1) a b = b a, pro všechny a, b(O2) existuje prvek 1 takový, že pro všechny a platí 1 a = a(O3) a (b + c) = a b + a c, pro všechny a, b, c.(O4) Poslední vlastnosti O4 se říká distributivita. Množiny s operacemi +, a vlastnostmi (KG1)­(KG4), (O1)­(O4) se nazývají komutativní okruhy. Potřebujeme však zpravidla ještě další běžnou vlastnost čísel: (P) pro každý a = 0 existuje prvek a-1 takový, že platí, a a-1 = 1. Když naše objekty splňují navíc i (P), hovoříme o poli (často také o komuta- tivním tělese). Někdy se ale setkáme se slabší dodatečnou vlastností. Např. okruh celých čísel Z nesplňuje (P), ale splňuje (OI) a b = 0 buď a = 0 nebo b = 0. Hovoříme o oboru integrity. Prvky nějaké množiny s operacemi + a splňujícími (ne nutně všechny) výše uvedené vlastnosti (tj. komutativní okruh, obor integrity, pole) budeme nazývat skaláry. Budeme pro ně vesměs užívat latinská písmena ze začátku abecedy. Kdo chce postupovat co nejpřesněji a formálně, měl by předchozí vlastnosti brát jako axiomatickou definici příslušných matematických pojmů. Pro naše po- třeby bude stačit si průběžně uvědomovat, že při dalších diskusích budeme důsledně používat pouze tyto vlastnosti skalárů a že tady i naše výsledky budou platné pro všechny objekty s těmito vlastnostmi. V tomto je pravá síla matematických teorií ­ nejsou platné jen pro konkrétní řešený příklad. Naopak, při rozumné výstavbě mají vždy univerzální použití. Budeme se snažit tento aspekt vždy zdůrazňovat, přestože naše ambice mohou být v rámci daného časového prostoru pro přednášky jen velice skromné. 1.3 1.3. Skalární funkce. Často pracujeme s hodnotou, která není dána jako kon- krétní číslo. Místo toho něco víme o závislosti naší hodnoty na hodnotách jiných. Formálně píšeme, že hodnota y = f(x) naší ,,závislé proměnné veličiny y je dána ,,nezávislou veličinou x. Přitom můžeme znalost f brát formálně (prostě je to nějaká, blíže nespecifikovaná, závislost) nebo operačně, tj. f(x) je dáno formulí poskládanou z (prozatím si představme konečně mnoha) známých operací. Pokud je hodnotou skalár, hovoříme o skalární funkci. Také může být ale hodnota dána pouze přibližně nebo s jistou pravděpodobností. Smyslem matematických úvah pak bývá z neformálního popisu závislostí najít explicitní formule pro funkce, které je popisují. Podle typu úlohy a cíle se pak pracuje: ˇ s přesným a konečným výrazem ˇ s nekonečným výrazem ˇ s přiblížením neznámé funkce známým odhadem (většinou s vyčíslenou možnou chybou) 2. KOMBINATORICKÉ FORMULE 3 ˇ s odhadem hodnot s vyčíslením jejich pravděpodobnosti apod. Skalární funkcí je např. roční mzda pracovníka (hodnoty nezávislé veličiny jsou jednotliví pracovníci x z nějaké množiny, f(x) je jejich roční mzda za dané období), nebo měsíční mzda konkrétního pracovníka v čase (nezávislou hodnotou je čas v měsících, závislou příjem). Jiným příkladem je třeba plocha obrazce v rovině, objem tělesa v prostoru, rychlost konkrétního auta v čase atd. Dovedeme si jistě představit, že ve všech uvedených případech může být hodnota dána nějakou volně popsanou souvislostí nebo naměřena přibližně nebo odhadnuta atd. 1.4 1.4. Příklady. (1) Podívejme se na obyčejné sčítání přirozených čísel jako na ope- račně definovanou skalární funkci. Definujeme a + b jako výsledek procedury, ve které k a přičítáme 1. Tak jsme vlastně obecně a + 1 definovali v rovnicích (1.1). Zároveň odebereme z b nejmenší prvek, dokud není b prázdná. Je evidentní, že takto definované sčítání sice je dáno formulí, tato ale není vhodná pro praktické počítání. Tak tomu bude v našem výkladu často ­ teoreticky korektní definice pojmu nezna- mená, že úkony s ním spojené jsou efektivně vykonavatelné. Právě k tomu budeme postupně rozvíjet celé teorie, abychom praktické nástroje získávali. Co se týče při- rozených čísel, od školky je umíme sčítat zpaměti a rychle (pokud jsou malá) a s většími si poradí počítače (pokud nejsou příliš velká). (2) Důležitou operačně definovou skalární funkcí na přirozených číslech je fak- toriál, který definujeme vztahy f(0) = 1, f(n + 1) = (n + 1) f(n). Píšeme f(n) = n! a definice zjevně znamená n! = n(n-1) 1. To také není příliš efektivní formule pro velká n, lepší ale těžko hledat. 2. Kombinatorické formule 1.5 1.5. Permutace, kombinace a variace. Jestliže z množiny n předmětů vytvá- říme nějaké pořadí jejich prvků, máme pro volbu prvního prvku n možností, další je volen z n-1 možností atd., až nám nakonec zbude jediný poslední prvek. Zjevně tedy je na dané konečné množině S s n prvky právě n! různých pořadí. Hovoříme o permutacích prvků množiny S. Jestliže si předem prvky v S očíslujeme, tj. ztotož- níme si S s množinou S = {1, . . . , n} n přirozených čísel, pak permutace odpovídají možným pořadím čísel od jedné do n. Máme tedy příklad jednoduché matematické věty a naši předchozí diskusi je možné považovat za její důkaz: Tvrzení. Počet různých pořadí na konečné množině s n prvky je dán známou funkcí faktoriál: e1.1a (1.2) f(n) = n! Dalším jednoduchým příkladem hodnoty určené formulí jsou tzv. binomická čísla, která vyjadřují, kolika způsoby lze vybrat k různých rozlišitelných předmětů z množiny n předmětů. Zjevně máme n(n - 1) (n - k + 1) možných výsledků postupného výběru našich k prvků, přitom ale stejnou výslednou k-tici dostaneme v k! různých pořadích. Proto pro počet kombinací k-tého stupně z n prvků platí (samozřejmě je k n) e1.2 (1.3) c(n, k) = n k = n(n - 1) . . . (n - k + 1) k(k - 1) . . . 1 = n! (n - k)!k! . 4 1. ÚVOD A MOTIVACE Ani toto není pro výpočet moc uspokojivá formule při velikých k i n, protože obsahuje výrazy pro faktoriály. Pokud nám ale záleží i na pořadí vybrané k-tice prvků, hovoříme o variaci k-tého stupně. Jak jsme si již ověřili, pro počet variací platí v(n, k) = n(n - 1) (n - k + 1) pro všechny 0 k n (a nula jinak). Binomická čísla dostala svůj název od tzv. binomického rozvoje, tj. roznásobení n-té mocniny dvojčlenu. Počítáme-li totiž (a+b)n , bude koeficient u mocniny ak bn-k pro každé 0 k n roven právě počtu možností, jak vybrat k-tici z n závorek v součinu (ty, kde bereme do výsledku a). Platí proto e1.3 (1.4) (a + b)n = n k=0 n k ak bn-k a všimněme si, že pro odvození jsme potřebovali pouze distributivitu, komutativnost a asociativitu násobení a sčítání. Formule (1.4) proto platí v každém komutativním okruhu. Jako další jednoduchou ukázku, jak vypadá matematický důkaz si odvoďme několik jednoduchých tvrzení o kombinačních číslech. Pro zjednodušení formulací definujme n k = 0, kdykoliv je buď k < 0 nebo k > n. 1.6 1.6. Tvrzení. Pro všechna přirozená čísla k a n platí (1) n k = n n-k (2) n+1 k+1 = n k + n k+1 (3) n k=0 n k = 2n (4) n k=0 k n k = n2n-1 . Důkaz. První tvrzení je zjevné přímo z formule (1.3). Jestliže vyčíslíme pravou stranu z tvrzení (2), dostáváme n k + n k + 1 = n! k!(n - k)! + n! (k + 1)!(n - k - 1)! = (k + 1)n! + (n - k)n! (k + 1)!(n - k)! = (n + 1)! (k + 1)!(n - k)! což je ale levá strana tohoto tvrzení. Tvrzení (3) zjevně platí pro n = 0, protože 0 0 = 1 = 20 . (Stejně tak je přímo vidět i pro n = 1.) Předpokládejme, že platí pro nějaké n a spočtěme příslušnou sumu pro n + 1 s využitím tvrzení (2) i (3). Dostaneme n+1 k=0 n + 1 k = n k=-1 n k + n+1 k=0 n k = 2n + 2n = 2n+1 . Prakticky stejně dokážeme i (4). Zjevně platí pro n = 0, předpokládejme, že platí pro nějaké n, a spočtěme příslušnou sumu pro n + 1 s využitím tvrzení (2). 2. KOMBINATORICKÉ FORMULE 5 Dostaneme n+1 k=0 k n + 1 k = n k=-1 (k + 1) n k + n+1 k=0 k n k = n k=0 n k + n k=0 k n k + n k=0 k n k = 2n + n2n-1 + n2n-1 = (n + 1)2n . Druhá vlastnost z našeho tvrzení umožňuje sestavit všechna kombinační čísla do tzv. Pascalova trojúhelníku, kde každé číslo obdržíme jako součet dvou bezpro- středně nad ním ležících sousedů: n = 0 : 0 1 0 n = 1 : 0 1 1 0 n = 2 : 0 1 2 1 0 n = 3 : 0 1 3 3 1 0 n = 4 : 0 1 4 6 4 1 0 n = 5 : 1 5 10 10 5 1 Všimněme si, že v jednotlivých řádcích máme právě koeficienty u jednotlivých moc- nin z výrazu (1.4), např. poslední uvedený řádek říká (a + b)5 = a5 + 5a4 b + 10a3 b2 + 10a2 b3 + 5ab4 + b5 . Uveďme si příklad demonstrující kombinatorické úvahy (berte to jako zahřívací rozcvičku!): 1.7. Počet čísel ze dvou cifer. Určete počet čtyřciferných čísel sestavených z právě dvou různých cifer. Řešení. Dvě různé cifry použité na zápis můžeme vybrat 10 2 způsoby, ze dvou vybraných cifer můžeme sestavit 24 - 2 různých dvojciferných čísel (dvojku odečí- táme za dvě čísla složená pouze z jedné cifry). Celkem máme 10 2 (24 - 2) = 630 čísel. Nyní jsme ale započítali i čísla začínající nulou. Těch je 9 1 (23 - 1) = 63. Celkově dostáváme 630 - 63 = 567 čísel. Určete počet sudých čtyřciferných čísel sestavených z právě dvou různých cifer. Řešení. Obdobně jako v předchozím příkladu se nejprve nebudeme ohlížet na cifru nula. Dostaneme tak 5 2 (24 -2)+55(23 -1) čísel (nejprve počítáme čísla pouze ze sudých cifer, druhý sčítanec udává počet sudých čtyřciferných čísel složených ze sudé a liché cifry). Opět musíme odečíst čísla začínající nulou, těch je (23 -1)4+(22 -1)5. Hledaný počet cifer tak je 5 2 (24 - 2) + 5 5(23 - 1) - (23 - 1)4 - (22 - 1)5 = 272. Kolika způsoby lze do tří různých obálek rozmístit pět shodných stokorun a pět shodných tisícikorun tak, aby žádná nezůstala prázdná? Řešení. Nejdříve zjistíme všechna rozmístění bez podmínky neprázdnosti. Těch je podle pravidla součinu (rozmísťujeme nezávisle stokoruny a tisícikoruny) C(3, 5)2 = 7 2 2 . Odečteme postupně rozmístění, kdy je právě jedna obálka prázdná, a poté kdy 6 1. ÚVOD A MOTIVACE jsou dvě obálky prázdné. Celkem C(3, 5)2 -3(C(2, 5)2 -2)-3 = 7 2 2 -3(62 -2)-3 = 336. 1.8a 1.8. Permutace, kombinace a variace s opakováním. Pořadí n prvků, z nichž mezi některými nerozlišujeme, nazýváme permutace s opakovaním. Nechť je mezi n danými prvky p1 prvků prvního druhu, p2 prvků druhého druhu, . . . , pk prvků k-tého druhu, p1 +p2 + +pk = n, potom počet pořadí těchto prvků s opakováním budeme značit P(p1, . . . , pk). Zřejmě platí P(p1, . . . , pk) = n! p1! pk! . Volný výběr prvků z n možností, včetně pořadí, nazýváme variace k-tého stupně s opakováním, jejich počet budeme značit V (n, k). Předpokládáme, že stále máme pro výběr stejně možností, např. díky tomu, že vybrané prvky před dalším výběrem vracíme nebo třeba házíme pořád stejnou kostkou. Zřejmě platí V (n, k) = nk . Pokud nás výběr zajímá bez zohlednění pořadí, hovoříme o kombinacích s opako- váním a pro jejich počet píšeme C(n, k). Věta. Počet kombinací s opakováním k-té třídy z n prvků je pro všechny 0 k a 0 < n C(n, k) = n + k - 1 k . Důkaz. Důkaz je opřen o trik (jednoduchý, když ho někdo už zná). Nechť x1, . . . , xk je kombinace libovolných prvků z dané množiny S = {a1, . . . , an}, na které si zafixujeme uvedené pořadí prvků. Jednotlivé volby xi přidáme do pořadí a1, . . . tam, kde je shodný prvek. Např. pro S = {a, b, c, d} a volbu x1 = b, x2 = c, x3 = b dostaneme S = [a, b, b, b, c, c, d]. Nyní si uvědomme, že pro rozpoznání původní kombinace nám stačí vědět, kolik je prvků v jednotlivých skupinách (je tam vždy právě o jeden prvek více než kolik patří do kombinace). Můžeme si to znázornit a | bbb | cc | d | | | , protože příslušnost jednotlivých přihrádek k prvkům S je námi pevně zvolena. Počet C(n, k) je proto roven počtu možných umístění přihrádek |, tj. výběr n - 1 pozic z n + k - 1 možných. Příklady na procvičení: 4. 1.9. Určení počtu řešení rovnice. Pro libovolné pevné n N určete počet všech řešení rovnice x1 + x2 + + xk = n v množině přirozených čísel. Řešení. Řešení je samozřejmě velice silně závislé na tom, jestli považujeme nulu za přirozené číslo. Rozhodněme se, že ne, ale určeme nejprve počet řešení rovnice v množině celých nezáporných čísel. Každé řešení (r1, . . . , rk), k i=1 ri = n můžeme jednoznačně zašifrovat jako posloupnost jedniček a nul, ve které napíšeme nejprve r1 jedniček, pak nulu, pak r2 jedniček, nulu a tak dále. Posloupnost bude celkem 3. DIFERENČNÍ ROVNICE 7 obsahovat n jedniček a k - 1 nul. Každá taková posloupnost navíc zřejmě určuje nějaké řešení dané rovnice. Je tedy řešení tolik, kolik je posloupností, tedy n+k-1 n . Hledáme-li řešení v oboru přirozených čísel, tak si všimněme, že přirozená čísla x1, . . . xk jsou řešením dané rovnice, právě když jsou celá nezáporná čísla yi = xi-1, i = 1, . . . , k, řešením rovnice y1 + y2 + + yk = n - k. Těch je podle první části řešení n-1 k-1 . 1.10. Příklad. Určete počet různých vět, které vzniknou přesmyčkami v jednotli- vých slovech věty ,,Skokan na koks (vzniklé věty ani slova nemusejí dávat smysl). Řešení. Určíme nejprve počty přesmyček jednotlivých slov. Ze slova ,,skokan do- staneme 6!/2 různých přesmyček (permutace s opakováním P(1, 1, 1, 1, 2)), obdobně ze slova ,,na dvě a ze slova ,,koks 4!/2. Celkem podle pravidla součinu 6!4!/2. 1.11. Příklad. Kolika způsoby můžeme do pěti různých důlků vybrat po jedné kouli, vybíráme-li ze čtyř bílých, čtyř modrých a tří červených koulí? Řešení. Nejprve řešme úlohu v případě, že bychom měli k dispozici alespoň pět koulí od každé barvy. V tomto případě se jedná o volný výběr pěti prvků ze tří možností, tedy o variace s opakováním třetí třídy z pěti prvků (viz odstavec 2.4. učebních textů). Máme V (3, 5) = 35 . Nyní odečteme ty výběry, ve kterých se vyskytují buď pouze koule stejné barvy (takové výběry jsou tři), nebo právě čtyři koule červené (takových výběrů je 10 = 2 5; nejprve vybereme barvu koule, která nebude červená ­ dvě možnosti ­ a poté důlek, ve kterém bude ­ pět možností). Celkem tedy máme 35 - 3 - 10 = 230 možných výběrů. 3. Diferenční rovnice V předchozích odstavcích jsme viděli formule, které zadávaly hodnotu skalární funkce definované na přirozených číslech (faktoriál) nebo dvojicích čísel (binomická čísla) pomocí předcházejících hodnot. Tomu lze rozumět také tak, že místo hod- noty naší funkce zadáváme její změnu při odpovídající změně nezávislé proměnné. Porovnejte si formule v 1.4 a v 1.6. Takto se skutečně velice často postupuje při matematické formulaci modelů, které popisují reálné systémy v ekonomice, biologii apod. My si tu povšimneme jen několika jednoduchých případů a budeme se k této tématice postupně vracet. 1.8 1.12. Lineární rovnice prvního řádu. Obecnou diferenční rovnicí prvního řádu rozumíme výraz f(n + 1) = F(n, f(n)), kde F je známá skalární funkce závislá na dvojicích přirozených čísel. Je zřejmé, že takový vztah, spolu s volbou pro f(0), zadává jednoznačně celou nekonečnou posloupnost hodnot f(0), f(1), . . . , f(n), . . . . Jako příklad může sloužit definiční formule pro faktoriál, tj. n! = n (n - 1)!. Vidíme, že skutečně vztah pro f(n + 1) závisí na n i hodnotě f(n). 8 1. ÚVOD A MOTIVACE Po konstantní závislosti je nejjednodušší tzv. lineární diferenční rovnice e1.4 (1.5) f(n + 1) = a f(n) + b, kde a, b N. Takovou rovnici umíme snadno řešit. Je-li b = 0, pak zjevně f(n) = an f(0). To je např. vztah pro tzv. Malthusiánský model populačního růstu, který vychází z představy, že za zvolený časový interval vzroste populace s konstantní úměrou a vůči předchozímu stavu. Dokážeme si obecný výsledek pro rovnice prvního řádu, které se podobají lineárním, ale připouští proměnné koeficienty a a b, tj. e1.5 (1.6) f(n + 1) = an f(n) + bn 1.9 1.13. Věta. Obecné řešení diferenční rovnice (1.6) prvního řádu s počáteční podmínkou f(0) = y0 je dáno vztahem e1.6 (1.7) f(n) = n-1Y i=0 ai ! y0 + n-1X r=0 n-1Y i=r+1 ai ! br. Důkaz. Tvrzení dokážeme matematickou indukcí. Pro zjednodušení zápisu užíváme konvenci, že konečný součin s prázdnou množinou součinitelů je roven jedné (podobně jako součet s prázdnou množinou sčítanců je roven nule). To je zapotřebí v samotné formuli v pravém sčítanci pro hodnotu r = n - 1, kde není žádné vyhovující i. Zjevně pak tvrzení platí pro n = 1, kdy se jedná právě o definiční vztah f(1) = a0y0 +b0. Předpokádáme-li, že tvrzení platí pro libovolné pevně zvolené n, můžeme snadno spočíst: f(n + 1) = an n-1Y i=0 ai ! y0 + n-1X r=0 n-1Y i=r+1 ai ! br ! + bn = nY i=0 ai ! y0 + nX r=0 nY i=r+1 ai ! br, jak se přímo vidí roznásobením výrazů. 1.10 1.14. Důsledek. Obecné řešení lineární diferenční rovnice (1.5) s a = 1 a počá- teční podmínkou f(0) = y0 je e1.7 (1.8) f(n) = an y0 + 1 - an 1 - a b. Důkaz. Dosazením konstantních hodnot za ai a bi do obecné formule dostá- váme zjevně první sčítanec okamžitě. Pro vyčíslení součtu součinů v druhém si je třeba všimnout, že se jedná o výrazy (1 + a + + an-1 )b. Sečtením této geomet- rické řady (připomeňme, že 1 - an = (1 - a)(1 + a + + an-1 )) dostaneme právě požadovaný výsledek. Uveďme si praktický příklad na řešení diferenčních rovnic prvního řádu: 3. DIFERENČNÍ ROVNICE 9 1.15. Splácení půjčky. Mirek si chce koupit nové auto. Auto stojí 300 000 Kč. Mirek by chtěl auto koupit na měsíční splátky. Prodávající společnost mu nabízí půjčku na koupi auta s ročním úrokem 6%. Mirek bych chtěl auto splatit za tři roky. Jak vysoká bude měsíční splátka? Řešení. Označme Mirkovu měsíční splátku S. Po prvním měsíci splatí Mirek S korun, z nichž část půjde na vlastní splátku, část na splacení úroku. Částku, kterou bude Mirek dlužit po uplynutí k měsíců označme dk. Po prvním měsíci bude Mirek dlužit (1.9) d1 = 300000 - S + 0, 06 12 300000. Obecně po uplynutí k-tého měsíce lr (1.10) dk = dk-1 - S + 0, 06 12 dk-1. Podle vztahu (1.8) je dk dáno následovně (1.11) dk = (1 + 0, 06 12 )k 300000 - ((1 + 0, 06 12 )k - 1)( 12S 0, 06 ). Splacení po třech letech se rovná podmínce d36 = 0, odkud dostáváme (1.12) S = 300000 0,06 12 1 - (1 + 0,06 12 )-36 . = 9127. Všimněme si, že rekurentní vztah (1.10) můžeme použít na náš příklad pouze tak dlouho, dokud budou všechna y(n) kladná, tj. dokud bude Mirek skutečně něco dlužit. Otázka. Jak dlouho by Mirek auto splácel, kdyby chtěl měsíčně splácet 5000 Kč? Řešení. Při označení q = 1, 005, c = 300000 nám podmínka dk = 0 dává vztah qk = 200S 200S - c , jehož logaritmováním obdržíme k = ln 200S - ln(200S - c) ln g , což pro S = 5000 dává přibližně k = 71, 5, tedy splácení půjčky by trvalo šest let (poslední splátka by nebyla plných 5 000 Kč). 1.11 1.16. Rovnice druhého řádu. Obecně nazýváme diferenční rovnicí řádu k vztah f(n + k) = F(n, f(n), . . . , f(n + k - 1)) = 0, kde F je známá skalární funkce v k + 1 proměnných skalárních veličinách. Celá poslounost hodnot je jednoznačně určena volbou k-tice čísel f(0), . . . , f(k - 1). Lineární diferenční rovnicí druhého řádu rozumíme e1.8 (1.13) f(n + 2) = a f(n + 1) + b f(n) + c, kde a, b, c jsou známé skalární koeficienty. Dobře známým příkladem s c = 0 je např. Fibonacciho posloupnost čísel y0, y1, . . . , viz příklad 1.17. Zkusme dosadit do rovnice (1.13) podobné řešení jako u lineárních, tj. f(n) = n pro nějaké skalární . Dosazením dostáváme n+2 - an+1 - bn = n (2 - a - b) = 0 10 1. ÚVOD A MOTIVACE a odtud vidíme, že buď je = 0 nebo 1 = 1 2 (a + a2 + 4b), 2 = 1 2 (a - a2 + 4b). Protože součet dvou řešení rovnice f(n + 2) - a f(n + 1) - b f(n) = 0 je opět řešením téže rovnice a totéž platí pro konstatní násobky řešení, odvodili jsme obecné řešení f(n) = C1n 1 +C2n 2 a pro jednoznačné vyřešení konkrétní úlohy se zadanými počátečními hodnotami f(0) a f(1) nám zbývá jen najít příslušné konstanty C1 a C2. Ukažme alespon na jednom příkladě. e1.9 (1.14) yn+2 = yn+1 + 1 2 yn y0 = 2, y1 = 0. V našem případě je tedy 1,2 = 1 2 (1 3) a zjevně y0 = C1 + C2 = 2 a y1 = 1 2 C1(1 + 3) + 1 2 C2(1 - 3) je splněno pro právě jednu volbu těchto konstant. Přímým výpočtem C1 = 1 - 1 3 3, C2 = 1 + 1 3 3. Tento příklad je velice poučný z mnoha důvodů. Na první pohled je vidět, že po- užitá metoda funguje pro obecné lineární diferenční rovnice bez absolutních členů. Řešení tu lze hledat pomocí kořenů tzv. charakteristického polynomu rovnice. Dále si všimněme, že i když nalezená řešení pro rovnice s celočíselnými koeficienty vypa- dají složitě a jsou vyjádřena pomocí iracionálních (případně komplexních) čísel, o samotném řešení dopředu víme, že je celočíselné též. Bez tohoto ,,úkroku do vět- šího oboru skalárů bychom ovšem obecné řešení napsat neuměli. S podobnými jevy se budeme potkávat velice často. Obecné řešení nám také umožňuje bez přímého vyčíslování konstant diskutovat kvalitativní chování posloupnosti čísel f(n), tj. zda se budou s rostoucím n blížit k nějaké pevné hodnotě nebo utečou do neomezených kladných nebo záporných hodnot. Ukážeme ,,populační model , který je příkladem na rekurentní rovnici druhého řádu: 1. 1.17. Fibonacciho posloupnost. Na začátku jara přinesl čáp na louku dva čer- stvě narozené zajíčky, samečka a samičku. Samička je schopná od dvou měsíců stáří povít každý měsíc dva malé zajíčky (samečka a samičku). Nově narození zajíci splodí potomky po jednom měsíci a pak každý další měsíc. Každá samička je březí jeden měsíc a pak opět porodí samečka a samičku. Kolik párů zajíců bude na louce po devíti měsících (pokud žádný neumře a žádný se tam ,,nepřistěhuje )? Řešení. Po uplynutí prvního měsíce je na louce pořád jeden pár, nicméně samička otěhotní. Po dvou měsích se narodí první potomci, takze na louce budou dva páry. Po uplynutí každého dalšího měsíce se narodí (tedy přibude) tolik zajíců, kolik otě- hotnělo zaječic před měsícem, což je přesně tolik, kolik bylo před měsícem párů schopných splodit potomka, což je přesně tolik, kolik bylo párů před dvěma mě- síci. Celkový počet pn zajíců po uplynutí n-tého měsíce tak je tak součtem počtů párů v předchozích dvou měsících. Pro počet párů zajíců na louce tedy dostáváme homogenní lineární rekuretní formuli fib (1.15) pn+2 = pn+1 + pn, n = 1, . . . , která spolu s počátečními podmínkami p1 = 1 a p2 = 1 jednoznačně určuje počty párů zajíců na louce v jednotlivých měsících. Linearita formule znamená, že všechny členy posloupnosti (pn) jsou ve vztahu v první mocnině, rekurence je snad jasná a homogenita značí, že v předpisu chybí absolutní člen (viz dále pro nehomogenní 3. DIFERENČNÍ ROVNICE 11 formule). Pro hodnotu n-tého členu můžeme odvodit explicitní formuli. V hledaní formule nám pomůže pozorování, že pro jistá r je funkce rn řešením rekurentní formule bez počátečních podmínek. Tato r získáme prostě tak, že dosadíme do rekurentního vztahu: rn+2 = rn+1 + rn a po vydělení rn dostanemefib (1.16) r2 = r + 1,(1.17) což je tzv. charakteristická rovnice daného rekurentního vztahu. Naše rovnice má kořeny 1- 5 2 a 1+ 5 2 a tedy posloupnosti an = (1- 5 2 )n a bn = (1+ 5 2 )n , n 1 vyhovují danému vztahu. Zřejmě také jejich libovolná lineární kombinace cn = san +tbn, s, t R. Čísla s a t můžeme zvolit tak, aby výsledná kombinace splňovala dané počáteční podmínky, v našem případě c1 = 1, c2 = 1. Pro jednoduchost je vhodné navíc ještě dodefinovat nultý člen posloupnosti jako c0 = 0 a spočítat s a t z rovnic pro c0 a c1. Zjistíme, že s = - 1 5 , t = 1 5 a tedy (1.18) pn = (1 + 5)n - (1 - 5)n 2n( 5) . Takto zadaná posloupnost splňuje danou rekurentní formuli a navíc počáteční pod- mínky c0 = 0, c1 = 1, jedná se tedy o tu jedinou posloupnost, která je těmito požadavky jednoznačně zadána. Posloupnost zadaná rekurentní formulí (1.15) se nazývá Fibonacciho posloup- nost. Tato formule je příkladem homogenní lineární diferenční rovnice. Další příklad ukáže na ekonomickém modelu případ tzv. nehomogenní diferenční rovnice 3. 1.18. Zjednodušený model chování národního produktu. (1.19) yk+2 - a(1 + b)yk+1 + abyk = 1, kde yk je národní produkt v roce k, konstanta a je takzvaný mezní sklon ke spotřebě, což je makroekonomický ukazatel, který udává jaký zlomek peněz, které mají oby- vatelé k dispozici, utratí a konstanta b popisuje jak závisí míra investic soukromého sektoru na mezním sklonu ke spotřebě. Předpokládáme dále, že velikost národního produktu je normována tak, aby na pravé straně rovnice vyšlo číslo 1. Spočítejte konkrétní hodnoty pro a = 3 4 , b = 1 3 , y0 = 1, y1 = 1. Řešení. Nejprve budeme hledat řešení homogenní rovnice (pravá strana nulová) ve tvaru rk . Číslo r musí být řešením charakteristické rovnice x2 - a(1 + b)x + ab = 0, tj. x2 - x + 1 4 = 0, která má dvojnásobný kořen 1 2 . Všechna řešení homogenní rovnice jsou potom tvaru a(1 2 )n + bn(1 2 n ). Dále si všimněme, že najdeme-li nějaké řešení nehomogenní rovnice (tzv. par- tikulární řešení), tak pokud k němu přičteme libovolné řešení homogenní rovnice, obdržíme jiné řešení nehomogenní rovnice. Lze ukázat, že takto získáme všechna řešení nehomogenní rovnice. V našem případě (tj. pokud jsou všechny koeficienty i nehommogenní člen kon- stantami) je partikulárním řešením konstanta yn = c, dosazením do rovnice máme 12 1. ÚVOD A MOTIVACE c - c + 1 4 c = 1, tedy c = 4. Všechna řešení diferenční rovnice yk+2 - yk+1 + 1 4 yk = 1 jsou tedy tvaru 4 + a(1 2 )n + bn(1 2 )n . Požadujeme y0 = y1 = 1 a tyto dvě rovnice dávají a = b = -3, tedy řešení naší nehomogenní rovnice je yn = 4 - 3 1 2 n - 3n 1 2 n . Opět, protože víme, že posloupnost zadaná touto formulí splňuje danou diferenční rovnici a zároveň dané počáteční podmínky, jedná se vskutku o tu jedinou posloup- nost, která je těmito vlastnostmi charakterizována. V předchozím příkladu jsme použili tzv. metodu neurčitých koeficientů. Ta spo- čívá v tom, že na základě nehomogenního členu danéneho diferenční rovnice ,,uhod- neme tvar partikulárního řešení. Tvary partikulárních řešení jsou známy pro celou řadu nehomogenních členů. Např. rovnice (1.20) yn+k + a1yn+k-1 + + akyn = Pm(n), s reálnými kořeny charakteristické rovnice má partikulární řešení tvaru Qm(n), kde Pm(n) a Qm(n) jsou polynomy stupně m. Další možnou metodou řešení je tzv. variace konstant, kdy nejprve najdeme řešení y(n) = k i=1 cifi(n) zhomogenizované rovnice a po té uvažujeme konstanty ci jako funkce ci(n) pro- měnné n a hledáme partikulární řešení dané rovnice ve tvaru y(n) = k i=1 ci(n)fi(n). Ukažme si na obrázku hodnoty fi pro i 35 a rovnicí f(n) = 9 8 f(n - 1) - 3 4 f(n - 2) + 1 2 , f(0) = f(1) = 1 x 1 35 0,95 30 0,9 0,85 25 0,8 0,75 20 0,7 151050 A ještě jeden příklad. 3. DIFERENČNÍ ROVNICE 13 1.18.1. Nalezněte explicitní vzorec pro posloupnost vyhovující následující lineární diferenční rovnici s počátečními podmínkami: xn+2 = 2xn + n, x1 = 2, x2 = 2. Řešení. Řešení zhomogenizované rovnice je tvaru a( 2)n + b(- 2)n . Partikulárním řešením je posloupnost -n - 2. Dosazením do počátečních podmínek dostaneme pro řešení tvaru a( 2)n + b(- 2)n - n - 2, že a = 6+5 2 4 , b = 6-5 2 4 . Řešením je posloupnost xn = 6 + 5 2 4 ( 2)n + 6 - 5 2 4 (- 2)n - n - 2. 1.12 1.19. Nelineární příklad. Vraťme se na chvíli k rovnici prvního řádu, kterou jsme velice primitivně modelovali populační růst závisející přímo úměrně na oka- mžité velikosti populace p. Realističtější model bude mít takto úměrnou změnu populace p(n) = p(n + 1) - p(n) jen při malých hodnotách p, tj. p/p r > 0. Při určité limitní hodnotě p = K > 0 ale naopak už populace neroste a při ještě větších už klesá. Předpokládejme, že právě hodnoty yn = p(n)/p(n) závisí na p(n) lineárně. Chceme tedy popsat přímku v rovině proměnných p a y, která prochází body [0, r] a [K, 0]. Položíme proto y = - r K p + r. Dosazením za y dostáváme p(n+1)-p(n) = p(n)(- r K p(n)+r), tj. diferenční rovnici prvního řádu (1.21) p(n + 1) = p(n)(1 - r K p(n) + r). Zkuste si promyslet nebo vyzkoušet chování tohoto modelu pro různé hodnoty r a K. Na obrázku je průběh hodnot pro parametry r = 0, 05 (tj. pětiprocentní nárůst v ideálním stavu), K = 100 (tj. zdroje limitují hodnotu na 100 jedinců) a počáteční stav jsou právě dva jedinci. 100 80 60 40 20 x 200150100500 14 1. ÚVOD A MOTIVACE 4. Pravděpodobnost Předchozí sekce naznačila, že hodnoty skalárních funkcí umíme definovat po- mocí popisu jejich změn v závislosti na změnách závislé proměnné. Teď se podíváme na další obvyklý případ ­ sledované hodnoty často nejsou známy ani explicitně for- mulí, ani implicitně nějakým popisem. Jsou výsledkem nějaké nahodilosti a my se snažíme popsat s jakou pravděpodobností nastane ta či ona možnost. 1.20. Co je pravděpodobnost? Nejbanálnějším příkladem může sloužit obvyklé házení kostkou s šesti stranami s označeními 1, 2, 3, 4, 5, 6. Pokud popisujeme ma- tematický model takového házení ,,poctivou kostkou, budeme očekávat a tudíž i předepisovat, že každá ze stran padá stejně často. Slovy to vyjadřujeme ,,každá pře- dem vybraná strana padne s pravděpodobností 1 6 . Pokud ale si třeba sami nožíkem vyrobíme takovou kostku, je jisté, že skutečné relativní četnosti výsledků nebudou stejné. Pak můžeme z velikého počtu pokusů usoudit na relativní četnosti jednotli- vých výsledků hodů a tyto ustanovit jako pravděpodobnosti v našem matematickém popisu. Nicméně při sebevětším počtu pokusů nemůžeme vyloučit možnost, že se náhodou povedla velice nepravděpodobná kombinace výsledků a že se tím náš ma- tematický model skutečnosti stal (pro tento konkrétní případ) nedobrým. V dalším budeme pracovat s abstraktním matematickým popisem pravděpo- dobnosti v nejjednoduším přiblížení. To, do jaké míry je takový popis adekvátní pro konkrétní pokusy či jiný problém, je záležitostí mimo samotnou matematiku. To ale neznamená, že by se takovým přemýšlením neměli zabývat matematikové také (nejspíše ve spolupráci s jinými experty). Později se vrátíme k pravděpodobnosti (jakožto teorii popisující chování nahodilých procesů nebo i plně determinovaných dějů, kde ovšem neznáme přesně všechny určující parametry) a matematické sta- tistice (jakožto teorii umožňující posoudit, do jaké míry lze očekávat, že vybraný model je ve shodě s realitou). K tomu ovšem bude již potřebný dosti rozsáhlý matematický aparát, který budeme mezitím několik semestrů budovat. 1.21. Náhodné jevy. Budeme pracovat s neprázdnou pevně zvolenou množinou všech možných výsledků, kterou nazýváme základní prostor. Pro jednoduchost bude pro nás konečná množina s prvky 1, . . . , n, představujícími jednotlivé možné výsledky. Každá podmnožina A představuje možný jev. Systém pod- množin A základního prostoru se nazývá jevové pole, jestliže ˇ A, tj. základní prostor, je jevem, ˇ je-li A, B A, pak A\B A, tj. pro každé dva jevy je jevem i jejich množinový rozdíl, ˇ jsou-li A, B A, pak A B A, tj. pro každé dva jevy je jevem i jejich sjednocení. Slovy se tak dá jevové pole charakterizovat jako systém podmnožin (konečného) základního prostoru uzavřený na průniky, sjednocení a rozdíly. Jednotlivé množiny A A nazýváme náhodné jevy (vzhledem k A). Zjevně je i komplement Ac = \ A jevu A je jevem, který nazýváme opačný jev k jevu A. Průnik dvou jevů opět jevem, protože pro každé dvě podmnožiny A, B platí A \ ( \ B) = A B. 4. PRAVDĚPODOBNOST 15 Pro naše házení kostkou je = {1, 2, 3, 4, 5, 6} a jevové pole je tvořeno všemi podmnožinami. Např. náhodný jev {1, 3, 5} pak interpretujeme jako ,,padne liché číslo . Něco málo terminologie, která by měla dále připomínat souvislosti s popisem skutečných modelů: ˇ celý základní prostor se nazývá jistý jev, prázdná podmnožina A se nazývá nemožný jev, ˇ jednoprvkové podmnožiny {} se nazývají elementární jevy, ˇ společné nastoupení jevů Ai, i I, odpovídá jevu iIAi, nastoupení alespoň jednoho z jevů Ai, i I, odpovídá jevu iIAi, ˇ A, B A jsou neslučitelné jevy, je-li A B = , ˇ jev A má za důsledek jev B, když A B, ˇ je-li A A, pak se jev B = \ A nazývá opačný jev k jevu A, píšeme B = Ac . Přestavte si příklady všech uvedených pojmů pro jevový prostor popisující házení kostkou nebo obdobně pro házení mincí! 1.22. Definice. Pravděpodobnostní prostor je jevové pole A podmnožin (koneč- ného) základního prostoru , na kterém je definována skalární funkce P : A R s následujícími vlastnosti: ˇ je nezáporná, tj. P(A) 0 pro všechny jevy A, ˇ je aditivní, tj. P(A B) = P(A) + P(B), kdykoliv je A B = a A, B A, ˇ pravděpodobnost jistého jevu je 1. Funkci P nazýváme pravděpodobností na jevovém poli (, A). Zjevně je okamžitým důsledkem našich definic řada prostých ale užitečných tvrzení. Např. je pro všechny jevy P(Ac ) = 1 - P(A). Dále můžeme matematickou indukcí snadno rozšířit aditivnost na jakýkoliv konečný počet neslučitelných jevů Ai , i I, tj. P(iIAi) = iI P(Ai), kdykoliv je Ai Aj = , i = j, i, j I. 1.23. Definice. Nechť je konečný základní prostor a nechť jevové pole A je právě systém všech podmnožin v . Klasická pravděpodobnost je takový pravděpodob- nostní prostor (, A, P) s pravděpodobnostní funkcí P : A R, P(A) = |A| || . Zjevně takto zadaná funkce skutečně definuje pravděpodobnost, ověřte si sa- mostatně všechny požadované axiomy. Uveďme nějaké praktičtější příklady: 1.24. Výtah. Do výtahu osmipatrové budovy nastoupilo 5 osob. Každá z nich vystoupí se stejnou pravděpodobností v libovolném poschodí. Jaká je pravděpo- dobnost, že všichni lidé vystoupí (1) v šestém poschodí, (2) ve stejném poschodí, (3) každý v jiném poschodí? 16 1. ÚVOD A MOTIVACE Řešení. Základní prostor všech možných jevů je prostor všech možných způsobů vystoupení 5 osob z výtahu. Těch je 85 . V prvním případě je jediná příznivá možnost vystoupení, hledaná pravděpodob- nost je tedy 1 85 , ve druhém případě máme osm možností, hledaná pravděpodobnost je tedy 1 84 a konečně ve třetím je počet příznivých případů dán pětiprvkovou variací z osmi prvků (z osmi pater vybíráme pět, ve kterých se vystoupí a dále kteří lidé vystoupí ve vybraných poschodích), celkem je hledaná pravděpodobnost ve třetím případě rovna (viz 1.5 a 1.8) v(5, 8) V (5, 8) = 8 7 4 85 . = 0, 2050781250. 1.25. Kino. Do řady v kině o 2n místech je náhodně rozmístěno n mužů a n žen. Jaká je pravděpodobnost, že žádné dvě osoby stejného pohlaví nebudou sedět vedle sebe? Řešení. Všech možných rozmístění lidí v řadě je (2n)!, rozmístění splňujících pod- mínky je 2(n!)2 (máme dvě možnosti výběru pozice mužů, tedy i žen, na nich jsou pak muži i ženy rozmístěny libovolně). Výsledná pravděpodobnost je tedy p(n) = 2(n!)2 (2n)! , p(2) . = 0, 33, p(5) . = 0, 0079, p(8) . = 0, 00016 1.26. Smrt na silnici. Ročně zahyne na silnicích v ČR přibližně 1200 českých občanů. Určete pravděpodobnost, že někdo z vybrané skupiny pěti set Čechů zemře v následujících deseti letech při dopravní nehodě. Předpokládejte pro zjednodušení, že každý občan má v jednom roce stejnou ,,šanci zemřít při dopravní nehodě a to 1200/107 . Řešení. Spočítejme nejprve pravděpodobnost, že jeden vybraný člověk v následu- jících deseti letech nezahyne na při dopravní nehodě. Pravděpodobnost, že neza- hyne v jednom roce, je (1 - 12 105 ). Pravděpodobnost, že nezahyne v následujících deseti letech, je pak (1 - 12 105 )10 . Pravděpodobnost, že v následujících deseti letech nezahyne nikdo z daných pěti set lidí, je opět podle pravidla součinu (jedná se o nezávislé jevy) (1 - 12 105 )5000 . Pravděpodobnost jevu opačného, tedy toho, že někdo z vybraných pěti set lidí zahyne, je tedy 1 - (1 - 12 105 )5000 . = 0, 45. 1.27. Ruleta. Alešovi zbylo 2500 Kč z pořádání tábora. Aleš není žádný ňouma: 50 Kč přidal z kasičky a rozhodl se jít hrát ruletu na automaty. Aleš sází pouze na barvu. Pravděpodobnost výhry při sázce na barvu je 18/37. Začíná sázet na 10 Kč a pokud prohraje, v další sázce vsadí dvojnásobek toho, co v předchozí (pokud na to ještě má, pokud ne, tak končí). Pokud nějakou sázku vyhraje, v následující sázce hraje opět o 10 Kč. Jaká je pravděpodobnost, že při tomto postupu vyhraje dalších 2550 Kč? (jakmile bude 2500 Kč v plusu, tak končí) 4. PRAVDĚPODOBNOST 17 Řešení. Nejprve spočítejme, kolikrát po sobě může Aleš prohrát. Začíná-li s 10 Kč, tak na n vsazení potřebuje 10 + 20 + + 10 2n-1 = 10( n-1 i=0 2i ) = 10( 2n - 1 2 - 1 ) = 10 (2n - 1). Jak snadno nahlédneme, číslo 2550 je tvaru 10(2n - 1) a to pro n = 8. Aleš tedy může sázet osmkrát po sobě bez ohledu na výsledek sázky, na devět sázek by potře- boval již 10(29 - 1) = 5110 Kč a to v průběhu hry nikdy mít nebude (jakmile bude mít 5100 Kč, tak končí). Aby tedy jeho hra skončila neúspěchem, musel by prohrát osmkrát v řadě. Pravděpodobnost prohry při jedné sázce je 19/37, pravděpodbnost prohry v osmi po sobě následujících (nezávislých) sázkách je tedy (19/37)8 . Prav- děpodobnost, že vyhraje 10 Kč (při daném postupu) je tedy 1 - (19/37)8 . Na to, aby vyhrál 2500 Kč, potřebuje 255 krát vyhrát po desetikoruně. Tedy opět podle pravidla součinu je pravděpodobnost výhry 1 - 19 37 8 255 . = 0, 29. Tedy pravděpodobnost výhry je nižší, než kdyby vsadil rovnou vše na jednu barvu. 1.28. Příklad. Ze skupiny osmi mužů a čtyř žen náhodně vybereme skupinu pěti lidí. Jaká je pravděpodobnost, že v ní budou alespoň tři ženy? Pravděpodobnost spočítáme jako podíl počtu příznivých případů ku počtu všech případů. Příznivé případy rozdělíme podle toho, kolik je v náhodně vybrané skupině mužů: mohou v ní být buď dva, nebo jeden muž. Skupinek o pěti lidech s jedním mužem je osm (záleží pouze na výběru muže, ženy v ní musí být všechny), skupinek se dvěma muži je potom c(8, 2)c(4, 3) = 8 2 4 3 (vybereme dva muže z osmi a nezávisle na tom tři ženy ze čtyř, tyto dva výběry můžeme nezávisle kombinovat a podle pravidla součinu dostáváme uvedený počet skupin). Všech možných skupin o pěti lidech pak můžeme sestavit c(12, 5) = 12 5 . Hledaná pravděpodobnost je tedy Řešení. 8 + 4 3 8 2 12 5 . 1.29. Příklad. Z klobouku, ve kterém je pět bílých, pět červených a šest černých koulí, náhodně vytahujeme koule (bez vracení). Jaká je pravděpodobnost, že pátá vytažená koule bude černá? Řešení. Spočítáme dokonce obecnější úlohu. Totiž pravděpodobnost toho, že i-tá vytažená koule bude černá, je stejná pro všechna i, 1 i 16. Můžeme si totiž představit, že vytáhneme postupně všechny koule. Každá taková posloupnost vyta- žených koulí (od první vytažené koule po poslední), složená z pěti bílých, pěti červe- ných a šesti černých koulí, má stejnou pravděpodobnost vytažení. Pravděpodobnost toho, že i-tá vytažená koule bude černá je tedy rovna podílu počtu posloupností pěti červených, pěti bílých a šesti černých koulí, kdy je na i-tém místě černá koule (těch je tolik, kolik je libovolých posloupností pěti bílých, pěti červených a pěti 18 1. ÚVOD A MOTIVACE černých koulí, tedy P(5, 5, 5) = 15! 5!5!5! ) a počtu všech posloupností složených z pěti bílých, pěti červených a šesti černých koulí, tedy P(6, 5, 5) = 16! 6!5!5! . Tedy celkem 15! 5!5!5! 16! 6!5!5! = 3 8 . 1.30. Příklad. Vraťme se k házení kostkou a zkusme popsat jevy ze základního prostoru vznikající při házení tak dlouho, dokud nepadne šestka, ne však více než stokrát. Pro jeden hod samostatně je základním prostorem šest čísel od jedné do šesti a jde o klasickou pravděpodobnost. Pro celé série našich hodů bude základní prostor daleko větší ­ bude to množina konečných posloupností čísel od jedné do šestky, které buď končí šestkou, mají nejvýše 100 členů a všechna předchozí čísla jsou menší než šest, nebo jde o 100 čísel od jedné do pěti. Jevem A může být např. podmnožina ,,házení končí druhým pokusem . Všechny příznivé elementární jevy pak jsou [1, 6], [2, 6], [3, 6], [4, 6], [5, 6]. Ze známé klasické pravděpodobnosti pro jednotlivé hody umíme odvodit pravdě- podobnosti našich jevů v . Není to ale jistě klasická pravděpodobnost. Tak pro diskutovaný jev chceme popsat, s jakou pravděpodobností nepadne šestka při prvém hodu a zároveň padne při druhém. Vnucuje se řešení P(A) = 5 6 1 6 = 5 36 , protože v prvém hodu padne s pravděpodobností 1 - 1 6 jiné číslo než šest a druhý hod, ve kterém naopak požadujeme šestku, je zcela nezávislý na prvním. Samo- zřejmě toto není poměr počtu příznivých výsledků k velikosti celého stavového prostoru! Obecněji můžeme říci, že po právě 1 < k < 100 hodech pokus skončí s pravdě- podobností (5 6 )k-1 1 6 . Ze všech možností je tedy nejpravděpodobnější, že skončí již napoprvé. Jiný příklad, jak z házení kostkou dostat různě pravděpodobné jevy je pozo- rovat součty při hodu více kostkami. Uvažujme takto: při hodu jednou kostkou je každý výsledek stejně pravděpodobný s pravděpodobností 1 6 . Při hodu dvěmi kost- kami je každý předem zvolený výsledek (a, b), tj. dvojice přirozených čísel od jedné do šesti (včetně pořadí), stejně pravděpodobný s pravděpodobností 1 36 . Pokud se budeme ptát po dvou pětkách, je tedy pravděpodobnost poloviční než u dvou růz- ných hodnot bez uvedení pořadí. Pro jednotlivé možné součty uvedené v horním řádku nám vychází počet možností v řádku dolním: 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 5 4 3 2 1 Podobně vyjde pravděpodobnost 1 216 jednotlivých výsledků hodu třemi kostkami, včetně určeného pořadí. Pokud se budeme ptát na pravděpodobnost výsledného součtu při hodu více kostkami, musíme pouze určit, kolik je možností, jak daného součtu dosáhnout a příslušné pravděpodobnosti sečíst. Obecně je sčítání pravděpodobností složité. Následující věta je přímým promít- nutím tzv. kombinatorického principu inkluze a exkluze do naší konečné pravděpo- dobnosti: 4. PRAVDĚPODOBNOST 19 1.16 1.31. Věta. Buďte A1, . . . , Ak A libovolné jevy na základním prostoru s jevo- vým polem A. Pak platí P(k i=1Ai) = k i=1 P(Ai) - k-1 i=1 k j=i+1 P(Ai Aj) + k-2 i=1 k-1 j=i+1 k =j+1 P(Ai Aj A ) - + (-1)k-1 P(A1 A2 Ak). Jde patrně o dobrý příklad matematického tvrzení, kde nejtěžší je najít dobrou formulaci a pak se dá říci, že (intuitivně) je tvrzení zřejmé. Skutečně, díky aditivní vlastnosti pravděpodobnosti si můžeme představit, že každý jev rozložíme na elementární (tj. jednobodové), jakkoliv ve skutečnosti ne- musí jednoprvkové podmnožiny do jevového pole obecně patřit. Pak je pravděpo- dobnost každého jevu dána součtem pravděpodobností jednotlivých elementárních jevů do něj patřících a tvrzení věty můžeme číst následovně: sečteme všechny prav- děpodobnosti výsledků ze všech Ai zvlášť, pak ovšem musíme odečíst ty, které tam jsou započteny dvakrát (tj. prvky v průnicích dvou). Teď si ovšem dovolujeme odečíst příliš mnoho tam, kde ve skutečnosti byly prvky třikrát, tj. korigujeme přičtením pravděpodobností ze třetího členu, atd. Aby se takový postup stal důkazem, je zapotřebí si ujasnit, že skutečně všechny korekce, tak jak jsou napsány, jsou skutečně s koeficienty jedna. Místo toho můžeme snáze dát dohromady formálnější důkaz matematickou indukcí přes počet k jevů, jejichž pravděpodobnosti sčítáme. Zkuste si průběžně porovnávat oba postupy, mělo by to vést k vyjasnění, co to znamená ,,dokázat a co ,,porozumět . Důkaz. Pro k = 1 tvrzení zjevně platí a předpokládejme, že platí pro všechny počty množin menší než pevně zvolené k > 1. Nyní si uvědomme, že pro libovolné dva jevy platí P(B) = P(B A) + P(B \ A). Podobně P(A B) = P(A) + P(B \ A) = P(A) + P(B) - P(B A). Toto je ale tvrzení naší věty pro k = 2. Nyní můžeme pracovat v indukčním kroku na formuli s k + 1 jevy, když sjednocení k jevů bereme jako A ve formuli výše, zatímco zbývající hraje roli B: P(k+1 i=1 Ai) = P( k i=1Ai Ak+1) = k j=1 -1)j+1 1i1< 0: P(A1 Ak) = P(A1)P(A2|A1) P(Ak|A1 Ak-1). Skutečně, dle předpokladu jsou i pravděpodobnosti všech průniků, které jsou brány ve výrazu za hypotézy, nenulové. Pokrácením čitatelů a jmenovatelů získáme i na- pravo právě pravděpodobnost jevu odpovídajícího průniku všech uvažovaných jevů. 1.37. Opět házení kostkou. Jaká je pravděpodobnost toho, že při hodu dvěma kostkami padne součet 7, víme-li, že ani na jedné z kostek nepadlo číslo 2. Řešení. Označme jev, že ani na jedné kostce nepadne dvojka jako B, jev ,,padne součet 7 jako A. Množinu všech možných výsledků budeme značit opět jako . Pak P(A|B) = P(A B) P(B) = |AB| || |B| || = |A B| |B| Číslo 7 může padnout čtyřmi různými způsoby, pokud nepadne dvojka, tedy |A B| = 4, |B| = 5 5 = 25, tedy P(A|B) = 4 25 . Všimněme si, že P(A) = 1 6 , tedy jevy A a B nejsou stochasticky nezávislé. 1.38. Geometrická pravděpodobnost. V praktických problémech se často se- tkáváme s daleko složitějšími modely, kde základní prostor není konečnou množinou. Nemáme momentálně k dispozici ani základní nástroje pro dostatečné zobecnění pojmu pravděpodobnosti, nicméně můžeme uvést alespoň jednoduchou ilustraci. Uvažme rovinu R2 dvojic reálných čísel a v ní podmnožinu se známým ob- sahem vol (symbol ,,vol od anglického ,,volume , tj. obsah/objem). Příkladem může sloužit třeba jednotkový čtverec. Náhodné jevy budou reprezentovány pod- množinami A za jevové pole A bereme systém podmnožin, u kterých umíme určit jejich obsah. Třeba všechna konečná sjednocení trojůhelníků. Nastoupení nebo 5. GEOMETRIE V ROVINĚ 23 nenastoupení jevu je dáno výběrem bodu v , kterým se trefíme nebo netrefíme do množiny reprezentující jev A. Podobně jako u klasické pravděpodobnosti pak definujeme pravděpodobnostní funkci P : A R vztahem P(A) = vol A vol . Uvažme jako příklad problém, kdy náhodně vyberem dvě hodnoty a < b v intervalu (0, 1) R. Všechny hodnoty a i b jsou stejně pravděpodobné a otázka zní ,,jaká je pravděpodobnost, že interval (a, b) bude mít velikost alespoň jedna polovina? . Odpověď je docela jednoduchá: volba čísel a, b je volbou libovolného bodu (a, b) ve vnitřku trojúhelníku s hraničními vrcholy [0, 0], [0, 1], [1, 1] (načrtněte si obrá- zek!). Potřebujeme znát plochu podmnožiny, která odpovídá bodům s b > a+ 1 2 , tj. vnitřku trojúhelníku A ohraničeného vrcholy [0, 1 2 ], [0, 1], [1 2 , 1]. Evidentně dostá- váme P(A) = 1 4 . Zkuste si samostatně odpovědět na otázku ,,pro jakou požadova- nou minimální délku intervalu (a, b) dostaneme pravděpodobnost jedna polovina? . Jednou z účinných výpočetních metod přibližných hodnot je naopak simulace známé takovéto pravděpodobnosti pomocí relativní četnosti nastoupení vhodně zvo- leného jevu. Např. známá formule pro obsah kruhu o daném poloměru říká, že obsah jednotkového kruhu je roven právě konstantě = 3, 1415 . . . , která vyjadřuje poměr obsahu a čtverce poloměru. Pokud zvolíme za jednotkový čtverec a za A průnik a jednotkového kruhu se středem v počátku, pak vol A = 1 4 . Máme-li tedy spolehlivý generátor náhodných čísel mezi nulou a jedničkou a počítáme relativní četnosti, jak často bude vzdálenost vygenerované dvojice (a, b) menší než jedna, tj. a2 + b2 < 1, pak výsledek bude při velkém počtu pokusů s velikou jistotou dobře aproximovat číslo 1 4 . Numerickým postupům založeným na tomto principu se říká metody Monte Carlo. Obdobné úlohy na geometrickou pravděpodobnost lze bezezbytku formulovat v R3 a obecněji. Uveďme ale ještě raději jednoduchý příklad v rovině: 1.39. Sekání tyče. Dvoumetrová tyč je náhodně rozdělena na tři díly. Určete pravděpodobnost, že alespoň jeden díl bude nejvýše 20 cm dlouhý. Řešení. Náhodné rozdělení tyče na tři díly interpretujeme jako náhodný výběr dvou bodů řezu. Pravděpodobnostní prostor je tedy čtverec o straně 2 m. Umístíme- li čtverec C tak, aby dvě jeho strany ležely na kartézských osách v rovině, tak podmínka, že alespoň jeden díl má být nejvýše 20 cm dlouhý nám vymezuje ve čtverci následující oblast O: O = {(x, y) C|(x 20) (x 180) (y 20) (y 180) (|x - y|) 20}. Jak snadno nahlédneme, zaujímá takto vymezená oblast O 51 100 obsahu čtverce. 5. Geometrie v rovině Na konci minulé kapitoly jsme intuitivně používali elementární pojmy z geome- trie reálné roviny. Budeme teď podrobněji zkoumat jak se vypořádávat s potřebou popisovat ,,polohu v rovině , resp. dávat do souvislostí polohy různých bodů roviny. 24 1. ÚVOD A MOTIVACE 1.23 1.40. Afinní rovina a vektorový prostor R2 . Zkusme si množinu A = R2 představit z pohledu pozorovatele, který sedí v některém pevně zvoleném místě (můžeme mu říkat třeba bod O = (x0, y0) R2 ). Předpokládejme, že ji vnímá jako nekonečnou desku bez jakýchkoliv zvolených měřítek a popisů a ví, co to znamená posunout se v libovolném násobku nějakého směru. Časem takové rovině budeme říkat ,,afinní rovina . Aby mohl vidět kolem sebe ,,dvojice reálných čísel , musí si vybrat nějaký bod E1, kterému řekne ,,bod [1, 0] a jiný bod E2, kterému začne říkat ,,bod [0, 1] . Do všech ostatních se pak dostane tak, že poskočí ,,a­krát ve směru [1, 0] , pak ,,b­krát ve směru [0, 1] a takovému bodu bude říkat ,,bod [a, b] . Pokud to bude dělat obvyklým způsobem, nebude výsledek záviset na pořadí, tzn. může také napřed jít b­krát ve směru [0, 1] a pak teprve v tom druhém. To, co jsme popsali, se nazývá volba (afinního) souřadného systému v rovině, bod O je jeho počátkem, posunutí E1 - O ztotožňujeme s dvojicí [1, 0], podobně u E2 a obecně každý bod P roviny je ztotožněn s dvojicí čísel [a, b] = P - O. Všimněme si, že zároveň volbou pevného počátku O jsou ztotožněny jednotlivé body P roviny se směry posuvu v = P - O a že všechny takové posuvy umíme skládat (budeme říkat ,,sčítat ) a také jednotlivé směry násobit v poměru každého reálného čísla (budeme říkat ,,násobit skalárem ). Takovéto operace sčítání a ná- sobení splňují hodně vlastností skalárů, viz 1.1 a 1.2, zkuste si promyslet které. Uvidíme brzy, že se jedná o standarní příklad (dvourozměrného reálného) vektoro- vého prostoru. Budeme proto už teď místo o směrech posuvu mluvit o vektorech a od bodů je budeme rozlišovat tím, že budou dány dvojicemi souřadnic v kulatých závorkách místo hranatých. 1.24 1.41. Přímky v rovině. Když se náš pozorovatel umí posouvat o libovolný ná- sobek pevného vektoru, pak také ví, co je to přímka. Je to podmnožina p A v rovině taková, že existují bod O a vektor v takové, že p = {P A; P - O = t v, t R}. Popišme si P = P(t) p ve zvolených souřadnicích s volbou v = (, ): x(t) = x0 + t, y(t) = y0 + t. Jednoduchým výpočtem dostaneme (vyloučíme t z parametrického vyjádření pro x a y, když pro určitost předpokládáme, že třeba = 0) -x + y + (x0 - y0) = 0. To je obecná rovnice přímky e1.12 (1.23) ax + by = c, se známým vztahem dvojice čísel (a, b) a vektoru v = (, ) e1.13 (1.24) a + b = 0. Výraz nalevo v rovnici přímky (1.23) můžeme vidět jako skalární funkci F závislou na bodech v rovině a s hodnotami v R, samu rovnici pak jako požadavek na její hodnotu. Časem uvidíme, že vektor (a, b) je v tomto případě právě směrem, ve kterém F nejrychleji roste. Proto bude směr kolmý na (a, b) právě tím směrem, ve kterém zůstává naše funkce F konstantní. Konstanta c pak určuje, pro které body bude tato konstanta nula. 5. GEOMETRIE V ROVINĚ 25 Mějme dvě přímky p a q a ptejme se po jejich průniku p q. Ten bude popsán jako bod, splňující obě rovnice přímek naráz. Pišme je takto e1.14 (1.25) ax + by = r cx + dy = s. Opět můžeme levou stranu vnímat jako přiřazení, které každé dvojici souřadnic [x(P), y(P)] bodů v rovině přiřadí vektor hodnot dvou skalárních funkcí F1 a F2 daných levými stranami jednotlivých rovnic (1.25). Můžeme tedy naše rovnice na- psat jako jediný vztah F(v) = w, kde F je přiřazení, které vektor v popisující polohu obecného bodu v rovině (v našich souřadnicích) zobrazí na vektor zadaný levou stranou rovnic, a požadujeme, aby se toto zobrazení strefilo do předem zada- ného vektoru w = (r, s). 1.25 1.42. Lineární zobrazení a matice. Přiřazení F, se kterým jsme pracovali při popisu průniku přímek, zjevně respektuje operace sčítání a násobení s vektory a skaláry: F(a v + b w) = a F(v) + b F(w) pro všechny a, b R, v, w R2 . Říkáme, že F je lineární zobrazení z R2 do R2 , a píšeme F : R2 R2 . Obdobně, v rovnici 1.23 pro přímku šlo o lineární zobrazení F : R2 R a jeho předepsanou hodnotu c. Stručně budeme zapisovat taková zobrazení pomocí matic a jejich násobení, které definujeme takto: A = a b c d , v = x y A v = a b c d x y = ax + by cx + dy . Podobně, můžeme místo vektoru v zprava násobit jinou maticí B stejného rozměru jako je A. Prostě aplikujeme předchozí formule po jednotlivých sloupcích matice B a obrdržíme jako výsledek opět matice. Snadno ověříme tzv. asociativitu násobení (zkuste propočítat!): (A B) v = A (B v). Stejně snadno je vidět i distributivita A (B + C) = A B + A C, neplatí však komutativita a existují ,,dělitelé nuly . Např. 0 1 0 0 0 0 0 1 = 0 1 0 0 , 0 0 0 1 0 1 0 0 = 0 0 0 0 . Body v rovině jsou tedy obecně vzory hodnot lineárních zobrazení F roviny do roviny, přímky jsou obecně vzory hodnot lineárních zobrazení z roviny do reálné přímky R. Samozřejmě, ve zvláštních situacích tomu tak být nemusí. Tak třeba průnikem dvou stejných přímek je opět sama přímka (a vzorem vhodné hodnoty pro takové lineární zobrazení bude celá přímka), nulové zobrazení má za vzor nuly celou rovinu. V prvém případě to poznáme pomocí vztahu e1.15 (1.26) ad - bc = 0 tj. vyjádření, kdy jsou nalevo v rovnicích (1.25) stejné výrazy až na skalární ná- sobek. V takovém případě bud nebude v průniku žádný bod (rovnoběžné různé přímky) nebo tam budou všechny body přímky (stejné přímky). Ověřte! 26 1. ÚVOD A MOTIVACE Výrazu nalevo v (1.26) říkáme determinant matice A a píšeme pro něj det A = ad - bc, případně det A = a b c d = ad - bc. Jestliže k výsledku lineárního zobrazení ještě dovolíme přičíst pevný vektor T = (x(T), y(T)), tj. naše zobrazení bude v = x y A v + T = ax + by + x(T) cx + dy + y(T) , máme popsána právě všechna tzv. afinní zobrazení roviny do sebe. Známými pří- klady jsou všechny afinní podobnosti. Lineární zobrazení pak odpovídají těm afin- ním zobrazením, které zachovávají pevný bod O. Co se stane, když náš pozorovatel z odstavce 1.40 bude tutéž rovinu shlížet z jiného bodu nebo si aspoň vybere jiné body E1, E2? Zkuste si promyslet, že na úrovni souřadnic to bude právě změna realizovaná pomocí afinního zobrazení. Časem budeme vidět obecné důvody, proč tomu tak je ve všech dimenzích. 1.26 1.43. Euklidovská rovina. Přidejme nyní schopnost našeho pozorovatele vidět vzdálenosti. Okamžitě pak můžeme definovat pojmy jako jsou úhel a otočení v rovině. Jednoduše si to můžeme představit takto: rozhodne se o nějakých bodech E1 a E2, že jsou od něj ve vzdálenosti jedna, a zároveň si řekne, že jsou na sebe kolmé. Vzdálenosti ve směrech souřadných os pak jsou dány příslušným poměrem, obecně používá Euklidovu větu. Odtud vyjde známý vzorec pro velikost vektoru v = (a, b) v = a2 + b2. Jiný možný postup by byl, kdyby pozorovatel vyšel z pojmu vzdálenost (a věděl co znamená ,,kolmý třeba díky Euklidově větě), zvolil první z vektorů velikosti jedna, zvolil si orientaci (třeba proti směru hodinových ručiček) a vybral jednotkový kolmý směr (jednoznačně určí z požadavku platnosti Euklidovy věty třeba pomocí pravoúhlého trojúhelníku se stranami o velikostech 3, 4 a 5). Úhel dvou vektorů v, w v rovině pak zpravidla popisujeme s využitím tzv. goniometrické funkce cos . Používaný vzorec pro funkci cos je dán hodnotou reálné první souřadnice jednotkového vektoru, jehož úhel s vektorem (1, 0) je . Zjevně je pak druhá souřadnice takového vektoru dána reálnou hodnotou 0 sin 1 splňující (cos )2 + (sin )2 = 1. Obecně pak pro dva vektory v a w můžeme jejich úhel popsat pomocí souřadnic v = (x(v), y(v)), w = (x(w), y(w)) takto: cos = x(v) x(w) + y(v) y(w) v w . Dobrým příkladem lineárního zobrazení, které zachovává velikosti, je rotace o předem daný úhel . Je dáno formulí s maticí R: v = x y R v = cos - sin sin cos x y . Specielně, aplikací na jednotkový vektor (1, 0) dostáváme skutečně právě očekávaný výsledek (cos , sin ). 5. GEOMETRIE V ROVINĚ 27 Pokud bychom chtěli zapsat rotaci kolem jiného bodu P = O + w, snadno napíšeme formuli pomocí translací: x y = v v - w R (v - w) R (v - w) + w = cos (x - x(w)) - sin (y - y(w)) + x(w) sin (x - x(w)) + cos (y - y(w)) + y(w) . Dalším příkladem je tzv. zrcadlení vzhledem k přímce. Opět nám bude stačit popsat zrcadlení vzhledem k přímkám procházejícím počátkem O a ostatní se z nich odvodí pomocí translací. Hledejme tedy matici Z zrcadlení vzhledem k přímce s jednotkovým směrovým vektorem v svírajícím úhel s vektorem (1, 0). Např. Z0 = 1 0 0 -1 a obecně můžeme psát (otočíme do ,,nulové polohy, odzrcadlíme a vrátíme zpět) Z = R Z0 R-. Můžeme proto (díky asociativitě násobení matic) spočíst: R = cos - sin sin cos 1 0 0 -1 cos sin - sin cos = cos - sin sin cos cos sin - sin cos = cos2 - sin2 2 sin cos 2 sin cos -(cos2 - sin2 ) = cos 2 sin 2 sin 2 - cos 2 . Povšimněme si také, že Z Z0 = cos 2 sin 2 sin 2 - cos 2 1 0 0 -1 = cos 2 - sin 2 sin 2 cos 2 . To lze zformulovat jako Tvrzení. Otočení o úhel obdržíme následným provedením dvou zrcadlení vzhle- dem ke směrům, které spolu svírají úhel 1 2 . Pokud umíme odůvodnit předchozí tvrzení ryze geometrickou úvahou (zkuste), dokázali jsme právě standardní formule pro goniometrické funkce dvojnásobného úhlu. Hlubší je následující rekapitulace předchozích úvah: 1.27 1.44. Věta. Lineární zobrazení euklidovské roviny je složeno ze zrcadlení právě, když je dáno maticí R splňující R = a b c d , ab + cd = 0, a2 + c2 = b2 + d2 = 1. To nastane právě, když toto zobrazení zachovává velikosti. Otočením je přitom právě tehdy, když je determinant matice R roven jedné, což odpovídá sudému počtu zrca- dlení. Při lichém počtu zdrcadlení je determinant roven -1. Promyslete si podrobněji úplný důkaz. Na tabuli vypadal jeho náznak takto: 28 1. ÚVOD A MOTIVACE 1.28 1.45. Obsah trojúhelníka. Závěrem našeho malého výletu do geometrie se za- měřme na pojem obsah. Trojúhelník je vymezen dvojicí vektorů v a w, které při- loženy do počátku O zadají zbylé dva vrcholy. Chtěli bychom tedy najít formuli (skalární funkci vol), která dvěma vektorům přiřadí číslo rovné obsahu vol (v, w) takto definovaného trojúhelníku (v, w). Ze zadání je vidět, že by mělo platit (nakreslete si a uvažujte plochu jako součin základny krát výšky podělené dvěma ­ výška součtu bude jistě součtem výšek...) vol (v + v , w) = vol (v, w) + vol (v , w) vol (av, w) = a vol (v, w) a přidejme požadavek vol (v, w) = - vol (w, v), který odpovídá představě, že opatříme plochu znaménkem podle toho, v jakém pořadí bereme vektory. Pokud vektory v a w napíšeme do sloupců matice A, pak A = (v, w) det A splňuje všechny tři naše požadavky. Kolik takových zobrazení ale může být? Každý vektor umíme vyjádřit pomocí dvou souřadných vektorů v = (1, 0) a w = (0, 1) a evidentně tedy každá možnost pro vol je jednoznačně určena už vyčíslením na této jediné dvojici argumentů (v, w). Jsou si tedy všechny možnosti rovny až na skalární násobek. Ten umíme určit požadavkem vol ((1, 0), (1, 0)) = 1 2 , tj. volíme orientaci a měřítko. Vidíme tedy, že determinant zadává plochu rovnoběžnostěnu určeného sloupci matice A (a plocha trojúhelníku je tedy poloviční). 1.29 1.46. Viditelnost v rovině. Předchozí popis hodnot pro orientovaný objem nám dává do rukou elegantní nástroj pro určování viditelnosti orientovaných úseček. Orientovanou úsečkou rozumíme dva body v rovině R2 s určením pořadím. Můžeme 5. GEOMETRIE V ROVINĚ 29 si ji představovat jako šipku od prvého k druhému bodu. Taková orientovaná úsečka nám rozděluje rovinu na dvě poloroviny, říkejme jim ,,levou a ,,pravou . Jestliže uvažujeme obvyklou orientaci ,,proti směru hodinových ručiček pro hranici mnohoúhelníku, pak pozorovatel nalevo od orientované úsečky (tj. uvnitř takového mnohoúhelníka) tuto vidí a naopak pozorovatel napravo ji nevidí. Má tedy smysl ptát se, jestli je orientovaná úsečka [A, B] v rovině viditelná z bodu C. Spočtěme orientovanou plochu příslušného trojúhelníku zadaného vektory A-C a B-C. Pokud jsme s bodem C nalevo od úsečky, pak při naší orientaci bude vektor A-C dříve než ten druhý a proto výsledná plocha (tj. hodnota determinantu) bude kladná. To odpovídá situaci, kdy úsečku vidíme. Naopak, při opačné poloze bude výsledkem záporná hodnota determinantu a podle zjistíme, že úsečku nevidíme. Uvedený jednoduchý postup je často využíván pro testování polohy při stan- dardních úlohách v 2D grafice. Závěrem této části si uveďme několik standardních příkladů: 1.47. Příklad. Je dána přímka p : [2, 0] + t(3, 2). Určete její obecnou rovnici a nalezněte průnik s přímkou r : [-1, 2] + s(1, 3). Řešení. [-19/7, -22/7]. 1.48. Kolize úseček. Z bodu [-2, 0] vyrazila v pravé poledne konstantní rychlostí 1ms-1 ve směru (3, 2) úsečka délky 1. Rovněž v poledne vyrazila z bodu [5, -2] druhá úsečka délky 1 ve směru (-1, 1), ovšem dvojnásobnou rychlostí. Srazí se? Řešení. Přímky, po kterých se pohybují dané úsečky, můžeme popsat parametric- kým vyjádřením: p : [-2, 0] + r(3, 2) q : [5, -2] + s(-1, 1), Obecná rovnice přímky p je 2x - 3y + 4 = 0. Dosazením parametrického vyjádření přímky q získáme průsečík P = [1, 2]. Nyní se snažme zvolit jediný parametr t pro obě úsečky tak, aby nám odpo- vídající bod na přímkách p, resp. q, popisoval polohu počátku první, resp. druhé, úsečky v čase t. V čase 0 je první v bodě [-2, 0], druhá v bodě [5, -2]. Za čas t sekund urazí první t jednotek délky ve směru (3, 2) druhá pak 2t jednotek délky ve směru (-1, 1). Odpovídající parametrizace jsou tedy p : [-2, 0] + t 13 (3, 2)(1.27) q : [5, -2] + 2t(-1, 1),(1.28) (1.29) Počátek první úsečky dorazí do bodu [1, 2] v čase t1 = 13s, počátek druhé úsečky v čase t = 2 2s, tedy více než o půl vteřiny dříve a tedy v době, kdy dorazí do průsečíku P počátek první úsečky, bude již druhá úsečka pryč a úsečky se tak nesrazí. 30 1. ÚVOD A MOTIVACE 1.49. Viditelnost stran trojúhelníka. Je dán trojúhelník s vrcholy [5, 6], [7, 8], [5, 8]. Určete, které jeho strany je vidět z bodu [0, 1]. Řešení. Uspořádáme vrcholy v kladném smyslu, tedy proti směru hodinových ru- čiček: [5, 6], [7, 8], [5, 8]. Pomocí příslušných determinantů určíme, je-li bod [0, 1] ,,nalevo či ,,napravo od jednotlivých stran trojúhelníka uvažovaných jako orien- tované úsečky, 7 5 7 7 > 0 5 5 7 5 < 0 5 7 5 7 = 0 Z nulovosti posledního determinantu vidíme, že body [0, 1], [5, 6] a [7, 8] leží na přímce, stranu [5, 6][7, 8] tedy nevidíme. Stranu danou vrcholy [5, 8] a [7, 8] pak narozdíl od strany [5, 6][5, 8] nevidíme. 1.50. Příklad. Určete, které strany čtyřúhelníka s vrcholy [95, 99], [130, 106], [40, 60], [130, 120]. jsou viditelné z bodu [2, 0]. Řešení. Nejprve je třeba určit strany čtyřúhelníka (,,správné pořadí vrcholů): [95, 99][40, 60][130, 106][130, 120]. Po spočítání příslušných determinantů (viz před- náška) zjistíme, že jsou vidět pouze strana [40, 60][130, 106]. 1.51. Příklad. Určete obsah čtyřúhelníka s vrcholy [1, 0], [11, 13], [2, 5] a [-2, -5]. Řešení. Rozdělíme na dva trojúhelníky a spočítáme pomocí vzorce z přednášky. S = 1 2 1 5 10 13 1 5 -3 -5 = 47 2 . 1.52. Příklad. Napište souřadnice vrcholů trojúhelníka, který vznikne otočením rovnostranného trojúhelníka jehož dva vrcholy jsou [1, 1] a [2, 3] (třetí pak v polo- rovině dané přímkou [1, 1][2, 3] a bodem [0, 0]) o 60 v kladném smyslu kolem bodu [0, 0]. Řešení. Třetí vrchol trojúhelníka dostaneme např. otočením o 60 jednoho z vr- cholů kolem druhého (ve správném smyslu). [-3 2 3, 3 - 1 2 ], [1 2 - 1 2 3, 1 2 3 + 1 2 ]), [1 - 3 2 3, 3 + 3 2 ]. 1.53. Příklad. Najděte matice A takové, že A2 = 1 2 - 3 2 3 2 1 2 . Námět na přemýšlení: jaké geometrické zobrazení v rovině zadává matice A2 ? Řešení. A2 je matice rotace o 60 , takže A = 3 2 -1 2 1 2 3 2 , tedy matice rotace o 30 , resp. 210 . K dalšímu procvičení nejen geometrických úvah mohou posloužit následující tři příklady: 6. RELACE A ZOBRAZENÍ 31 1.54. Kružnice dělící rovinu. Na kolik maximálně částí dělí rovinu k kružnic? Řešení. Pro maximální počet pk oblastí, na které dělí rovinu kružnice odvodíme rekurentní vzorec pk+1 = pk + 2k (k + 1). kružnice totiž protíná k předchozích maximálně v 2k průsečících (a tato situace skutečně může nastat). Navíc zřejmě p1 = 1. Pro počet pk tedy dostáváme pk = pk-1 + 2(k - 1) = pk2 + 2(k - 2) + 2(k - 1) = = p1 + k-1 i=1 2i = 2 + (k - 1)k. 1.55. Rovnoběžníková rovnost. Dokažme jako ilustraci našich nástrojů tzv. ,,rovnoběžníkovou rovnost : Jsou­li u, v R2 , pak: 2( u 2 + v 2 ) = u + v 2 + u - v 2 . Neboli součet druhých mocnin délek úhlopříček rovnoběžníka je roven dvojnásobku součtu druhých mocnin délek jeho stran. Řešení. Obdržíme například rozepsáním obou stran do souřadnic: u = (u1, u2), v = (v1, v2). Pak 2( u 2 + v 2 ) = 2(u2 1 + u2 2 + v2 1 + v2 2) = u2 1 + 2u1v1 + v2 1 + u2 2 + 2u2v2 + v2 2 + u2 1 - 2u1v1 + v2 1 + u2 2 - 2u2v2 + v2 2 = (u1 + v1)2 + (u2 + v2)2 + (u1 - v1)2 + (u2 - v2)2 = u + v 2 + u - v 2 1.56. Konstrukce lichoúhelníka. Sestrojte (2n+1)-úhelník, jsou-li dány všechny středy jeho stran. Řešení. K řešení využijeme toho, že složením lichého počtu středových souměr- ností je opět středová souměrnost (viz domácí úloha) Označíme-li vrcholy hleda- ného (2n + 1)-úhelníka po řadě A1, A2, . . . , A2n+1 a středy stran (od středu A1A2) postupně S1, S2, . . . S2n+1, tak provedeme-li středové souměrnosti po řadě podle těchto středů, tak bod A1 je zjevně pevným bodem výsledné středové symetrie, tedy jejím středem. K jeho nalezení tedy stačí provést uvedenou středovou sou- měrnost s libovolným bodem X roviny. Bod A1 leží pak ve středu úsečky XX , kde X je obrazem bodu X ve zmíněné středové symetrii. Další vrcholy získáme zobrazováním bodu A1 ve středových souměrnostech podle S1, . . . , S2n+1. 6. Relace a zobrazení V této závěrečné části úvodní motivační kapitoly se vrátíme k formálnímu po- pisu matematických struktur, budeme se je ale průběžně snažit ilustrovat na již známých příkladech. Zároveň můžeme tuto část brát jako cvičení ve formálním přístupu k objektům a konceptům matematiky. 32 1. ÚVOD A MOTIVACE 1.30 1.57. Relace mezi množinami. Binární relací mezi množinami A a B rozumíme podmnožinu R kartézského součinu A × B. Často píšeme a R b pro vyjádření skutečnosti, že (a, b) R, tj. že body a A a b B jsou v relaci R. Definičním oborem relace je podmnožina D A, D = {a A; b B, (a, b) R}. Podobně oborem hodnot relace je podmnožina I B, I = {b B; a A, (a, b) R}. Speciálním případem relace mezi množinami je zobrazení z množiny A do mno- žiny B. Je to případ, kdy pro každý prvek definičního oboru relace existuje právě jeden prvek z oboru hodnot, který je s ním v relaci. Nám známým případem zobra- zení jsou všechny skalární funkce, kde oborem hodnot zobrazení je množina skalárů, třeba celých nebo reálných čísel. Pro zobrazení zpravidla používáme značení, které jsme také u skalárních funcí zavedli. Píšeme f : D A I B, f(a) = b pro vyjádření skutečnosti, že (a, b) patří do relace, a říkáme, že b je hodnotou zobrazení f v bodě a. Dále říkáme, že f je ˇ zobrazení množiny A do množiny B, jestliže je D = A, ˇ zobrazení množiny A na množinu B, jestliže je D = A a I = B, často také surjektivní zobrazení ˇ injektivní zobrazení, jestliže je D = A a pro každé b I existuje právě jeden vzor a A, f(a) = b. Vyjádření zobrazení f : A B jakožto relace f A × B, f = {(a, f(a)); a A} známe také pod názvem graf zobrazení f. 1.31 1.58. Skládání relací a funkcí. U zobrazení je jasná koncepce, jak se skládají. Máme-li zobrazení f : A B a g : B C, pak jejich složení g f je definováno (g f)(a) = g(f(a)). Ve značení používaném pro relace totéž můžeme zapsat jako f A × B, f = {(a, f(a)); a A} g B × C, g = {(b, g(b)); b B} g f A × C, g f = {(a, g(f(a))); a A}. Zcela obdobně definujeme skládání relací, v předchozích vztazích jen doplníme existenční kvantifikátory, tj. musíme uvažovat všechny ,,vzory a všechny ,,ob- razy .Uvažme relace R A × B, S B × C. Potom S R A × C, S R = {(a, c); b B, (a, b) R, (b, c) S}. Zvláštním případem relace je identické zobrazení idA = {(a, a) A × A; a A} na množině A. Je neutrální vzhledem ke skládání s každou relací s definičním obo- rem nebo oborem hodnot A. 6. RELACE A ZOBRAZENÍ 33 Pro každou relaci R A × B definujeme inverzní relaci R-1 = {(b, a); (a, b) R} B × A. Pozor, u zobrazení, je stejný pojem užíván ve specifičtější situaci. Samozřejmě, že existuje pro každé zobrazení jeho invezní relace, ta však nemusí být zobrazením. Zcela logicky proto hovoříme o existenci inverzního zobrazení, pokud každý prvek b B je obrazem pro právě jeden vzor v A. V takovém případě je samozřejmě inverzní zobrazení právě inverzní relací. Všimněme si, že složením zobrazení a jeho inverzního zobrazení (pokud obě existují) vždy vznikne identické obrazení, u obecných relací tomu tak být nemusí. 1.32 1.59. Relace na množině. V případě A = B hovoříme o relaci na množině A. Říkáme, že R je: ˇ reflexivní, pokud idA R (tj. (a, a) R pro všechny a A), ˇ symetrická, pokud R-1 = R (tj. pokud (a, b) R, pak i (b, a) R), ˇ antisymetrická, pokud R-1 R idA (tj. pokud (a, b) R a zároveň (b, a) R, pak a = b), ˇ tranzitivní, pokud R R R, tj. pokud z (a, b) R a (b, c) R vyplývá i (a, c) R. Relace se nazývá ekvivalence, pokud je současně reflexivní, symetrická i tranzitivní. Relace se nazývá uspořádání jestliže je reflexivní, tranzitivní a antisymetrická. Dobrým příkladem uspořádání je inkluze. Uvažme množinu 2A všech podmno- žin konečné množiny A (značení je speciálním případem obvyklé notace BA pro množinu všech zobrazení A B) a na ní relací X Z danou vlastností ,,být podmnožinou . Evidentně jsou splněny všechny tři vlastnosti pro uspořádání: sku- tečně, je­li X Y a zároveň Y X musí být nutně množiny X a Y stejné. Je­li X Y Z je také X Z a také reflexivita je zřejmá. Říkáme, že uspořádání je úplné, když pro každé dva prvky platí že jsou srov- natelné, tj. buď a b nebo b a. Všimněme si, že ne všechny dvojice (X, Y ) podmnožin v A jsou srovnatelné v tomto smyslu. Přesněji, pokud je v A více než jeden prvek, existují podmnožiny X a Y , kdy není ani X Y ani Y X. Připomeňme rekurentní definici přirozených čísel N = {0, 1, 2, 3, . . . }, kde 0 = , n + 1 = {0, 1, 2, . . . , n}. Definujeme relaci m < n právě, když m n. Evidentně jde o úplné úspořádání. Např. 2 4, protože 2 = {, {}} {, {}, {, {}}, {, {}, {, {}}}} = 4. Jinak řečeno, samotná rekurentní definice zadává vztah n n+1 a tranzitivně pak n k pro všechna k, která jsou tímto postupem definována později. 1.33 1.60. Rozklad podle ekvivalence. Každá ekvivalence R na množině A zadává zároveň rozklad množiny A na podmnožiny vzájemně ekvivalentních prvků, tzv. třídy ekvivalance. Klademe pro libovolné a A Ra = {b A; (a, b) A}. Často budeme psát pro Ra prostě [a], je-li z kontextu zřejmé, o kterou ekvivalenci jde. Zjevně Ra = Rb právě, když (a, b) R a každá taková podmnožina je tedy reprezentována kterýmkoliv svým prvkem, tzv. reprezentantem. Zároveň Ra Rb = 34 1. ÚVOD A MOTIVACE právě, když Ra = Rb, tj. třídy ekvivalence jsou po dvou disjunktní. Konečně, A = aARa, tj. celá množina A se suktečně rozloží na jednotlivé třídy. Můžeme také třídám rozkladu rozumět tak, že třídu [a] vnímáme jako prvek a ,,až na ekvivalenci . 1.34 1.61. Příklad ­ konstrukce celých a racionálních čísel. Na přirozených čís- lech umíme sice sčítat a víme, že přičtením nuly se číslo nezmění. Umíme i definovat odečítání, při něm ale jen někdy existuje výsledek. Základní ideou konstrukce celých čísel z přirozených je tedy přidat k nim chy- bějící rozdíly. To můžeme udělat tak, že místo výsledku odečítání budeme pracovat s uspořádanými dvojicemi čísel, které nám samozřejmě vždy výsledek dobře repre- zentují. Zbývá jen dobře definovat, kdy jsou (z hlediska výsledku odečítání) takové dvojice ekvivalentní. Potřebný vztah tedy je: (a, b) (a , b ) a - b = a - b a + b = a + b. Všimněme si, že zatímco výrazy v prostřední rovnosti v přirozených číslech neu- míme, výrazy v pravo už ano. Snadno ověříme, že skutečně jde o ekvivalenci a její třídy označíme jako celá čísla Z. Na nich definujeme operaci sčítání (a s ní i odečítání) pomocí reprezentantů. Např. [(a, b)] + [(c, d)] = [(a + c, b + d)], což zjevně nezávisí na výběru reprezentantů. Lze si přitom vždy volit reprezentanty (a, 0) pro kladná čísla a reprezentanty (0, a) pro čísla záporná, se kterými se nám bude patrně počítat nejlépe. Tento jednoduchý přklad ukazuje, jak důležité je umět nahlížet na třídy ekvi- valence jako na celistvý objekt a soustředit se na vlastnosti těchto objektů, nikoliv formální popisy jejich konstrukcí. Ty jsou však důležité k ověření, že takové objekty vůbec existují. U celých čísel nám už platí všechny vlastnosti skalárů (KG1)­(KG4) a (O1)- (O4), viz 1.1 a 1.2. Pro násobení je neutrálním prvkem jednička, ale pro všechna čísla a různá od nuly a jedničky neumíme najít číslo a-1 s vlastností aa-1 = 1, tzn. chybí nám inverzní prvky. Zároveň si povšimněte, že platí vlastnost oboru integrity (OI), viz 1.2, tzn. je-li součin dvou čísel nulový, musí být alespoň jedno z nich nula. Díky poslední jmenované vlastnosti můžeme zkonstruovat racionální čísla Q přidáním všech chybějících inverzí zcela obdobným způsobem, jak jsme konstruovali Z z N. Na množině uspořádáných dvojic (p, q), q = 0, celých čísel definujeme relaci tak, jak očekáváme, že se mají chovat podíly p/q: (p, q) (p , q ) p/q = p /q p q - p q. Opět neumíme očekávané chování v prostřední rovnosti v množině Z formulovat, nicméně rovnost na pravé straně ano. Zjevně jde o dobře definovanou relaci ekviva- lence (ověřte podrobnosti!) a racionální čísla jsou pak její třídy ekvivalence. Když budeme formálně psát p/q místo dvojic (p, q), budeme definovat operace násobení a sčítání právě pomocí formulí, které nám jsou jistě dobře známy. 1.62. Příklad ­ zbytkové třídy. Jiným dobrým a jednoduchým příkladem jsou tzv. zbytkové třídy celých čísel. Pro pevně zvolené přirozené číslo k definujeme equivalenci k tak, že dvě čísla a, b Z jsou ekvivalentní, jestliže jejich zbytek po dělení číslem k je stejný. Výslednou množinu tříd ekvivalence označujeme Zk. 6. RELACE A ZOBRAZENÍ 35 Nejjednodušší je tato procedura pro k = 2. To dostáváme Z2 = {0, 1}, kde nula reprezentuje sudá čísla, zatímco jednička čísla lichá. Opět lze snadno zjistit, že pomocí reprezentantů můžeme definovat násobení a sčítání. Zkuste si ověřit, že výsledná množina ,,skalárů je komutativním tělesem (tj. splňuje i vlastnost (P) z 1.2) právě když je k prvočíslo. Závěrem si ještě procvičme spolu s relacemi ještě i kombinatoriku: 1.63. Ekvivalence ano či ne. Rozhodněte, zda následující relace na množině M jsou relace ekvivalence: (1) M = {f : R R}, (f g) f(0) = g(0). (2) M = {f : R R}, (f g) f(0) = g(1). (3) M je množina přímek v rovině, dvě přímky jsou v relaci, jestliže se neprotínají. (4) M je množina přímek v rovině, dvě přímky jsou v relaci, jestliže jsou rovno- běžné. (5) M = N, (m n) S(m) + S(n) = 20, kde S(n) značí ciferný součet čísla n. Řešení. (1) Ano. Ověříme tři vlastnosti ekvivalence: i) Reflexivita: pro libovolnou reálnou funkci f je f(0) = f(0). ii) Symetrie: jestliže platí f(0) = g(0), pak i g(0) = f(0). iii) Tranzitivita: jestliže platí f(0) = g(0) a g(0) = h(0), pak platí i f(0) = h(0). (2) Ne. Definovaná relace není reflexivní, např pro funkci sin máme sin(0) = sin(1) (3) Ne. Relace opět není reflexivní (každá přímka protíná sama sebe) (4) Ano. Třídy ekvivalence pak tvoří množinu neorientovaných směrů v rovině. (5) Ne. Relace není reflexivní. S(1) + S(1) = 2. 1.64. Počet injektivních zobrazení mezi množinami. Určete počet injektiv- ních zobrazení množiny {1, 2, 3} do množiny {1, 2, 3, 4} Řešení. Libovolné injektivní zobrazení mezi uvažovanými množinami je dáno vý- běrem (uspořádané) trojice z množiny {1, 2, 3, 4} (prvky ve vybrané trojici budou po řadě obrazy čísel 1, 2, 3) a obráceně každé injektivní zobrazení nám zadává ta- kovou trojici. Je tedy hledaných injektivních zobrazení stejně jako možností výběru uspořádaných trojic ze čtyř prvků, tedy v(3, 4) = 4 3 2 = 24. 1.65. Počet surjektivních zobrazení mezi danými množinami. Určete po- čet surjektivních zobrazení množiny {1, 2, 3, 4} na množinu {1, 2, 3} Řešení. Počet zjistíme obecným principem ,,inkluze a exkluze . Od počtu všech zobrazení odečteme ta, která nejsou surjektivní, t.j. ta, jejichž obor hodnot je buď jednoprvkovou nebo dvouprvkovou množinou. Všech zobrazení je V (3, 4) = 34 , zobrazení, jejichž oborem hodnot je jednoprvková množina, jsou tři. Počet zobrazení jejichž oborem hodnot je dvouprvková množina je 3 2 (24 -2) ( 3 2 způsoby můžeme vybrat definiční obor a máme-li již dva prvky fixovány, máme 24 - 2 možností, jak na ně zobrazit čtyři prvky). Celkem je tedy počet hledaných surjektivních zobrazení (1.30) 34 - 3 2 (24 - 2) - 3 = 36. 36 1. ÚVOD A MOTIVACE 1.66. Počet relací ekvivalence na množině. Určete počet relací ekvivalence na množině {1, 2, 3, 4}. Řešení. Ekvivalence můžeme počítat podle toho, kolik prvků mají jejich třídy rozkladu. Pro počty prvků tříd rozkladu ekvivalencí na čtyřprvkové množině jsou tyto možnosti: Počty prvků ve třídách rozkladu počet ekvivalencí daného typu 1,1,1,1 1 2,1,1 4 2 2,2 1 2 4 2 3,1 4 1 4 1 Celkem tedy máme 15 různých ekvivalencí. Závěrem ještě jeden příklad ukazující, že ,,divné skaláry se chovají divně: 1.67. Nenulový mnohočlen s nulovými hodnotami. Najděte nenulový mno- hočlen s koeficienty v Z7, tj. výraz typu anxn + + a1x + a0, ai Z7, an = 0, takový, že na množině Z7 nabývá pouze nulových hodnot (tj. dosadíme-li za x libovolný z prvků Z7 a výraz v Z7 vyčíslíme, dostaneme vždy nulu). Řešení. Při konstrukci tohoto mnohočlenu se opřeme o Malou Fermatovu větu, která říká, že pro livovolné prvočíslo p a číslo a s ním nesoudělné platí: (1.31) ap-1 1(mod p). Hledaný polynom je tedy například polynom x7 - x (polynom x6 - 1 by neměl nulovou hodnotu v čísle 0). KAPITOLA 2 Elementární lineární algebra neumíte ještě počítat se skaláry? ­ zkusme to rovnou s maticemi... 1. Vektory a matice 2.1 2.1. Vektory nad skaláry. Symbolem K budeme nadále značit nějakou množinu skalárů. Prozatím budeme vektorem rozumět uspořádanou n-tici skalárů, kde pevně zvolené n N budeme nazývat dimenzí. Sčítání vektorů definujeme po složkách (skaláry samozřejmě sčítat umíme) a násobení vektoru u = (a1, . . . , an) skalárem b definujeme tak, že každý prvek n-tice u vynásobíme skalárem b (skaláry v K násobit umíme), tj. u + v = (a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) b u = b (a1, . . . , an) = (b a1, . . . , b an). Zpravidla požadujeme, aby skaláry byly z nějakého pole1 , viz 1.1. Pro sčítání vektorů v Kn zjevně platí (KG1)­(KG4) s nulovým prvkem 0 = (0, . . . , 0) Kn . Schválně zde používáme pro nulový prvek stejný symbol jako pro nulový prvek skalárů. Podobně budeme pro sčítání a násobení používat stále stejný symbol (plus a buď tečku nebo prosté zřetězení znaků). Navíc nebudeme používat pro vektory žádné speciální značení, a ponecháváme na čtenáři aby udržoval svoji pozornost přemýšlením o kontextu. Pro skaláry ale spíše budeme používat písmena ze začátku abecedy a pro vektory od konce (prostředek nám zůstane na indexy proměných, komponent a v součtech). Pro všechny vektory v, w Kn a skaláry a, b K platí a (v + w) = a v + a w(V1) (a + b) v = a v + b v(V2) a (b v) = (a b) v(V3) 1 v = v(V4) Pro kterékoliv pole skalárů K se snadno ověří právě sformulované vlastnosti (V1)­(V4) pro Kn , protože při ověřování vždy používáme pouze vlastnosti skalárů uvedené v 1.1 a 1.2. Budeme takto pracovat např. s Rn , Qn , Cn , (Zk)n , n = 1, 2, 3, . . .. 1Čtenář, který se ještě nesmířil s abstrakcí okruhů a polí, nechť přemýšlí v rámci číselných oborů. Potom okruhy skalárů zahrnují i celá čísla Z a všechny zbytkové třídy, zatímco mezi poli jsou pouze R, Q, C a zbytkové třídy Zk s prvočíselným k. 37 38 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA Všimněme si také, že k ověření vlastností (V1)­(V4) potřebujeme pro použité skaláry pouze vlastnosti okruhu. Vlastnost (P) však bude přesto podstatná později. 2.2 2.2. Matice nad skaláry. Maticí typu m/n nad skaláry K rozumíme obdélníkové schéma A = a11 a12 . . . a1n a21 a22 . . . a2n ... ... am1 am2 . . . amn kde aij K pro všechny 1 i m, 1 j n. Matici A s prvky aij značíme také A = (aij). Vektory (ai1, ai2, . . . , ain) Kn nazýváme (i­té) řádky matice A, i = 1, . . . , m, vektory (a1j, a2j, . . . , amj) Km nazýváme (j­té) sloupce matice A, j = 1, . . . , n. Matici můžeme také chápat jako zobrazení A : {1, . . . , m} × {1, . . . , n} K. Matice typu 1/n nebo n/1 jsou vlastně právě vektory v Kn . I obecné matice lze však chápat jako vektory v Kmn , prostě zapomeneme na řádkování. Zejména tedy je definováno sčítání matic a násobení matic skaláry: A + B = (aij + bij), kde A = (aij), B = (bij), a A = (a.aij), kde A = (aij), a K. Dále pak matice -A = (-aij) se nazývá matice opačná k matici A a matice 0 = 0 . . . 0 ... ... 0 . . . 0 se nazývá nulová matice. Zapomenutím řádkování tak získáme následující tvrzení: Tvrzení. Předpisy pro A + B, a A, -A, 0 zadávají na množině všech matic typu m/n operace sčítání a násobení skaláry splňující axiomy (V1)­(V4). 2.3 2.3. Příklad. Matice lze vhodně využít pro zápis lineárních rovnic. Uvažme ná- sledující systém m rovnic v n proměnných: a11x1 + a12x2 + + a1nxn = y1 a21x1 + a22x2 + + a2nxn = y2 ... am1x1 + am2x2 + + amnxn = ym. Posloupnost x1, . . . , xn lze chápat jako vektor proměnných, tj. sloupec v matici typu n/1, a podobně s hodnotami y1, . . . , yn. Systém rovnic lze pak formálně psát ve tvaru A x = y : a11 . . . a1n ... ... am1 . . . amn . x1 ... xn = y1 ... yn 1. VEKTORY A MATICE 39 Původní rovnice nyní obdržíme tak, že vždy bereme řádky z A a sčítáme součiny odpovídajících komponent, tj. ai1x1+ +ainxn. Tím získáme i-tý prvek výsledného vektoru. V rovině, tj. pro vektory dimenze 2, jsme už zavedli takovýto počet a viděli jsme, že s ním lze pracovat velice efektivně (viz 1.42). Nyní budeme postupovat obecněji a zavedeme i na maticích operace násobení. 2.4 2.4. Součin matic. Pro libovolnou matici A = (aij) typu m/n nad okruhem skalárů K a libovolnou matici B = (bjk) typu n/q nad K definujeme jejich součin C = A B = (cik) jako matici typu m/q s prvky cik = n j=1 aijbjk, pro libovolné 1 i m, 1 k q. Například máme 2 1 1 -1 2 1 1 -1 0 1 = 3 2 3 3 1 0 2.5 2.5. Čtvercové matice. Je-li v matici stejný počet řádků a sloupců, hovoříme o čtvercové matici. Počet řádků a sloupců pak nazýváme také dimenzí matice. Matici E = (ij) = 1 . . . 0 ... ... ... 0 . . . 1 se říká jednotková matice. Na množině čtvercových matic nad K dimenze n je součin matic definován pro každé dvě matice, je tam tedy definována operace násobení: Tvrzení. Pro libovolný okruh skalárů je na množině všech čtvercových matic di- menze n definována operace násobení. Splňuje vlastnosti 1.2(O1) a (O3) vzhledem k jednotkové matici E = (ij). Dále spolu se sčítáním matic vyhovuje 1.2(O4). Obecně však neplatí 1.2(O2) ani (OI), zejména tedy neplatí 1.2(P). Důkaz. Asociativita násobení ­ (O1): Protože skaláry jsou asociativní, distribu- tivní i komutativní, můžeme spočíst A = (aij) typu m/n, B = (bjk) typu n/p, C = (ckl) typu p/q A B = ( j aij.bjk), B C = ( k bjk.ckl) (A B) C = ( k ( j aij.bjk).ckl) = j,k aij.bjk.ckl A (B C) = ( j aij.( k bjk.ckl)) = j,k aij.bjk.ckl Jednotkový prvek ­ (O3): A E = a11 a1m ... am1 amm 1 0 0 0 1 0 ... ... 0 0 1 = A = E A 40 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA (O4) - distributivita: opět díky distributivitě skalárů snadno spočteme pro ma- tice A = (aij) typu m/n, B = (bjk) typu n/p, C = (cjk) typu n/p, D = (dkl) typu p/q A (B + C) = ( j aij(bjk + cjk) = (( j aijbjk) + ( j aijcjk)) = A B + A C (B + C) D = ( k (bjk + cjk)dkl) = (( k bjkdkl) + ( k cjkdkl)) = B D + C D Není komutativní: - jak jsme již viděli v 1.42, dvě matice dimenze 2 nemusí komutovat: 1 0 0 0 . 0 1 0 0 = 0 1 0 0 0 1 0 0 . 1 0 0 0 = 0 0 0 0 Tím jsme získali zároveň protipříklad na platnost (O2) i (OI). Pro matice typu 1/1 ovšem oba axiomy samozřejmě platí, protože je mají samy skaláry a pro větší matice získáme protipříklady snadno tak, že právě uvedené matice umístíme do levého horního rohu příslušných čtvercových schémat a doplníme nulami. (Ověřte si sami!) V důkazu jsme vlastně pracovali s maticemi obecnějšího typu, dokázali jsme tedy příslušné vlastnosti obecněji: Tvrzení. Násobení matic je asociativní a distributivní, tj. A (B C) = (A B) C, A (B + C) = A B + A C, kdykoliv jsou tato násobení definována. Jednotková matice je neutrálním prvkem pro násobení zleva i zprava. 2.6 2.6. Inverzní matice. Se skaláry umíme počítat tak, že z rovnosti ax = b umíme vyjádřit x = a-1 b, kdykoliv inverze k a existuje. Podobně bychom to měli umět s maticemi, máme ale problém, jak poznat, zda taková existuje, a jak ji spočítat. Říkáme, že B je matice inverzní k matici A, když A B = B A = E. Píšeme pak B = A-1 a je samozřejmé, že obě matice musí mít tutéž dimenzi n. Matici, k níž existuje matice inverzní, říkáme invertibilní matice. Pokud A-1 a B-1 existují, pak existuje i (A B)-1 = B-1 A-1 . Je totiž (díky právě dokázané asociativitě násobení) (B-1 A-1 )(A.B) = B-1 (A-1 A)B = E a (A B) (B-1 A-1 ) = A (B B-1 ) A-1 = E. Protože s maticemi umíme počítat zrovna jako se skaláry, jen mají složitější chování, můžeme formálně snadno řešit systémy lineárních rovnic: Jestliže vyjád- říme soustavu n rovnic pro n neznámých součinem matic A x = a11 a1m ... am1 amm x1 ... xm = y1 ... ym a existuje matice inverzní k matici A, pak lze násobit zleva A-1 a dostaneme A-1 y = A-1 A x = E x = x, tj. hledané řešení. Naopak rozepsáním podmínky A A-1 = E pro neznámé skaláry v hledané matici A-1 dostaneme n systémů lineárních rovnic se stejnou maticí na levé straně a různými vektory napravo. 1. VEKTORY A MATICE 41 2.7 2.7. Ekvivalentní úpravy matic. Z hlediska řešení systémů rovnic A x = b je jistě přirozené považovat za ekvivalentní matice A a vektory b, které zadávají systémy rovnic se stejným řešením. Uvedeme si jednoduché manipulace s řádky rovnic a stejným způsobem pak můžeme upravovat i vektor napravo. Když se nám podaří vlevo dostat systém s jednotkovou maticí, bude napravo řešení původního systému. Takovým operacím říkáme řádkové elementární transformace. Jsou to: ˇ záměna dvou řádků ˇ vynásobení vybraného řádku nenulovým skalárem ˇ přičtení řádku k jinému řádku. Je zjevné, že odpovídající operace na úrovni rovnic v systému nemohou změnit množinu všech jeho řešení. Později bude vidět, že sloupcové transformace odpovídají řešení téhož systému ale v transformovaných souřadnicích Analogicky, sloupcové elementární transformace matic jsou ˇ záměna dvou sloupců ˇ vynásobení vybraného sloupce nenulovým skalárem ˇ přičtení sloupce k jinému sloupci, ty však nezachovávají řešení příslušných rovnic, protože mezi sebou míchají samotné proměnné. Systematicky můžeme použít elementární řádkové úpravy k postupné elimi- naci proměnných. Postup je algoritmiclký a většinou se mu říká Gausova eliminace proměnných. Tvrzení. Nenulovou matici nad libovolným okruhem skalárů K lze konečně mnoha elementárními řádkovými transformacemi převést na tzv. (řádkově) schodovitý tvar: ˇ Je-li aij = 0 a všechny předchozí prvky na i-tém řádku jsou také nulové, potom akj = 0 pro všechna k i ˇ je-li a(i-1)j první nenulový prvek na (i - 1)-ním řádku, pak aij = 0. Důkaz. Matice v řádkově schodovitém tvaru vypadá takto 0 . . . 0 a1j . . . . . . . . . a1m 0 . . . 0 0 . . . a2k . . . a2m ... 0 . . . . . . . . . . . . 0 alp . . . ... a matice může, ale nemusí, končit několika nulovými řádky. K převodu libovolné matice můžeme použít jednoduchý algoritmus: (1) Záměnou řádků docílíme, že v prvním řádku bude v prvním nenulovém sloupci nenulový prvek, nechť je to j-tý sloupec. (2) Pro i = 2, . . ., vynásobením prvního řádku prvkem aij, i-tého řádku prvkem a1j a odečtením vynulujeme prvek aij na i-tém řádku. (3) Opakovanou aplikací bodů (1) a (2), vždy pro zbytek řádků a sloupců v získané matici dospějeme po konečném počtu kroků k požadovanému tvaru. 42 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA Uvedený postup je skutečně právě obvyklá eliminace proměnných v systémech lineárních rovnic. Pro řešení systémů rovnic má ale uvedený postup rozumný smysl jen, když mezi skaláry neexistují dělitelé nuly. Pokud tvoří skaláry pole, pak můžeme navíc ze schodovitého tvaru snadno spočíst řešení (případně ověřit jeho neexistenci), promyslete si pečlivě rozdíl mezi K = Z, K = R a případně Z2 nebo Z3. 2.8 2.8. Poznámka. Všimněme si, že elementární řádkové (resp. sloupcové) transfor- mace odpovídají vynásobením zleva (resp. zprava) následujícími maticemi: (1) Přehození i-tého a j-tého řádku (resp. sloupce) 0 B B B B B B B B B B B B B @ 1 0 . . . 0 ... ... 0 . . . 1 ... ... ... 1 . . . 0 ... 1 1 C C C C C C C C C C C C C A (2) Vynásobení i-tého řádku (resp. sloupce) skalárem a: 0 B B B B B B B B B B B @ 1 ... 1 a 1 ... 1 1 C C C C C C C C C C C A i (3) Sečtení i-tého řádku (resp. sloupce) s j-tým: i 0 B B B B B B B B B B B B B B B @ 1 0 0 ... ... ... 1 ... ... 1 1 C C C C C C C C C C C C C C C A j Toto prostinké pozorování je ve skutečnosti velice podstatné, protože součin invertibilních matic je invertibilní a všechny elementární transformace jsou nad polem skalárů invertibilní. Pro libovolnou matici A tedy dostaneme násobením vhodnou invertibilní maticí P = Pk P1 zleva (postupné násobení k maticemi zleva) její ekvivalentní řádkový schodovitý tvar A = P A. Jestliže obecně aplikujeme tentýž eliminační postup na sloupce, dostaneme z každé matice B její sloucový schodovitý tvar B vynásobením vhodnou invertibilní maticí Q = Q1 Q . Pokud ale začneme s maticí B = A v řádkově schodovitém 1. VEKTORY A MATICE 43 tvaru, eliminuje takový postup pouze všechny dosud nenulové prvky mimo diago- nálu matice a závěrem lze ještě i tyto elementárními operacemi změnit na jedničky. Celkem jsme tedy ověřili důležitý výsledek, ke kterému se budeme mnohokrát vra- cet: 2.9 2.9. Věta. Pro každou matici A typu m/n nad polem skalárů K existují čtvercové invertibilní matice P dimenze m a Q dimenze n takové, že matice P A je v řádkově schodovitém tvaru a P A Q = 1 . . . 0 . . . . . . . . . 0 ... ... 0 . . . 1 0 . . . . . . 0 0 . . . 0 1 0 . . . 0 0 . . . 0 0 0 . . . 0 ... . 2.10 2.10. Algoritmus pro výpočet inverzní matice. V předchozích úvahách jsme se dostali prakticky k úplnému algoritmu pro výpočet inverzní matice. Během jed- noduchého níže uvedeného postupu buď zjistíme, že inverze neexistuje, nebo bude inverze spočtena. I nadále pracujeme nad polem skalárů. Ekvivalentní řádkové transformace se čtvercovou maticí A dimenze n vedou k matici P takové, že P A bude v řádkově schodovitém tvaru. Přitom může (ale nemusí) být jeden nebo více posledních řádků nulových. Jestliže má existovat inverzní matice k A, pak existuje i inverzní matice k P A. Jestliže však je poslední řádek v P A nulový, bude nulový i poslední řádek v P A B pro jakoukoliv matici B dimenze n. Existence takového nulového řádku ve výsledku (řádkové) Gaussovy eliminace tedy vylučuje existenci A-1 . Předpokládejme nyní, že A-1 existuje. Podle předchozího, nalezneme řádkově schodovitý tvar bez nulového řádku, tzn. že všechny diagonální prvky v P A jsou nenulové. Pak ovšem pokračováním eliminace od pravého dolního rohu zpět a vynormováním diagonálních prvků na jedničky získáme jednotkovou matici E. Jinými slovy, najdeme další invertibilní matici P takovou, že pro P = P P platí P A = E. Výměnou řádkových a sloupcových transformací lze za předpokladu existence A-1 stejným postupem najít Q takovou, že A Q = E. Odtud P = P E = P (A Q) = (P A) Q = Q. To ale znamená, že jsme nalezli hledanou inverzní matici A-1 = P = Q k A. Prakticky tedy můžeme postupovat tak, že vedle sebe napíšeme původní matici A a jednotkovou matici E, matici A upravujeme řádkovými elementárními úpravami nejprve na schodovitý tvar, potom tzv. zpětnou eliminací na diagonální matici a v té násobíme řádky inverzními prvky z K. Tytéž úpravy postupně prováděné s E vedou právě k matici P = P P z předchozích úvah, tedy z ní získáme právě hledanou inverzi. Pokud tento algoritmus narazí na vynulování celého řádku v původní matici, znamená to, že matice inverzní neexistuje. 2.10a 2.11. Závislost řádků a sloupců a hodnost matice. V předchozích úvahách a počtech s maticemi jsme stále pracovali se sčítáním řádků nebo sloupců coby vektorů, spolu s jejich násobením skaláry. Takové operaci říkáme lineární kombi- nace. V abstraktním pojetí se k operacím s vektory vrátíme za chvíli v 2.23, bude ale užitečné pochopit podstatu už nyní. Lineární kombinací řádků (nebo sloupců) 44 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA matice A = (aij) typu m/n rozumíme výraz a1ui1 + +akuik , kde ai jsou skaláry, uj = (aj1, . . . , ajn) jsou řádky (nebo uj = (a1j, . . . , amj) jsou sloupce) matice A. Jestliže existuje lineární kombinace daných řádků s alespoň jedním nenulovým skalárním koeficientem, jejímž výsledkem je nulový řádek, říkáme, že jsou lineárně závislé. V opačném případě, tj. když jedinou možnost jak získat nulový řádek je vy- násobení výhradně nulovými skaláry, jsou lineárně nezávislé. Obdobně definujeme lineárně závislé a nezávislé sloupce matice. Předchozí výsledky o Gausově eliminaci můžeme vnímat takovým způsobem, že počet výsledných nenulových ,,schodů v řádkově nebo sloupcově schodovitém tvaru je vždy roven témuž přirozenému číslu a to počtu lineárně nezávislých řádků matice a témuž počtu lineárně nezávislých sloupců matice. Tomuto číslu říkáme hodnost matice, značíme h(A). Zapamatujme si výsledné tvrzení: Věta. Nechť A je matice typu m/n nad polem skalárů K. Matice A má stejný počet h(A) linárně nezávislých řádků a lineárně nezávislých sloupců. Zejména je hodnost vždy nejvýše rovna menšímu z rozměrů matice A. Algoristmus pro výpočet inverzních matic také říká, že čtvercová matice A dimenze m má inverzi právě, když je její hodnost rovna počtu řádků m. Ukažme si ještě užití matic pro běžné geometrické transformace, podobně jako v našich úvahách o geometrii roviny (viz 1.43): 2.12. Matice rotací podle souřadnicových os. Napište matici zobrazení rotací o úhel postupně kolem os x, y, z v R3 . Řešení. Při rotaci libovolného bodu kolem dané osy (řekněme x), se příslušná souřadnice daného bodu nemění, v rovině dané dvěma zbylými osami pak již je rotace dána známou maticí 2 × 2. Postupně tedy dostáváme následující matice: Rotace kolem osy z: cos - sin 0 sin cos 0 0 0 1 Rotace kolem osy y: cos 0 sin 0 1 0 - sin 0 cos Rotace kolem osy x: 1 0 0 0 cos - sin 0 sin cos . U matice rotace kolem osy y musíme dávat pozor na znaménko. Je totiž rotace kolem osy y v kladném smyslu, tedy taková rotace, že pokud se díváme proti směru osy y, tak se svět točí proti směru hodinových ručiček, je rotací v záporném smyslu v rovině xz (tedy osa z se otáčí směrem k x). Rozmyslete si kladný a záporný smysl rotace podél všech tří os. 2.13. Matice rotace kolem dané osy. Napište matici zobrazení rotace v klad- ném smyslu o úhel 60 kolem přímky dané počátkem a vektorem (1, 1, 0) v R3 . Řešení. Daná otáčení je složením následujících tří zobrazení: 2. DETERMINANTY 45 ˇ rotace o 45 v záporném smyslu podle osy z (osa rotace (1, 1, 0) přejde do osy x) ˇ rotace o 60 v kladném smyslu podle osy x. ˇ rotace o 45 v kladném smyslu podle osy z (osa x přejde zpět na osu danou vektorem (1, 1, 0)). Matice výsledné rotace tedy bude součinem matic odpovídajících těmto třem zobrazením, přičemž pořadí matic je dáno pořadím provádění jednotlivých zobra- zení, prvnímu zobrazení odpovídá v součinu matice nejvíce napravo. Celkem tedy dostáváme pro hledanou matici A vztah: A = 2 2 - 2 2 0 2 2 2 2 0 0 0 1 1 0 0 0 1 2 - 3 2 0 3 2 1 2 2 2 2 2 0 - 2 2 2 2 0 0 0 1 = 3 4 1 4 6 4 1 4 3 4 - 6 4 - 6 4 6 4 1 2 2. Determinanty V páté části první kapitoly jsme viděli, že pro čtvercové matice dimenze n nad reálnými čísly existuje skalární funkce det, která matici přiřadí nenulové číslo právě, když existuje její inverze. Neříkali jsme to sice stejnými slovy, ale snadno si to ověříte, viz odstavce počínaje 1.42 a formule (1.26). Determinant byl užitečný i jinak, viz 1.44 a 1.45, kde jsme si volnou úvahou odvodili, že obsah rovnoběžníka by měl být lineárně závislý na každém ze dvou vektorů definujících rovnoběžník a že je užitečné zároveň požadovat změnu znaménka při změně pořadí těchto vektorů. Protože tyto vlastnosti měl, až na pevný skalární násobek, jedině determinant, odvodili jsme, že je obsah dán právě takto. Nyní uvidíme, že podobně lze postupovat v každé konečné dimenzi. V této části budeme pracovat s libovolnými skaláry K a maticemi nad těmito skaláry. 2.10c 2.14. Definice determinantu. Připomeňme, že bijektivní zobrazení množiny X na sebe se nazývá permutace množiny X, viz 1.5. Je-li X = {1, 2, . . . , n}, lze per- mutace zapsat pomocí výsledného pořadí ve formě tabulky: 1 2 . . . n (1) (2) . . . (n) . Prvek x X se nazývá samodružným bodem permutace , je-li (x) = x. Permu- tace taková, že existují právě dva různé prvky x, y X s (x) = y a (z) = z pro všechna ostatní z X se nazývá transpozice, značíme ji (x, y). V dimenzi dva byl vzorec pro determinant jednoduchý ­ vezmeme všechny možné součiny dvou prvků, po jednom z každého sloupce a řádku matice, opat- říme je znaménkem tak, aby při přehození dvou sloupců došlo ke změně celkového znaménka, a výrazy všechny sečteme: A = a b c d , det A = ad - bc. Obecně, nechť A = (aij) je čtvercová matice dimenze n nad K. Determinant matice A je skalár det A = |A| definovaný vztahem |A| = n sgn()a1(1) a2(2) an(n) 46 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA kde n je množina všech možných permutací na {1, . . . , n} a znaménko sgn pro kaž- dou permutaci ještě musíme popsat. Každý z výrazů sgn()a1(1) a2(2) an(n) nazýváme člen determinantu |A|. Jednoduché příklady už umíme: je-li n = 1, pak |a11| = a11 K, a pro n = 2 je a11 a12 a21 a22 = +a11a22 - a12a21. Podobně pro n = 3 se dá uhodnout (chceme linearitu v každém sloupci a antisy- metrii) a11 a12 a13 a21 a22 a23 a31 a32 a33 = + a11a22a33 - a13a22a31 + a13a21a32 - a11a23a32 + a12a23a31 - a12a21a33. Tomuto vzorci se říká Saarusovo pravidlo. Jak tedy najít správná znaménka? Říkáme, že dvojice prvků a, b X = {1, . . . , n} tvoří inverzi v permutaci , je-li a < b a (a) > (b). Permutace se nazývá sudá (resp. lichá), obsahuje-li sudý (resp. lichý) počet inverzí. Parita permutace je (-1)počet inverzí a značíme ji právě sgn(). Tolik definice, chceme ale vědět, jak s paritou počítat. Z následujícího tvrzení už je jasně vidět, že Saarusovo pravidlo skutečně počítá determinant v dimenzi 3. Tvrzení. Na množině X = {1, 2, . . . , n} je právě n! různých permutací. Tyto lze seřadit do posloupnosti tak, že každé dvě po sobě jdoucí se liší právě jednou trans- pozicí. Lze při tom začít libovolnou permutací a každá transpozice mění paritu. Důkaz. Pro jednoprvkové a dvouprvkové X tvrzení samozřejmě platí. Budeme postupovat indukcí přes dimenzi. Předpokládejme, že tvrzení platí pro všechny množiny s n - 1 prvky a uvažme permutaci (1) = a1, . . . , (n) = an. Podle indukčního předpokladu všechny per- mutace, které mají na posledním místě an, dostaneme z tohoto pořadí postupným prováděním transpozic. Přitom jich bude (n - 1)!. V posledním z nich prohodíme (n) = an za některý z prvků, který dosud nebyl na posledním místě, a znovu uspořádáme všechny permutace s tímto vybraným prvkem na posledním místě do posloupnosti s požadovanými vlastnostmi. Po n-násobné aplikaci tohoto postupu získáme n! zaručeně různých permutací, tzn. všechny, právě předepsaným způso- bem. Všimněte si, že důležitou částí postupu je možnost začít s libovolnou z per- mutací. Zbývá poslední dovětek o paritách. Uvažme pořadí (a1, . . . , ai, ai+1, . . . , n), ve kterém je r inverzí. Pak zjevně je v pořadí (a1, . . . , ai+1, ai . . . , n) buď r - 1 nebo r + 1 inverzí. Každou transpozici (ai, aj) lze přitom získat postupným provedením (j -i)+(j -i-1) = 2(j -i)-1 transpozic sousedních prvků. Proto se provedením libovolné transpozice parita permutace změní. Navíc již víme, že všechny permutace lze získat prováděním transpozic. Zjistili jsme, že provedení libovolné transpozice změní paritu permutace a že každé pořadí čísel {1, 2, . . . , n} lze získat postupnými transpozicemi sousedních prvků. Důsledkem tohoto popisu je, že na každé množině X = {1, . . . , n}, n > 1, je právě 1 2 n! sudých a 1 2 n! lichých permutací. 2. DETERMINANTY 47 Jestliže složíme dvě permutace za sebou, znamená to provést napřed všechny transpozice tvořící první a pak druhou. Proto pro libovolné permutace , : X X platí sgn( ) = sgn() sgn(), sgn(-1 ) = sgn(). 2.15. Rozklad permutace na transpozice. Napište permutaci P = 1 2 3 4 5 3 1 2 5 4 jako složení transpozicí. Je tato permutace sudá nebo lichá? Řešení. Transpozici prvků i a j, budeme značit jako (i, j). Danou permutaci mů- žeme rozložit nejprve na nezávislé cykly, ty potom na transpozice. V našem případě je daná transpozice složením dvou cyklů: (1, 2, 3) a (4, 5) (rozklad dostaneme tak, že si vybereme jeden prvek a ten opakovaně zobrazujeme pomocí dané permutace, dokud nedostaneme na počátku zvolený prvek; ,,cesta prvku tvoří cyklus; z prvků, které jsme ještě neprošli vybereme opět další a opět ho opakovaně zobrazujeme po- mocí dané permutace; opakujeme tak dlouho, dokud neprobereme všechny prvky množiny, na které permutace působí). V našem případě se prvek 1 zobrazuje na 3, prvek 3 na prvek 2, prvek 2 zpět na 1, dostáváme tedy cyklus (1, 3, 2). První prvek, který jsme ještě neprošli je číslo 4: 4 se zobrazuje na 5, 5 zpět na 4; dostáváme transpozici, neboli cyklus délky dva. Máme tedy P = (1, 3, 2) (4, 5). Cyklus (1, 3, 2) ještě rozložíme na transpozice: (1, 3, 2) = (1, 3)(3, 2). Celkem tedy P = (1, 3) (3, 2) (4, 5). Parita počtu transpozicí v rozkladu je dána jednoznačně a udává sudost či lichost permutace. Naše permutace je tedy lichá. 2.12 2.16. Jednoduché vlastnosti determinantu. Pro každou matici A = (aij) typu m/n na skaláry z K definujeme matici transponovanou k A. Jde o matici AT = (aij) s prvky aij = aji typu n/m. Čtvercová matice A s vlastností A = AT se nazývá symetrická. Jestliže platí A = -AT , pak se A nazývá antisymetrická. Věta. Pro každou čtvercovou matici A platí (1) |AT | = |A|, (2) Je-li jeden řádek v A tvořen nulovými prvky z K, pak |A| = 0, (3) Jestliže matice B vznikla z A výměnou dvou řádků, pak |A| = -|B|, (4) Jestliže matice B vznikla z A vynásobením řádku skalárem a K, pak |B| = a|A|, (5) Jsou-li prvky k-tého řádku v A tvaru akj = ckj + bkj a všechny ostatní řádky v maticích A, B = (bij), C = (cij) jsou stejné, pak |A| = |B| + |C|, (6) Determinant |A| se nezmění, přičteme-li k libovolnému řádku A lineární kom- binaci ostatních řádků. Důkaz. (1) Členy determinantů |A| a |AT | jsou v bijektivní korespondenci. Členu sgn()a1(1) a2(2) an(n) přitom odpovídá člen sgn()a(1)1 a(2)2 a(n)n = sgn()a1-1(1) a2-1(2) an-1(n), 48 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA přičemž musíme ověřit, že je tento člen opatřen správným znaménkem. Parita a -1 je ale stejná, jde tedy opravdu o člen |AT | a první tvrzení je dokázáno. (2) Plyne přímo z definice determinantu, protože všechny jeho členy budou nulové. (3) Ve všech členech |A| dojde u permutací k přidání jedné transpozice, zna- ménko všech členů determinantu tedy bude opačné. (4) Vyplývá přímo z definice, protože členy determinantu |B| jsou členy |A| vynásobené skalárem a. (5) V každém členu |A| je právě jeden součinitel z k-tého řádku matice A. Protože platí distributivní zákon pro násobení a sčítání v K, vyplývá tvrzení přímo z definičního vztahu pro determinanty. (6) Jsou-li v A dva stejné řádky, jsou mezi členy determinantu vždy dva sčítance stejné až na znaménko. Proto je v takovém případě |A| = 0. Je tedy podle tvrzení (5) možné přičíst k vybranému řádku libovolný jiný řádek, aniž by se zmněnila hodnota determinantu. Vzhledem k tvrzení (4) lze ale přičíst i skalární násobek libovolného jiného řádku. 2.13 2.17. Poznámka. Všimněme si hezkého důsledku prvního tvrzení předchozí věty o rovnosti determinantů matice a matice transponované. Zaručuje totiž, že kdyko- liv se nám podaří dokázat nějaké tvrzení o determinantech formulované s využi- tím řádků příslušné matice, pak analogické tvrzení platí i pro sloupce. Např. tedy můžeme okamžitě všechna tvrzení (2)­(6) této věty přeformulovat i pro přičítání lineárních kombinací ostatních sloupců k vybranému. Vlastnosti (3)­(5) říkají, že determinant jako zobrazení, které n vektorům di- menze n (řádkům nebo sloupcům matice) přiřadí skalár je antisymetrické zobrazení lineární v každém svém argumentu, přesně jak jsme podle analogie z dimenze 2 po- žadovali. Pro matici v řádkovém nebo sloupcovém schodovitém tvaru je jediným nenu- lovým členem determinantu ten, který odpovídá identické permutaci. Vidíme tedy, že determinant takové matice je |A| = a11 a22 ann. Předchozí věta tedy po- skytuje velice efektivní metodu výpočtu determinantů pomocí Gaussovy eliminační metody, viz. 2.7. 2.14 2.18. Další vlastnosti determinantu. Časem uvidíme, že skutečně stejně jako v dimenzi dva je determinant matice roven orientovanému objemu rovnoběžnostěnu určeného jejími sloupci. Uvidíme časem také, že když uvážíme zobrazení x A x zadané čtvercovou maticí A na Rn , pak můžeme determinant této matice vidět jako vyjádření poměru mezi objemem rovnoběžnostěnů daných vektory x1, . . . xn a jejich obrazy A x1, . . . , A xn. Protože skládání zobrazení x A x B (A x) odpovídá násobení matic, je snad docela pochopitelná tzv. Cauchyova věta: Věta. Nechť A = (aij), B = (bij) jsou čtvercové matice dimenze n nad okruhem skalárů K. Pak |A B| = |A| |B|. My tuto větu odvodíme ryze algebraicky už proto, že předchozí odvolávka na geometrický argument těžko může fungovat pro jakékoliv skaláry. Základním ná- strojem je tzv. rozvoj determinantu podle jednoho nebo více řádků či sloupců. Budeme potřebovat něco málo technické přípravy. Čtenář, který by snad tolik abs- trakce neztrávil může tyto pasáže přeskočit a vstřebat pouze znění Laplaceovy věty a jejich důsledků. 2. DETERMINANTY 49 Nechť A = (aij) je matice typu m/n a 1 i1 < . . . < ik m, 1 j1 < . . . < jl n jsou pevně zvolená přirozená čísla. Pak matici M = ai1j1 ai1j2 . . . ai1j ... ... aikj1 aikj2 . . . aikj typu k/ nazýváme submaticí matice A určenou řádky i1, . . . , ik a sloupci j1, . . . , j . Zbývajícími (m-k) řádky a (n-l) sloupci je určena matice M typu (m-k)/(n- ), která se nazývá doplňková submatice k M v A. Při k = je definován |M|, který nazýváme subdeterminant nebo minor řádu k matice A. Je-li m = n, pak při k = je i M čtvercová a |M | se nazývá doplněk minoru |M|, nebo doplňkový minor k submatici M v matici A. Skalár (-1)i1++ik+j1++jl |M | se nazývá algebraický doplněk k minoru |M|. Submatice tvořené prvními k řádky a sloupci se nazývají hlavní submatice, jejich determinanty hlavní minory matice A. Při speciální volbě k = = 1, m = n hovoříme o algebraickém doplňku Aij prvku aij matice A. Pokud je |M| hlavní minor matice A, pak přímo z definice determinantu je vidět, že součin |M| s jeho algebraickým doplňkem je členem determinantu. Nechť je obecná submatice M určena řádky i1 < i2 < < ik a sloupci j1 < < jk. Pak pomocí (i1 -1)+ +(ik -k) výměn sousedních řádků a (j1 -1)+ +(jk -k) výměn sousedních sloupců v A převedeme submatici M na hlavní submatici a doplňková matice přitom přejde právě na doplňkovou matici. Celá matice A přejde přitom v matici B, pro kterou platí podle 2.16 a definice determinantu |B| = (-1) |A|, kde = Pk h=1(ih - jh) - 2(1 + + k). Tím jsme ověřili: Tvrzení. Nechť A je čtvercová matice dimenze n a |M| je její minor řádu k < n. Pak součin libovolného členu |M| s libovolným členem jeho algebraického doplňku je členem |A|. Toto tvrzení už podbízí představu, že by se pomocí takových součinů menších determi- nantů skutečně mohl determinant matic vyjadřovat. Víme, že |A| obsahuje právě n! různých členů, právě jeden pro každou permutaci. Tyto členy jsou navzájem různé jakožto polynomy v prvcích (neznámé obecné) matice A, přitom lze pro každý z členů zvolit matici A takovou, že pouze tento člen bude nenulový. Ukážeme si, že uvažované součiny |M| |M | obsahují právě n! různých členů z |A|, bude tvrzení věty dokázáno. Ze zvolených k řádků lze vybrat `n k ´ minorů M a podle předchozího lematu je každý z k!(n - k)! členů v součinech |M| s jejich algebraickými doplňky členem |A|. Přitom pro různé výběry M nemůžeme nikdy obdržet stejné členy a jednotlivé členy v (-1)i1++ik+j1++jl |M| |M | jsou také po dvou různé. Celkem tedy máme právě požadovaný počet k!(n - k)! `n k ´ = n! členů. Tím jme bezezbytku dokázali tzv. Laplaceovu větu: Věta. Nechť A = (aij) je čtvercová matice dimenze n nad libovolným okruhem skalárů a nechť je pevně zvoleno k jejích řádků. Pak |A| je součet všech n k součinů (-1)i1++ik+j1++jl |M| |M | minorů řádu k vybraných ze zvolených řádků, s jejich algebraickými doplňky. 2.15 2.19. Důsledky Laplaceovy věty. Předchozí věta převádí výpočet |A| na vý- počet determinantů nižšího stupně. Této metodě výpočtu se říká Laplaceův rozvoj podle zvolených řádků či sloupců. Např. rozvoj podle i-tého řádku nebo i-tého 50 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA sloupce: |A| = n j=1 aijAij = n j=1 ajiAji kde Aij označuje algebraický doplněk k prvku (minoru stupně 1) aij. Při praktic- kém počítání determinantů bývá výhodné kombinovat Laplaceův rozvoj s přímou metodou přičítání lineárních kombinací řádků či sloupců. 2.20. Jednoduchý příklad rozvoje. Spočítejte determinant matice 1 3 5 6 1 2 2 2 1 1 1 2 0 1 2 1 . Řešení. Začneme rozvíjet podle prvního sloupce, kde máme nejvíce (jednu) nul. Postupně dostáváme 1 3 5 6 1 2 2 2 1 1 1 2 0 1 2 1 = 1 2 2 2 1 1 2 1 2 1 - 1 3 5 6 1 1 2 1 2 1 + 1 3 5 6 2 2 2 1 2 1 Podle Saarusova pravidla = -2 - 2 + 6 = 2. Výpočet determinantů bude standardním krokem v mnoha dalších úlohách, proto ponecháme i procvičování na tyto praktičtější příležitosti. 2.21. Důkaz Cauchyovy věty. Jde o trikovou ale elementární aplikaci Laplaceovy věty. Použijeme prostě dvakrát Laplaceův rozvoj na vhodné matice: Uvažme nejprve matici H dimenze 2n (používáme tzv. blokovou symboliku, tj. píšeme matici jakoby složenou z matic) H = ,, A 0 -E B = 0 B B B B B B B B @ a11 . . . a1n ... ... an1 . . . ann 0 . . . 0 ... ... 0 . . . 0 -1 0 ... 0 -1 b11 . . . b1n ... ... bn1 . . . bnn 1 C C C C C C C C A Laplaceovým rozvojem podle prvních n řádků obdržíme právě |H| = |A| |B|. Nyní budeme k posledním n sloupcům postupně přičítat lineární kombinace prvních n sloupců tak, abychom obdrželi matici s nulami v pravém dolním rohu. Dostaneme K = 0 B B B B B B B B @ a11 . . . a1n ... ... an1 . . . ann c11 . . . c1n ... ... cn1 . . . cnn -1 0 ... 0 -1 0 . . . 0 ... ... 0 . . . 0 1 C C C C C C C C A . Prvky submatice nahoře vpravo přitom musí splňovat cij = ai1b1j + ai2b2j + + ainbnj 3. VEKTOROVÉ PROSTORY A LINEÁRNÍ ZOBRAZENÍ 51 neboli jde právě o prvky součinu A B a |K| = |H|. Přitom rozvojem podle posledních n sloupců dostáváme |K| = (-1)n+1++2n |A B| = (-1)2n(n+1) |A B| = |A B|. 2.16 2.22. Determinant a inverzní matice. Předpokládejme nejprve, že existuje matice inverzní k matici A, tj. A A-1 = E. Protože pro jednotkovou matici platí vždy |E| = 1, je pro každou invertibilní matici vždy |A| invertibilní skalár a platí |A|-1 = |A-1 |. My však kombinací Laplaceovy věty a Cauchyho věty umíme víc. Pro libovolnou čtvercovou matici A = (aij) dimenze n definujeme matici A = (a ij), kde a ij = Aji jsou algebraické doplňky k prvkům aji v A. Nazýváme ji algebraicky adjungovaná matice k matici A. Věta. Pro každou čtvercovou matici A nad okruhem skalárů K platí AA = A A = |A| E. Zejména tedy (1) A-1 existuje jako matice nad okruhem skalárů K právě, když |A|-1 existuje v K. (2) Pokud existuje A-1 , pak platí A-1 = |A|-1 A . Důkaz. Jak jsme již zmínili, Cauchyova věta ukazuje, že z existence A-1 vyplývá in- vertibilita |A| K. Předpokládejme naopak, že |A| je invertibilní skalár. Spočteme přímým výpočtem A A = (cij): cij = nX k=1 aika kj = nX k=1 aikAjk. Pokud i = j je to právě Laplaceův rozvoj |A| podle i-tého řádku. Pokud i = j jde o rozvoj determinantu matice v níž je i-tý a j-tý řádek stejný a proto je cij = 0. Odtud plyne A A = |A| E, ale již v 2.10 jsme odvodili, že z rovnosti A B = E plyne i B A = E. (Pokud tomu někdo dá přednost, může zopakovat předešlý výpočet pro A A.) 3. Vektorové prostory a lineární zobrazení Vraťme se teď na chvilku k systémům m lineárních rovnic pro n proměnných z 2.3 a předpokládejme navíc, že jde o rovnice tvaru A x = 0, tj. a11 . . . a1n ... ... am1 . . . amn . x1 ... xn = 0 ... 0 . Díky vlastnosti distributivity pro násobení matic je okamžitě zřejmé, že součet dvou řešení x = (x1, . . . , xn) a y = (y1, . . . , yn) splňuje A (x + y) = A x + A y = 0 a je tedy také řešením. Stejně tak zůstává řešením i skalární násobek ax. Množina všech řešení pevně zvoleného systému rovnic je proto uzavřená na sčítání vektorů a násobení vektorů skaláry. To byly základní vlastnosti vektorů dimenze n v Kn , viz 2.1. Teď ale máme vektory v prostoru řešení s n souřadnicemi a ,,dimenze tohoto prostoru určitě nemá být n (pokud matice systému není nulová). Případy dvou rovnic pro dvě neznámé jsme potkali při řešení geometrických problémů v rovině v 1.41 a pro dvě závislé rovnice byl množinou všech řešení ,,jednorozměrný prostor ­ 52 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA přímka. U dvou nezávislých rovnic to byl průsečík dvou přímek, tj. ,,nularozměrný prostor. Už v 1.16, jsme ale potkali ještě zajímavější příklad prostoru všech řešení ho- mogenní lineární diferenční rovnice (druhého řádu). Opět jsme dvě řešení mohli libovolně kombinovat pomocí sčítání a násobení skaláry a dostali jsme tak všechna možná řešení. Tyto ,,vektory ovšem jsou nekonečné posloupnosti čísel, přestože intuitivně očekáváme, že dimenze celého prostoru řešení by měla být dvě. Potřebujeme proto obecnější definici vektorového prostoru a jeho dimenze: 2.17 2.23. Abstraktní vektorové prostory. Vektorovým prostorem V nad polem skalárů K rozumíme množinu spolu s operací sčítání, pro kterou platí axiomy 1.1(KG1)­(KG4), a s násobením skaláry, pro které platí axiomy 2.1(V1)­(V4). Připoměňme naši jednoduchou konvenci ohledně značení: skaláry budou zpravi- dla označovány znaky z počátku abecedy, tj. a, b, c, . . . , zatímco pro vektory budeme užívat znaky z konce, u, v, w, x, y, z. Přitom ještě navíc většinou x, y, z budou opravdu n-tice skalárů. Pro úplnost výčtu, písmena z prostředka, např. i, j, k, budou nejčastěji označovat indexy výrazů. Abychom se trochu pocvičili ve formálním postupu, ověříme jednoduché vlast- nosti vektorů (které pro n-tice skalárů byly samozřejmé, nicméně teď je musíme odvodit z axiomů) Tvrzení. Nechť V je vektorový prostor nad polem skalárů K, dále uvažme a, b, ai K, vektory u, v, uj V . Potom (1) a u = 0 právě když a = 0 nebo u = 0 (2) (-1) u = -u (3) a (u - v) = a u - a v (4) (a - b) u = a u - b u (5) n i=1 ai m j=1 uj = n i=1 m j=1 ai uj. Důkaz. Můžeme rozepsat (a + 0) u (V 2) = a u + 0 u = a u což podle axiomu (KG4) zaručuje 0 u = 0. Nyní u + (-1) u (V 2) = (1 + (-1)) u = 0 u = 0 a odtud -u = (-1) u. Dále a (u + (-1) v) (V 2,V 3) = a u + (-a) v = a u - a v což dokazuje (3). Platí (a - b) u (V 2,V 3) = a u + (-b) u = a u - b u a tím je ověřeno (4). Vztah (5) plyne indukcí z (V2) a (V1). Zbývá (1): a 0 = a (u - u) = a u - a u = 0, což spolu s prvním tvrzením tohoto důkazu ukazuje jednu implikaci. K opačné implikaci poprvé potřebujeme axiom pole pro skaláry a axiom (V4) pro vektorové prostory: je-li p u = 0 a p = 0, pak u = 1 u = (p-1 p) u = p-1 0 = 0. V odstavci 2.11 jsme pracovali s tzv. lineárními kombinacemi řádků matice. S obecnými vektory budeme zacházet zcela analogicky: Výrazy tvaru a1 v1 + + ak vk nazýváme lineární kombinace vektorů v1, . . . , vk V . Množina vektorů 3. VEKTOROVÉ PROSTORY A LINEÁRNÍ ZOBRAZENÍ 53 M V ve vektorovém prostoru V nad K se nazývá lineárně nezávislá jestliže pro každou k-tici vektorů v1, . . . , vk M a každé skaláry a1, . . . , ak K platí: a1 v1 + + ak vk = 0 = a1 = a2 = = ak = 0. Posloupnost vektorů v1, . . . , vk nazveme lineárně nezávislou jestliže v1, . . . , vk jsou po dvou různé a {v1, . . . , vk} je lineárně nezávislá. Množina M vektorů je lineárně závislá, jestliže není lineárně nezávislá. Přímo z definice pak vyplývá, že neprázdná podmnožina M vektorů ve vektorovém prostoru nad polem skalárů K je závislá právě, když je jeden z jejích vektorů vyjádřitelný jako lineární kombinace ostatních. Přímo z definic plyne, že každá podmnožina lineárně nezávislé množiny M je lineárně nezávislá. Stejně snadno vidíme, že M V je lineárně nezávislá právě tehdy, když každá konečná podmnožina v M je lineárně nezávislá. 2.24. Vektorový prostor ano či ne? Rozhodněte o následujících množinách, jestli jsou vektorovými prostory nad tělesem reálných čísel: (1) Množina řešení homogenní diferenční rovnice. (2) Množina řešení nehomogenní diferenční rovnice. (3) {f : R R|f(x) = c, c R} Řešení. (1) Ano. Množina řešení, tedy množina posloupností vyhovujících dané diferenční homogenní rovnici, je evidentně uzavřená vzhledem ke sčítání i násobení reálným číslem: mějme posloupnosti (xn) n=0 a (yn) n=0 vyhovující stejné homogenní diferenční rovnici, tedy a(n)xn + a(n - 1)xn-1 + + a(1)x1 = 0 a(n)yn + a(n - 1)yn-1 + + a(1)y1 = 0. Sečtením těchto rovnic dostaneme a(n)(xn + yn) + a(n - 1)(xn-1 + yn-1) + + a(1)(x1 + y1) = 0, tedy i posloupnost (xn + yn) n=0, vyhovuje stejné diferenční rovnici. Rovněž tak pokud posloupnost (xn) n=0 vyhovuje dané rovnici, tak i posloupnost (kxn) n=0, kde k R. (2) Ne. Součet dvou řešení nehomogenní rovnice a(n)xn + a(n - 1)xn-1 + + a(1)x1 = c a(n)yn + a(n - 1)yn-1 + + a(1)y1 = c, c R - {0} vyhovuje rovnici a(n)(xn + yn) + a(n - 1)(xn-1 + yn-1) + + a(1)(x1 + y1) = 2c = c, zejména pak nevyhovuje původní nehomogenní rovnici. (3) Vnímáme­li zadání jako ,,pro pevné x R a pevné c požadujeme po re- álných funkcích, aby f(x) = c , pak je to vektrorový prostor právě, když c = 0. Pokud nám jde naopak o konstantní funkce, ty pochopitelně vektorový prostor jsou (opět jednorozměrný reálný prostor R). 54 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA 2.18 2.25. Generátory a podprostory. Podmnožina M V se nazývá vektorovým podprostorem jestliže spolu se zúženými operacemi sčítání a násobení skaláry je sama vektorovým prostorem. Tzn. požadujeme a, b K, v, w M, a v + b w M. Rozeberme si hned několik příkladů: Prostor n­tic skalárů Rm se sčítáním a násobením po složkách je vektorový prostor nad R, ale také vektorový prostor nad Q. Např. pro m = 2, jsou vektory (1, 0), (0, 1) R2 lineárně nezávislé, protože z a (1, 0) + b (0, 1) = (0, 0) plyne a = b = 0. Dále, vektory (1, 0), ( 2, 0) R2 jsou lineárně závislé nad R, protože 2 (1, 0) = ( 2, 0), ovšem nad Q jsou line- árně nezávislé! Nad R tedy tyto dva vektory ,,generují jednorozměrný podprostor, zatímco nad Q je dvourozměrný. Polynomy stupně nejvýše m tvoří vektorový prostor Rm[x]. Polynomy můžeme chápat jako zobrazení f : R R a sčítání a násobení skaláry definujeme takto: (f + g)(x) = f(x) + g(x), (a f)(x) = a f(x). Polynomy všech stupňů také tvoří vektorový prostor R[x] a Rm[x] Rn[x] je vektorový podprostor pro všechna m n . Podprostory jsou např. všechny sudé polynomy nebo liché polynomy (f(-x) = f(x)). Úplně analogicky jako u polynomů můžeme definovat strukturu vektorového prostoru na množině všech zobrazení R R nebo všech zobrazení M V libovolné pevně zvolené množiny M do vektorového prostoru V . Protože podmínka v definici podprostoru obsahuje pouze univerzální kvantifi- kátory, je jistě průnik podprostorů opět podprostor. Snadno to ověříme i přímo: Nechť Wi, i I, jsou vektorové podprostory ve V , a, b K, u, v iIWi. Pak pro všechny i I, a u + b v Wi, to ale znamená, že a u + b v iIWi. Zejména je tedy podprostorem průnik všech podprostorů W V , které ob- sahují předem danou množinu vektorů M V . Říkáme, že takto M generuje podprostor M , nebo že prvky M jsou generátory podprostoru M . Zformulujme opět několik jednoduchých tvrzení o generování podprostorů: Tvrzení. Pro každou podmnožinu M V platí (1) M = {a1 u1 + + ak uk; k N, ai K, uj M, j = 1, . . . , k} (2) M = M právě když M je vektorový podprostor (3) jestliže N M pak N M je vektorový podprostor (4) = {0} V , triviální podprostor. Důkaz. (1) Platí {a1u1 + + akuk} M a zároveň je to vektorový pod- prostor (ověřte!), který obsahuje M. (2) plyne z (1) a definice vektorového pod- prostoru. (3): Nejmenší vektorový podprostor je {0}, protože prázdnou množinu obsahují všechny podprostory a každý z nich obsahuje 0. 2.26. Báze a součty podprostorů. Nechť Vi, i I, jsou podprostory ve V . Pak podprostor generovaný jejich sjednocením, tj. iIVi , nazýváme součtem podpro- storů Vi. Značíme iI Vi. Zejména pro V1, . . . , Vk V , V1 + + Vk = V1 V2 Vk . Viděli jsme, že každý prvek v uvažovaném součtu podprostorů můžeme vy- jádřit jako lineární kombinaci vektorů z podprostorů Vi. Protože však je sčítání 3. VEKTOROVÉ PROSTORY A LINEÁRNÍ ZOBRAZENÍ 55 vektorů komutativní, lze k sobě poskládat členy patřící do stejného podprostoru a pro konečný součet k podprostorů tak dostáváme V1 + V2 + + Vk = {v1 + + vk; vi Vi, i = 1, . . . , k}. Součet W = V1 + +Vk V se nazývá přímý součet podprostorů, jsou-li průniky všech dvojic triviální, tj. Vi Vj = {0} pro všechny i = j. V takovém případě lze každý vektor w W napsat právě jedním způsobem jako součet w = v1 + + vk, kde vi Vi. Pro přímé součty píšeme W = V1 Vk = k i=1Vi. Podmnožina M V se nazývá báze vektorového prostoru V , jestliže M = V a M je lineárně nezávislá. Vektorový prostor, který má konečnou bázi nazýváme konečněrozměrný, mohutnost báze nazýváme dimenzí V 2 . Nemá-li V konečnou bázi, říkáme, že V je nekonečněrozměrný. Píšeme dim V = k, k N, případně k = . Bázi k-rozměrného prostoru budeme obvykle zapisovat jako k-tici v = (v1 . . . , vk) bázových vektorů. Jde tu především o zavedení konvence: U konečněrozměrných podprostorů budeme totiž vždy uvažovat bázi včetně zadaného pořadí prvků i když jsme to takto, striktně vzato, nedefinovali. Zjevně, je-li (v1, . . . , vn) bazí V , je celý prostor V přímým součtem jednoroz- měrných podprostorů V = v1 vn . 2.20 2.27. Věta. Z libovolné konečné množiny generátorů vektorového prostoru V lze vybrat bázi. Každá báze V má přitom stejný počet prvků. Důkaz. První tvrzení je snadno vidět indukcí přes počet generátorů k: Jedině nulový podprostor nepotřebuje žádný generátor a tedy umíme vybrat prázdnou bázi. Naopak, nulový vektor vybrat nesmíme (generátory by byly lineárně závislé) a nic jiného už v podprostoru není. Při k = 1 je V = {v} a v = 0 protože {v} je lineárně nezávislá množina vektorů. Pak je ovšem {v} zároveň báze V . Předpokládejme, že tvrzení platí pro k = n, a uvažme V = v1, . . . , vn+1 . Jsou-li v1, . . . , vn+1 lineárně nezávislé, pak tvoří bázi. V opačném případě existuje index i takový, že vi = a1v1 + + ai-1vi-1 + ai+1vi+1 + + an+1vn+1. Pak ovšem V = v1, . . . , vi-1, vi+1, . . . , vn+1 a již umíme vybrat bázi (podle indukčního předpokladu). Zbývá ověřit, že báze mají vždy stejný počet prvků. Uvažujme bázi (v1, . . . , vn) prostoru V a libovolný nenulový vektor u = a1 v1 + + an vn V s ai = 0 pro jisté i. Pak vi = 1 ai ` u - (a1 v1 + + ai-1 vi-1 + ai+1 vi+1 + + an vn) ´ a proto také u, v1, . . . , vi-1, vi+1, . . . , vn = V . Jistě je to opět báze, protože vektory v1, . . . , vi-1, vi+1, . . . , vn byly nezávislé, takže kdyby přidáním u vznikly lineárně závislé vektory, pak by u bylo jejich lineární kombinací, ale to by znamenalo V = v1, . . . , vi-1, vi+1, . . . , vn , což není možné. 2Všimněme si, že triviální podprostor je generován prázdnou množinou, která je "prázdnou" bazí. Má tedy triviální podprostor dimenzi nulovou. 56 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA Takže už víme, že pro libovolný nenulový vektor u V existuje i, 1 i n, takové, že (u, v1, . . . , vi-1, vi+1, . . . , vn) je opět báze V . Dále budeme místo jednoho vektoru u uvažovat lineárně nezávislou množinu u1, . . . , uk a budeme postupně přidávat u1, u2, . . . , vždy výměnou za vhodné vi podle předchozího postupu. Je třeba pouze ověřit, že takové vi vždy bude existovat (tj. že se nebudou vektory u vyměňovat vzájemně). Předpokládejme tedy, že již máme umístěné u1, . . . , u . Pak u +1 se jistě vyjádří jako lineární kombinace těchto vektorů a zbylých vj. Pokud by pouze koeficienty u u1, . . . , u byly nenulové, znamenalo by to, že již samy vektory u1, . . . , u +1 byly lineárně závislé, což je ve sporu s našimi předpoklady. Pro každé k n tak po k krocích získáme bázi ve které z původní došlo k výměně k vektorů za nové. Pokud by k > n, pak již v n-tém kroku obdržíme bázi vybranou z těchto vektorů, což znamená, že nemohou být lineárně nezávislé. Zejména tedy není možné, aby dvě báze měly různý počet prvků. Ve skutečnosti jsme dokázali silnější tvrzení, tzv. Steinitzovu větu o výměně, která říká, že pro každou konečnou bázi a každý systém lineárně nezávislých vektorů ve V umíme najít podmnožinu bázových vektorů, které záměnou za zadané nové vektory dají opět bázi. Můžeme si také sformulovat zjevné důsledky: Tvrzení. (1) Každé dvě báze konečněrozměrného vektorového prostoru mají stejný počet vektorů, tzn. že naše definice dimenze nezávisí na volbě báze. (2) Má-li V konečnou bázi, lze každou lineárně nezávislou množinu doplnit do báze. (3) Báze konečněrozměrných vektorových prostorů jsou právě maximální lineárně nezávislé množiny (4) Báze prostoru s konečnou dimenzí jsou právě minimální množiny generátorů Důsledek. Nechť W, W1, W2 V jsou podprostory v prostoru konečné dimenze. Pak platí (1) dim W dim V (2) V = W právě když dim V = dim W (3) dim W1 + dim W2 = dim(W1 + W2) + dim(W1 W2). Důkaz. Zbývá dokázat pouze poslední tvrzení. To je zřejmé, pokud je dimenze jednoho z prostorů nulová. Předpokládejme tedy dim W1 = r = 0, dim W2 = s = 0 a nechť (w1 . . . , wt) je báze W1 W2 (nebo prázdná množina, pokud je průnik trivi- ální). Podle předchozí věty lze tuto bázi doplnit na bázi (w1, . . . , wt, ut+1 . . . , ur) pro W1 a bázi (w1 . . . , wt, vt+1, . . . , vs) pro W2. Vektory w1, . . . , wt, ut+1, . . . , ur, vt+1 . . . , vs jistě generují W1 + W2. Ukážeme, že jsou přitom lineárně nezávislé. Nechť a1 w1 + + at wt + bt+1 ut+1 + + br ur + ct+1 vt+1 + + cs vs = 0 Pak -(ct+1 vt+1 + + cs vs) = a1 w1 + + at wt + bt+1 ut+1 + + br ur musí patřit do W2 W1. To ale má za následek, že bt+1 = = br = 0. Pak ovšem i a1 w1 + + at wt + ct+1 vt+1 + + cs vs = 0 a protože příslušné vektory tvoří bázi W2, jsou všechny koeficienty nulové. Tvrzení (3) se nyní ověří přímým počítáním generátorů. 2.21 2.28. Příklady. (1) Kn má (jako vektorový prostor nad K) dimenzi n. Bazí je např. n-tice vektorů ((1, 0, . . . , 0), (0, 1, . . . , 0) . . . , (0, . . . , 0, 1)). Tuto bázi nazýváme standardní báze v Kn . V případě konečného pole skalárů, např. Zk, má celý vektorový prostor Kn jen konečný počet prvků. Kolik? 3. VEKTOROVÉ PROSTORY A LINEÁRNÍ ZOBRAZENÍ 57 (2) C jako vektorový prostor nad R má dimenzi 2, bázi tvoří např. čísla 1 a i. (3) Km[x], tj. prostor polynomů stupně nejvýše m, má dimenzi m + 1, bazí je např. posloupnost 1, x, x2 , . . . , xm . Vektorový prostor všech polynomů K[x] má dimenzi , umíme však ještě stále najít bázi (i když s nekonečně mnoha prvky): 1, x, x2 , . . . . (4) Vektorový prostor R nad Q má dimenzi a nemá spočetnou bázi. (5) Vektorový prostor všech zobrazení f : R R má také dimenzi a nemá spočetnou bázi. 2.22 2.29. Souřadnice vektorů. Když je množina {v1, . . . , vn} V je báze, můžeme každý vektor v V vyjádřit jako lineární kombinaci v = a1v1 + + anvn. Před- pokládejme, že to uděláme dvěma způsoby: v = a1v1 + + anvn = b1v1 + + bnvn. Potom ale 0 = (a1 - b1) v1 + + (an - bn) vn a proto ai = bi pro všechna i = 1, . . . , n. Lze tedy každý vektor zadat právě jediným způsobem jako lineární kombinaci bázových vektorů. Koeficienty této jediné lineární kombinace vyjadřující daný vektor v V ve zvolené bázi (v1, . . . , vn) se nazývají souřadnice vektoru v v této bázi. Přiřazení, které vektoru u = a1v1 + + anvn přiřadí jeho souřadnice v bázi v, budeme značit stejným symbolem v : V Kn . Má tyto vlastnosti:3 ˇ v(u + w) = v(u) + v(w); u, w V ˇ v(a u) = a v(u); a K, u V . To jsou ale vlastnosti zobrazení, kterým jsme v geometrii roviny říkali lineární (zachovávaly naši lineární strukturu v rovině). Jsou tedy souřadnice vlastně lineární zobrazení z (abstraktního) vektororového prostoru V do n-tic skalárů Kn , kde n je dimenze V . Než se budeme věnovat podrobněji závislosti souřadnic na volbě báze, podíváme se obecněji na pojem linearity zobrazení. 2.30. Příklad. 2.30.1. Určete všechny konstanty a R takové, aby polynomy ax2 +x+2, -2x2 + ax + 3 a x2 + 2x + a byly lineárně závislé (ve vektorovém prostoru polynomů jedné proměnné stupně nejvýše 3 nad reálnými čísly). Řešení. V bázi 1, x, x2 jsou souřadnice zadaných vektorů (polynomů) následující: (a, 1, 2), (-2, a, 3), (1, 2, a). Polynomy budou závislé, právě když bude mít matice, jejíž řádky jsou tvořeny souřadnicemi zadaných vektorů menší hodnost, než je počet vektorů, v tomto případě tedy hodnost dvě a menší. V případě čtvercové matice nižší hodnost než je počet řádků je ekvivalentní nulovosti determinantu dané matice. Podmíka na a tedy zní a 1 2 -2 a 3 1 2 a = 0, 3Všimněme si, že operace na levých a pravých stranách těchto rovnic nejsou totožné, naopak, jde o operace na různých vektorových prostorech! Při této příležitosti se také můžeme zamyslet nad obecným případem báze M (možná nekonečněrozměrného) prostoru V . Báze pak nemusí být spočetná, pořád ale ještě můžeme definovat zobrazení M : V KM (tj. souřadnice vektoru jsou zobrazení z M do K). 58 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA tj. a bude kořenem polynomu a3 - 6a - 5 = (a + 1)(a2 - a - 5), tj. úloha má tři řešení a1 = -1, a2,3 = 1 21 2 . 2.23 2.31. Lineární zobrazení. Nechť V a W jsou vektorové prostory nad týmž polem skalárů K. Zobrazení f : V W se nazývá lineární zobrazení (homomorfismus) jestliže platí: (1) f(u + v) = f(u) + f(v), u, v V (2) f(a u) = a f(u), a K, u V . Samozřejmě, že jsme taková zobrazení již viděli ve formě násobení matic: Kn x A x Km s maticí typu m/n nad K. Obraz Imf := f(V ) W je zjevně vektorový pod- prostor. Stejně tak je vektorovým podprostorem množina všech vektorů Ker f := f-1 ({0}) V . Nazývá se jádro lineárního zobrazení f. Lineární zobrazení, které je bijekcí nazýváme izomorfismus. Podobně jako u abstraktní definice vektorových prostorů, i zde je na místě z axiomů ověřit zdánlivě samozřejmá tvrzení: Tvrzení. Nechť f : V W je lineární zobrazení. Pro všechny u, u1, . . . , uk V , a1, . . . , ak K platí: (1) f(0) = 0 (2) f(-u) = -f(u) (3) f(a1 u1 + + ak uk) = a1 f(u1) + + ak f(uk) (4) pro každý vektorový podprostor V1 V je jeho obraz f(V1) vektorový podprostor ve W. (5) Pro každý podprostor W1 W je množina f-1 (W1) = {v V ; f(v) W1} vektorový podprostor ve V . Důkaz. Počítáme s využitím axiomů a definic a již dokázaných výsledků ­ dohledejte samostatně!: f(0) = f(u - u) = f((1 - 1) u) = 0 f(u) = 0. f(-u) = f((-1) u) = (-1) f(u) = -f(u). Vlastnost (3) se ověří snadno indukcí z definičního vztahu. Z (3) nyní plyne, že f(V1) = f(V1), je to tedy vektorový podprostor. Je-li naopak f(u) W1 a f(v) W1, pak pro libovolné skaláry bude i f(a u + b v) = a f(u) + b f(v) W1. 2.24 2.32. Jednoduché důsledky. (1) Složení g f : V Z dvou lineárních zobrazení f : V W a g : W Z je opět lineární zobrazení. (2) Lineární zobrazení f : V W je izomorfismus právě když Im f = W a Ker f = {0} V . Inverzní zobrazení k izomorfismu je opět izomorfismus. (3) Pro podprostory V1, V2 a lineární zobrazení f : V W platí f(V1 + V2) = f(V1) + f(V2), f(V1 V2) f(V1) f(V2). (4) Zobrazení "přiřazení souřadnic" u : V Kn dané libovolně zvolenou bází u = (u1, . . . , un) vektorového prostoru V je izomorfismus. (5) Dva konečněrozměrné vektorové prostory jsou izomorfní právě když mají stej- nou dimenzi. (6) Složení dvou izomorfismů je izomorfismus. 3. VEKTOROVÉ PROSTORY A LINEÁRNÍ ZOBRAZENÍ 59 Důkaz. Ověření prvního tvrzení je snadné cvičení. Pro druhé si uvědomme, že je-li f lineární bijekce, pak w = f-1 (au + bv) právě, když f(w) = f(a f-1 (u) + b f-1 (v)). Je tedy inverze k lineární bijekci opět lineární zobrazení. Dále, f je surjektivní právě, když Im f = W a pokud Ker f = {0}, pak f(u) = f(v) zaručuje f(u - v) = 0, tj. u = v. Je tedy v tom případě f injektivní. Další tvrzení se dokáže snadno přímo z definic. Najděte si protipříklad, že v dokazované inkluzi opravdu nemusí nastat rovnost! Zbývající body jsou již zřejmé. 2.33. Opět souřadnice. Uvažujme libovolné vektorové prostory V, W nad K s dim V = n, dim W = m a mějme lineární zobrazení f : V W. Pro každou volbu bází u = (u1, . . . , un) na V , v = (v1, . . . , vn) na W, máme k dispozici příslušná přiřazení souřadnic: V f // u W v Kn fu,v // Km Přitom je každé lineární zobrazení jednoznačně určeno svými hodnotami na libo- volné množině generátorů, zejména tedy na bázi u. Označme f(u1) = a11 v1 + a21 v2 + + am1vm f(u2) = a12 v1 + a22 v2 + + am2vm ... f(un) = a1n v1 + a2n v2 + + amnvm tj. skaláry aij tvoří matici A, kde sloupce jsou souřadnice hodnot zobrazení f na bázových vektorech. Pro obecný vektor u = b1 u1 + + bn un spočteme f(u) = b1 f(u1) + + bn f(un) = b1(a11v1 + + am1vm) + + bn(a1nv1 + + amnvm) = (b1a11 + + bna1n) v1 + + (b1am1 + + bnamn) vm Pomocí násobení matic lze nyní velice snadno a přehledně zapsat hodnoty zobra- zení fu,v(w) definovaného jednoznačně předchozím diagramem. Připomeňme si, že vektory v Kk chápeme jako sloupce, tj. matice typu k/1 fu,v(u(w)) = v(f(w)) = A u(w). Matici A nazýváme maticí zobrazení f v bázích u, v. Naopak, každá volba matice A typu m/n zadává jednoznačně lineární zobrazení Kn Km . Máme-li tedy zvoleny báze prostorů V a W, odpovídá každé volbě matice typu m/n právě jedno lineární zobrazení V W. Jestliže za V i W zvolíme tentýž prostor, ale s různými bazemi, a za f iden- tické zobrazení, vyjadřuje náš postup vektory báze u v souřadnicích vzhledem k v. Označme výslednou matici T. Když pak zadáme vektor u u = x1u1 + + xnun v souřadnicích vzhledem k u a dosadíme za ui, obdržíme souřadné vyjádření x téhož vektoru v bázi v. Stačí k tomu přeskládat pořadí sčítanců a vyjádřit skaláry u jednotlivých vektorů báze. Podle výše uvedeného postupu musí vyjít x = T x. 60 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA Tuto matici nazýváme matice přechodu od báze u k bázi v. Matice T zadávající transformaci souřadnic z báze u do báze v je tedy maticí identického zobrazení idV : V V : V idV // u V v Kn (idV )u,v // Kn Přímo z definice vyplývá: Tvrzení. Matici T přechodu (od báze u k bázi v) získáme tak, že souřadnice vektorů báze u v bázi v napíšeme do sloupců matice T. Funkce matice přechodu je taková, že známe-li souřadnice x vektoru v bázi u, pak jeho souřadnice v bázi v se obdrží vynásobením sloupce x maticí přechodu (zleva). Protože inverzní zobrazení k identickému je opět totéž identické zobrazení, je matice přechodu vždy invertibilní a její inverze je právě matice přechodu opačným směrem, tj. od báze v k bázi u. 2.26 2.34. Více souřadnic. Nyní snadno vidíme, jak se skládají souřadná vyjádření lineárních zobrazení. Uvažme ještě další vektorový prostor Z nad K dimenze k s bází w, lineární zobrazení g : W Z a označme příslušnou matici gv,w. Pro matice těchto zobrazení dostáváme čímž jsme odvodili: gv,w fu,v(x) = B (A x) = (B A) x = (g f)u,w(x) pro všechny x Kn . Všimněte si, že isomorfismy odpovídají právě invertibilním maticím. Stejný postup nám dává odpověď na otázku, jak se změní matice zobrazení, změníme-li báze na definičním oboru i oboru hodnot: V idV // u V f // u W idW // v W w Kn T // Kn fu,v // Km S-1 // Km kde T je matice přechodu od u k u a S je matice přechodu od v k v. Je-li tedy A původní matice zobrazení, bude nová dána jako A = S-1 AT. Ve speciálním případě lineárního zobrazení f : V V vyjadřujeme zpravidla f pomocí jedné báze u prostoru V , to je přechod k nové bázi u bude znamenat změnu na A = T-1 AT. 2.35. Příklad. Je dáno lineární zobrazení R3 R3 ve standardní bázi následujicí maticí: 1 -1 0 0 1 1 2 0 0 . Napište matici tohoto zobrazení v bázi f1 = (1, 1, 0) f2 = (-1, 1, 1) f3 = (2, 0, 1). 3. VEKTOROVÉ PROSTORY A LINEÁRNÍ ZOBRAZENÍ 61 Řešení. Matice přechodu T od báze f = (f1, f2, f3) k standardní bázi, tj. bázi danou vektory (1, 0, 0), (0, 1, 0), (0, 0, 1), získáme podle Tvrzení 2.25 zapsáním sou- řadnic vektorů f1, f2, f3 ve standardní bázi do sloupců matice přechodu T. Máme tedy T = 1 -1 2 1 1 0 0 1 1 . Matice přechodu od standardní báze k bázi f je potom T-1 , což je 1 4 3 4 -1 2 -1 4 1 4 1 2 1 4 -1 4 1 2 . Matice zobrazení v bázi f je potom T-1 AT = 1 4 2 -3 4 5 4 0 7 4 3 4 -2 9 4 . 2.27 2.36. Lineární a multilineární formy. Speciálním případem lineárních zobra- zení jsou tzv. lineární formy. Jde o lineární zobrazení z vektorového prostoru V nad polem skalárů K do skalárů K. Jsou-li dány souřadnice na V , je přiřazení jednotlivé i-té souřadnice vektorům právě takovou lineární formou. Při pevně zvolené bázi {1} na K jsou s každou volbou báze na V lineární formy ztotožněny s maticemi typu 1/n, tj. s řádky. Vyčíslení takové formy na vektoru je pak dáno vynásobením příslušného řádkového vektoru se sloupcem souřadnic. Množina všech lineárních forem na daném prostoru V je opět vektorový prostor, značíme jej V . Pokud je V konečněrozměrný, je V izomorfní prostoru V . Realizace takového izomorfismu je dána např. volbou tzv. duální báze k zvolené bázi na V , jejímiž prvky i jsou právě formy zadávající i-tou souřadnici. Podobně budeme pracovat i se zobrazeními ze součinu k kopií vektorového prostoru V do skalárů lineárních v každém argumentu. Hovoříme o k-lineárních formách. Budeme se setkávat (a již jsme je viděli v dimenzi 2) zejména s n-lineárními antisymetrickými formami (formy objemu) a symetrickými bilineárními formami. 2.28 2.37. Velikost vektorů. V geometrii roviny jsem již pracovali nejen s bázemi a lineárními zobrazeními, ale také s velikostí vektorů a jejich úhly. Pro zavedení těchto pojmů jsme použili souřadného vyjádření pro velikost v = (x, y): v = x2 + y2, zatímco úhel dvou vektorů v = (x, y) a v = (x , y ) byl dán cos = xx + yy v v . Povšimněme si, že výraz v čitateli posledního výrazu je lineární v každém ze svých argumentů, značíme jej v, v a říkáme mu skalární součin vektorů v a v . Skalární součin je také symetrický ve svých argumentech a platí v 2 = v, v . 62 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA Zejména platí, že v = 0 právě, když v = 0. Z našich úvah je také vidět, že v Euklidovské rovině jsou dva vektory kolmé právě, když je jejich skalární součin nulový. Analogicky budeme postupovat v obecném případě reálného vektorového pro- storu. Skalární součin na vektorovém prostoru V nad reálnými čísly je bilineární symetrická forma , : V × V R taková, že v, v 0 a je roven nule pouze při v = 0. Pro skalární součin se často používá také obvyklé tečky, tj. u, v = u v. Z kontextu je pak třeba poznat, zda jde o součin dvou vektorů (tedy výsledkem je skalár) nebo něco jiného. Vektory v a w V se nazývají ortogonální, jestliže v, w = 0. Vektor v se nazývá normovaný, jestliže v = 1. Báze prostoru V složená z ortogonálních vek- torů se nazývá ortogonální báze. Jsou-li bázové vektory navíc i normované, je to ortonormální báze. Úhel dvou vektorů v a w je dán vztahem cos = v, w v w . Tvrzení. Skalární součin je v každé ortonormální bázi dán výrazem x, y = xT y. V obecné bázi V existuje symetrická matice S taková, že x, y = xT S y. Důkaz. Skalární součin je plně určen svými hodnotami na dvojicích bázových vektorů. Zvolme tedy bázi u a označme sij = ui, uj . Pak ze symetričnosti skalárního součinu plyne sij = sji a z lineárnosti součinu v každém z argumentů dostáváme: i xiui, j yjuj = i,j xiyj ui, uj = i,j sijxiyj. Pokud je báze ortonormální, je matice S jednotkovou maticí. Uvidíme o něco později, že na každém vektroovém prostoru se skalárním sou- činem existují ortonormální báze, viz 2.46. 4. Vlastnosti lineárních zobrazení Podrobnějším rozborem vlastností různých typů lineárních zobrazení se nyní dostaneme k pořádnějšímu pochopení nástrojů, které nám vektorové prostory pro lineární modelování procesů a systémů nabízejí. 2.29 2.38. Příklady. Začneme několika příklady v prostorech malých dimenzí. Ve stan- dardní bázi R2 uvažujme následující matice zobrazení f : R2 R2 : A = 1 0 0 0 , B = 0 1 0 0 , C = a 0 0 b , D = 0 -1 1 0 . Matice A zadává kolmou projekci podél podprostoru W {(0, a); a R} R2 4. VLASTNOSTI LINEÁRNÍCH ZOBRAZENÍ 63 na podprostor V {(a, 0); a R} R2 . Evidentně pro toto zobrazení f : R2 R2 platí f f = f a tedy f|Im f je identické zobrazení. Jádrem f je právě podprostor W. Matice B má vlastnost B2 = 0, platí tedy totéž o příslušném zobrazení f. Můžeme si jej představit jako matici derivování polynomů R1[x] stupně nejvýše jedna v bázi (1, x). Matice C zadává zobrazení f, které první vektor báze zvětší a­krát, druhý b­krát. Tady se nám tedy celá rovina rozpadá na dva podprostory, které jsou zob- razením f zachovány a ve kterých jde o pouhou homotetii, tj. roztažení skalárním násobkem. Např. volba a = 1, b = -1 odpovídá komplexní konjugaci x+iy x-iy na dvourozměrném reálném prostoru R2 C v bázi (1, i). Toto je lineární zobrazení reálného vektorového prostoru, nikoliv však jednorozměrného komplexního prostoru C. V geometrii roviny jde o zrcadlení podle osy x. Matice D je maticí rotace o pravý úhel ve standardní bázi. Jako pro každé lineární zobrazení, které je bijekcí, umíme najít báze na definičním oboru a oboru hodnot, ve kterých bude jeho maticí jednotková matice E (prostě vezmeme jakou- koliv bázi na definičním oboru a její obraz na oboru hodnot). Neumíme ale v tomto případě totéž s jednou bází na začátku i konci. Zkusme však uvažovat matici C jako matici zobrazení g : C2 C2 . Pak umíme najít vektory u = (i, 1), v = (1, i), pro které bude platit g(u) = 0 -1 1 0 i 1 = i u, g(v) = 0 -1 1 0 1 i = -i v. To ale znamená, že v bázi (u, v) na C2 má g matici K = i 0 0 -i a povšimněme si, že tato komplexní analogie k případu matice C má na diagonále prvky a, a = cos(1 2 )+i sin(1 2 ). Jinými slovy, argument v goniometrickém tvaru tohoto komplexního čísla udává úhel otočení. Navíc, můžeme si označit reálnou a imaginární část vektoru u takto u = xu + iyu = Re u + i Im u = 0 1 + i 1 0 a zúžení komplexního zobrazení g na reálný vektorový podprostor generovaný vek- tory xu a iyu (tj. násobení komplexní jednotkou i) je právě otočení o úhel 1 2 . 2.30 2.39. Vlastní čísla a vlastní vektory zobrazení. Klíčem k popisu zobrazení v předchozích příkladech byly odpovědi na otázku ,,jaké jsou vektory splňující rovnici f(u) = au? pro nějaké skaláry a. Zvolme tedy pevně lineární zobrazní f : V V na vektorovém prostoru dimenze n nad skaláry K. Jestliže si představíme takovou rovnost zapsanou v souřadnicích, tj. s využitím matice zobrazení A v nějakých bazích, jde o výraz A x - a x = (A - a E) x = 0. Z předchozího víme, že taková soustava rovnic má jediné řešení x = 0, pokud je matice A - aE invertibilní. My tedy chceme najít takové hodnoty a K, pro které 64 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA naopak A - aE invertibilní není, a nutnou a dostatečnou podmínkou je (viz Věta 2.22) e2.1 (2.1) det(A - a E) = 0. Jestliže považujeme = a za proměnnou v předchozí skalární rovnici, hledáme ve skutečnosti kořeny polynomu stupně n. Jak jsme viděli v případě matice D výše, kořeny mohou, ale nemusí existovat podle volby pole skalárů K. Skaláry vyhovující rovnici f(u) = a u pro nenulový vektor u V nazýváme vlastní čísla zobrazení f, příslušné vektory u pak vlastní vektory zobrazení f. Z definice vlastních čísel je zřejmé, že jejich výpočet nemůže záviset na volbě báze a tedy matice zobrazení f. Skutečně, jako přímý důsledek trasformačních vlast- ností z 2.34 a Cauchyovy věty 2.18 pro výpočet determinantu součinu dostáváme jinou volbou souřadnic matici A = P-1 AP s invertibilní maticí P a |P-1 AP - E| = |P-1 AP - P-1 EP| = |P-1 (A - E)P| = |P-1 )||(A - E||P|, protože násobení skalárů je komutativní a |P-1 | = |P|-1 . Obdobnou terminologii používáme i pro matice. Pro matici A dimenze n nad K nazýváme polynom |A - E| Kn[] charakteristický polynom matice A. Kořeny tohoto polynomu jsou vlastní hodnoty matice A. Je-li A matice zobrazení f : V V v jisté bázi, pak |A - E| nazýváme také charakteristický polynom zobrazení f. Protože je charakteristický polynom zobrazení f : V V nezávislý na volbě báze V , dim V = n, jsou i jeho koeficienty u jednotlivých mocnin proměnné skaláry vyjadřující vlastnosti zobrazení f, tj. nemohou záviset na naší volbě báze. Zejména je snadné vyjádřit koeficienty u nejvyšších a nejnižších mocnin: |A - E| = (-1)n n + (-1)n-1 (a11 + + ann) n-1 + + |A| 0 Součet diagonálních členů matice se nazývá stopa matice, značíme ji TrA, stopa zobrazení je definována jako stopa jeho matice v libovolné bázi. 2.30a 2.40. Věta. Vlastní vektory lineárního zobrazení f : V V příslušné různým vlastním hodnotám jsou lineárně nezávislé. Důkaz. Nechť a1, . . . , ak jsou různé vlastní hodnoty zobrazení f a u1, . . . , uk vlastní vektory s těmito vlastními hodnotami. Důkaz provedeme indukcí přes počet lineárně nezávislých vektorů mezi zvolenými. Předpokládejme, že u1, . . . , u jsou lineárně nezávislé a ul+1 = i ciui je jejich lineární kombinací. Alespoň = 1 lze zvolit, protože vlastní vektory jsou nenulové. Pak ovšem al+1 ul+1 = l i=1 al+1 ci ui, tj. f(ul+1) = l i=1 al+1 ci ui = l i=1 ci f(ui) = l i=1 ci ai ui. Odečtením dostáváme 0 = l i=1(al+1 -ai)ci ui, všechny rozdíly vlastních hodnot jsou nenulové a alespoň jeden koeficient ci je nenulový. To je spor s předpokládanou nezávislostí u1, . . . , u . Důsledek. Jestliže existuje n navzájem různých kořenů ai charakteristického po- lynomu zobrazení f : V V , dim V = n, pak existuje rozklad V na přímý součet vlastních podprostorů dimenze 1. To znamená, že existuje báze V složená výhradně z vlastních vektorů a v této bázi má f diagonální matici. Příslušnou bázi (vyjádřenou v souřadnicích vzhledem k libovolně zvolené bázi V ) obdržíme řešením n systémů 4. VLASTNOSTI LINEÁRNÍCH ZOBRAZENÍ 65 homogenních lineárních rovnic o n neznámých s maticemi (A - ai E), kde A je matice f ve zvolené bázi. 2.31 2.41. Příklady. (1) Uvažme zobrazení s maticí ve standardní bázi f : R3 R3 , A = 0 0 1 0 1 0 1 0 0 . Pak dostáváme |A - E| = - 0 1 0 1 - 0 1 0 - = -3 + 2 + - 1, s kořeny 1,2 = 1, 3 = -1. Vlastní vektory s vlastní hodnotou = 1 se spočtou: -1 0 1 0 0 0 1 0 -1 1 0 -1 0 0 0 0 0 0 ; s bází prostoru řešení, tj. všech vlastních vektorů s touto vlastní hodnotou u1 = (0, 1, 0), u2 = (1, 0, 1). Podobně pro = -1 dostáváme třetí nezávislý vlastní vektor 1 0 1 0 2 0 1 0 1 1 0 1 0 2 0 0 0 0 u3 = (-1, 0, 1). V bázi u1, u2, u3 (všimněte si, že u3 musí být lineárně nezávislý na zbylých dvou díky předchozí větě a u1, u2 vyšly jako dvě nezávislá řešení) má f diagonální matici A = 1 0 0 0 1 0 0 0 -1 . Celý prostor R3 je přímým součtem vlastních podprostorů, R3 = V1 V2, dim V1 = 2, dim V2 = 1. Tento rozklad je dán jednoznačně a vypovídá mnoho o geometrických vlastnostech zobrazení f. Vlastní podprostor V1 je navíc přímým součtem jedno- rozměrných vlastních podprostorů, které lze však zvolit mnoha různými způsoby (takový další rozklad nemá tedy již žádný geometrický význam). (2) Uvažme lineární zobrazení f : R2[x] R2[x] definované derivováním po- lynomů, tj. f(1) = 0, f(x) = 1, f(x2 ) = 2x. Zobrazení f má tedy v obvyklé bázi (1, x, x2 ) matici A = 0 1 0 0 0 2 0 0 0 . Charakteristický polynom je |A - E| = -3 , existuje tedy pouze jediná vlastní hodnota, = 0. Spočtěme vlastní vektory: 0 1 0 0 0 2 0 0 0 0 1 0 0 0 1 0 0 0 . Prostor vlastních vektorů je tedy jednorozměrný, generovaný konstantním polyno- mem 1. 66 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA 2.42. Příklad včetně změny báze. Uvažujme lineární zobrazení R3 R3 dané ve standardní bázi maticí: A = 1 1 0 1 2 1 1 2 1 Určete toto zobrazení a napište jeho matici v bázi: e1 = [1, -1, 1] e2 = [1, 2, 0] e3 = [0, 1, 1] Řešení. Spočítejme nejprve vlastní čísla jim příslušné vlastní vektory: charakte- ristický polynom dané matice je 1 - 1 0 1 2 - 1 1 2 1 - = -3 + 42 - 2 = -(2 - 4 + 2). Kořeny tohoto polynomu, vlastní čísla, udávají, kdy nebude mít matice 1 - 1 0 1 2 - 1 1 2 1 - plnou hodnost, tedy soustava rovnic 1 - 1 0 1 2 - 1 1 2 1 - x1 x2 x3 bude mít i jiné řešení než řešení x = (0, 0, 0). Vlastní čísla tedy jsou 0, 2 + 2, 2 - 2. Spočítejme vlastní vektory příslušné jednotlivým vlastním hodnotám: ˇ 0: Řešíme tedy soustavu 1 1 0 1 2 1 1 2 1 x1 x2 x3 = 0 Jejím řešením je jednodimenzionální vektorový prostor vlastních vektorů (1, -1, 1) . ˇ 2 + 2: Řešíme soustavu -(1 + 2) 1 0 1 - 2 1 1 2 -(1 + 2) x1 x2 x3 = 0. Řešením je jednodimenzionální prostor (1, 1 + 2, 1 + 2) . ˇ 2 - 2: Řešíme soustavu ( 2 - 1) 1 0 1 2 1 1 2 ( 2 - 1) x1 x2 x3 = 0. Řešením je prostor vlastních vektorů (1, 1 - 2, 1 - 2) . 4. VLASTNOSTI LINEÁRNÍCH ZOBRAZENÍ 67 Zobrazení tedy můžeme interpretovat jako projekci podél vektoru (1, -1, 1) do roviny dané vektory (1, 1 + 2, 1 + 2) a (1, 1 - 2, 1 - 2) složenou s lineárním zobrazením daným natažením daným vlastními čísly ve směru uvedených vlastních vektorů. Nyní jej vyjádřeme v uvedené bázi. K tomu budeme potřebovat matici přechodu T od standardní báze k dané nové bázi. Tu získáme tak, že souřadnice vektorů staré báze v bázi nové napíšeme do sloupců matice T. My však snadněji zapíšeme matici přechodu od priklané báze k bázi standardní, tedy matici T-1 . Souřadnice vektorů nové báze pouze zapíšeme do sloupců: T-1 = 1 1 0 -1 2 1 1 0 1 Pro matici B zobrazení v nové bázi pak máme (viz 2.34). B = TAT-1 = 1 1 0 1 2 1 1 2 1 1 2 -1 4 1 4 1 2 1 4 -1 4 -1 2 1 4 3 4 1 1 0 -1 2 1 1 0 1 2.32 2.43. Spektra a nilpotentní zobrazení. Spektrum lineárního zobrazení f : V V je posloupnost kořenů charakteristického polynomu zobrazení f, včetně násobností. Algebraickou násobností vlastní hodnoty rozumíme její násobnost jako kořenu charakteristického polynomu, geometrická násobnost vlastní hodnoty je di- menze příslušného podprostoru vlastních vektorů. Lineární zobrazení f : V V se nazývá nilpotentní, jestliže existuje celé číslo k 1 takové, že iterované zobrazení fk je identicky nulové. Nejmenší číslo k s touto vlastností se nazývá stupněm nilpotentnosti zobrazení f. Zobrazení f : V V se nazývá cyklické, jestliže existuje báze (u1, . . . , un) prostoru V taková, že f(u1) = 0 a f(ui) = ui-1 pro všechna i = 2, . . . , n. Jinými slovy, matice f v této bázi je tvaru A = 0 1 0 . . . 0 0 1 . . . ... ... ... . Je-li f(v) = a v, pak pro každé přirozené k je fk (v) = ak v. Zejména tedy může spektrum nilpotentního zobrazení obsahovat pouze nulový skalár (a ten tam vždy je). Přímo z definice plyne, že každé cyklické zobrazení je nilpotentní, navíc je jeho stupeň nilpotentnosti roven dimenzi prostoru V . Operátor derivování na polynomech definovaný v předchozím příkladu 2.41 je příkladem cyklického zobrazení. Kupodivu to platí i naopak a každé nilpotentní zobrazení je přímým součtem cyklických. Navíc pro každé lineární zobrazení f : V V , pro které je součet algebraických násobností vlastních čísel roven dimenzi (to nastane vždy pro prostory nad komplexními skaláry), existuje jednoznačný rozklad V na invariantní podprostory Vi příslušné k jednotlivým vlastním číslům i, na kterých je zobrazení f - i idVi nilpotentní. Tento dosti hluboký výsledek nebudeme dokazovat, sformulujeme jen výsled- nou větu o Jordanově rozkladu. V ní vystupují vektorové (pod)prostory a lineární 68 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA zobrazení na nich s jediným vlastním číslem a maticí J = 1 0 . . . 0 0 1 . . . 0 ... ... ... ... 0 0 0 . . . . Takovýmto maticím (a odpovídajícím invariantním podprostorům) se řídá Jordanův blok. 2.33 2.44. Věta. Nechť V je vektorový prostor dimenze n a f : V V je lineární zob- razení s n vlastními čísly včetně algebraických násobností. Pak existuje jednoznačný rozklad prostoru V na přímý součet podprostorů V = V1 Vk takových, že f(Vi) Vi, zúžení f na každé Vi má jediné vlastní číslo i a zúžení f - i id na Vi je buď cyklické nebo nulové zobrazení. Věta tedy říká, že ve vhodné bázi má každé lineární zobrazení blokově diago- nální tvar s Jordanovými bloky podél diagonály. Celkový počet jedniček nad diago- nálou v takovém tvaru je roven rozdílu mezi celkovou algebraickou a geometrickou násobností vlastních čísel. Všimněme si, že jsme tuto větu plně dokázali v případech, kdy jsou všechna vlastní čísla různá nebo když jsou geometrické a algebraické násobnosti vlastních čísel stejné. 2.45. Projekce. Lineární zobrazení f : V V se nazývá projekce, jestliže platí f f = f. V takovém případě je pro každý vektor v V v = f(v) + (v - f(v)) Im(f) + Ker(f) = V a je-li v Im(f) a f(v) = 0, pak je i v = 0. Je tedy přechozí součet podprostorů přímý. Říkáme, že f je projekce na podprostor W = Im(f) podél podprostoru U = Ker(f). Slovy se dá projekce popsat přirozeně takto: rozložíme daný vektor na komponentu ve W a v U a tu druhou zapomeneme. Předpokládejme nyní, že na V je definován skalární součin, viz 2.37. Pro každý pevně zvolený podprostor W V definujeme jeho ortogonální doplněk W = {u V ; u, v = 0 pro všechny v W}. Přímo z definice je zjevné, že W je vektorový podprostor. Jestliže W V má bázi (u1, . . . , uk) je podmínka pro W dána jako k homogenních rovnic pro n proměnných. Bude tedy mít W dimenzi alespoň n - k. Zároveň ale u W W znamená u, u = 0 a tedy i u = 0 podle definice skalárního součinu. Zřejmě je tedy vždy V = W W . Každý podprostor W = V definuje kolmou projekci na W. Je to projekce na W podél W . 4. VLASTNOSTI LINEÁRNÍCH ZOBRAZENÍ 69 2.33a 2.46. Existence ortonormální báze. Přímočaré početní využití kolmých pro- jekcí vede k tzv. Grammovu­Schmidtovu ortogonalizačnímu procesu. Cílem pro- cedury je z dané posloupnosti nenulových generátorů v1, . . . , vk konečněrozměrného prostoru V vytvořit ortogonální množinu nenulových generátorů pro V . Začneme prvním (nenulovým) vektorem v1 a spočteme kolmou projekci v2 do v1 {v1, v2} . Výsledek bude nenulový právě, když je v2 nezávislé na v1. Ve všech dalších krocích budeme postupovat obdobně. V -tém kroku tedy chceme, aby pro v +1 = u +1 + a1v1 + + a v platilo v +1, vi = 0, pro všechny i = 1, . . . , . Odtud plyne 0 = u +1 + a1v1 + + a v , vi = u +1, vi + ai vi, vi a je vidět, že vektory s požadovanými vlastnostmi jsou určeny jednoznačně až na násobek. Dokázali jsme tedy následující tvrzení: Tvrzení. Nechť (u1, . . . , uk) je lineárně nezávislá k-tice vektorů prostoru V se skalárním součinem. Pak existuje ortogonální systém vektorů (v1, . . . , vk) takový, že vi u1, . . . , ui , i = 1, . . . , k. Získáme je následující procedurou: ˇ Z nezávislosti vektorů ui plyne u1 = 0. Položíme v1 = u1. ˇ Máme-li již vektory v1, . . . , v potřebných vlastností klademe v +1 = u +1 + a1v1 + + a v , ai = - u +1, vi vi 2 Kdykoliv máme ortogonální bázi vektorového prostoru V , stačí vektory vynor- movat a získáme bázi ortonormální. Dokázali jsme proto: Důsledek. Na každém vektorovém prostoru se skalárním součinem existuje orto- normální báze. V ortonormální bázi se obzvlášť snadno spočtou souřadnice a kolmé projekce. Skutečně, mějme ortonormální bázi (e1, . . . , en) prostoru V . Pak každý vektor v = x1e1 + + xnen splňuje ei, v = ei, x1e1 + + xnen = xi a platí tedy vždy e2.2 (2.2) v = e1, v e1 + + en, v en. Pokud máme zadán podprostor W V a jeho ortonormální bázi (e1, . . . , ek), jde ji jistě doplnit na ortonormální bázi (e1, . . . , en) celého V . Kolmá projekce obecného vektoru v V do W pak bude dána vztahem v e1, v e1 + + en, v ek. Pro kolmou projekci nám tedy stačí znát jen ortonormání bázi podprostoru W, na nejž promítáme. Povšimněme si také, že obecně jsou projekce f na podprostor W podél U a projekce g na U podél W svázány vztahem g = idV -f. Je tedy u kolmých projekcí na daný podprostor W vždy výhodnější počítat ortonormální bázi toho z dvojice W, W , který má menší dimenzi. Uvědomme si také, že existence ortonormální báze nám zaručuje, že pro každý prostor V se skalárním součinem existuje lineární zobrazení, které je izomorfismem 70 2. ELEMENTÁRNÍ LINEÁRNÍ ALGEBRA mezi V a prostorem Rn se standardním skalárním součinem. Podrobně to bylo ukázáno již ve Tvrzení 2.37, kde jsme ukázali, že hledaným izomorfismem je právě přiřazení souřadnic. Řečeno volnými slovy ­ v ortonormální bázi se skalární součin pomocí souřadnic počítá stejnou formulí jako standardní skalární součin v Rn . 2.47. Příklad. Napište matici zobrazení kolmé projekce do roviny procházející počátkem a kolmé na vektor (1, 1, 1). Řešení. Obraz libovolného bodu (vektoru) x = (x1, x2, x3) R3 v uvažovaném zobrazení získáme tak, že od daného bodu odečteme jeho kolmou projekci do nor- málového směru dané roviny, tedy do směru (1, 1, 1). Tato projekce p je dána (viz přednáška) jako (x, (1, 1, 1)) |(1, 1, 1)|2 = ( x1 + x2 + x3 3 , x1 + x2 + x3 3 , x1 + x2 + x3 3 ). Výsledné zobrazení je tedy x-p = ( 2x1 3 - x2 + x3 3 , 2x2 3 - x1 + x3 3 , 2x3 3 - x1 + x2 3 ) = 2 3 -1 3 -1 3 -1 3 2 3 -1 3 -1 3 -1 3 2 3 x1 x2 x3 . 2.48. Tři příklady k samostatnému řešení. 2.48.1. 1. Napište nějakou bázi reálného vektorového prostoru matic 3 × 3 nad R s nulovou stopou (součet prvků na diagonále) a napište souřadnice matice 1 2 0 0 2 0 1 -2 -3 v této bázi. 2.48.2. 2. Zaveďte nějaký skalární součin na vektorovém prostoru matic z předcho- zího příkladu. Spočítejte normu matice z předchozího příkladu, která je indukovaná Vámi zavedeným součinem. 2.48.3. 3. Gramm-Schmidtovým ortogonalizačním procesem nalezněte nějakou or- tonormální bází podprostoru V R, kde V = {(x1, x2, x3, x4) R4 |x1 +2x2 +x3 = 0}. 2.36 2.49. Ortogonální zobrazení. Zobrazení f : V W, které zachovává velikosti pro všechny vektory u V , se nazývá ortogonální zobrazení. Požadujeme tedy f(u), f(u) = u, u . Z linearity f a symetrie skalárního součinu plyne f(u + v), f(u + v) = f(u), f(u) + f(v), f(v) + 2 f(u), f(v) , je tedy ekvivalentní podmínkou i zdánlivě silnější požadavek, aby f(u), f(v) = u, v , pro všechny vektory u, v V . V úvodní diskusi o geometrii v rovině jsme ve Větě 1.44 dokázali, že lineární zobrazení R2 R2 zachovává velikosti vektorů právě, když jeho matice ve standardní bázi (a ta je ortonormální vzhledem ke standardnímu skalárnímu součinu) splňuje AT A = E, tj. A-1 = AT . 4. VLASTNOSTI LINEÁRNÍCH ZOBRAZENÍ 71 Obecně, ortogonální zobrazení musí vždycky být injektivní, protože podmínka f(u), f(u) = 0 znamená i u, u = 0 a tedy u = 0. Je tedy vždy v takovém případě dimenze oboru hodnot alespoň taková, jako je dimenze definičního oboru f. Pak ovšem je dimenze obrazu rovna dimenzi oboru hodnot a bez újmy na obecnost můžeme rovnou před- pokládat, že jsou stejné a f : V V (pokud by nebyly, doplníme ortonormální bázi na oboru hodnot na bázi cílového prostoru a matice zobrazení bude čtverco- vou maticí A doplněnou nulami na potřebnou velikost). Naše podmínka pro matici ortogonálního zobrazení v ortonormální bázi pak říká pro všechny vektory x a y v prostoru Kn toto: (A x)T (A y) = xT (AT A) y = xT y. Speciálními volbami vektorů standardní báze za x a y dostaneme přímo, že AT A = E, tedy tentýž výsledek jako v dimenzi 2! Dokázali jsme tak následující tvrzení: Věta. Nechť V je reálný vektorový prostor se skalárním součinem a f : V V je lineární zobrazení. Pak f je ortogonální právě, když v některé ortonormální bázi (a pak už všech) má matici A splňující AT = A-1 . Skutečně, jestliže zachovává f velikosti, musí mít uvedenou vlastnost v každé ortonormální bázi. Naopak, předchozí výpočet ukazuje, že vlastnost matice v jedné bázi už zaručuje zachovávání velikostí. Důsledkem této věty je také popis všech matic přechodu S mezi ortonormálními bázemi. Každá totiž musí zadávat zobrazení Kn Kn zachovávající velikosti a splňují tady také právě podmínku S-1 = ST . Při přechodu od jedné báze ke druhé se tedy matice ortogonálního zobrazení mění podle vztahu A = ST AS. KAPITOLA 3 Linární modely kde jsou matice užitečné? ­ nakonec skoro všude... 1. Lineární rovnice a procesy 2.37 3.1. Systémy lineárních rovnic. Jednoduché lineární procesy jsou dány lineár- ními zobrazeními : V W na vektorových prostorech. Pokud nám totiž vektor v V představuje stav nějakého námi sledovaného jevu (třeba počty občanů tří- děných dle nejvyšší dosažené kvalifikace, stav zásob jednotlivých dílů a výrobků atd.), pak (v) může představovat výsledek provedené operace (výsledek vzdělá- vací činnosti školské soustavy nebo výroba a prodej za určité časové období apod.). Pokud chceme dosáhnout předem daného výsledku b W takového jednorázového procesu, řešíme problém (x) = b pro neznámý vektor x. V pevně zvolených souřadnicích pak máme matici A zobra- zení a souřadné vyjádření vektoru b. Jak jsme si povšimnuli už v úvodu druhé kapitoly, řešení tzv. homogenní úlohy A x = 0 je vektorovým podprostorem. Pokud je dimenze V konečná, řekněme n, a dimenze obrazu zobrazení je k, pak řešením této soustavy pomocí převodu na řádkově schodovitý tvar (viz 2.7) zjistíme, že dimenze podprostoru všech řešení je právě n-k. Skutečně, protože sloupce matice zobrazení jsou právě obrazy bázových vektorů, je v matici systému právě k lineárně nezávislých sloupců a tedy i stejný počet lineárně nezávislých řádků. Proto nám zůstane při převodu na řádkový schodovitý tvar právě n-k nulových řádků. Při řešení systému rovnic nám tak zůstane právě n-k volných parametrů a dosazením vždy jednoho z nich hodnotou jedna a vynulováním ostatních získáme právě k lineárně nezávislých řešení. Každé takové k­tici řešení říkáme fundamentální systém řešení daného homogenního systému rovnic. Uvažme nyní obecný systém rovnic A x = b. Jestliže rozšíříme matici A o sloupec b, můžeme, ale nemusíme, také zvětšit počet lineárně nezávislých sloupců a tedy i řádků. Pokud se tento počet zvětší, pak systém rovnic nemůže mít řešení (prostě se naše vůbec do b nestrefí). Jestliže ale naopak máme stejný počet nezávislých řádků, znamená to, že sloupec b musí být lineární kombinací sloupců matice A. Koeficienty takové kombinace jsou právě řešení. 73 74 3. LINÁRNÍ MODELY Mějme tedy dvě pevně zvolená řešení x a y našeho systému a nějaké řešení z systému homogenního se stejnou maticí. Pak zjevně A (x - y) = b - b = 0 A (x + z) = 0 + b = b. Můžeme proto shrnout: ˇ podprostor všech řešení homogenního systému rovnic A x = 0 má dimenzi n - k, kde n je počet proměnných a k je počet lineárně nezávislých rovnic, ˇ všechna řešení jsou generována tzv. fundamentálním systémem n - k řešení, který lze obdržet z Gausovy eliminace postupným dosazováním nul a jedniček za volné parametry, ˇ řešení nehomogenního systému existuje právě, když přidáním sloupce b k matici A nezvýšíme počet lineárně nezávislých řádků. V takovém případě je prostor všech řešení dán součty jednoho pevně zvoleného partikulárního řešení systému a všech řešení systému homogenního se stejnou maticí. 2.38 3.2. Iterované procesy. Pokud je dán nějaký proces prostřednictvím lineární operace pro jednotlivá časová období, budeme patrně chtít umět studovat jeho chování během delší doby. Zatímco pro řešení systémů lineárních rovnic jsme po- třebovali jen minumum znalostí o vlastnostech lineárních zobrazení, teď už to bude jinak. Uvedeme si alespoň ilustrativní příklady. Představme si, že zkoumáme nějaký systém jednotlivců (pěstovaná zvířata, hmyz, buněčné kultury apod) rozdělený do m skupin (třeba podle stáří, fází vývoje hmyzu apod.). Stav xn je tedy dán vektorem (a1, . . . , am) závisejícím na okamžiku tn, ve kterém systém pozorujeme. Lineární model vývoje takového systému je dán maticí A dimenze n, která zadává změnu vektoru xn na xn+1 = A xn při přírůstku času z tk na tk+1. Dobrým příkladem lineárních procesů je tzv. Leslieho model růstu, viz následující příklad 3.3. V takových modelech vystupuje matice popisující vývoj populace rozdělené na několik věkových skupin A = f1 f2 f3 f4 f5 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0 , kde fi označuje relativní plodnost příslušné věkové skupiny (ve sledovaném časovém skoku vznikne z N jedinců v i­té skupině fiN jedinců nových, tj. ve skupině první), zatímco i je relativní úmrtnost i-té skupiny během jednoho období. Všechny koeficienty jsou tedy kladná reálná čísla a jsou mezi nulou a jednič- kou. Přímým výpočtem (třeba využitím Laplaceova rozvoje) nyní spočteme cha- rakteristický polynom p() = det(A - E) = 5 - a4 - b3 - c2 - d - e s vesměs nezápornými koeficienty a, b, c, d, e, např. e = 1234f5. Je tedy p() = 5 (1 - q()) 1. LINEÁRNÍ ROVNICE A PROCESY 75 kde q je ostře klesající a nezáporná funkce pro > 0. Evidentně bude proto existovat právě jedno kladné , pro které bude q() = 1 a tedy p() = 0. Jinými slovy, pro každou Leslieho matici existuje právě jedno kladné vlastní číslo. Pro konkrétní koeficienty (např. když všechny fi jsou také mezi nulou a jed- ničkou) můžeme dojít k závěru, že absolutní hodnoty ostatních vlastních čísel jsou ostře menší než jedna, zatímco dominantní vlastní číslo může být vetší než jedna. V takovém případě při iteraci kroků našeho procesu dojde při libovolné počáteční hod- notě x0 k postupnému vymizení všech komponent v jednotlivých vlastních podpro- storech a poměrné proporce rozložení populace do věkových skupin se budou blížit poměrům komponent vlastního vektoru k dominantnímu vlastnímu číslu. Například pro matici (uvědomme si význam jednotlivých koeficientů) A = 0 0.2 0.8 0.6 0 0.95 0 0 0 0 0 0.8 0 0 0 0 0 0.7 0 0 0 0 0 0.6 0 vyjdou vlastní hodnoty přibližně 1.03, 0, -0.5, -0, 27 + 0.74i, -0.27 - 0.74i s velikostmi 1.03, 0, 0.5, 0.78, 0.78 a vlastní vektor příslušný dominantnímu vlast- nímu číslu je přibližně x = (30 27 21 14 8). Zvolili jsme rovnou jediný vlastní vektor se součtem souřadnic rovným jedné, zadává nám proto přímo výsledné procentní rozložení populace. 3.3 3.3. Příklad ­ Leslieho růstový model. Uvažujme následující model vývoje lidské populace. Buď ˇ x1(t) = počet jedinců starých 0 - 14 let. ˇ x2(t) = počet jedinců starých 15 - 29 let. ˇ x3(t) = počet jedinců starých 30 - 44 let. ˇ x4(t) = počet jedinců starých 45 - 59 let. ˇ x5(t) = počet jedinců starých 60 - 75 let. Vše uvedeno v nějakém čase t. Pokud uvážíme časovou jednotku 15 let, tak v čase (t + 1) budeme mít následující počty: x1(t + 1) = f1x1(t) + f2x2(t) + f3x3(t) + f4x4(t) + f5x5(t) x2(t + 1) = 1,2x1(t) x3(t + 1) = 2,3x2(t) x4(t + 1) = 3,4x3(t) x5(t + 1) = 4,5x4(t) Pokud označíme jako P následující matici P := f1 f2 f3 f4 f5 1,2 0 0 0 0 0 2,3 0 0 0 0 0 3,4 0 0 0 0 0 4,5 0 , 76 3. LINÁRNÍ MODELY tak v maticové formě pak můžeme psát x(t + 1) = Px(t), kde x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t)). 3.4. Příklad. Usherův model růstu. Variace předchozího. Mějme populaci jako v předchozím příkladě a uvažujme časovou jednotku 7, 5 let, tedy polovinu před- chozí. Pak můžeme psát opět x(t + 1) = Px(t), kde ovšem nyní P := f1 f2 f3 f4 f5 1,2 2,2 0 0 0 0 2,3 3,3 0 0 0 0 3,4 4,4 0 0 0 0 4,5 5,5 . 3.5. Příklad. 3.5.1. Uvažujme Leslieho model růstu pro populaci krys, které máme rozděleny do tří věkových skupin: do jednoho roku, od jednoho do dvou let a od dvou let do tří. Předpokládáme, že se žádná krysa nedožívá více než tří let. Průměrná porodnost v jednotlivých věkových skupinách připadajících na jednu krysu je následující: v 1.skupině je to nula a ve druhé i třetí 2 krysy. Krysy, které se dožijí jednoho roku umírají až po druhém roce života (úmrtnost ve druhé skupině je nulová). Určete úmrtnost v první skupině víte-li, že daná populace krys stagnuje (počet jedinců v ní se nemění). Řešení. Leslieho matice daného modelu je (úmrtnost v první skupině označíme a) 0 2 2 a 0 0 0 1 0 . Podmínka stagnace populace odpovídá tomu, že matice má vlastní hodnotu 1, ne- boli polynom 3 - 2a - 2a má mít kořen 1, t.j a = 1/4. 2. Lineární diferenční rovnice a filtry Diferenčními rovnicemi jsme se zabývali již v první kapitole, viz např 1.16. Nyní si uvedeme náznak obecné teorie. 2.40 3.6. Diferenční rovnice. Homogenní lineární diferenční rovnice řádu k s kon- stantními koeficienty je dána výrazem a0xn + a1xn-1 + + akxn-k = 0, a0 = 0 ak = 0. Říkáme také, že řešíme homogenní lineární rekurenci řádu k. Libovolným zadáním k po sobě jdoucích hodnot xi jsou určeny i všechny ostatní hodnoty jednoznačně. Zároveň je zjevné, že součet dvou řešení nebo skalární násobek řešení je opět řešení. Opět tedy máme příklad vektorového prostoru. Uvědomme si, že vektroy jsou sice nekonečné posloupnosti čísel, samotný prostor všech řešení ovšem bude konečně- rozměrný a předem víme, že jeho dimenze bude rovna řádu rovnice k. 2. LINEÁRNÍ DIFERENČNÍ ROVNICE A FILTRY 77 Pokud tedy budeme předpokládat řešení v nějaké vhodné formě a podaří se nám najít k lineárně nezávislých možností, budeme mít opět fundamentální systém řešení a všechna ostatní budou jejich lineárními kombinacemi. Uvažujme tedy stejně jako v 1.16 možnost xn = n pro nějaký skalár . Pak dostáváme podmínku n-k (a0k + a1k-1 + ak) = 0 což znamená, že buď = 0 nebo je kořenem tzv. charakteristického polynomu v závorce. Předpokládejme, že má tento polynom k různých kořenů 1, . . . , k. Můžeme za tímto účelem i rozšířit uvažované pole skalárů, např. Q na R nebo R na C, protože výsledkem výpočtu pak stejně budou i všechna řešení, která opět zůstanou v původním poli díky samotné rovnici. Každý z kořenů nám dává jedno možné řešení xn = (i)n . Abychom byli uspokojeni, potřebujeme k lineárně nezávislých řešení. K tomu nám postačí ověřit nezávislost dosazením k hodnot pro n = 0, . . . , k - 1 pro k možností i. Dostaneme tzv. Vandermondovu matici a je pěkným (ale ne úplně snadným) cvičením spočíst, že pro všechna k a jakékoliv k­tice různých i je determinant takovéto matice nenulový. To ale znamená, že zvolená řešení jsou lineárně nezávislá. Uvažme nyní násobný kořen a dosaďme do definiční rovnice předpokládané řešení xn = nn . Dostáváme podmínku a0nn + . . . ak(n - k)n-k = 0. Tuto podmínku je možné přepsat pomocí tzv. derivace polynomu, kterou značíme apostrofem: (a0n + + akn-k ) a časem uvidíme, že kořen polynomu f je vícenásobný právě, když je kořenem i jeho derivace f . Naše podmínka je tedy splněna. Při vyšší násobnosti kořene charakteristického polynomu dojdeme obdobně k řešením xn = nj n pro j = 0, . . . , - 1. Úplně obdobně jako u systémů lineárních rovnic můžeme dostat všechna ře- šení nehomogenních rovnic tak, že najdeme jedno řešení a přičteme celý vektorový prostor dimenze k řešení odpovídajících systémů homogenních. Za tímto účelem zpravidla hledáme řešení ve tvaru polynomu xn = 0 + 1n + + k-1nk-1 s neznámými koeficienty i, i = 1, . . . , k - 1. Dosazením do diferenční rovnice dostatneme systém k rovnic pro k proměnných i. Nyní můžeme shrnout získané výsledky: 2.41 3.7. Vlastnosti řešení lineárních diferenčních rovnic s konstantními ko- eficienty. ˇ prostor všech řešení homogenního systému řádu k je vektroový prostor dimenze k, ˇ všechna řešení jsou generována fundamentálním systémem k řešení, který lze obdržet získat z kořenů charakteristického polynomu (n i , pokud jsou kořeny po dvou různé, složitěji v případě násobných kořenů), ˇ všechna řešení nehomogenního systému obdržíme, když přičteme jedno pevně zvolené partikulárního řešení systému ke všem řešením systému homogenního se stejnými koeficienty. Partikulární řešení můžeme hledat pomocí tzv. metody neurčitých koeficientů, tj. hledáme jej jako polynom s neznámými koeficienty a řešíme systém lineárních rovnic. 78 3. LINÁRNÍ MODELY ˇ řešení vyhovující daným počátečním podmínkám x0 = b0, . . . , xk-1 = bk-1 hledáme z obecného řešení dosazením podmínek a určením koeficientů lineání kombinace funadamentálních řešení. Opět to znamená řešit systém lineárních rovnic. Všimněme si také, že pro rovnice s reálnými koeficienty musí vždy kořeny charakter- stického polynomu být reálné, nebo musí vystupovat po dvou komplexně združené nereálné kořeny. Jejich lineárními kombinacemi (součet a rozdíl goniometrických tvarů mocnin) lze pak přímo obdržet reálná řešení vyjádřená pomocí funkcí cos(n) a sin(n). 3.8. Příklad. 3.8.1. Najděte posloupnost, která vyhovuje nehomogenní diferenční rovnici s počá- tečními podmínkami: xn+2 = xn+1 + 2xn + 1, x1 = 2, x2 = 2. Řešení. Obecné řešení zhomogenizované rovnice je tvaru a(-1)n + b2n . Partiku- lárním řešením je konstanta -1/2. Obecné řešení dané nehomogenní rovnice bez počátečních podmínek je tedy a(-1)n + b2n - 1 2 . Dosazením do počátečních podmínek zjistíme konstanty a = -5/6, b = 5/6. Dané rovnici s počátečními podmínkami tedy vyhovuje posloupnost - 5 6 (-1)n + 5 3 2n-1 - 1 2 . 3.9. Příklad. 3.9.1. Určete posloupnost reálných čísel, která vyhovuje následující nehomogenní diferenční rovnici s počátečními podmínkami: 2xn+2 = -xn+1 + xn + 2, x1 = 2, x2 = 3. Řešení. Obecné řešení zhomogenizované rovnice je tvaru a(-1)n + b(1/2)n . Par- tikulárním řešením je konstanta 1. Obecné řešení dané nehomogenní rovnice bez počátečních podmínek je tedy a(-1)n + b 1 2 n + 1. Dosazením do počátečních podmínek zjistíme konstanty a = 1, b = 4. Dané rovnici s počátečními podmínkami tedy vyhovuje posloupnost (-1)n + 4 1 2 n + 1. 2. LINEÁRNÍ DIFERENČNÍ ROVNICE A FILTRY 79 3.10. Příklad. Řešte následující diferenční rovnici: xn+4 = xn+3 - xn+2 + xn+1 - xn. Řešení. Z teorie víme, že prostor řešení této diferenční rovnice bude čtyřdimen- zionální vektorový prostor, jehož generátory zjistíme z kořenů charakteristického polynomu dané rovnice. Charakteristická rovnice je x4 - x3 + x2 - x + 1 = 0. Jedná se o reciprokou rovnici (to znamená, že koeficienty u (n-k)-té a k-té mocniny x, k = 1, . . . , n, jsou shodné). Zavedeme tedy substituci u = x + 1 x . Po vydělení rovnice x2 (nula nemůže být kořenem) a substituci (všimněte si, že x2 + 1 x2 = u2 -2) dostáváme x2 - x + 1 - 1 x + 1 x2 = u2 - u - 1 = 0. Dostáváme tedy neznámé u1,2 = 1 5 2 . Odtud pak z rovnice x2 -ux+1 = 0 určíme čtyři kořeny x1,2,3,4 = 1 5 -10 2 5 4 . Nyní si všimněme, že kořeny charakteristické rovnice jsme mohli ,,uhodnout rovnou. Je totiž x5 + 1 = (x - 1)(x4 - x3 + x2 - x + 1), a tedy jsou kořeny polynomu x4 -x3 +x2 -x+1 i kořeny polynomu x5 +1, což jsou páté odmocniny z -1. Takto dostáváme, že řešením charakteristikého polynomu jsou čísla x1,2 = cos( 5 ) sin( 5 ) a x3,4 = cos(3 5 ) sin(3 5 ). Tedy reálnou bází prostoru řešení dané diferenční rovnice je například báze posloupností cos(n 5 ), sin(n 5 ), cos(3n 5 ) a sin(3n 5 ), což jsou siny a cosiny argumentů příslušných mocnin kořenů charakteristického polynomu. Všimněme si, že jsme mimochodem odvodili algebraické výrazy pro cos( 5 ) = 1+ 5 4 , sin( 5 ) = 10-2 5 4 , cos(3 5 ) = 5-1 4 a sin(3 5 ) = 10+2 5 4 . 2.39 3.11. Lineární filtry. Uvažujme nyní nekonečné posloupnosti x = . . . , x-n, x-n+1, . . . , x-1, x0, x1, . . . , xn, . . . a operaci T, která zobrazí posloupnost x na posloupnost z = Tx se členy zn = a1xn + a2xn-1 + + akxn-k+1. Protože nekonečné posloupnosti x umíme sčítat i násobit skaláry po složkách, jedná se opět o příklad vektorového prostoru. Zjevně má dimenzi nekonečnou. Posloupnosti můžeme chápat jako diskrétní hodnoty nějakého signálu, odečí- tané zpravidla ve velmi krátkých časových jednotkách, operace T je pak filtrem, který signál zpracovává. Z definice je zřejmé, že periodické posloupnosti xn splňu- jící pro nějaké pevné přirozené číslo p xn+p = xn budou mít i periodické obrazy z = Tx zn+p = a1xn+p + a2xn-1+p + + akxn-k+1+p = a1xn + a2xn-1 + + akxn-k+1 = zn 80 3. LINÁRNÍ MODELY se stejnou periodou p. Pro pevně zvolenou operaci T nás bude zajímat, které vstupní posloupnosti zůstanou přibližně stejné (případně až na násobek) a které budou utlumeny na nulové hodnoty. Jde nám tedy v první řadě o vyčíslení jádra našeho lineárního zobrazení T. To je ale dáno homogenní diferenční rovnicí a0xn + a1xn-1 + + akxn-k = 0, a0 = 0 ak = 0. 2.42 3.12. Špatný equalizer. Jako příklad uvažujme lineární filtr zadaný rovnicí zn = (Tx)n = xn+2 + xn. Výsledky takového zpracování signálu jsou naznačeny na následujících čtyřech ob- rázcích pro postupně se zvyšující frekvenci periodického signálu xn = cos(n). Čer- vený je původní signál, zelený je výsledek po zpracování filtrem. Nerovnoměrnosti křivek jsou důsledkem nepřesného kreslení, oba signály jsou samozřejmě rovnoměr- nými sinusovkami. 1 1 0 2 2 -1 0 -2 43 5 A=7.1250 1 1 0 2 2 -1 0 -2 43 5 A=19.375 1 1 0 2 2 -1 0 -2 43 5 A=25.500 1 1 0 2 2 -1 0 -2 43 5 A=29.583 Všimněme si, že v oblastech, kde je výsledný signál přibližně stejně silný jako původní, dochází k dramatickému posuvu fáze signálu. Levné equalizery skutečně podobně špatně fungují. Výsledek lze samozřejmě podrobně spočítat výše uvedenou metodikou. 3. MARKOVOVY PROCESY 81 3. Markovovy procesy 2.43 3.13. Markovovy řetězce. Velice častý a zajímavý případ lineárních procesů je popis systému, který se může nacházet v m různých stavech s různou pravděpodob- ností. V jistém okamžiku je ve stavu s pravděpodobností ai pro stav i a k přechodu z možného stavu i do stavu j dojde s pravděpodobností tij. Můžeme tedy proces zapsat takto: V čase n je systém popsán pravděpodob- nostním vektorem xn = (a1, . . . , am). To znamená, že všechny komponenty vektoru x jsou reálná nezáporná čísla a jejich součet je roven jedné. Komponenty udávají rozdělení pravděpodobnosti jednotlivých možností stavů systému. Rozdělení prav- děpodobností pro čas n + 1 bude dáno vynásobením pravděpodobnostní maticí přechodu T = (tij), tj. xn+1 = T xn. Protože předpokládáme, že vektor x zachycuje všechny možné stavy, budou všechny sloupce matice T tvořeny také pravděpodobnostními vektory. Takovému procesu říkáme Markovův proces. Všimněme si, že každý pravděpodobnostní vektor x je opět zobrazen na vektor se součtem souřadnic jedna: i,j tijxj = j ( i tij)xj = j xj = 1. Protože je součet řádků matice T vždy roven vektoru (1, . . . , 1), bude jednička zaručeně vlastním číslem matice T a k ní musí existovat vlastní vektor x0. Abychom mohli podrobněji pochopit chování Markovových procesů, uvedeme si docela snadno pochopitelné obecné tvrzení o maticích, tzv. Perronovu­Frobeniovu větu. Její důkaz však uvádět nebudeme. Věta. Nechť A je reálná čtvercová matice dimenze m s kladnými prvky. Pak platí (1) exituje reálné vlastní číslo m matice A takové, že pro všchna ostatní vlastní čísla platí || < m, (2) vlastní číslo m má algebraickou násobnost jedna, (3) vlastní podprostor odpovídající m obsahuje vektor se všemi souřadnicemi klad- nými (4) platí odhad mini j aij m maxi j aij. Tvrzení bezezbytku platí i pro tzv. regulární matice, tj. takové, jejichž nějaká mocnina má výhradně kladné prvky. Důsledkem této věty pro Markovovy procesy s maticí, která nemá žádné nulové prvky (nebo jejíž některá mocnina má tuto vlastnost), je ˇ existence vlastního vektoru x pro vlastní číslo 1, který je pravděpodobnostní ˇ přibližování hodnoty iterací Tk x0 k vektoru x pro jakýkoliv pravděpodob- nostní vektor x0. První tvrzení vyplývá přímo z kladnosti souřadnic vlastního vektoru zmíněné v Perronově­Frobeniově větě, druhé pak z toho, že absolutní hodnoty všech ostatních vlastních čísel musí být ostře menší než jedna. 3.14. Mlsný hazardér. Hazardní hráč sází na to, která strana mince padne. Na začátku hry má tři kremrole. Na každý hod vsadí jednu kremroli a když jeho tip vyjde, tak k ní získá jednu navíc, pokud ne, tak kremroli prohrává. Hra končí, pokud všechny kremrole prohraje, nebo jich získá pět. Jaká je pravděpodobnost, že hra neskončí po čtyřech sázkách? 82 3. LINÁRNÍ MODELY Řešení. Před j-tým kolem (sázkou) můžeme popsat stav, ve kterém se hráč nachází náhodným vektorem Xj = (p0(j), p1(j), p2(j), p3(j), p4(j), p5(j)), kde pi je pravdě- podobnost, že hráč má i kremrolí. Pokud má hráč před j-tou sázkou i kremrolí (i=2,3,4), tak po sázce má s poloviční pravděpodobností (i - 1) kremrolí a s polo- viční pravděpodobností (i+1) kremrolí. Pokud dosáhne pěti kremrolí nebo všechny prohraje už se počet kremrolí nemění. Vektor Xj+1 tak získáme podle podmínek v priklání z Xj vynásobením maticí A := 1 0, 5 0 0 0 0 0 0 0, 5 0 0 0 0 0, 5 0 0, 5 0 0 0 0 0, 5 0 0, 5 0 0 0 0 0, 5 0 0 0 0 0 0 0, 5 1 . Na začátku máme X1 = 0 0 0 1 0 0 , po čtyřech sázkách bude situaci popisovat náhodný vektor X5 = A4 X1 = 1 8 3 16 0 5 16 0 3 8 , tedy pravděpodobnost, že hra skončí do čtvté sázky (včetně) je polovina. Všimněme si ještě, že matice A popisující vývoj pravděpodobnostního vektoru X je pravděpodobnostní, tedy má součet prvků v každém sloupci 1. Nemá ale vlastnost vyžadovanou v Perronově­Frobeniově větě a snadným výpočtem zjistíte (nebo přímo uvidíte bez počítání), že existují dva lineárně nezávislé vlastní vektory příslušné k vlastnímu číslu 1 ­ případ, kdy hráči nezůstane žádná krémrole, tj. x = (1, 0, 0, 0, 0, 0)T , nebo případ kdy získá 5 krémrolí a hra tím pádem končí a všechny mu už zůstávají, tj. x = (0, 0, 0, 0, 0, 1)T . Všechna ostatní vlastní čísla (přibližně 0, 8, 0, 3, -0, 8, -0, 3) jsou v absolutníhodnotě ostře menší než jedna. Proto komponenty v příslušných vlastních podprostorech při iteraci procesu s libovolnou počáteční hodnotou vymizí a proces se blíží k limitní hodnotě pravděpodobnostího vektoru tvaru (a, 0, 0, 0, 0, 1 - a), kde hodnota a závisí na počtu krémrolí, se kterými hráč začíná. V našem případě je to a = 0, 4, kdyby začal se 4 krémrolemi, bylo by to a = 0, 2 atd. Ruleta Hráč rulety má následující strategii: přišel hrát se 100 Kč. Vždy všechno, co aktuálně má. Sází vždy na černou (v ruletě je 37 čísel, z toho je 18 černých, 18 červených a nula). Hráč skončí, pokud nic nemá, nebo pokud získá 800 Uvažte tuto úlohu jako Markovův proces a napište jeho matici. 4. VÍCE MATICOVÉHO POČTU 83 Řešení. 1 a a a 0 0 0 0 0 0 0 b 0 0 0 0 0 b 0 0 0 0 0 b 1 , kde a = 19 37 a b = 18 37 . 3.15. Příklad. Uvažujme situaci z předchozího případu a předpokládejme, že prav- děpodobnost výhry i prohry je 1/2. Označme matici procesu A. Bez použití výpo- četního software určete A100 . Řešení. Hra skončí po třech sázkách. Jsou tedy všechny mocniny A, počínaje A3 shodné. 1 7/8 3/4 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/8 1/4 1/2 1 3.16. Sledovanost televizí. V jisté zemi vysílají jisté dvě televizní stanice. Z veřejného výzkumu vyplynulo, že po jednom roce přejde 1/6 diváků první stanice ke druhé stanici, 1/5 diváků druhé stanice přejde k první stanici. Popište časový vývoj počtu diváků sledujících dané stanice jako Markovův proces, napište jeho matici, nalezněte její vlastní čísla a vlastní vektory. Řešení. 5 6 1 5 1 6 4 5 . Matice má dominantní vlastní hodnotu 1, příslušný vlastní vektor je (6 5 , 1). Protože je vlastní hodnota dominantní, tak se poměr diváků se ustálí na poměru 6 : 5. 4. Více maticového počtu Na vcelku praktických příkladech jsme viděli, že porozumění vnitřní struktuře matic a jejim vlastnostem je silným nástrojem pro konkrétní výpočty nebo analýzy. Ještě více to platí pro efektivitu numerického počítání s maticemi. Proto se budeme zase chvíli věnovat abstraktní teorii. 2.44 3.17. Invariantní podprostory. Mějme nějaké lineární zobrazení f : V V na vektorovém prostoru V a předpokládejme, že pro nějaký podprostor W V platí f(W) W. Říkáme, že W je invariantní podprostor pro zobrazení f. Jestliže je V konečněrozměrné a vybereme nějakou bázi (u1, . . . , uk) podprostoru W, můžeme ji vždy doplnit na bázi (u1, . . . , un) celého V a v každé takové bázi má naše zobrazení matici A tvaru e2.3 (3.1) A = B C 0 D kde B je čtvercová matice dimenze k, D je čtvercová matice dimenze n - k a C je matice typu n/(n - k). Naopak, jestliže existuje v nějaké bázi matice zobrazení f tvaru (3.1), je W = u1, . . . , uk invariantní podprostor zobrazení f. 84 3. LINÁRNÍ MODELY Extrémní případy jsme viděli v odstavcích 2.39­2.43, kde jsme zkoumali vlastní vektory. Ke každému vlastnímu číslu zobrazení (resp. matice) existoval vlastní vek- tor a jím generovaný jednorozměrný podprostor je samozřejmě invariantní. V pří- padě existence n různých vlastních čísel zobrazení f jsme dostali rozklad V na přímý součet n vlastních podprostorů a v bazích z vlastních vektorů má naše zob- razení diagonální tvar s vlastními čísly na diagonále. Zároveň jsme viděli dva různé příklady důvodů, proč zobrazení diagonální matici mít nemusí. První souvisel s nilpotentními zobrazeními, druhý s rotacemi v dvourozměrných podprostorech. Nejsložitější a úplně obecný popis jsme potkali v odstavci 2.43, kde jsme pouze s mlhavým náznakem důkazu uvedli větu o Jordanově rozkladu. Ta říká, že nad algebraicky uzavřeným polem skalárů se celý prostor vždy rozloží na invariantní podprostory na kterých je zobrazení dáno tzv. Jordanovými bloky. Budeme teď pracovat se speciálními typy zobrazení, jejichž struktura je daleko jednodušší. První budou na řadě ortogonální zobrazení. 2.45 3.18. Rozklad ortogonálního zobrazení. Zkoumejme zobrazení na vektorovém prostoru V se skalárním součinem. Uvažme pevně zvolené ortogonální zobrazení f : V V s maticí A v nějaké ortonormální bázi a zkusme postupovat obdobně jako s rotací v příkladu 2.38. Nejprve se ale podívejme obecně na invariantní podprostory ortogonálních zob- razení a jejich ortogonální doplňky. Jestliže pro libovolný podprostor W V a ortogonální zobrazení f : V V platí f(W) W, pak také platí pro všechny v W , w W f(v), w = f(v), f f-1 (w) = v, f-1 (w) = 0 protože i f-1 (w) W. To ale znamená, že také f(W ) W . Dokázali jsme tedy jednoduché, ale velice důležité tvrzení: Tvrzení. Ortogonální doplněk k invariantnímu podprostoru je také invariantní. Kdyby byla vlastní čísla ortogonálního zobrazení reálná, zaručovalo by už toto tvrzení, že bude vždy existovat báze V z vlastních vektorů. Skutečně, zúžení f na ortogonální doplněk invariantního podprostoru je opět ortogonální zobrazení, takže můžeme do báze přibírat jeden vlastní vektor za druhým, až dostaneme celý rozklad V . Nicméně většinou nejsou vlastní čísla ortogonálních zorbazení reálná. Musíme si proto pomoci opět výletem do komplexníxh vektorových prostorů. Jestliže budeme považovat matici A za matici lineárního zobrazení na komplexním pro- storu Cn (která je jen shodou okolností reálná), budeme mít právě n kořenů charakteristického polynomu, včetně jejich algebraické násobnosti. Navíc, protože charakteristický polynom zob- razení bude mít výhradně reálné koeficienty, budou tyto kořeny buď reálné, nebo půjde o dvojice komplexně sdružených kořenů a . Příslušné vlastní vektory v Cn k takové dvojici vektorů budou také komplexně sdružené, protože budou řešením dvou komplexně sdružených systémů lineárních rovnic. Označme v, stejně jako v případě rotace v 2.38, vlastní vektor příslušný k vlastnímu číslu = + i, = 0. Reálný vektorový podprostor P generovaný reálnou a imaginární částí x = re v, y = im v je zjevně invariantní vůči násobení maticí A a dostáváme A x = x - y, A y = y + x. To ale neznamená nic jiného, než že zúžení našeho zobrazení na P je dáno složením rotace o argument vlastní honoty (úhel arccos 2+2 ) s násobením velikostí vlastní hodnoty (skalárem p 2 + 2). Protože naše zobrazení zachovává velikosti, musí být velikost vlastní hodnoty rovna jedné. 4. VÍCE MATICOVÉHO POČTU 85 Společně s předchozími úvahami jsme tedy dokázali úplný popis všech ortogonálních zob- razení: Věta. Nechť f : V V je ortogonální zobrazení na prostoru se skalárním sou- činem. Pak všechny kořeny charakteristického polynomu f mají velikost jedna a existuje rozklad V na jednorozměrné vlastní podprostory odpovídající vlastním čís- lům = 1 a dvourozměrné podprostory P,, na kterých působí f rotací o úhel rovný argumentu komplexního čísla . Všchny tyto různé podprostory jsou po dvou ortogonální. Příklad. Zkusme si předchozí větu na příkladu v dimenzi tři. Charakteristický polynom v tomto případě musí mít alespoň jeden reálný kořen, kterým musí být buď jednička nebo mínus jednička. Další dva musí být opět 1 nebo dva kom- plexně sdružené nereálné. V posledním případě zadává vlastní vektor odpovídající reálnému vlastnímu číslu osu rotace o argument vlastního čísla druhého. Pokud je reálné vlastní číslo -1, bude navíc ještě uplatněno zrcadlení podle roviny rotace. Uvažme tedy zobrazení s maticí ve standardní bázi f : R3 R3 , A = 0 0 1 0 1 0 -1 0 0 . Dostaneme polynom -3 + 2 - + 1 = -( - 1)(2 + 1) s kořeny 1 = 1, = i a = -i. Pochopitelně matice zadává rotaci o devadesát stupnů podle osy y. 2.46 3.19. Symetrická zobrazení. Uvažujme opět reálný vektorový prostor V se ska- lárním součinem. Zobrazení f : V V se nazývá symetrické, jestliže pro všechny vektory u, v V platí f(u), v = u, f(v) . V libovolné ortonormální bázi můžeme předchozí vztah v souřadnicích vyjádřit takto: (A x)T y = xT (A y) = xT (AT y). Volbou souřadnic bázových vektorů (tj. jedna jednička a zbytek nuly) se dostaneme ke vztahům aij = aji pro jednotlivé komponenty matice A, tzn. ke vztahu A = AT . Dokázali jsme tedy souřadný popis symetrických zobrazení: Tvrzení. Zobrazení f : V V na vektorovém prostoru se skalárním součinem je symetrické právě tehdy, když v některé (a pak už všech) ortonormální bázi má symetrickou matici. 3.15 3.20. Adjungovaná zobrazení. Jestliže zvolíme pevně jeden vektor v V , dosazování vektorů za druhý argument nám dává zobrazení V V = Hom(V, R) V v (w v, w R). Podmínka nedegenerovanosti skalárního součinu nám zaručuje, že toto zobrazení je bijekcí. Na první pohled je vidět, že vektory ortonormální báze jsou zobrazeny na formy tvořící bázi duální. Každé zobrazení f : V W mezi vektorovými prostory zadává tzv. duální zobrazení f : W V mezi formami, definované pro všechny w W , v V pomocí f (w )(v) = w (f(v)). 86 3. LINÁRNÍ MODELY V libovolných bazích na V a W a jejich duálních bazích na V a W pak tentýž definiční vztah má tvar (píšeme A pro matici zobrazení f , xT jsou souřadnice formy w , y jsou souřadnice vektoru v) (A xT ) y = xT (A y) a vidíme, že duální zobrazení má v duálních bazích transponovanou matici k maticí zobrazení původního. V případě vektorových prostorů se skalárním součinem, převádí výše uvedené bijekce duální zobrazení f na tobrazení f : W V zadané formulí f(u), v = u, f (v) a tomuto zobrazení se říká adjungované zobrazení k f. Předchozí výpočet v souřadnicích pro symetrická zobrazení nám ve skutečnosti sdělil, že je-li A matice zobrazení f v ortonormální bázi, pak matice adjungovaného zobrazení f je matice transponovaná AT . Můžeme proto také přeformulovat definici takto: Symetrické je takové zobrazení f : V V , které je rovno svému adjungovanému zobrazení f . Často se takovým zobrazením také proto říká samoadjungovaná. 2.47 3.21. Spektrální rozklad symetrického zobrazení. Uvažujme symetrické zob- razení f : V V s maticí A v nějaké ortonormální bázi a zkusme postupovat obdobně jako v 3.18. Opět se nejprve obecně podíváme na invariantní podprostory ortogonálních zobrazení a jejich ortogonální doplňky. Jestliže pro libovolný podpro- stor W V a symetrické zobrazení f : V V platí f(W) W, pak také platí pro všechny v W , w W f(v), w = v, f(w) = 0. To ale znamená, že také f(W ) W . Představme si dále, že A je matice symetrického zobrazení a A x = x pro nějaký komplexní vektor x Cn . Rozšíříme si definici skalárního součinu , na Cn vztahem x, y = xT y kde y je vektor v Cn s komplexně konjugovanými souřadnicemi. Zjevně platí i pro rozšířené zobrazení x A x vztah A x, y = x, A y a pro náš vlastní vektor x tedy dostáváme x, x = x, x . Kladným reálným číslem x, x můžeme krátit a proto musí být = , tj. vlastní čísla jsou skutečně reálná. Komplexních kořenů má charakteristický polynom det(A - E) tolik, kolik je dimenze čtvercové matice A, a všechny jsou ve skutečnosti reálné. Dokázali jsme tak důležitý obecný výsledek: Tvrzení. Ortogonální doplněk k invariantnímu podprostoru pro symetrické zob- razení je také invariantní. Navíc jsou všechna vlastní čísla symetrické matice A reálná. Ze samotné definice je zřejmé, že zúžení symetrického zobrazení na invariantní podprostor je opět symetrické. Předchozí tvrzení nám tedy zaručuje, že bude vždy existovat báze V z vlastních vektorů. Skutečně, zúžení f na ortogonální doplněk invariantního podprostoru je opět ortogonální zobrazení, takže můžeme do báze přibírat jeden vlastní vektor za druhým, až dostaneme celý rozklad V . Vlastní 4. VÍCE MATICOVÉHO POČTU 87 vektory příslušející různým vlastním číslům jsou navíc kolmé, protože z rovností f(u) = u, f(v) = v vyplývá u, v = f(u), v = u, f(v) = u, v . Obvykle se náš výsledek formuluje pomocí projekcí na vlastní podprostory. O projektoru P : V V říkáme, že je kolmý, je-li Im P Ker P. Dva kolmé projektory P, Q jsou vzájemně kolmé, je-li Im P ImQ. 3.17 3.22. Věta. Pro každé symetrické zobrazení f : V V na vektorovém prostoru se skalárním součinem existuje ortonormální báze z vlastních vektorů. Jsou-li 1, . . . , k všechna různá vlastní čísla f a P1, . . . , Pk příslušné kolmé a navzájem kolmé pro- jektory na vlastní podprostory, pak f = 1P1 + + kPk. Poznámka. Všechna zobrazení, pro která lze najít ortonormální bázi jako v této větě o spektrálním rozkladu se nazývají normální. Lze poměrně snadno ukázat, že zobrazení f : V V je normální právě, když komutuje se svým adjungovaným zobrazením. Stopa zobrazení f f je rovna součtu absolutních hodnot kvadrátů všech prvků A. V bázi z předchozí věty je tento výraz ovšem roven součtu kvadrátů absolutních hodnot všech vlastních čísel i matice A. Rovnost X i,j |aij|2 = X i |i|2 v některé a pak už ve všech ortonormálních bazích je nutnou a dostatečnou podmínkou pro to, aby zobrazení f bylo normální. Důkaz nebudeme uvádět. 2.48 3.23. Nezáporná zobrazení a odmocniny. Nezáporná reálná čísla jsou právě ta, která umíme psát jako druhé mocniny. Zobecnění takového chování pro matice a zobrazení lze vidět u součinů B = AT A (tj. složení zobrazení f f): B x, x = AT A x, x = A x, A x 0 pro všechny vektory x. Navíc zjevně BT = (AT A)T = AT A = B. Symetrickým maticím B s takovou vlastností říkáme nezáporné a pokud nastane nulová hodnota pouze pro x = 0, pak jim říkáme kladné. Obdobně hovoříme o kladných a nezáporných zobrazeních f : V V . Pro každé nezáporné zobrazení f : V V umíme najít jeho odmocninu, tj. zobrazení g takové, že g g = f. Nejjednodušeji to uvidíme v ortonormální bázi, ve které bude mít f diagonální matici. Taková podle našich předchozích úvah vždy existuje a matice A zobrazení f v ní bude mít na diagonále nezáporná reálná vlastní čísla zobrazení f. Kdyby totiž bylo některé z nich záporné, nebyla by splněna pod- mínka nezápornosti již pro některý z bázových vektorů. Pak ovšem stačí definovat zobrazení g pomocí matice B s odmocninami příslušných vlastních čísel na diago- nále. 88 3. LINÁRNÍ MODELY 5. Rozklady matic a pseudoinverze I při počítání s reálnými čísly užíváme pro zjednodušení rozklady na sou- činy. Nejjednodušším je vyjádření každého reálného čísla jednoznačně ve tvaru a = sgn(a)|a|, tj. jako součin znaménka a abolutní hodnoty. V dalším textu si uve- deme stručně přehled několika takových rozkladů pro různé typy matic, které bývají nesmírně užitečné při numerických výpočtech s maticemi. Ve skutečnosti jsme pří- slušný rozklad pro nezáporné symetrické matice využili v předchoyím odstavci pro konstrukci odmocniny z matice. Začneme přeformulováním několika výsledků, které jsme už dávno odvodili. V odstavcích 2.7 a 2.8 jsme upravovali matice nad skaláry z libovolného pole na řád- kový schodovitý tvar. K tomu jsme používali elementární úpravy, které spočívaly v postupném násobení naší matice invertibilními dolními trojúhelníkovými maticemi Pi, které postihovaly přičítání násobků řádků pod právě zpravovávaným. Předpo- kládejme pro jednoduchost, že naše matice A je čtvercová a že má všechny hlavní minory nenulové. Pak se nemůže stát, že bychom potřebovali při Gausově elimi- naci přehazovat řádky a všechny naše matice Pi mohou být dolní trojúhelníkové s jedničkami na diagonálách (nikdy nepotřebujeme přehaovat řádky). Konečně, stačí si povšimnout, že inverzní matice k takovýmto Pi jsou opět dolní trojúhelníkové s jedničkami na diagonálách a dostáváme U = P A = Pk P1 A kde U je horní trojúhelníková matice a tedy A = L U kde L je dolní trojúhelníková matice s jedničkami na diagonále a U je horní trojú- helníková. Tomuto rozkladu se říká LU­rozklad matice A. V případě obecné matice můžeme při Gausově eliminaci na řádkově schodovitý tvar potřebovat navíc per- mutace řádků, někdy i sloupců matice. Pak dostáváme obecněji A = P L U Q, kde P a Q jsou nějaké permutační matice. Přímým důsledkem Gausovy eliminace bylo také zjištění, že až na volbu vhod- ných bází na definičním oboru a oboru hodnot je každé zobrazení f : V W zadáno maticí v blokově diagonálním tvaru s jednotkovou maticí s rozměrem da- ným dimenzí obrazu f nulovými bloky všude kolem. To lze přeformulovat takto: Každou matici A typu m/n nad polem skalárů K lze rozložit na součin A = P E 0 0 0 Q. Pro čtvercové matice jsme v 2.44 ukázali při diskusi vlastností lineárních zob- razení f : V V na komplexních vektorových prostorech, že každou čtvercovou matici A dimenze m umíme rozložit na součin A = P B P-1 kde B je blokově diagonální s Jordanovými bloky příslušnými k vlastním číslům na diagonále. Všimněme si, že násobení maticí P a její inverzí z opačných stran odpovídá v tomto přípaě právě změně báze na vektorovém prostoru V . Obdobně, pro symetrické matice jsme dokázali, že jdou rozložit na součin A = P B PT , 5. ROZKLADY MATIC A PSEUDOINVERZE 89 kde B je diagonální matice se všemi (vždy reálnými) vlastními čísly na diagonále, včetně násobností. Zde jde také o součin s maticemi vystihující změnu báze, nicméně připouštíme nyní pouze změny mezi mezi ortonormálními bazemi a proto i matice přechodu P musí být ortogonální. Odtud P-1 = PT . Pro ortogonální zobrazení jsme odvodili obdobné vyjádření jako u symetric- kých, pouze naše B bude blokově diagonální s bloky rozměru dva nebo jedna vyja- dřujícími buď rotaci nebo zrcadlení nebo identitu vzhledem k příslušným podpro- storům. 2.50 3.24. Věta o singulárním rozkladu. Jestliže se omezíme na ortonormální báze, ale chceme znát více informací o struktuře obecných lineárních zobrazení, musíme postupovat o hodně rafinovaněji, než v případě bazí libovolných: Věta. Nechť A je reálná matice typu m/n. Pak existují čtvercové ortogonální ma- tice U a V dimenzí m a n, a reálná diagonální matice s nezápornými prvky D dimenze r, r min{m, n}, takové, že A = USV T , S = D 0 0 0 , kde r je hodnost matice AAT . Přitom je S určena jednoznačně až na pořadí prvků a prvky diagonální matice D jsou druhé odmocniny vlastních čísel di matice AAT . Důkaz. Předpokládejme nejprve m n a označme : Rn Rm zobrazení zadané maticí A ve standardních bazích. Máme vlastně ukázat, že existují ortonormální báze na Rn a Rm ve kterých bude mít matici S z tvrzení věty. Jak jsme viděli výše, matice AT A je pozitivně semidefinitní. Proto má samá reálná nezáporná vlastní čísla a existuje ortonormální báze w v Rn , ve které má příslušné zobrazení diagonální matici s vlastními čísly na diagonále. Jinými slovy, existuje ortogonální matice V taková, že AT A = V BV T pro reálnou diagonální matici s nezápornými vlastními čísly (d1, d2, . . . , dr, 0, . . . , 0) na diagonále, di = 0 pro všechny i = 1, . . . , r. Odtud B = V T AT AV = (AV )T (AV ). To je ale je ekvivalentní tvrzení, že prvních r sloupců matice AV je ortogonálních a zbývající jsou nulové, protože mají nulovou velikost. Označme prvních r sloupců v1, . . . , vr Rm . Tzn. vi, vi = di, i = 1, . . . , r a tedy vektory ui = 1 di vi tvoří ortonormální systém nenulových vektorů. Doplňme je na ortonormální bázi u1, . . . , un celého Rm . Vyjádříme-li zobrazení v bazích w na Rn a u na Rm , dostáváme matici B. Přechody od standardních bází k nově vybraným odpovídají násobení zleva ortogonálními maticemi U a zprava V -1 = V T . Pokud je m > n, můžeme aplikovat předchozí část důkazu na matici AT . Odtud pak přímo plyne požadované tvrzení. Tento důkaz věty o singulárním rozkladu je konstruktivní a můžeme jej opravdu použít pro výpočet ortogonálních matic U, V a diagonálních nenulových prvků matice S. 2.51 3.25. Geometrická interpretace singulárního rozkladu. Diagonálním hod- notám matice D z předchozí věty se říká singulární hodnoty matice A. Pro příslušné zobrazení : Rn Rm mají jednoduchý geometrický význam: Nechť K Rn je jednotková sféra pro standardní skalární součin. Obrazem (K) pak vždy bude (pří- padně degenerovaný) m-rozměrný elipsoid. Singulární čísla matice A jsou přitom velikosti hlavních poloos a věta navíc říká, že původní sféra vždy připouští orto- gonální sdružené průměry, jejichž obrazem budou právě všechny poloosy tohoto elipsoidu. Pro čtvercové matice je vidět, že A je invertibilní právě, když všechna singulární čísla jsou nenulová. Poměr největšího a nejmenšího singulárního čísla je důležitým 90 3. LINÁRNÍ MODELY parametrem pro robustnost řady numerických výpočtů s maticemi, např. pro vý- počet inverzní matice. 2.52 3.26. Věta o polárním rozkladu. Uvažujme společně nad důsledky věty o singulárním rozkladu. Plyne z ní A = USWT s diagonální S s nezápornými reálnými čísly na diagonále a ortogonálními U, W. Pak A = USUT UWT a můžeme přímo definovat P := USUT , V := UWT . Odtud ale vyplývá, že P symetrická a pozitivně semidefinitní zatímco V je ortogonální. Navíc AT = WSUT a tedy AAT = USSUT = P2 . Předpokládejme, že A = PV = QU jsou dva takové rozklady a A je invertibilní. Pak ovšem je AAT = PV V T P = P2 = QUUT Q = Q2 positivně definitní a proto jsou matice Q = P = AAT jednoznačně určené a invertibilní. Pak také U = V = P-1 A. Odvodili jsme tedy velice užitečnou analogii rozkladu reálného čísla na znaménko (ortogonální matice v případě dimenze jedna jsou právě 1) a absolutní hodnotu (matice P, ke které umíme odmocninu) Věta. Každou čtvercovou reálnou matici A dimenze n lze vždy vyjádřit ve tvaru A = P V , kde P je symetrická a positivně definitní čtvercová matice téže dimenze a V je ortogonální. Přitom P = AAT . Je-li A invertibilní, je rozklad jednoznačný a V = ( AAT )-1 A. Když budeme tutéž větu aplikovat na AT místo A, dostaneme tentýž výsledek, ovšem s obráceným pořadím symetrických a ortogonálních matic. Matice v příslušných pravých a levých rozkladech budou samozřejmě obecně různé. 2.53 3.27. Poznámka. V tomto textu se bohužel z nedostatku prostoru vyhýbáme komplexním maticím. Ve skutečnosti jsou pro všechny koncepty a pojmy zavedené kolem skalárních součinů také přímočaré komplexní analogie a obvyklejší postup v literatuře je, že se z výsledků pro tzv. unitární prostory, hermiteovská zobra- zení, samoadjungovaná zobrazení apod. odvozují i výsledky reálné. Například věta o spektrálním rozkladu pak pracuje s maticí s pozitivně definitní samoadjungo- vanou maticí P, která opět hraje roli absolutní hodnoty čísla, zatímco unitární matice V je analogií argumentu komplexního čísla (tj. komplexní jednotky, která se také rozkládá na součet + i se samoadjungovanými , , které navíc splňují 2 + 2 = idV ). Přitom ale nyní není jedno v jakém pořadí samoadjungované a unitární matice chceme násobit. Umíme v obou, vyjdou ale pokaždé jiné. Pro řadu aplikací bývá rychlejší použití tzv. QR rozkladu: 2.54 3.28. Věta. Pro každou reálnou matici A typu m/n existuje ortogonální matice Q a horní trojúhelníková matice R takové, že A = QT R. Důkaz. V geometrické formulaci potřebujeme dokázat, že pro každé zobrazení : Rn Rm s maticí A v standardních bazích můžeme zvolit novou bázi na Rm tak, aby potom mělo horní trojúhelníkovou matici. Uvažme obrazy (e1), . . . , (en) Rm vektorů standardní báze, vyberme z nich maximální lineárně nezávislý systém v1, . . . , vk takovým způsobem, že vypouš- těné závislé vektory jsou vždy lineární kombinací předchozích vektorů, a doplňme jej do báze v1, . . . , vm. Nechť u1, . . . , um je ortonormální báze vzniklá Gramm- Schmidtovou ortogonalizací tohoto systému vektorů. Nyní pro každé ei je (ei) buď jedno z vj, j i, nebo je lineární kombinací v1, . . . , vi-1, proto ve vyjádření (ei) v bázi u vystupují pouze vektory u1, . . . , ui. Zobrazení má proto ve stan- dardní bázi na Rn a ortonormální bázi u na Rm horní trojúhelníkovou matici R. Přechod k bázi u na Rm odpovídá násobení ortogonální maticí Q, tj. R = QA, ekvivalentně A = QT R. 5. ROZKLADY MATIC A PSEUDOINVERZE 91 Závěrem této části textu si všimněme mimořádně užitečné a důležité aplikace našich výsledků pro přibližné numerické výpočty. Opět uvádíme pro jednoduchost pouze reálnou variantu, obdobně platí a dokazuje se i varianta komplexní. 2.55 3.29. Definice. Nechť A je reálná matice typu m/n a nechťA = USV T je její singulární rozklad, S = D 0 0 0 . Matici A(-1) := V S UT s S = D-1 0 0 0 nazýváme pseudoinverzní matice k matici A. Jak ukazuje následující věta, je pseudoinverze důležité zobecnění pojmu inverzní matice. 2.56 3.30. Věta. Nechť A je reálná matice typu m/n. Platí (1) Je-li A invertibilní (zejména tedy čtvercová), pak A(-1) = A-1 . (2) pro pseudoinverzi A(-1) platí, že A(-1) A i AA(-1) jsou symetrické a AA(-1) A = A, A(-1) AA(-1) = A(-1) . (3) Uvažme pro danou matici A systém lineárních rovnic Ax = b, b Rm . Pak y = A(-1) b Rn minimalizuje vzdálenost Ax - b pro všechny x Rn . Důkaz. (1): Je-li A invertibilní, pak i S = UT AV je invertibilní a přímo z definice je S = S-1 . Odtud A(-1) A = AA(-1) = E. (2): Přímým výpočtem dostáváme SS S = S a S SS = S , proto AA(-1) A = USV T V S UT USV T = USS SV T = USV T = A a analogicky pro druhou rovnost. Dále (AA(-1) )T = (USS UT )T = U(S )T ST UT = U(SS )T UT = USS UT = AA(-1) a podobně se ukáže (A(-1) A)T = A(-1) A. (3): Uvažme zobrazení : Rn Rm , x Ax, a přímé součty Kn = (Ker ) Ker , Rm = im (im ) . Zúžené zobrazení ~ := |(Ker ) : (Ker ) Im je lineární isomorfismus. Zvolíme-li vhodně ortonormální báze na (Ker ) a Im a doplníme je na ortonormální báze na celých prostorech, bude mít matici S a ~ matici D z věty o singulárním rozkladu. Pro dané b Rm je bod z im minimalizující vzdálenost b - z (tj. realizující vzdálenost od podprostoru (b, Im )) právě komponenta z = b1 rozkladu b = b1 + b2, b1 Im , b2 (Im ) . Přitom ale ve zvolené bázi je zobrazení (-1) , původně zadané ve standardních bazích pseudoinverzí A(-1) , dáno maticí S z věty o singulárním rozkladu, zejména je (-1) (Im ) = (Ker ) a D-1 maticí zúžení (-1) | Im a (-1) |(Im ) je nulové. Je tedy skutečně (-1) (b) = ((-1) (z)) = z a důkaz je ukončen. Lze také ukázat, že matice A(-1) minimalizuje výraz AA(-1) - E 2 (tj. sumu kvadrátů všech prvků uvedené matice). 92 3. LINÁRNÍ MODELY 2.57 3.31. Lineární regrese. Aproximační vlastnost (3) předchozí věty je velice uži- tečná v případech, kdy máme najít co nejlepší přiblížení (neexistujícího) řešení přeurčeného systému Ax = b, kde A je reálná matice typu m/n a m je větší než n. Např. máme experimentem dáno mnoho naměřených hodnot bj a chceme najít lineární kombinaci několika funkcí fi, která bude co nejlépe aproximovat hodnoty bj. Skutečné hodnoty zvolených funkcí v bodech yj R zadají matici aij = fi(yj) a na- ším úkolem je tedy určit koeficienty xj R tak, aby m i=1(bi -( n j=1 xjaij))2 byla minimální. Jinými slovy, hledáme lineární kombinaci funkcí fi takovou, abychom "dobře" proložili zadané hodnoty bi. Díky předchozí větě jsou hledané optimální koeficienty A(-1) b. Abychom měli konkrétnější představu, uvažujme pouze dvě funkce f1(x) = x, f2(x) = x2 a předpokládejme, že ,,naměřené hodnoty jejich neznámé kombinace g(x) = y1x + y2x2 v celočíselných hodnotách pro x mezi 1 a 10 jsou bT = (1.44 10.64 4.48 14.56 31.12 39.20 54.88 71.28 85.92 104.16). Tento vektor vzniknul výpočtem hodnot x + x2 v daných bodech posunutých o náhodné hodnoty v rozmezí 8. Matice B = (bij) je tedy v našem případě rovna BT = 1 2 3 4 5 6 7 8 9 10 1 4 9 16 25 36 49 64 91 100 a y = B(-1) b = (0.61, 0.99). Výsledné proložení je možné dobře vidět na obrázku, kde zeleně jsou proloženy zadané hodnoty b lomenou čarou, zatímco červený je graf příslušné kombinace g. Výpočty byly provedeny v systému Maple pomocí příkazu leastsqrs(B,b). 6420 100 80 60 x 40 20 10 0 8 5. ROZKLADY MATIC A PSEUDOINVERZE 93 Pokud jste spřáteleni s Maplem (nebo jiným podobným souftwarem), zkuste si zaexperimentovat s podobnými úlohami. KAPITOLA 4 Analytická geometrie poloha, incidence, projekce? ­ a zase skončíme u matic... 1. Afinní geometrie Vrátíme se teď k úlohám elementární geometrie z podobného pohledu, jako když jsme zkoumali polohy bodů v rovině v 5. části první kapitoly, viz 1.40. Moti- vací k abstraktní definici vektorového prostoru nám byly množiny řešení systémů lineárních diferenciálních rovnic s nulovou pravou stranou, kde součty i skalární ná- sobky řešení byly opět řešeními, ,,dimenzi celého prostoru řešení ale určoval rozdíl mezi počtem proměnných a počtem nezávislých rovnic. Taková dimenze bývá vý- razně menší než počet proměnných a už proto není ideální pracovat s vektory jen jako s n­ticemi skalárů. Když jsme pak zkoumali aplikace obecné teorie na sys- témy rovnic v první části předchozí kapitoly, zjistili jsme v ostavci 3.1, že všechna řešení nehomogenních systémů rovnic sice netvoří vektorové podprostory, vždy ale vznikají tak, že k jednomu jedinému řešení přičteme celý vektorový prostor řešení příslušné homogenní soustavy. Naopak, rozdíl dvou řešení nehomogenní soustavy je vždy řešením homogenní. Obdobně se chovají lineární difereční rovnice, viz 3.6. Návod na teoretické uchopení takové situace jsme viděli už při diskusi geo- metrie roviny, viz odstavec 1.41 a dále. Tam jsme totiž popisovali přímky a body jako množiny řešení systémů lineárních rovnic. Přímka pro nás pak byla ,,jedno- rozměrným prostorem, přestože její body byly popisovány dvěmi souřadnicemi. Prametricky jsme ji zadávali tak, že k jednomu bodu (tj. dvojici souřadnic) jsme přičítali násobky pevně zvoleného směrového vektoru. Stejně budeme postupovat i teď v libovolné dimenzi. 2.58 4.1. Afinní prostory. Standarní afinní prostor An je množina všech bodů v Rn spolu s operací, kterou k bodu A = (a1, . . . , an) An a vektoru v = (v1, . . . , vn) Rn přiřadíme bod A + v = (a1 + v1, . . . , an + vn) Rn . Tyto operace splňují následující tři vlastnosti: (1) A + 0 = A pro všechny body A P a nulový vektor 0 V (2) A + (v + w) = (A + v) + w pro všechny vektory v, w V , A P (3) pro každé dva body A, B P existuje právě jeden vektor v P takový, že A + v = B. Značíme jej B - A, někdy také AB. Vektorový prostor Rn nazýváme zaměření afinního prostoru An. Všimněme si několika formálních nebezpečí: Používáme stejný symbol ,,+ pro dvě různé operace: přičtení vektoru ze zaměření k bodu v afinním prostoru, ale také sčítání vektorů v zaměření Rn . Také nezavádíme zvláštní písmena pro samotnou 95 96 4. ANALYTICKÁ GEOMETRIE množinu bodů afinního prostoru, tj. An pro nás představuje jak samotnou množinu bodů, tak i celou strukturu definující afinní prostor. Proč vlastně chceme rozlišovat množinu bodů prostoru An od jeho zaměření V , když se jedná jakoby o stejné Rn ? Je to patrně podstatný formální krůček pro po- chopení geometrie v Rn : Geometrické objekty jako jsou přímky, body, roviny apod. nejsou totiž přímo závislé na vektorové struktuře na množině Rn a už vůbec ne na tom, že pracujeme s n­ticemi skalárů. Musíme ale mít možnost říci, co je to ,,rovně v daném směru . K tomu právě potřebujeme na jedné straně vnímat třeba rovinu jako neohraničenou desku bez zvolených souřadnic, ale s možností posunout se o zadaný vektor. Když přejdeme navíc k takovému abstraktnímu pohledu, budeme umět diskutovat ,,rovinnou geometrii pro dvourozměrné podprostory, tj. roviny ve vícerozměrných prostorech, ,,prostorovou pro třírozměrné atd., aniž bychom museli přímo manipulovat k-ticemi souřadnic. Definice. Afinním prostorem A se zaměřením V rozumíme množinu bodů P, spolu se zobrazením P ×V P, (A, v) A+v, splňující vlastnosti (1)­(3). Pro libovolný pevně zvolený vektor v V je tak definována translace v : A A jako zúžené zobrazení v : P P × {v} P, A A + v. Dimenzí afinního prostoru A rozumíme dimenzi jeho zaměření. Nadále nebudeme rozlišovat A a P v označení. Z axiomů okamžitě plyne pro libovolné body A, B, C v afinním prostoru A A - A = 0 V(4) B - A = -(A - B)(5) (B - A) + (C - B) = (C - A).(6) (Dokažte si podrobně formálně sami!) Všimněme si, že volba jednoho pevného bodu A0 A nám určuje bijekci mezi V a A. Při volbě pevné báze u ve V tak dostáváme pro každý bod A A jednoznačné vyjádření A = A0 + x1u1 + + xnun. Hovoříme o afinní soustavě souřadnic (A0; u1, . . . , un) zadané počátkem afinní sou- řadné soustavy A0 a bazí zaměření u. Hovoříme také o afinním repéru (A0, u). Slovy můžeme shrnout situaci takto: Afinní souřadnice bodu A v soustavě (A0, u) jsou souřadnicemi vektoru A - A0 v bázi u zaměření V . Volba afinního souřadného systému ztotožňuje n-rozměrný afinní prostor A se standardním afinním prostorem An. 2.59 4.2. Afinní podprostory. Jestliže si vybereme v A jen body, které budou mít některé předem vybrané souřadnice nulové (třeba poslední jednu). Dostaneme opět množinu, která se bude chovat jako afinní prostor. Takto budeme skutečně para- metricky popisovat tzv. afinní podprostory ve smyslu následující definice. Definice. Neprázdná podmnožina Q A afinního prostoru A se zaměřením V se nazývá afinní podprostor v A, je-li podmnožina W = {B - A; A, B Q} V vektorovým podprostorem a pro libovolné A Q, v W je A + v Q. Skutečně je rozumné mít obě podmínky v definici, protože je snadné najít příklady podmnožin, které budou splňovat první, ale nikoliv druhou. Přemýšlejte např. o přímce v rovině s vyjmutým jedním bodem. 1. AFINNÍ GEOMETRIE 97 Pro libovolnou množinu bodů M A v afinním prostoru se zaměřením V definujeme vektorový podprostor Z(M) = {B - A; B, A M} V. Zejména je V = Z(A) a každý afinní podprostor Q A splňuje sám axiomy afinního prostoru se zaměřením Z(Q). Přímo z definic je zřejmé, že průnik libovolné množiny afinních podprostorů je buď opět afinní podprostor nebo prázdná množina. Afinní podprostor M v A generovaný neprázdnou podmnožinou M A je průnikem všech afinních podprostorů, které obsahují všechny body podmnožiny M. Přímo z definic plyne, že pro kterýkoliv bod A0 M je M = {A0 + v; v Z(M) Z(A)}, tj. pro generování afinního podprostoru vezmeme vektorový pod- prostor Z(M) v zaměření generovaný všemi rozdíly bodů z M a ten pak přičteme k libovolnému z nich. Hovoříme také o afinním obalu množiny bodů M v A. Naopak, kdykoliv zvolíme podprostor U v zaměření Z(A) a jeden pevný bod A A, pak podmnožina A + U vzniklá všemi možnými součty bodů A s vektory v U je afinní podprostor. Takový postup vede k pojmu parametrizace podprostorů: Nechť Q = A + Z(Q) je afinní podprostor v An a (u1, . . . , uk) je báze Z(Q) Rn . Pak vyjádření podprostoru Q = {A + t1u1 + + tkuk; t1, . . . , tk R} nazýváme parametrický popis podprostoru Q. Jeho zadání systémem rovnic v da- ných souřadnicích je implicitní popis podprostoru Q. 2.60 4.3. Příklady afinních prostorů. (1) Jednorozměrný (standardní) afinní pro- stor je množina všech bodů reálné přímky A1. Její zaměření je jednorozměrný vektorový prostor R (a nosná množina také R). Afinní souřadnice dostaneme vol- bou počátku a měřítka (tj. báze ve vektorovém prostoru R). Všechny vlastní afinní podprostory jsou 0-rozměrné, jsou to právě všechny body reálné přímky R. (2) Dvourozměrný (standardní) afinní prostor je množina všech bodů prostoru A2 se zaměřením R2 . (Nosnou množinou je R2 .) Afinní souřadnice dostaneme volbou počátku a dvou nezávislých vektorů (směrů a měřítek). Vlastní afinní podprostory jsou pak všechny body a přímky v rovině (0-rozměrné a 1-rozměrné). Přímky při- tom jednoznačně zadáme jejich jedním bodem a jedním generátorem zaměření (tzv. parametrický popis přímky). (3) Trojrozměrný (standardní) afinní prostor je množina všech bodů prostoru A3 se zaměřením R3 . Afinní souřadnice dostaneme volbou počátku a tří nezávislých vek- torů (směrů a měřítek). Vlastní afinní podprostory jsou pak všechny body, přímky a roviny (0-rozměrné, 1-rozměrné a 2-rozměrné). (4) Podprostor všech řešení jedné lineární rovnice a x = b pro neznámý bod (x1, . . . , xn) An, známý nenulový vektor koeficientů (a1, . . . , an) a skalár b R je afinní podprostor dimenze n-1 (říkáme také, že je kodimenze 1), tj. tzv. nadrovina v An. Poslední příklad je zvláštním případem následující obecné věty popisující geo- metrickou podstatu systémů lineárních rovnic. 2.61 4.4. Věta. Nechť (A0; u) je afinní souřadný systém v n-rozměrném afinním pro- storu A. Afinní podprostory dimenze k v A, vyjádřené v daných souřadnicích, jsou právě množiny řešení řešitelných systémů n-k lineárně nezávislých lineárních rov- nic v n proměnných. 98 4. ANALYTICKÁ GEOMETRIE Důkaz. Uvažujme libovolný řešitelný systém n-k lineárně nezávislých rovnic i(x) = bi, bi R, i = 1, . . . , n - k. Je-li A = (a1, . . . , an)T Rn libovolné pevně zvolené řešení tohoto (nehomogenního) systému rovnic a je-li U Rn vektorový podprostor všech řešení zhomogenizovaného systému i(x) = 0, pak dimenze U je k a podmnožina všech řešení daného systému je tvaru {B; B = A+(y1, . . . , yn)T , y = (y1 . . . , yn)T U} Rn , viz. 3.1. Příslušný afinní podprostor je tím popsán para- metricky ve výchozích souřadnicích (A0; u). Naopak, uvažme libovolný afinní podprostor Q An a zvolme nějaký jeho bod B za počátek afinního souřadného systému (B, v) pro afinní prosotr A. Protože Q = B + Z(Q), potřebujeme popsat zaměření podprostoru Q jako podprostor řešení homogenního systému rovnic. Zvolme tedy bázi v na Z(A) tak, aby prvních k vektorů tvořilo bázi Z(Q). Pak v těchto souřadnicích jsou vektory v Z(Q) dány rovnostmi j(v) = 0, j = k + 1, . . . , n, kde i jsou lineární formy z tzv. duální báze k v, tj. funkce přiřazení jednotlivých souřadnic v naší bázi v. Náš vektorový podprostor Z(Q) dimenze k v n-rozměrném Rn je tedy skutečně dán jako řešení homogenního systému n-k nezávislých rovnic. Popis zvoleného afin- ního podprostoru ve vybraném souřadném systému (A0; u) je proto dán systémem homogenních lineárních rovnic. Zbývá nám se vypořádat důsledky přechodu z původního zadaného souřadného systému (A; u) do našeho přizpůsobeného (B; v). Z obecné úvahy o transformacích souřadnic v následujícím odstavci vyplyne, že výsledný popis podprostoru bude opět pomocí systému rovnic, tentokrát ale už obecně nehomogenních. 2.62 4.5. Transformace souřadnic. Dvě libovolně zvolené afinní soustavy souřadnic (A0, u), (B0, v) se obecně liší posunutím počátku o vektor (B0 - A0) a jinou bazí zaměření. Transformační rovnice tedy vyčteme ze vztahu pro obecný bod X A X = B0 + x1v1 + + xnvn = B0 + (A0 - B0) + x1u1 + + xnun. Označme y = (y1, . . . , yn)T sloupec souřadnic vektoru (A0 - B0) v bázi v a M = (aij) buď matice vyjadřující bázi u prostřednictvím báze v. Potom x1 = y1 + a11x1 + + a1nxn ... xn = yn + an1x1 + + annxn tj. maticově x = y + M x. Jako příklad si můžeme spočítat dopad takové změny báze na vyjádření řešení systémů rovnic. Nechť v souřadnicích (A0; u) má systém rovnic tvar S x = b s maticí systému S. Pak S x = S M-1 (y + M x) - S M-1 y = b. Proto v nových výše uvažovaných souřadnicích (B0; v) bude mít náš systém rovnic tvar (S M-1 ) x = b = b + (S M-1 ) y. To plně dokončuje důkaz předchozí věty. 1. AFINNÍ GEOMETRIE 99 2.63 4.6. Afinní kombinace bodů. Nechť A0, . . . , Ak jsou body v afinním prostoru A. Jejich afinní obal {A0 . . . , Ak} můžeme zapsat jako {A0 + t1(A1 - A0) + + tk(Ak - A0); t1, . . . , tk R} a v libovolných afinních souřadnicích (tj. Ai je vyjádřen sloupcem skalárů) můžeme tutéž množinu zapsat jako A0, . . . , Ak = {t0A0 + t1A1 + + tkAk; ti R, k i=0 ti = 1}. Obecně výrazy t0A0 + t1A1 + + tkAk s koeficienty splňujícícmi k i=0 ti = 1 rozumíme body A0 + k i=1 ti(Ai - A0) a nazýváme je afinní kombinace bodů. Body A0 . . . , Ak jsou v obecné poloze, jestliže generují k-rozměný podprostor. Z našich definic je vidět, že to nastane právě, když pro kterýkoliv z nich platí, že vektory vzniklé pomocí rozdílů tohoto pevného s ostatními jsou lineárně nezávislé. Všimněme si také, že zadání posloupnosti dim A bodů v obecné poloze je ekviva- lentní zadání afinního repéru s středem v prvním z nich. Afinní kombinace je obdobná konstrukce pro body afinního prostoru jako byla lineární kombinace pro vektorové prostory. Skutečně, afinní podprostor generovaný body A0 . . . , Ak je roven množině všech afinních kombinací svých generátorů. Mů- žeme však nyní dobře zobecnit i pojem ,,mezi dvěma body na přímce . V dvojroz- měrném případě tomu odopovídá vnitřek trojúhelníku. Obecně budeme postupovat takto: Nechť A0, . . . , Ak je k+1 bodů afinního prostoru A v obecné poloze. k­rozměrný simplex = (A0, . . . , Ak) generovaný těmito body je definován jako množina všech afinních kombinací bodů Ai s pouze nezápornými koeficienty, tzn. = {t0A0 + t1A1 + + tkAk; ti [0, 1] R, k i=0 ti = 1}. Jednorozměrný simplex je úsečka, dvourozměrný trojúhelník. Zadání podprostoru jako množiny afinních kombinací bodů v obecné poloze je ekvivalentní parametrickému popisu. Obdobně pracujeme s parametrickými popisy simplexů. 2.64 4.7. Konvexní množiny. Podmnožina M afinního prostoru se nazývá konvexní, jestliže s každými svými dvěma body A, B obsahuje i celou úsečku (A, B). Přímo z definice je vidět, že každá konvexní množina obsahuje s každými k + 1 body v obecné poloze i celý jimi definovaný simplex. Konvexními množinami jsou např. (1) prázdná podmnožina (2) afinní podprostory (3) úsečky, polopřímky p = {P + t v; t 0}, obecněji k­ rozměrné poloprostory = {P + t1 v1 + + tk vk; t1, . . . , tk R, tk 0}, úhly v dvojrozměrných podprostorech = {P + t1 v1 + t2 v2; t1 0, t2 0}, atd. Přímo z definice také plyne, že průnik libovolného systému konvexních množin je opět konvexní. Průnik všech konvexních množin obsahujících danou množinu M nazýváme konvexní obal K(M) množiny M. 100 4. ANALYTICKÁ GEOMETRIE Věta. Konvexní obal libovolné podmnožiny M A je K(M) = {t1A1 + + tsAs; s i=1 ti = 1, ti 0} Důkaz. Označme S množinu všech afinních kombinací na pravé straně dokazo- vané rovnosti. Nejprve ověříme, že je S konvexní. Zvolme tedy dvě sady parametrů ti, i = 1, .., s1, tj, j = 1, . . . , s2 s požadovanými vlastnosti. Bez újmy na obecnosti můžeme předpokládat, že s1 = s2 a že v obou kombinacích vystupují stejné body z M (jinak prostě přidáme sčítance s nulovými koeficienty). Uvažme libovolný bod úsečky zadané takto získanými body: (t1A1 + + tsAs) + (1 - )(t1A1 + + tsAs), 0 1. Zřejmě jsou opět všechny v S. Zbývá ukázat, že konvexní obal bodů A1, . . . , As nemůže být menší než S. Samotné body Ai odpovídají volbě parametrů tj = 0 pro všechny j = i a ti = 1. Předpokládejme, že tvrzení platí pro všechny množiny s nejvýše s - 1 body. To znamená, že konvexní obal bodů A1, . . . , As-1 je (podle předpokladu) tvořen právě těmi kombinacemi z pravé strany dokazované rovnosti, kde ts = 0. Uvažme nyní libovolný bod A = t1A1 + + tsAs S, ts = 1, a afinní kombinace (t1A1 + + ts-1As-1) + (1 - (1 - ts))As, 0 1 1-ts . Jde o úsečku s krajními body určenými parametry = 0 (bod As) a = 1/(1 - ts) (bod v konvexním obalu bodů A1, . . . , As-1). Bod A je vnitřním bodem této úsečky s parametrem = 1. Konvexní obaly konečných množin bodů se nazývají konvexní mnohostěny. Jsou-li definující body A0, . . . , Ak konvexního mnohostěnu v obecné poloze, do- stáváme právě k-rozměrný simplex. V případě simplexu je vyjádření jeho bodů ve tvaru afinní kombinace definujících vrcholů jednoznačné. Jiným příkladem jsou konvexní podmnožiny generované jedním bodem a ko- nečně mnoha vektory: Nechť u1, . . . , uk, jsou libovolné vektory v zaměření Rn , A An je libovolný bod. Rovnoběžnostěn Pk(A; u1, . . . , uk) An je množina Pk(A; u1, . . . , uk) = {A + c1u1 + + ckuk; 0 ci 1, i = 1, . . . , k}. Jsou-li vektory u1, . . . , uk nezávislé, hovoříme o k-rozměrném rovnoběžnostěnu Pk(A; u1, . . . , uk) An. Z definice je zřejmé, že rovnoběžnostěny jsou konvexní. Ve skutečnosti jde o konvexní obaly jejich vrcholů. 2.65 4.8. Příklady standardních afinních úloh. (1) K podprostoru zadanému im- plicitně nalézt parametrický popis a naopak: Nalezením partikulárního řešení nehomogenního systému a fundamentálního řešení zhomogenizovaného systému rovnic získáme (v souřadnicích, ve kterých byly rovnice zadány) právě hledaný parametrický popis. Naopak, zapíšeme-li paramet- rický popis v souřadnicích, můžeme volné parametry t1, . . . , tk vyeliminovat a zís- káme právě rovnice zadávající daný podprostor implicitně. (2) Nalézt podprostor generovaný několika podprostory Q1, . . . , Qs (obecně různých dimenzí, např. v R3 nalézt rovinu danou bodem a přímkou, třemi body apod.) a zadat jej implicitně či parametricky: 1. AFINNÍ GEOMETRIE 101 Výsledný podprostor Q je vždy určen jedním pevně zvoleným bodem Ai v každém z nich a součtem všech zaměření. Např. Q = A1 + (Z({A1, . . . , Ak}) + Z(Q1) + + Z(Qs)). Pokud jsou podprostory zadány implicitně, je možné je nejdříve převést na para- metrický tvar. V konkrétních situacích býají funkční i jiné postupy. Všimněme si, že obecně je skutečně nutné využít jednoho bodu z každého podprostoru. Např. dvě paralelní přímky v rovině vygenerují celou rovinu, ale sdílí totéž jednorozměrné zaměření. (3) Nalézt průnik podprostorů Q1, . . . , Qs: Pokud jsou zadány v implicitním tvaru, stačí sjednotit všechny rovnice do jed- noho systému (a případně vynechat lineárně závislé). Pokud je vzniklý systém ne- řešitelný, je průnik prázdný. V opačném případě získáme implicitní popis afinního podprostoru, který je hledaným průnikem. Pokud máme dány parametrické tvary, můžeme také hledat přímo společné body jako řešení vhodných rovnic, podobně jako při hledání průniků vektorových podprostorů. Získáme tak přímo opět parametrický popis. Pokud je podprostorů více než dva, musíme průnik hledat postupně. Máme-li jeden prostor zadaný parametricky a ostatní implicitně, stačí dosadit parametrizované souřadnice a řešit výsledný systém rovnic. (4) Nalezení příčky mimoběžek p, q v A3 procházející daným bodem nebo mající předem daný směr (tj. zaměření): Příčkou rozumíme přímku, která má neprázdný průnik s oběmi mimoběžkami. Vý- sledná příčka r tedy bude jednorozměrným afinním podprostorem. Pokud máme za- dán jeho bod A r, pak afinní podprostor generovaný p a A je buď přímka (A p) nebo rovina (A / p). V prvém případě máme nekonečně mnoho řešení, jedno pro každý bod z q, v druhém stačí najít průnik B roviny p A s q a r = {A, B} . Pokud je průnik prázdný, úloha nemá řešení, v případě že q p A , máme opět nekonečně mnoho řešení, a pokud je průnik jednoprvkový, dostáváme právě jedno řešení. Máme-li místo bodu dán směr u Rn , tj. zaměření r, pak uvažujeme opět podprostor Q generovaný p a zaměřením Z(p) + u Rn . Opět, pokud q Q, máme nekonečně mnoho řešení, jinak uvážíme průnik Q s q a úlohu dokončíme stejně jako v předchozím případě. Řešení mnoha dalších standardních geometrických úloh spočívá v používání výše uvedených kroků. 4.9. Příklad. Uvádíme několik příkladů s výsledky. 4.9.1. 1. Parametricky vyjádřete průnik následujících rovin v R3 : : 2x + 3y - z + 1 = 0 a : x - 2y + 5 = 0. Řešení. Přímka (2t, t, 7t) + [-5, 0, -9]. 4.9.2. 2. Najděte příčku přímek (úsečku, jejíž jeden koncový bod leží na jedné z přímek, druhý pak na druhé z nich) p : [1, 1, 1] + t(2, 1, 0), q : [2, 2, 0] + t(1, 1, 1), takovou, že přímka jí určená prochází bodem [1, 0, 0]. 102 4. ANALYTICKÁ GEOMETRIE Řešení. Hledaný bod v q najdeme jako průnik přímky q s rovinou [1, 1, 1] + t(2, 1, 0) + s(0, 1, 1). Jde o úsečku s krajními body [5, 5, 3] q, [7/3, 5/3, 1] p. 4.9.3. 3. Určete osu mimoběžek p : [3, 0, 3] + (0, 1, 2)t q : [0, -1, -2] + (1, 2, 3)t. Řešení. Úsečka ([2, 3, 4], [3, 1, 5]). 4.9.4. 4. Nalezněte osu mimoběžek p : [1, 1, 1] + t(2, 1, 0), q : [2, 2, 0] + t(1, 1, 1). Řešení. [3, 2, 1][8/3, 8/3, 2/3]. 4.9.5. 5. Určete patu kolmice spuštěné z bodu [0, 0, 7] na rovinu : [0, 5, 3] + (1, 2, 1)t + (-2, 1, 1)s. Řešení. (-1, 3, 2). 4.9.6. 6. Zjistěte, zda leží body [0, 2, 1], [-1, 2, 0], [-2, 5, 2] a [0, 5, 4] z R3 v jedné rovině. Řešení. Libovolná dvojice zadaných bodů z afinního prostoru R3 určuje vektor (viz definice afinního prostoru; jeho souřadnice jsou dány po složkách rozdíly souřadnic daných dvou bodů). To, že dané čtyři body leží v rovině je ekvivalentní tomu, že jsou tři vektory dané jedním vybraným bodem a vždy jedním ze tří zbylých lineárně závislé. Vybereme např. bod [0, 2, 1] (na výběru nezáleží), pak uvažujeme vektory [0, 2, 1] - [-1, 2, 0] = (1, 0, 1), [0, 2, 1] - [-2, 5, 2] = (2, -3, -1) a [0, 2, 1] - [0, 5, 4] = (0, -3, -3). Vidíme, že součet dvojnásobku prvního vektoru a třetího vektoru je roven druhému vektoru, vektory jsou tedy lineárně závislé (jinak má taky matice, jejíž řádky jsou tvořeny souřadnicemi daných vektorů, hodnost nižší než tři; v tomto případě se tedy jedná o matici 1 0 1 2 -3 -1 0 -3 -3 , která má hodnost dva). Dané body tedy leží v rovině. 4.9.7. 7. Na kolik částí mohou dělit prostor (R3 ) tři roviny? Pro každou možnost popište odpovídající případ. Řešení. 2, 3, 4, 6, 7, 8. Polohy rovin, které realizují dané počty si rozmyslete samostatně. 4.9.8. 8. Rozhodněte, zda leží bod [2, 1, 0] uvnitř konvexního obalu bodů [0, 2, 1], [1, 0, 1], [3, -2, -1], [-1, 0, 1]. 1. AFINNÍ GEOMETRIE 103 Řešení. Sestavíme nehomogenní lin. soustavu, pro koeficienty t1, t2, t3, t4, afinní kombinace daných bodů, která dává první bod (jsou určeny jednozačně, pokud dané body neleží v rovině). 0 1 3 -1 2 0 -2 0 1 1 -1 1 1 1 1 1 t1 t2 t3 t4 = 2 1 0 1 . Poslední rovnice udává, že jde o afinní kombinaci. Jejím řešením dostáváme (t1, t2, t3, t4) = (1, 0, 1/2, -1/2), nejedná se tedy o konvexní kombinaci. (nelze odvodit pomocí pro- jekcí na jednotlivé osy). 4.9.9. 9. Určete odchylku rovin : [1, 0, 2] + (1, -1, 1)t + (0, 1, -2)s : [3, 3, 3] + (1, -2, 0)t + (0, 1, 1)s Řešení. Průsečnice má směrový vektor (1, -1, 1), kolmá rovina na ni má pak s da- nými rovinami průniky generované vektory (1, 0, -1) a (0, 1, 1). Tyto jednorozměrné podprostory svírají úhel 60 . 4.9.10. 10. Je dán rovnoběžník [0, 0, 1], [2, 1, 1], [3, 3, 1], [1, 2, 1]. Určete bod X na přímce p : [0, 0, 1] + (1, 1, 1)t tak, aby rovnoběžnostěn určený daným rovnoběžníkem a bodem X měl objem 1. Řešení. Sestavíme determinant udávající objem rovnoběžnostěnu při pohyblivém bodu X: t t t 2 1 0 1 2 0 . Podmínka, že má být roven jedné dává t = 1/3. 4.9.11. 11. Je dána krychle ABCDA B C D (ve standardním označení, tj. ABCD a A B C D jsou stěny, AA pak hrana). Určete odchylku vektorů AB a AD . Řešení. Uvažujme krychli o hraně 1 a umístěme ji v R3 tak, že bod A bude mít ve standardní bázi souřadnice [0, 0, 0], bod B pak souřadnice [1, 0, 0] a bod C souřadnice [1, 1, 0]. Potom má bod B souřadnice [1, 0, 1] a bod D souřadnice [0, 1, 1]. Pro vyšetřované vektory tedy můžeme psát AB = B - A = [1, 0, 1] - [0, 0, 0] = (1, 0, 1), AD = D - A = [0, 1, 1] - [0, 0, 0] = (0, 1, 1). Podle definice odchylky těchto vektorů je pak cos() = (1, 0, 1) (0, 1, 1) (1, 0, 1) (0, 1, 1) = 1 2 , tedy = 60 . 104 4. ANALYTICKÁ GEOMETRIE 2.66 4.10. Afinní zobrazení. Zobrazení f : A B mezi afinními prostory nazýváme afinní zobrazení, jestliže existuje lineání zobrazení : Z(A) Z(B) takové, že pro všechny A A, v Z(A) platí f(A + v) = f(A) + (v). Zobrazení f a jsou jednoznačně zadána touto vlastnostní a libovolně zvolenými obrazy (dim A + 1) bodů v obecné poloze. Pro libovolnou afinní kombinaci bodů t0A0 + + tsAs A pak dostaneme f(t0A0 + + tsAs) = f(A0) + t1(A1 - A0) + + ts(As - A0) = t0f(A0) + t1f(A1) + + tsf(As). Naopak, pokud pro nějaké zobrazení platí, že zachovává afinní kombinace, mů- žeme číst předchozí výpočet v opačném pořadí a zjistíme, se jedná o afinní zobrazení. Ekvivalentně lze tedy definovat afinní zobrazení jako ta, která zachovávají afinní kombinace bodů. Volbou afinních souřadnic (A0, u) na A a (B0, v) na B dostáváme souřadné vyjádření afinního zobrazení f : A B. Přímo z definice je zřejmé, že stačí vyjádřit obraz počátku souřadnic v A v souřadnicích na B, tj. vyjádřit vektor f(A0) - B0 v bázi v a vše ostatní je pak určeno násobením maticí zobrazení ve zvolených bazích a přičtením výsledku. 4.11. Příklad. Napište matici B afinního zobrazení f daného ve standardní bázi v R2 jako f(x1, x2) = 2 1 0 1 x1 x2 + 1 1 souřadné soustavě dané bází u = {(1, 1), (-1, 1)} a počátkem [2, 0]. Řešení. Matice přechodu od dané báze u ke standardní bázi k je 1 -1 1 1 . Matici zobrazení v bázi ([2, 0], u) získáme tak, že nejprve transformujeme sou- řadnice priklané v bázi ([2, 0], u) na souřadnice ve standardní bázi, tedy v bázi ([0, 0], (1, 0), (0, 1)), poté aplikujeme matici zobrazení f ve standardní bázi a na závěr výsledek transformujeme zpět do souřadnic v bázi ([2, 0], u). Transformační rovnice přechodu od suouřadnic y1, y2 v bázi ([2, 0], u) k souřadnicím x1, x2 v standardní bázi jsou x1 x2 = 1 -1 1 1 y1 y2 + 2 0 . Odtud máme, že y1 y2 = 1 -1 1 1 -1 x1 x2 - 2 0 . = 1 2 1 2 -1 2 1 2 x1 x2 + -1 1 . Pro matici zobrazení pak dostáváme B = 1 2 1 2 -1 2 1 2 2 1 0 1 1 -1 1 1 + 2 0 + 1 1 + -1 1 = 2 0 -1 1 + 2 -1 2. EUKLIDOVSKÁ GEOMETRIE 105 4.12. Příklad. 4.12.1. Mejme dánu standardní souřadnou soustavu v trojrozměrném Eukleidov- ském prostoru. Agent K sídlí v bodě S o souřadnicích [0, 1, 2] a ústředí mu přidělilo pro používání souřadnou soustavu s počátkem S a bází {(1, 1, 0), (-1, 0, 1), (0, 1, 2)}. Agent Sokol bydlí domě D na kótě [1, 1, 1] a používá souřadnou soustavu s bází {(0, 0, 1), (-1, 1, 2), (1, 0, 1)}. Agent K žádá Sokola o schůzku v cihelně, která leží podle jeho souřadné soustavy v bodě [1, 1, 0]. Kam má přijít Sokol (podle jeho sou- řadnic)? Řešení. Matice přechodu od báze agenta K k Sokolově bázi (při stejných počátcích) je T = -4 2 -1 1 0 1 2 -1 1 Vektor (0, 1, 2) má tedy souřadnice T (0, 1, 2)T = (0, 2, 1)T , posunutím počátku (přičteme vektor (-1, 0, 1)) dostáváme výsledek (-1, 2, 2). 2. Euklidovská geometrie Na minulé kapitole jsme vytvořili východisko pro elementární geometrii a nepo- třebovali jsme k tomu pojem vzdálenosti nebo velikosti. Ve skutečnosti jsme pojem velikosti vektorů a odchylku vektorů zavedli na konci třetí kapitoly této části. Ně- kolikrát jsme také nejen v geometrii roviny se vzdálenostmi pracovali, viz třeba optimalizační výsledek o neřešitelných systémech lineárních rovnic a pseudoinverz- ních maticích ve Větě 3.30. Asi proto dobře tušíme, jak se s problémem vypořádat: 4.13. Definice. Standardní bodový euklidovský prostor En je afinní prostor An, jehož zaměřením je standardní euklidovský prostor Rn se skalárním součinem x, z = xT y. Kartézská souřadná soustava je afinní souřadná soustava (A0; u) s ortonormální bazí u. Vzdálenost bodů A, B En definujeme jako velikost vektoru B - A , budeme ji značit (A, B). Euklidovské podprostory v En jsou afinní podprostory jejichž zaměření uvažujeme spolu se zúženými skalárními součiny. Bodovým euklidovským prostorem E pak obecně rozumíme afinní prostor, jehož zaměření je euklidovský vektorový prostor. Pojem kartézské souřadné soustavy má opět jasný smysl. Každá volba takové souřadné soustavy ovšem zadává ztotožnění E se standardním prostorem En. Proto se budeme v dalším, bez újmy na obecnosti, zabývat hlavně standardními euklidovskými prostory a jejich podprostory. Opět si napřed uvedeme několik jednoduchých tvrzení o euklidovských prosto- rech. K jejich formulaci i důkazům se ale musíme zamyslet nad standardními vztahy mezi velikostmi vektorů, které podobně jako v rovinné geometrii platí obecně: 4.12 4.14. Věta. Pro každé vektory u a v, které leží v reálném vektorovém prostoru V se skalárním součinem, platí (1) u+v u + v (trojúhelníková nerovnost). Přitom rovnost nastane právě, když jsou u a v lineárně závislé. 106 4. ANALYTICKÁ GEOMETRIE (2) |u v| u v (Cauchyova nerovnost). Přitom rovnost nastane právě, když jsou u a v lineárně závislé. (3) pro každý ortonormální systém vektorů (e1, . . . , ek) platí u 2 |u e1|2 + + |u ek|2 (Besselova nerovnost). (4) Pro ortonormální systém vektorů (e1, . . . , ek) je u e1, . . . , ek právě když u 2 = |u e1|2 + + |u ek|2 (Parsevalova rovnost). (5) Pro ortonormální systém vektorů (e1, . . . , ek) a u V je vektor w = (u e1)e1 + + (u ek)ek jediným vektorem, který minimalizuje velikost u-v pro všechny v e1, . . . , ek . Důkaz. Všechny důkazy spočívají v podstatě v přímých výpočtech: (2): Definujme vektor w := u - uv vv v, tzn. w v a počítejme 0 w 2 = u 2 - (u v) v 2 (u v) - u v v 2 (v u) + (u v)(u v) v 4 v 2 0 w 2 v 2 = u 2 v 2 - 2(u v)(u v) + (u v)(u v) Odtud již přímo plyne, že u 2 v 2 |u v|2 a rovnost nastane právě tehdy, když w = 0, tj. když jsou u a v lineárně závislé. (1): Opět stačí počítat u + v 2 = u 2 + v 2 + u v + v u = u 2 + v 2 + 2u v u 2 + v 2 + 2|u v| u 2 + v 2 + 2 u v = ( u + v )2 Protože se přitom jedná o kladná reálná čísla, je opravdu u+v u + v . Navíc, při rovnosti musí nastat rovnost ve všech předchozích nerovnostech, to však je ekvivalentní podmínce, že u a v jsou lineárně závislé (podle předchozí části důkazu). (3), (4): Nechť (e1, . . . , ek) je ortonormální systém vektorů. Doplníme jej do orto- normální báze (e1, . . . , en). Pak je pro každý vektor u V u 2 = n i=1 (u ei)(u ei) = n i=1 |u ei|2 k i=1 |u ei|2 . To je ale právě dokazovaná Besselova nerovnost. Přitom rovnost může nastat právě tehdy, když u ei = 0 pro všechny i > k, a to dokazuje Parsevalovu rovnost. (5): Zvolme libovolný v e1, . . . , ek a doplňme daný ortonormální systém na ortonormální bázi (e1, . . . , en). Nechť (u1, . . . , un) a (x1, . . . , xk, 0, . . . , 0) jsou po řadě souřadnice u a v v této bázi. Pak u - v 2 = |u1 - x1|2 + + |uk - xk|2 + |uk+1|2 + + |un|2 a tento výraz je zjevně minimalizován při volbě x1 = u1, . . . , xk = uk. Nyní již dostáváme jednoduché důsledky pro euklidovskou geometrii: 4.13 4.15. Věta. Pro body A, B, C En platí (1) (A, B) = (B, A) (2) (A, B) = 0 právě, když A = B (3) (A, B) + (B, C) (A, C) 2. EUKLIDOVSKÁ GEOMETRIE 107 (4) V každé kartézké souřadné soustavě (A0; e) mají body A = A0 + a1e1 + + anen, B = A0 + b1e1 + + bnen vzdálenost n i=1(ai - bi)2. (5) Je­li dán bod A a podprostor Q v En, pak existuje bod P Q minimalizující vzdálenosti bodů Q od A. Vzdálenost bodů A a P je rovna velikosti kolmého průmětu vektoru A - B do Z(Q) pro libovolný B Q. (6) Obecněji, pro podprostory R a Q v En existují bod P Q a Q R minimalizu- jící vzdálenosti bodů B Q a A R. Vzdálenost bodů Q a P je rovna velikosti kolmého průmětu vektoru A-B do Z(Q) pro libovolné body B Q a A R. Důkaz. První tři vlastnosti vyplývají přímo z vlastností velikosti vektorů v prostorech se skalárním součinem, čtvrtá plyne přímo z vyjádření skalárního součinu v libovolné ortonormální bázi. Podívejme se na vztah pro minimalizaci vzdleností (A, B) pro B Q. Vektor A - B se jednoznačně rozkládá na A - B = u1 + u2, u1 Z(Q), u2 Z(Q) . Přitom u2 nezávisí na volbě B Q, P = A + (-u2) = B + u1 Q a A - B 2 = u1 2 + u2 2 u2 2 = A - P . Odtud již vyplývá, že infima je skutečně dosaženo, a to pro bod P. Vypočtená vzdálenost je skutečně u2 . Obecný výsledek se dokáže zcela obdobně. 4.16. Vzdálenost přímek. Určete vzdálenost přímek v R3 . p : [1, -1, 0] + t(-1, 2, 3), a q : [2, 5, -1] + t(-1, -2, 1). Řešení. Vzdálenost je dána jako velikost kolmého průmětu libovolné příčky (spoj- nice) daných přímek do ortogonálního doplňku vektorového podprostoru genero- vaného jejich zaměřeními. Tento ortogonální doplňek zjistíme například pomocí vektorového součinu: (-1, 2, 3), (-1, -2, 1) = (-1, 2, 3) × (-1, -2, 1) = (8, -2, 4) = (4, -1, 2) . Spojnicí daných přímek je například úsečka [1, -1, 0][2, 5, -1], promítneme tedy vektor [1, -1, 0] - [2, 5, -1] = (-1, -6, 1). Pro vzdálenost přímek pak dostáváme: (p, q) = |(-1, -6, 1) (4, -1, 2)| (4, -1, 2) = 4 21 . Stejně jako vzdálenost, i řada dalších geometrických pojmů jako odchylky, ori- entace, objem apod. je v bodových prostorech En zaváděna prostřednictvím vhod- ných pojmů ve vektorových euklidovských prostorech. Proto se nyní budeme chvíli věnovat opět reálným unitárním prostorům. Začneme s diskusí velikosti úhlů. Z Cauchyovy nerovnosti plyne 0 |uv| u v 1, má tedy smysl následující definice. 4.15 4.17. Definice. Odchylka (u, v) vektorů u, v V v reálném vektorovém prostoru se skalárním součinem je dána vztahem cos (u, v) = u v u v , 0 (u, v) 2. 108 4. ANALYTICKÁ GEOMETRIE Jak jsme viděli, v rovině R2 pro (obvyklou) odchylku vektorů na jednotkové kružnici u = (1, 0), v = (cos , sin ) skutečně platí cos = uv u v . Protože od- chylka je nezávislá na velikostech vektorů, platí stejný vztah i pro vektory u = (x1, 0), v = (a cos , a sin ). Protože vhodnou rotací dosáhneme toho, že jeden z dvojice vektorů má tvar (x1, 0), platí náš vztah zcela obecně v rovině. Ve víceroz- měrných prostorech je odchylka dvou vektorů vždy měřena v rovině, kterou tyto vektory generují (nebo je nula), jistě tedy náš definiční vztah odpovídá zvyklostem ve všech dimenzích. V libovolném reálném vektorovém prostoru se skalárním součinem přímo z de- finic plyne u - v 2 = u 2 + v 2 - 2(u v) = u 2 + v 2 - 2 u v cos (u, v). To je tzv. kosinová věta. Dále platí pro každou ortonormální bázi e a u V vztah u 2 = i |u ei|2 , tj. 1 = i (cos (u, ei))2 , což je obvyklé tvrzení o směrových kosinech (u, ei) vektoru u. Z definice odchylek vektorů nyní můžeme dovodit rozumné definice pro obecné podprostory v každém euklidovském vektorovém prostoru. 4.16 4.18. Definice. Nechť U1, U2 jsou podprostory v euklidovském prostoru V . Od- chylka podprostorů U1, U2 je reálné číslo = (U1, U2) [0, 2 ] splňující: (1) Je-li dim U1 = dim U2 = 1, U1 = u , U2 = v , pak cos = |u.v| u v . (2) Jsou-li dimenze U1, U2 kladné a U1 U2 = {0}, pak je odchylka minimem všech odchylek jednorozměrných podprostorů = min{( u , v ); 0 = u U1, 0 = v U2}. Ukážeme v zápětí, že takové minimum skutečně vždy existuje. (3) Je-li U1 U2 nebo U2 U1 (zejména je-li jeden z nich nulový), je = 0. (4) Je-li U1 U2 = {0} a U1 = U1 U2 = U2, pak = (U1 (U1 U2) , U2 (U1 U2) ). Odchylka podprostorů Q1, Q2 v bodovém euklidovském prostoru En se definuje jako odchylka jejich zaměření Z(Q1), Z(Q2). Všimněme si, že odchylka je vždy dobře definována, zejména v posledním pří- padě je (U1 (U1 U2) ) (U2 (U1 U2) ) = {0} můžeme tedy opravdu odchylku určit podle bodu (2). Všimněme si také, že v pří- padě U1 U2 = {0}, jsou U1 a U2 kolmé podle našich dřívějších definic právě, když jejich odchylka je /2. Pokud však mají netriviální průnik, nemohou být kolmé v dřívějším smyslu. Ke korektosti definice zbývá ukázat, že ve skutečnosti vždy existují vektory u U1, v U2, pro které nabývá výraz pro odchylku požadovaného minima. Nejdříve speciální případ: 2. EUKLIDOVSKÁ GEOMETRIE 109 4.19. Lemma. Nechť v je vektor v euklidovském prostoru V a U V libovolný podprostor. Označme v1 U, v2 U (jednoznačně určené) komponenty vektoru v, tj. v = v1 + v2. Pak pro odchylku podprostoru generovaného v od U platí cos ( v , U) = cos ( v , v1 ) = v1 v . Důkaz. Pro všechny u U platí |u v| u v = |u (v1 + v2)| u v = |u v1| u v u v1 u v = v1 v = v1 2 v v1 = |v1 v| v v1 . Odtud plyne cos ( v , u ) cos ( v , v1 ) = v1 v a protože funkce cos je na intervalu [0, 2 ] klesající, je tvrzení dokázané. 4.20. Výpočet odchylek. Uvažujme dva podprostory U1, U2 v euklidovském prostoru V , U1 U2 = {0} a zvolme pevně ortonormální báze e, a e tak, aby U1 = e1, . . . , ek , U2 = e1, . . . , el . Nechť je kolmý průmět na U2, jeho zúžení na U1 budeme opět značit : U1 U2. Zobrazení : U2 U1 nechť vznikne podobně z kolmého průmětu na U1. Tato zobrazení mají v bazích (e1, . . . , ek) a (e1, . . . , el) matice A = 0 B @ e1 e1 . . . ek e1 ... ... e1 el . . . ek el 1 C A , B = 0 B @ e1 e1 . . . el e1 ... ... e1 ek . . . el ek 1 C A Zejména platí B = AT . Složené zobrazení : U1 U1 má tedy symetrickou matici AT A. Viděli jsme, že každé takové zobrazení má pouze nezáporná reálná vlastní čísla a že má ve vhodné ortonormální bázi diagonální matici s těmito vlastními čísly na diagonále, viz 3.21­3.23. Nyní můžeme odvodit obecný postup pro výpočet odchylky = (U1, U2). Věta. V předchozím označení nechť je největší vlastní hodnota matice AT A. Pak cos2 = Důkaz. Nechť u U1 je vlastní vektor zobrazení příslušný největší vlastní hodnotě , 1, . . . , k nechť jsou všechna vlastní čísla (včetně násobnosti) a nechť u = (u1, . . . , un) je příslušná ortonormální báze U1 z vlastních vektorů. Můžeme přímo před- pokládat, že = 1, u = u1. Potřebujeme ukázat, že odchylka libovolného v U1 od U2 je nejméně tak velká jako odchylka u od U2. Tzn. že kosinus příslušného úhlu nesmí být větší. Podle předchozího lemmatu stačí diskutovat odchylku u a (u) U2 a přitom víme, že u = 1. Zvolme tedy v U1, v = a1u1 + + akuk, Pk i=1 a2 i = v 2 = 1. Pak (v) 2 = (v) (v) = (v) v (v) v = (v) . Předchozí lemma navíc dává i vzorec pro odchylku vektoru v od U2 cos = (v) v = (v) . 110 4. ANALYTICKÁ GEOMETRIE Protože jsme zvolili za 1 největší z vlastních hodnot, dostáváme (cos )2 = (v) 2 (v) = v u u t kX i=1 (iai)2 = = v u u t2 1 + kX i=1 a2 i (2 i - 2 1) q 2 1. Při v = u dostáváme ovšem přesně (v) 2 = 2 1 v 2 = 2 a tedy odchylka dosahuje pro tento vektor minimální možné hodnoty. Tím je věta dokázána. 4.21. Příklady standardních úloh. 1. Najděte vzdálenost bodu A En od pod- prostoru Q En: Viz. věta 4.15. 2. V E2 veďte bodem A přímku q svírající s danou přímkou p daný úhel: Najdeme vektor u R2 ležící v zaměření přímky q a zvolíme vektor v mající od u zadanou odchylku. Hledaná přímka je dána bodem A a zaměřením v . Úloha má dvě nebo jedno řešení. 3. Spočtěte patu kolmice vedené bodem na danou přímku: Viz. důkaz předposledního bodu věty 4.15. 4. V E3 určete vzdálenost dvou přímek p, q: Zvolíme libovolně jeden bod z každé přímky, A p, B q. Komponenta vektoru A - B v ortogonálním doplňku (Z(p) + Z(q)) má velikost rovnu vzdálenosti p a q. 5. V E3 najděte osu dvou mimoběžek p a q: Nechť je rovina generovaná jedním bodem A p a součtem Z(p) + (Z(p) + Z(q)) . Pak průnik q spolu se zaměřením (Z(p) + Z(q)) dávají parametrický popis hledané osy. (Prověřte, kolik má úloha obecně řešení!) 4.22. Příklad. Najděte průnik kolmé roviny spuštěné z bodu A = [1, 2, 3, 4] R4 na rovinu : [1, 0, 1, 0] + (1, 2, -1, -2)s + (1, 0, 0, 1)t, s, t R. Řešení. Nalezněme nejprve kolmou rovinu k . Její zaměření bude kolmé na zamě- ření , pro vektory (a, b, c, d) patřící do jejího zaměření dostáváme tedy soustavu rovnic (a, b, c, d) (1, 2, -1, -2) = 0 a + 2b - c - 2d = 0 (a, b, c, d) (1, 0, 0, 1) = 0 a + d = 0. Jejím řešením je dvojdimenzionální vektorový prostor (0, 1, 2, 0), (-1, 0, -3, 1) . Rovina kolmá k rovině procházející bodem A má tedy parametrické vyjádření : [1, 2, 3, 4] + (0, 1, 2, 0)u + (-1, 0, -3, 1)v, u, v R. Průnik rovin potom můžeme získat pomocí obou parametrických vyjádření. Pro parametry popisující průnik tedy dostáváme soustavu rovnic: 1 + s + t = 1 - v 2s = 2 + u 1 - s = 3 + 2u - 3v -2s + t = 4 + v, 2. EUKLIDOVSKÁ GEOMETRIE 111 která má jediné řešení (musí tomu tak být, protože sloupce matice soustavy jsou dány lineárně nezávislými vektory zaměření obou rovin) s = -8/19, t = 34/19, u = -54/19, v = -26/19. Dosazením hodnot parametrů s a t do parametrického vyjádření roviny pak dostaneme souřadnice průniku [45/19, -16/19, 11/19, 18/19] (stejný výsledek pochopitelně obdržíme, dosadíme-li hodnoty parametrů u a v do parametrického vyjádření roviny ). 4.23. Příklad. Bodem [1, 2] R2 veďte přímku, která má odchylku 30 od přímky p : [0, 1] + t(1, 1). Řešení. Odchylka dvou přímek je dána úhlem, který svírají jejich směrové vektory. Stačí tedy najít směrový vektor v hledané přímky. Ten získáme například rotací směrového vektoru přímky p o 30 . Matice rotace o 30 je cos 30 - sin 30 sin 30 cos 30 = 3 2 -1 2 1 2 3 2 . Hledaný vektor v je tedy v = 3 2 -1 2 1 2 3 2 1 1 = 3 2 - 1 2 3 2 + 1 2 . Rotovat jsme mohli i v opačném smyslu. Hledaná přímka (jedna ze dvou možných) má tedy parametrické vyjádření [1, 2] + ( 3 2 - 1 2 , 3 2 + 1 2 )t. 4.24. Příklad. 4.24.1. Určete cos , kde je odchylka dvou sousedních stěn pravidelného osmis- těnu (těleso, jehož stěny tvoří osm rovnostranných trojúhelníků). Řešení. Odchylky libovolných dvou sousedních stěn jsou ze symetrie osmistěnu shodné. Rovněž tak nezáleží na jeho velikosti. Uvažujme osmistěn s délkou hrany 1, který je umístěn do standardní kartézské souřadné soustavy v R3 tak, že jeho těžiště je v bodě [0, 0, 0]. Jeho vrcholy jsou pak v bodech A = [ 2 2 , 0, 0], B = [0, 2 2 , 0], C = [- 2 2 , 0, 0], D = [0, - 2 2 , 0], E = [0, 0, - 2 2 ] a F = [0, 0, 2 2 ]. Určeme odchylku stěn CDF a BCF. Ta je dána odchylkou vektorů kolmých na jejich průnik a ležících v daných stěnách, tedy vekorů kolmých na CF. Těmi jsou vektory dané výškami z bodů D, resp. F na stranu CF v trojúhelnících CDF, resp. BCF. Výšky v rovostranném trojúhelníku splývají s těžnicemi, jedná se tedy o úsečky SD a SB, kde S je střed strany CF. Protože známe souřadnice bodů C a F, má bod S souřadnice [- 2 4 , 0, 2 4 ] a pro vektory máme SD = ( 2 4 , - 2 2 , - 2 4 ) a SB = ( 2 4 , 2 2 , - 2 4 ). Celkem cos = ( 2 4 , - 2 2 , - 2 4 ) ( 2 4 , 2 2 , - 2 4 ) ( 2 4 , - 2 2 , - 2 4 ) ( 2 4 , 2 2 , - 2 4 ) = - 1 3 . Je tedy . = 132 . 112 4. ANALYTICKÁ GEOMETRIE 4.21 4.25. Počítání objemu. Orientovaný (bodový) euklidovský prostor je euklidov- ský bodový prostor, jehož zaměření je orientované. V dalším budeme uvažovat standardní En spolu s orientací zadanou standardní bazí Rn . Nechť u1, . . . , uk, jsou libovolné vektory v zaměření Rn , A En je libovolný bod. Rovnoběžnostěn Pk(A; u1, . . . , uk) En jsme definovali jako množinu Pk(A; u1, . . . , uk) = {A + c1u1 + + ckuk; 0 ci 1, i = 1, . . . , k}. Jsou-li vektory u1, . . . , uk nezávislé, hovořili jsme o k­rozměrném rovnoběžnostěnu Pk(A; u1 . . . , uk) En. Pro dané vektory u1, . . . , uk máme k dispozici také rovno- běžnostěny menších dimenzí P1(A; u1), . . . , Pk(A; u1, . . . , uk) v euklidovských podprostorech A + u1 , . . . , A + u1, . . . , uk . Jsou-li u1, . . . , uk lineárně závislé definujeme objem Vol Pk = 0. Pro nezávislé vektory pak platí u1, . . . , uk = u1, . . . , uk-1 ( u1, . . . , uk-1 u1, . . . , uk ). Navíc v tomto rozkladu se uk jednoznačně vyjádří jako uk = uk + ek, kde ek u1, . . . , uk-1 . Absolutní hodnotu objemu definujeme induktivně: | Vol |P1(A; u1) = u1 | Vol |Pk(A; u1, . . . , uk) = ek | Vol |P(A; u1, . . . , uk-1). Je-li u1, . . . , un báze kompatibilní s orientací V , definujeme (orientovaný) objem rovnoběžnostěnu Vol Pk(A; u1, . . . , un) = | Vol |Pk(A; u1, . . . , un), v opačném pří- padě klademe Vol Pk(A; u1, . . . , un) = -| Vol |Pk(A; u1, . . . , un). Věta. Nechť Q En je euklidovský podprostor a nechť (e1, . . . , ek) je jeho ortonor- mální báze. Pak pro libovolné vektory u1, . . . , uk Z(Q) a A Q platí (1) Vol Pk(A; u1, . . . , uk) = det u1 e1 . . . uk e1 ... ... u1 ek . . . uk ek (2) (Vol Pk(A; u1, . . . , uk))2 = det u1 u1 . . . uk u1 ... ... u1 uk . . . uk uk Důkaz. Matice A = 0 B @ u1 e1 . . . uk e1 ... ... u1 ek . . . uk ek 1 C A má ve sloupcích souřadnice vektorů u1, . . . , uk ve zvolené ortonormální bázi. Platí |A|2 = |A||A| = |AT ||A| = |AT A| = det 0 B @ u1 u1 . . . uk u1 ... ... u1 uk . . . uk uk 1 C A . Přímo z definice je neorientovaný objem roven součinu v1 v2 . . . vk , kde v1 = u1, v2 = u2 + a2 1v1, . . . , vk = uk + ak 1 v1 + + ak k-1vk-1 je výsledek Grammova-Schmidtova 2. EUKLIDOVSKÁ GEOMETRIE 113 ortogonalizačního procesu. Je tedy (Vol Pk(A; u1, . . . , uk))2 = det 0 B @ v1 v1 . . . vk v1 ... ... v1 vk . . . vk vk 1 C A = det 0 B @ v1 v1 0 . . . 0 ... ... 0 0 . . . vk vk 1 C A . Označme B matici jejíž sloupce jsou souřadnice vektorů v1, . . . , vk v bázi e. Protože v1, . . . , vk vznikly z u1, . . . , uk jako obrazy v lineární transformaci s horní trojúhelníkovou maticí C s jedničkami na diagonále, je B = CA a |B| = |C||A| = |A|. Pak ovšem |A|2 = |B|2 = |A||A|, proto Vol Pk(A; u1, . . . , uk) = |A|. Přitom pokud jsou vektory u1, . . . , uk závislé vyjde objem nulový, pokud jsou nezávislé, pak znaménko determinantu je kladné právě když je báze u1, . . . , uk kompatibilní s orientací danou bazí e. Determinant det u1 u1 . . . uk u1 ... ... u1 uk . . . uk uk se nazývá Grammův determinant k­tice vektorů u1, . . . , uk. V geometrické formu- laci dostáváme jako velice důžitý důsledek následující tvrzení: 4.26. Důsledek. Pro každé lineární zobrazení : V V euklidovského vekto- rového prostoru V je det roven (orientovanému) objemu obrazu rovnoběžnostěnu určeného vektory ortonormální báze. Obecněji, obraz rovnoběžnostěnu P určeného libovolnými dim V vektory má objem roven det ­násobku původního objemu. 4.27. Příklad. Jsou dány vektory u = (u1, u2, u3) a v = (v1, v2, v3). Doplňte je třetím jednotkovým vektorem tak, aby rovnoběžnostěn daný těmito třemi vektory měl co největší objem. Řešení. Označme hledaný jednotkový vektor jako t = (t1, t2, t3). Podle Tvrzení ?? je objem rovnoběžnostěnu P3(0; u, v, t) dán jako abolutní hodnota determinantu u1 v1 t1 u2 v2 t2 u3 v3 t3 = t1 t2 t3 u1 u2 u3 v1 v2 v3 = t (u × v) t u × v = u × v . Použité znaménko nerovnosti vyplývá z Cauchyovy nerovnosti, přičemž víme, že rovnost nastává právě pro t = c(u × v), c R. Velikost objemu hledaného rovno- běžnostěnu tedy může být maximálne rovna velikosti obsahu rovnoběžníka daného vektory u, v (tj. velikosti vektoru (u × v)). Rovnost nastane právě když t = (u × v) (u × v) . 114 4. ANALYTICKÁ GEOMETRIE 4.28. Vnější a vektorový součin vektorů. Předchozí úvahy úzce souvisí s tzv. vnějším tensorovým součinem vektorů. Nepůjdeme do této technicky poněkud ne- přehledné oblasti, ale zmíníme alespoňpřípad vnějšího součinu n = dim V vektorů u1, . . . , un V . Nechť (u1j, . . . , unj) jsou souřadná vyjádření vektorů uj v nějaké pevně zvolené ortonormální bázi V a M nechť je matice s prvky (uij). Pak determinant |M| nezá- visí na volbě báze a jeho hodnotu nazýváme vnějším součinem vektorů u1, . . . , un a značíme [u1, . . . , un]. Viz 4.25. Přímo z definice nyní vyplývají užitečné vlastnosti vnějšího součinu (1) Zobrazení (u1, . . . , un) [u1, . . . , un] je antisymetrické n­lineární zobrazení. Tzn., že je lineární ve všech argumentech a výměna dvou argumentů se vždy projeví změnou znaménka výsledku. (2) Vnější součin je nulový právě, když jsou vektory u1, . . . , un lineárně závislé (3) Vektory u1, . . . , un tvoří kladnou bázi právě, když je jejich vnější součin kladný. V R3 patrně již známe další významnou operaci, tzv. vektorový součin, který dvojici vektorů přiřazuje vektor třetí. Uvažme obecný euklidovský vektorový pro- stor V dimenze n 2 a vektory u1, . . . , un-1 V . Vektor v V nazveme vektorový součin vektorů u1, . . . , un-1, jestliže pro každý vektor w V platí v, w = [u1, . . . , un-1, w]. Značíme v = u1 × . . . un-1. V ortonormálních souřadnicích, kde v = (y1, . . . , yn)T , w = (x1, . . . , xn)T a uj = (u1j, . . . unj)T , předchozí vztah znamená y1x1 + + ynxn = u11 . . . u1(n-1) x1 ... ... ... un1 . . . un(n-1) xn Odtud vyplývá, že vektor v je tímto vztahem zadán jednoznačně a jeho souřadnice spočteme formálním rozvojem tohoto determinantu podle posledního sloupce. Věta. Pro vektorový součin v = u1 × . . . × un-1 platí (1) v u1, . . . , un-1 (2) v je nenulový vektor právě, když jsou vektory u1, . . . , un-1 lineárně nezávislé (3) velikost v vektorového součinu je rovna absolutní hodnotě objemu rovnoběž- níku P(0; u1, . . . , un-1) (4) (u1, . . . , un-1, v) je kladná báze orientovaného euklidovského prostoru V Důkaz. První tvrzení plyne přímo z definičního vztahu pro v, protože dosa- zením libovolného vektoru uj za w máme nalevo skalární součin v uj a napravo determinant s dvěma shodnými sloupci. Hodnost matice s n - 1 sloupci uj je dána maximální velikostí nenulového minoru. Minory, které zadávají souřadnice vektorového součinu jsou stupně n - 1 a tím je dokázáno tvrzení (2). Jsou-li vektory u1, . . . , un-1 závislé, pak platí i (3). Nechť jsou tedy nezávislé, v je jejich vektorový součin a zvolme libovolnou ortonormální bázi (e1, . . . , en-1) pro- storu u1, . . . , un-1 . Z již dokázáného vyplývá, že existuje nějaký násobek (1/)v, 0 = R, takový, že (e1, . . . , ek, (1/)v) je ortonormální báze celého V . Souřadnice našich vektorů v této bázi jsou uj = (u1j, . . . , u(n-1)j, 0)T , v = (0, . . . , 0, )T . 2. EUKLIDOVSKÁ GEOMETRIE 115 Proto je vnější součin [u1, . . . , un-1, v] roven (viz. definice vektorového součinu) [u1, . . . , un-1, v] = u11 . . . u1(n-1) 0 ... ... ... u(n-1)1 . . . u(n-1)(n-1) 0 0 . . . 0 = v, v = 2 . Rozvojem determinantu podle posledního sloupce zároveň obdržíme 2 = Vol P(0; u1, . . . , in-1). Odtud už vyplývají obě zbylá tvrzení věty. 4.29. Kvadratické formy. Závěrem zmíníme ještě pár poznámek o objektech v En zadaných kvadratickými rovnicemi, hovoříme o kvadrikách. Zvolme v En pevně kartézskou souřadnou soustavu (tj. bod a ortonormální bázi zaměření) a uvažme obecnou kvadratickou rovnici pro souřadnice (x1, . . . , xn) bodů A En n i,j=1 aijxixj + n i=1 2aixi + a = 0, aij = aji. Můžeme ji zapsat jako f(u) + g(u) + a = 0 pro kvadratickou formu f (tj. zúžení symetrické bilineární formy F na dvojice stejných argumentů), lineární formu g a skalár a R a předpokládáme že hodnost f je nenulová (jinak by se jednalo o lineární rovnici popisující euklidovský podprostor). Začněme s kvadratickou částí, tj. bilineární symetrickou formou f : Rn ×Rn R. Stejně dobře můžeme přemýšlet o obecné symetrické bilineární formě na libovol- ném vektorovém prostoru. Pro libovolnou bázi na tomto vektorovém prostoru bude hodnota f(x) na vektoru x = x1e1 + + xnen dána vztahem f(x) = F(x, x) = i,j xixjF(ei, ej) = xT A x kde A = (aij) je symetrická matice s prvky aij = F(ei, ej). Takovýmto zobrazením f říkáme kvadratické formy a výše uvedená formula pro hodnotu formy s použitím zvolených souřadnic se nazývá analytický tvar formy. Jestliže změníme bázi ei na jinou bázi e1, . . . , en, dostaneme pro stejný vektor jiné souřadnice x = S x a tedy f(x) = (S x )T A (S x ) = (x )T (ST A S) x . Předpokládejme opět, že je na našem vektorovém prostoru zadán skalární součin. Předchozí výpočet pak můžeme shrnout slovy, že matice bilineární formy F a tedy i kvadratické formy f se transformuje při změně souřadnic způsobem, který pro or- togonální změny souřadnic splývá s transformací matic zobrazení (skutečně, pak je S-1 = ST ). Tento výsledek můžeme intepretovat také jako následující pozorování: Tvrzení. Nechť V je reálný vektorový prostor se skalárním součinem. Pak vztah F, F(u, u) = (u), u zadává bijekci mezi symetrickými lineárními zobrazeními a kvadratickými formami na V . 116 4. ANALYTICKÁ GEOMETRIE 4.30. Euklidovská klasifikace kvadrik. Z poslední věty vyplývá okamžitý dů- sledek, že pro každou kvadratickou formu f existuje ortonormální báze zaměření, ve které má f diagonální matici (a diagonální hodnoty jsou jednoznačně určeny až na pořadí). Předpokládejme tedy přímo rovnici ve tvaru n i=1 ix2 i + n i=1 bixi + b = 0. V dalším kroku pro souřadnice xi s i = 0 provedeme doplnění do čtverců, které ,,pohltí kvadráty i lineární členy týchž neznámých (tzv. Lagrangeův algoritmus, viz poznámka níže) Tak nám zůstanou nejvýše ty neznámé, pro které byl jejich koeficient u kvadrátu nulový, a získáme tvar n i=1 i(xi - pi)2 + n j splňující j = 0 bjxj + c = 0. Pokud nám opravdu zůstaly nějaké lineární členy, můžeme zvolit novou bázi zamě- ření tak, aby odpovídající lineární forma byla prvkem duální báze a novou volbou počátku v En pak dosáhneme výsledného tvaru k i=1 iy2 i + byk+1 + c = 0, kde k je hodnost kvadratické formy f, lineární člen se může (ale nemusí) objevit jen pokud je hodnost f menší než n, c R může být nenulové pouze když je b = 0. 4.31. Případ E2. Proveďme celou diskusi ještě jednou pro nejjednodušší případ netriviální dimenze. Původní rovnice má tvar a11x2 + a22y2 + 2a12xy + a1x + a2y + a = 0. Volbou vhodné báze zaměření a následným doplněním čtverců dosáhneme tvaru (opět používáme stejného značení x, y pro nové souřadnice): a11x2 + a22y2 + a1x + a2y + a = 0 kde ai může být nenulové pouze v případě, že aii je nulové. Posledním krokem obecného postupu, tj. v dimenzi n = 2 jen případnou volbou posunutí, dosáhneme právě jedné z rovnic: 0 = x2 /a2 + y2 /b2 + 1 prázdná množina 0 = x2 /a2 + y2 /b2 - 1 elipsa 0 = x2 /a2 - y2 /b2 - 1 hyperbola 0 = x2 /a2 - 2py parabola 0 = x2 /a2 + y2 /b2 bod 0 = x2 /a2 - y2 /b2 2 různoběžné přímky 0 = x2 - a2 2 rovnoběžné přímky 0 = x2 2 splývající přímky 0 = x2 + a2 prázdná množina 2. EUKLIDOVSKÁ GEOMETRIE 117 4.32. Afinní pohled. V předchozích dvou odstavcích jsme hledali podstatné vlast- nosti a standardizované analytické popisy objektů zadávaných v euklidovských pro- storech kvadratickými rovnicemi. Hledali jsme přitom co nejjednodušší rovnice v mezích daných volností výběru kartézských souřadnic. Geometrická formulace na- šeho výsledku pak může být taková, že pro dva různé objekty ­ kvadriky, zadané v obecně různých kartézských souřadnicích, existuje euklidovská transformace na En (tj. afinní bijektivní zobrazení zachovávající velikosti) tehdy a jen tehdy, pokud výše uvedený algoritmus vede na stejný analytický tvar, až na pořadí souřadnic. Pochopitelně se můžeme ptát, do jaké míry umíme podobnou věc v afinních prostorech, tj. s volností výběru jakékoliv afinní souřadné soustavy. Např. v rovině to bude znamenat, že neumíme rozlišit kružnici od elipsy, samozřejmě bychom ale měli odlišit hyperbolu a všechny ostatní typy kuželoseček. Hlavně ale splynou mezi sebou všechny hyperboly atd. Ukážeme si hlavní rozdíl postupu na kvadratických formách a k záležitosti se pak ještě vrátíme níže. Uvažme nějakou kvadratickou formu f na vektorovém prostoru V a její ana- lytické vyjádření f(u) = xT Ax vzhledem ke zvolené bázi na V . Pro vektor u = x1u1 + + xnun pak také zapisujeme formu f ve tvaru f(x1, n) = ij aijxixj, V předchozích odstavcích jsme již s využitím skalárního součinu ukázali, že pro vhodnou bázi bude matice A diagonální, tj. že pro příslušnou symetrickou formu F bude platit F(ui, uj) = 0 při i = j. Každou takovou bázi nazýváme polární báze kvadratické formy f. Samozřejmě si pro takový účel můžeme vždy skalární součin vybrat. Dokážeme si ale toto tvrzení znovu bez využití skalárních součinů tak, že získáme daleko jednodušší algoritmus na to, jak takovou polární bázi najít mezi všemi bazemi. Tím se zároveň dovíme podstatné informace o afinních vlastnos- tech kvadratických forem. Nasledující věta bývá v literatuře uváděna pod názvem Lagrangeův algoritmus. Věta. Nechť V je reálný vektorový prostor dimenze n, f : V R kvadratická forma. Pak na V existuje polární báze pro f. Důkaz. (1) Nechť A je matice f v bázi u = (u1, . . . , un) na V a předpokládejme a11 = 0. Pak můžeme psát f(x1, . . . , xn) = a11x2 1 + 2a12x1x2 + + a22x2 2 + . . . = a-1 11 (a11x1 + a12x2 + + a1nxn)2 + členy neobsahující x1 Provedeme tedy transformaci souřadnic (tj. změnu báze) tak, aby v nových souřad- nicích bylo x1 = a11x1 + a12x2 + + a1nxn, x2 = x2, . . . , xn = xn. To odpovídá nové bázi (spočtěte si jako cvičení příslušnou matici přechodu!) v1 = a-1 11 u1, v2 = u2 - a-1 11 a12u1, . . . , vn = un - a-1 11 a1nu1 a tak jak lze očekávat, v nové bázi bude příslušná symetrická bilinerání forma splňo- vat g(v1, vi) = 0 pro všechny i > 0 (přepočtěte!). Má tedy f v nových souřadnicích analytický tvar a-1 11 x1 2 + h, kde h je kvadratická forma nezávislá na proměnné x1. 118 4. ANALYTICKÁ GEOMETRIE Z technických důvodů bývá lepší zvolit v nové bázi v1 = u1, opět dostaneme výraz f = f1 + h, kde f1 závisí pouze na x1, zatímco v h se x1 nevyskytuje. Přitom pak g(v1, v1) = a11. (2) Předpokládejme, že po provedení kroku (1) dostaneme pro h matici (řádu o jedničku menšího) s koeficientem u x2 2 různým od nuly. Pak můžeme zopakovat přesně stejný postup a získáme vyjádření f = f1 + f2 + h, kde v h vystupují pouze proměnné s indexem větším než dvě. Tak můžeme postupovat tak dlouho, až buď provedeme n-1 kroků a získáme diagonální tvar, nebo v řekněme i-tém kroku bude prvek aii dosud získané matice nulový. (3) Nastane-li poslední možnost, ale přitom existuje jiný prvek ajj = 0 s j > i, pak stačí přehodit i-tý prvek báze s j-tým a pokračovat podle předešlého postupu. (4) Předpokládejme, že jsme narazili na situaci ajj = 0 pro všechny j i. Pokud přitom neexistuje ani žádný jiný prvek ajk = 0 s j i, k i, pak jsme již úplně hotovi neboť jsme již dosáhli diagonální matici. Předpokládejme, že ajk = 0. Použijeme pak transformaci vj = uj + uk, ostatní vektory báze ponecháme (tj. xk = xk -xj, ostatní zůstávají). Pak h(vj, vj) = h(uj, uj)+h(uk, uk)+2h(uk, uj) = 2ajk = 0 a můžeme pokračovat podle postupu v (1). 4.33. Příklad. Nechť f : R3 R, f(x1, x2, x3) = 3x2 1 + 2x1x2 + x2 2 + 4x2x3 + 6x2 3. Její matice je A = 3 1 0 1 1 2 0 2 6 . Podle bodu (1) algoritmu provedeme úpravy f(x1, x2, x3) = 1 3 (3x1 + x2)2 + 2 3 x2 2 + 4x2x3 + 6x2 3 = 1 3 y2 1 + 3 2 ( 2 3 y2 + 2y3)2 = 1 3 z2 1 + 3 2 z2 2 a vidíme, že forma má hodnost 2 a matice přechodu do příslušné polární báze w se získá posbíráním provedených transformací: z3 = y3 = x3, z2 = 2 3 y2 + 2y3 = 2 3 x2 + 2x3, z1 = y1 = 3x1 + x2 Pokud by ale např. f(x1, x2, x3) = 2x1x3 + x2 2, tj. matice je A = 0 0 1 0 1 0 1 0 0 , pak hned v prvním kroku můžeme přehodit proměnné: y1 = x2, y2 = x1, y3 = x3. Aplikace kroku (1) je pak triviální (nejsou tu žádné společné členy), pro další krok ale nastane situace z bodu (4). Zavedeme tedy transformaci z1 = y1, z2 = y2, z3 = y3 - y2. Pak f(x1, x2, x3) = z2 1 + 2z2(z3 + z2) = z2 1 + 1 2 (2z2 + z3)2 - 1 2 z2 3. Matici přechodu do příslušné polární báze opět dostaneme posbíráním jednotlivých transformací (tj. vynásobením jednotlivých dílčích matic přechodu). 2. EUKLIDOVSKÁ GEOMETRIE 119 4.34. Afinní klasifikace kvadratických forem. Po výpočtu polární báze Lagran- geovým algoritmem můžeme ještě vylepšit bázové vektory pomocí násobení skalá- rem tak, aby v příslušném analytickém vyjádření naší formy vystupovaly v roli koeficientů u kvadrátů jednotlivých souřadnic pouze skaláry 1, -1 a 0. Následující věta o setrvačnosti říká navíc, že počet jedniček a mínus jedniček nezávisí na našich volbách v průběhu algoritmu. Tyto počty nyzýváme signaturou kvadratické formy. Opět tedy dostáváme úplný popis kvadratických forem ve smyslu, že dvě takové formy jsou převoditelná jedna na druhou pomocí afinní transformace tehdy a jen tehdy, když mají stejnou signaturu. Věta. Pro každou nenulovou kvadratickou formu hodnosti r na reálném vektoro- vém prostoru V existuje celé číslo 0 p r a r nezávislých lineárních forem 1, . . . , r V takových, že f(u) = (1(u))2 + + (p(u))2 - (p+1(u))2 - - (r(u))2 . Jinak řečeno, existuje polární báze, ve které má f analytické vyjádření f(x1, . . . , xn) = x2 1 + + x2 p - x2 p+1 - - x2 r. Počet p kladných diagonálních koeficientů v matici dané kvadratické formy nezávisí na volbě polární báze. Dvě symetrické matice A, B dimenze n jsou maticemi téže kvadratické formy v různých bazích právě, když mají stejnou hodnost a když matice příslušných forem v polární bázi mají stejný počet kladných koeficientů. Důkaz. Lagrangeovým algoritmem obdržíme f(x1, . . . , xn) = 1x2 1 + + rx2 r, i = 0, v jisté bázi na V . Předpokládejme navíc, že právě prvních p koefi- cientů i je kladných. Pak transformace y1 = 1x1, . . . , yp = pxp, yp+1 = -p+1xp+1, . . . , yr = -rxr, yr+1 = xr+1, . . . , yn = xn již vede na požadovaný tvar. Formy i pak jsou právě formy z duální báze ve V k získané polární bázi. Musíme ale ještě ukázat, že p nezávisí na našem postupu. Přepokládejme, že se nám podařilo najít vyjádření téže formy f v polárních bazích u, v, tj. f(x1, . . . , xn) = x2 1 + + x2 p - x2 p+1 - - x2 r f(y1, . . . , yn) = y2 1 + + y2 q - y2 q+1 - - y2 r a označme podprostor generovaný prvními p vektory prvé báze P = u1, . . . , up , a obdobně Q = vq+1, . . . , vn . Pak pro každý u P je f(u) > 0 zatímco pro v Q je f(v) 0. Nutně tedy platí P Q = {0} a proto dim P +dim Q n. Odtud plyne p + (n - q) n, tj. p q. Opačnou volbou podprostorů však získáme i q p. Je tedy p nezávislé na volbě polární báze. Pak ovšem pro dvě matice se stejnou hodností a stejným počtem kladných koeficientů v diagonálním tvaru příslušné kvadratické formy získáme stejný analytický tvar. Při diskusi symetrických zobrazení jsme hovořili o definitních a semidefitních zobrazeních. Tatáž diskuse má jasný smysl i pro symetrické bilineární formy a kva- dratické formy. Kvadratickou formu f forma na reálném vektorovém prostoru V nazýváme (1) positivně definitní, je-li f(u) > 0 pro všechny u = 0 (2) positivně semidefinitní, je-li f(u) 0 pro všechny u V (3) negativně definitní, je-li f(u) < 0 pro všechny u = 0 (4) negativně semidefinitní, je-li f(u) 0 pro všechny u V 120 4. ANALYTICKÁ GEOMETRIE (5) indefinitní, je-li f(u) > 0 a f(v) < 0 pro vhodné u, v V . Stejné názvy používáme i pro symetrické reálné matice, jsou-li maticemi patřič- ných kvadratických forem. Signaturou symetrické matice pak rozumíme signaturu příslušné kvadratické formy. 3. Projektivní geometrie V mnoha elementárních textech o analytické geometrii autoři končí afinními a euklidovskými objekty popsanými výše. Na mnoho praktických úloh euklidovská nebo afinní geometrie stačí, na jiné bohužel ale nikoliv. Tak třeba při zpracovávání obrazu z kamery nejsou zachovávány úhly a rovno- běžné přímky se mohou (ale nemusí) protínat. Dalším dobrým důvodem pro hledání širšího rámce geometrických úloh a úvah je požadovaná robustnost a jednoduchost numerických operací. Daleko jednodušší jsou totiž operace prováděné prostým ná- sobením matic a velice těžko se totiž od sebe odlišují malinké úhly od nulových, proto je lepší mít nástroje, které takové odlišení nevyžadují. Základní ideou projektivní geometrie je rozšíření afinních prostorů o body v nekonečnu způsobem, který bude dobře umožňovat manipulace s lineárními objekty typu bodů, přímek, rovin, projekcí, apod. 4.35. Projektivní rozšíření afinní roviny. Začneme tím nejjednodušším za- jímavým případem, geometrií v rovině. Jestliže si body roviny A2 představíme jako rovinu z = 1 v R3 , pak každý bod P naší afinní roviny představuje vektor u = (x, y, 1) R3 a tím i jednorozměrný podprostor u R3 . Naopak, skoro každý podprostor v R3 protíná naši rovinu v právě jednom bodě P a jednotlivé vektory takového podprostoru jsou dány souřadnicemi (x, y, z) jednoznačně, až na společný skalární násobek. Žádný průnik s naší rovinou nebudou mít pouze pod- prostory s body o souřadnicích (x, y, 0). Projektivní rovina P2 je množina všech jednorozměrných podprostorů v R3 . Homogenní souřadnice bodu P = (x : y : z) v projektivní rovině jsou trojice reálných čísel určené až na společný skalární násobek a alespoň jedno z nich musí být nenulové. Přímka v projektivní rovině je definována jako množina jednorozměrných podprostorů (tj. bodů v P2) Příklad. V afinním prostoru R2 uvažujme dvě přímky L1 : y - x - 1 = 0 a L2 : y - x + 1 = 0. Jestliže budeme body přímek L1 a L2 chápat jako konečné body v projektivním prostoru P2, budou zjevně jejich homogenní souřadnice (x : y : z) splňovat rovnice L1 : y - x - z = 0, L2 : y - x + z = 0. Podívejme se, jak budou rovnice těchto přímek vypadat v souřadnicích v afinní ro- vině, která bude dána jako y = 1. Za tím účelem stačí dosadit y = 1 do předchozích rovnic: L1 : 1 - x - z = 0, L2 : 1 - x + z = 0 Nyní jsou ,,nekonečné body naší původní afinní roviny dány vztahem z = 0 a vidíme, že naše přímky L1 a L2 se protínají v bodě (1, 1, 0). To odpovídá geometrické představě, že rovnoběžné přímky L1, L2 v afinní rovině se protínají v nekonečnu (a to v bodě (1 : 1 : 0)). 3. PROJEKTIVNÍ GEOMETRIE 121 4.36. Projektivní prostory a transformace. Postup z roviny se přirozeným způsobem zobecňuje na každou konečnou dimenzi. Volbou libovolné afinní nadro- viny An ve vektorovém prostoru Rn+1 , která neprochází počátkem, můžeme zto- tožnit body P An s jednorozměrnými podprostory, které tyto generují. Zbylé jednorozměrné podprostory vyplní rovinu rovnoběžnou s An a říkáme jim ,,neko- nečné body v projektivním rozšíření Pn afinní roviny An. Zjevně je vždy množina nekonečných bodů v Pn projektivním prostorem dimenze o jedničku nižším. Abs- traktněji hovoříme o projektivizaci vektorového prostoru: pro libovolný vektorový prostor V dimenze n + 1 definujeme P(V ) = {P V ; P je jednorozměrný vektorový podprostor}. Volbou libovolné báze u ve V dostáváme tzv. homogenní souřadnice na P(V ) tak, že pro P P(V ) použijeme jeho libovolný nenulový vektor u V a souřadnice tohoto vektoru v bázi u. Afinní přímka má tedy ve svém projektivním rozšíření pouze jediný bod (oba konce se ,,potkají v nekonečnu a projektivní přímka vypadá jako kružnice), projektivní rovina má projektivní přímku nekonečných bodů atd. Při zvolených homogenních souřadnicích je možné jednu z jejich hodnot zafixo- vat na jedničku (tj. vyloučíme všechny body projektivního prostoru s touto souřad- nicí nulovou) a získáme tak vložení n­rozměrného afinního prostoru An P(V ). To je přesně konstrukce, kterou jsme použili v opačném směru v příkladu projektivní roviny. Každé prosté lineární zobrazení : V1 V2 mezi vektorovými prostory samo- zřejmě zobrazuje jednorozměrné podprostory na jednorozměrné podprostory. Tím vzniká zobrazení na projektivizacích T : P(V1) P(V2). Takovým zobrazením ří- káme projektivní zobrazení. Jinak řečeno, projektivní zobrazení je takové zobrazení mezi projektivními prostory, že v každé soustavě homogenních souřadnic na definič- ním oboru i obrazu je toto zobrazení zadáno násobením vhodnou maticí. Obecněji, pokud naše pomocné lineární zobrazení není prosté, definuje projektivní zobrazení pouze mimo svoje jádro, tj. na bodech, jejichž homogenní souřadnice se nezobrazují na nulu. 4.37. Perspektivní projekce. Velmi dobře jsou výhody projektivní geometrie vidět na perspektivní projekci R3 R2 . Bod (X, Y, Z) ,,reálného světa se promítá na bod (x, y) na průmětně takto: x = -f X Z , y = -f Y Z . To je nejen nelineární formule, ale navíc při Z malém bude velice problematická přesnost výpočtů. Při rozšíření této transformace na zobrazení P3 P2 dostáváme zobrazení (X : Y : Z : W) (x : y : z) = (-fX : -fY : Z), tj. popsané prostou lineární formulí x y z = -f 0 0 0 0 -f 0 0 0 0 1 0 X Y Z W Tento jednoduchý výraz zadává perspektivní projekci pro všechny konečné body v R3 P3, které dosazujeme jako výrazy s W = 1. Navíc jsme odstranili problémy 122 4. ANALYTICKÁ GEOMETRIE s body, jejichž obraz leží v nekonečnu. Skutečně, je­li Z-ová souřadnice skuteč- ného bodu scény blízká nule, bude hodnota třetí homogenní souřadnice obrazu mít souřadnici blízkou nule, tj. bude představovat bod blízký nekonečnu. 4.38. Afinní a projektivní transformace. Invertibilní projektivní zobrazení projektivního prostoru Pn na sebe odpovídají v homogenních souřadnicích inver- tibilním maticím dimenze n + 1. Dvě takové matice zadávají stejnou projektivní transformaci právě, když se liší o konstantní násobek. Jestliže si zvolíme první souřadnici jako tu, jejíž nulovost určuje nekonečné body, budou transformace, které zachovávají konečné body, dány maticemi, jejichž první řádek musí být až na první člen nulový. Jestliže budeme chtít přejít do afinních souřadnic konečných bodů, tj. zafixujeme si hodnotu první souřadnice na jedničku, musí být první prvek na prvním řádku být také rovný jedné. Matice projektivních transformací zachovávajících konečné body tedy mají tvar: 1 0 0 b1 a11 a1n ... ... bn an1 ann kde b = (b1, . . . , bn)T Rn a A = (aij) je invertibilní matice dimenze n. Působení takové matice na vektoru (1, x1, . . . , xn) je právě obecná afinní transformace. 4.39. Projektivní klasifikace kvadrik. Závěrem ještě poznámka o složitějších objektech studovaných v afinní geometrii nejlépe prostřednictvím projektivních roz- šíření. Jestliže popíšeme kvadriku v afinních souřadnicích pomocí obecné kvadra- tické rovnice, viz výše, jejím přepsáním v homogenních souřadnicích dostaneme vždy výlučně homogenní výraz, jehož všechny členy jsou druhého řádu. Důvod je ten, že pouze takové homogenní výrazy budou mít pro homogenní souřadnice smysl nezávisle na zvoleném konstantním násobku souřadnic (x0, x1, . . . , xn). Hledáme tedy takový, jehož zúžením na afinní souřadnice, tj. dosazením x0 = 1, získáme pů- vodní výraz. To je ale mimořádně jednoduché, prostě dopíšeme dostatek x0 ke všem výrazům ­ žádny ke kvadratickým členům, jedno k lineárním a x2 0 ke konstantnímu členu. Získáme tak dobře definovanou kvadratickou formu na našem pomocném vek- torovém prostoru Rn+1 , ale jsme už vůči libovolné volbě báze klasifikovali. Zkuste si samostatně převést tuto klasifikaci do projektivní i afinní podoby. (Hezké a náročné cvičení na závěr semestru!) 4.40. Příklad. Nalezněte polární bázi kvadratické formy f : R3 R, která je ve standardní bázi dána předpisem f(x1, x2, x3) = x1x2 + x1x3. 3. PROJEKTIVNÍ GEOMETRIE 123 Řešení. Aplikací uvedeného Lagrangeova algoritmu dostáváme: f(x1, x2, x3) = 2x1x2 + x2x3 provedeme substituci podle bodu (4) algoritmu y2 = x2 - x1, y1 = x1, y3 = x3 = 2x1(x1 + y2) + (x1 + y2)x3 = 2x2 1 + 2x1y2 + x1x3 + y2x3 = = 1 2 (2x1 + y2 + 1 2 x3)2 - 1 2 y2 2 - 1 8 x2 3 + y2x3 = substituce y1 = 2x1 + y2 + 1 2 x3 = 1 2 y2 1 - 1 2 y2 2 - 1 8 x2 3 + y2x3 = 1 2 y2 1 - 2( 1 2 y2 - 1 2 x3)2 + 3 8 x2 3 = substituce y3 = 1 2 y2 - 1 2 x3 = 1 2 y2 1 - 2y2 3 + 3 8 x2 3. V souřadnicích y1, y3, x3 má tedy daná kvadratická forma diagonální tvar, to zna- mená že báze příslušná těmto souřadnicím je polární bází dané kvadratické formy. Pokud ji máme vyjádřit musíme získat matici přechodu od této polární báze ke standardní bázi. Z definice matice přechodu jsou pak její sloupce bázovými vektory polární bázi. Matici přechodu získáme tak, že buď vyjádříme staré proměnné (x1, x2, x3) pomocí nových proměnných (y1, y3, x3), nebo ekvivalentně vyjádříme nové proměnné pomocí starých (což jde jednodušeji), pak ale musíme spočítat inverzní matici. Máme y1 = 2x1 + y2 + 1 2 x3 = 2x1 + (x2 - x1) + 1 2 x3 a y3 = 1 2 y2 - 1 2 x3 = -1 2 x1 + 1 2 x3 - 1 2 x3. Matice přechodu od standardní báze ke zvolené polární je tedy T = 2 1 1 2 -1 2 1 2 -1 2 0 0 1 . Pro inverzní matici pak máme T-1 1 3 -2 3 -1 2 1 3 4 3 1 2 0 0 1 . Jedna z polárních bazí dané kvadratické formy je tedy například báze {(1/3, 1/3, 0), (-2/3, 4/3, 0), (-1/2, 1/2, 1)}. 4.41. Příklad. Určete typ kuželosečky dané rovnicí: 3x2 1 - 3x1x2 + x2 - 1 = 0. Řešení. Pomocí algoritmu úpravy na čtverec postupně dostáváme: 3x2 1 - 3x1x2 + x2 - 1 = 1 3 (3x1 - 3 2 x2)2 - 3 4 x2 2 + x2 - 1 = = 1 3 y2 1 - 4 3 ( 3 4 x2 - 1 2 )2 + 1 3 - 1 = = 1 2 y2 1 - 4 3 y2 2 - 2 3 . Podle uvedeného seznamu kuželoseček se tedy jedná o hyperbolu. Literatura [1] Zuzana Došlá, Jaromír Kuben, Diferenciální počet funkcí jedné proměnné, MU Brno, 2003, 215 s., ISBN 80-210-3121-2. [2] Zuzana Došlá, Roman Plch, Petr Sojka, Diferenciální počet funkcí více proměnných s pro- gramem Maple, MU Brno, 1999, 273 s. [3] Pavel Horák, Úvod do lineární algebry, MU Brno, skripta. [4] Ivana Horová, Jiří Zelinka, Numerické metody, MU Brno, 2. rozšířené vydání, 2004, 294 s., ISBN 80-210-3317-7. [5] Jiří Matoušek, Jaroslav Nešetřil, Kapitoly z diskrétní matematiky, Univerzita Karlova v Praze, Karolinum, Praha, 2000, 377 s. [6] Luboš Motl, Miloš Zahradník, Pěstujeme lineární algebru, 3. vydání, Uni- verzita Karlova v Praze, Karolinum, 348 stran (elektronické vydání také na http://www.kolej.mff.cuni.cz/~lmotm275/skripta/). [7] Riley, K.F., Hobson, M.P., Bence, S.J. Mathematical Methods for Physics and Engineering, second edition, Cambridge University Press, Cambridge 2004, ISBN 0 521 89067 5, xxiii + 1232 pp. [8] František Šik, Lineární algebra zaměřená na numerickou analýzu, MU, 1998, 176 s. ISBN 80-210-1996-2. [9] Jan Slovák, Lineární algebra. učební texty, Masarykova univerzita, elektronicky dostupné na www.math.muni.cz/~slovak [10] Pavol Zlatoš, Lineárna algebra a geometria, skripta MFF Univerzity komenského v Brati- slavě. 311