
PV178: Programming for the CLI Environment 
Seminar: Week 2 

Tomáš Pochop, Michal Ordelt 

Institute of Computer Science and Faculty of Informatics 
Masaryk University 

March 11, 2007 

• S 



_oooooooooooooooooooo 

Seminar outline 

Q Value vs reference types 

B Boxing and unboxing of value types 

Q Method parameters in C# 

• C# and arrays 



Q Value type objects direct contain the actual data in a variable 

B The variable each have their own copy of the data 

B It is not possible for operations on one to affect the other 

B Data are stored on stack, or on heap (if the value type 
variable is a field of a reference type) 

B i n t , char, bool , s t r u c t , enum, etc 

B example: i n t i ; 



Q Reference type variables store the reference of the actual data 

B Data for reference types is stored on the heap and a pointer 
(which points to the data on the heap) is created on the stack 

Q When an instance of reference type is created, the pointer is 
returned back and is used to manipulate the data on the heap 

• It is possible for two variables to reference the same object, 
and thus possible for operations on one variable to affect the 
object referenced by the other variable 

B object , c l a s s , i n t e r f ace , de lega te , array types 

B example: MyClass c l = new MyClassO; 

B See the ValueRefType example 



Class definition 

c lass S impleClass { 
2 //some data field 
3 double d ; 
4 //some constructor 
5 S i m p 1 e C1 a s s ( ) 

6 { 
7 //do something 
8 } ' 
9 //some method 

10 void MyMethod 0 
11 { 
12 //do something 
13 } ' 
14 ) 

• s 



oooo»oooooooooooooooo 

Jsing a class 

i //declaration of a class 
2 S impleClass c l ; 
3 //instantiation of a class 
4 cl = new S impleClass ( ) ; 
5 //the MyMethod method call 
e c I . MyMethod ( ) ; 

• S 



Structure definition 

i 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

st ruc t Sim p l e S t r u c t { 
//some data field 
double d ; 
//some constructor 
Si m p l e S t r u c t (double d) 

//do something 
{ 

} 
//some method 
void MyMethod() { 

//do something 
} 

• S 



Jsing a structure 

i //declaration of a structure 

2 S i m p l e S t r u c t s t ; 

3 //set some value to the d field 

4 s t .d = 5 . 4 ; 

5 //the MyMethod method call 

e s t . MyMethod ( ) ; 

• S 



Q When a value type needs to behave like a reference type 
(value type is converted to the base object type or to an 
interface it implements) 

B CLR allocates memory from the managed heap to hold a copy 
of the value type instance 

Q CLR then copies the value type instance to the newly 
allocated area in the heap 



Q When an instance of an object type or interface, created as a 
result of boxing, is explicitly converted back to its true value 
type 

B CLR returns a pointer to the value type instance contained 
within the reference object 

B The unboxed instance is typically copied to a stack-based 
instance though an assigment operation 

Q Returns value-type copy, not the heap-based instance 

Q The boxed value still exists on the heap (after no further 
references to the object exists, Garbage collector reclaims the 
space) 

B See the BoxUnbox example 



ooooooooo«ooooooooooo 

Method parameters in C-

Q Value parameters 

B Reference parameters 

B Output parameters 

Q Parameter arrays 

• s 



Q Correspond to a local variable that gets its initial value from 
the corresponding argument supplied in the method invocation 

B Any changes in method have no effect on the actual argument 
given in the method invocation 

B A new storage location is created and a value is copied into it 

Q example: vo id MyMethod(int o n l y l n ) ; 



Q Represents the same storage location as the variable given as 

the argument in the method invocation 

B Any changes in method affects the actual argument given in 

the method invocation 

Q The r e f keyword must be used in both method declaration 

and method call 

Q example: vo id MyRef Method ( re f i n t i n O u t ) ; 



Q Similiar to a reference parameter, it represents the same 
storage location as the variable given as the argument in the 
method invocation 

B Every output parameter of a method must by assigned before 
the method ends 

Q The out keyword must be used in both method declaration 
and method call 

Q example: vo id MyOutMethod(out i n t on lyOut ) ; 



Q For variable parameters count 

B It must be the last in the parameters list and it must be of a 
ID array type 

Q cannot be combined with the ref or out parameter type 

• Considered as an input-only parameter 

B declaration example: void MyParamMethodCparams in t [] 
va lues ) ; 

B using example: MyParamMethod(il, ±2, i 3 ) ; where 
i l , i 2 , i 3 are int 

B See the Params example 



Q When a reference type is passed by value, its pointer is 
duplicated and this copy points to the same memory on the 
heap 

B When a reference type is passed by reference, the original 
pointer itself is passed to the called method 

B Any manipulation done to the object in the called method will 
manipulate the same data to which the original pointer was 
pointing in both cases 

Q But any changes done to the pointer in the by-value case are 
applied to the copy, whereas in the by-reference case the 
changes are applied to the original pointer itself 



ooooooooooooooo«ooooo 

Parameters example 

Implement a class ParamClass that contains one integer data field 

n and methods below. Value of n is set in constructor via 

parameter. 

Q i n t V a l M e t h o d ( i n t p a r i ) returns the parameter value 

increased by the value of n, but the variable passed to this 

method is not changed 

B i n t R e f M e t h o d ( i n t par2)increases the parameter value by 

the value of n (affects the variable passed to this method) and 

returns its original value 

Q v o i d Ou tMe thod ( i n t p a r 3 , i n t pa r4 ) adds to the first 

parameter the value of n and stores it to the variable passed 

as the second parameter, the first parameter is not changed 

B i n t P a r M e t h o d ( i n t v a l u e ) returns the sum of several 

parameters, the number of parameters can change 

B Use proper parameter passing (complete the parameter list 

where needed) 
• s 



Q Arrays are objects, declaring an array doesn't create an array, 

it must be instantiated by using the new operator 

B Array items are index from 0 for the first item and n-1 for the 

last item (where n is number of item that the array can hold) 

H Array declaration example: in t [] arrayOfInt; 

Q Array that can holds five integers: arrayOfInt = new 
in t [5] ; 

Q Initialization: arrayOfInt = new in t [] {1 ,2 ,3 ,4 ,5 ,6 ,7} 



ooooooooooooooooo«ooo 

Multi dimension arrays 

Two-dimensional array declaration example: i n t [ , ] ma t r i x ; 

A 5x5 matrix: matr ix = new i n t [ 5 , 5 ] ; 

A 2x3 matrix initialization: matr ix = new 

i n t [ , ] { { l , 2 , 3 } , { 4 , 5 , 6 } } ; 

• s 



Q Element of an array is an array 

B in t [] [] j agged = new in t [2] [] ; 

Q jagged[0] = new i n t [ 2 ] ; jagged[1] = new in t [3] ; 

B in t [] [] jagged = new in t [] [] {new i n t [ ] { l } , 
new i n t [ ] { 2 , 3 , } } ; 

B See the Arrays example 



Implement a structure Book that represents a book. Book contains 

two strings au tho r and t i t l e for the books author and tit le, and 

one overriden method T o S t r i n g O . This method returns the t i t le 

and the author of this book as string. Next implement a class 

L i b r a r y that represents a simple library. L i b r a r y keeps an array 

of Book structures and contains two integer data fields, c a p a c i t y 

for maximal books in the library and ac tua lBooks for actual 

number of books in the library. L i b r a r y has one constructor and 

two methods. The constructor has one integer parameter (through 

this parameter we can set capac i t y )and sets the array to keep 

c a p a c i t y books and actual number of books sets to 0. The 

overriden method T o S t r i n g O iterate through all books in library 

and returns information about them. If the library is not full, then 

in the b o o l AddBook(Book) method add a book to the end of the 

book list, update the count of books and return true. Otherwise 

perform nothing and return false. 



Write Console application that computes and displays rounded 

square root of a number. The number will be read from standard 

input. Check the user entered a number. 

Useful methods : 

public s t a t i c double Math.Sqrt(double) 
Boolean Char.IsDigit(Char) 
Int64 Int64.Parse (String) 
Int64 Convert.ToInt64(Double) 



• s 


