
PV178: Programming for the CLI Environment
Seminar: Week 4

Michal Ordelt, Tomáš Pochop

Institute of Computer Science and Faculty of Informatics
Masaryk University

March 25, 2007

• S

Regular expressions

i 1 using System . T e x t . Regu la rExp ress ions
2 2 p r iva te Regex r x ;
3 3 rx = new Regex (p a t t e r n) ;
4 4 i f (rx . l s M a t c h (i n p u t T e x t)) {
5 5 \ \ some match found , do someth ing
6 6 }

• S

file:////some

Some regular expressions elements

Quantifiers:

+ One or more matches
* Zero, one or more matches

Character classes:

\ d Decimal digit
\ s Any whitespace
. Any character except \n

For more regular expressions language elements see MSDN.

• s

Q (?'groupname 'pattern)
Captures the matched substring into a group groupname. The

string used for groupname must not contain any punctuation

and it cannot begin with a number.

B Class M a t c h C o l l e c t i o n represents the set of successful

matches found by iteratively applying a regular expression

pattern to the input string.

B M a t c h C o l l e c t i o n R e g e x . M a t c h e s (s t r i n g i n p u t) method

searches an input string for all occurrences of a regular

expression and returns all the successful matches as if Match

were called numerous times.

B Match . Groups ["groupname "] .Va lue returns the matched

substring for group groupname.

Regular expressions grouping example

i //capture subexpressions groups number and text
2 rx = new Regex(@" (? ' n u m b e r ' \ d +) \ s + (? ' t e x t ' • *) ");
3 M a tchCo l l ec t i on matches = rx . Matches(someSt r ing);
4 //go through all matched elements
5 foreach (Match match J j i ma tches) !
e //access groups
7 s t r i n g num = match . Groups [" number"] . Value ;
s s t r i n g t e x t = match . Groups [" t e x t "] . Value ;

» }

• S

A simple .sub subtitle file contains a lot of lines in format:
{startframe}{endframe}Text to be shown. Write an application
that moves the subtitle forward or back by a specified amount of
time.
First implement class Line representing a single line of the subtitle
file. This class stores the startframe, endframe and text, and
provide the method Move (i n t 64 seconds, double framerate)
which moves the startframe and endframe by the specified number
of second, at the specified framerate. The overriden method
ToStr ingO returns the line in the .sub format.

Hints:
Framerate means number of frames per second
The example .sub file has framerate 23.976
To convert double to Int64 use Convert .ToInt64(double)

Next implement class Sub t i t l e : IEnumerable<Line>
representing the subtitle file. This class reads one by one all lines
from the input file, using regular expresions fills Line class and
returns it as an enumerator.
Move each line by the specified amount of seconds and write it to
the output file.
The input file, framerate, time and output file are set from
command line as arguments.

Hints:
To read text from file use TextReader class
Use encoding Encoding.GetEncoding(1250) for file I/O
Remember to close all streams, readers and writers.

To write to a file use the TextWriter class. Example:

i //write to the file file, out

2 F i l e S t r e a m fs = F i le . C r e a t e (" f i I e . o u t ") ;

3 T e x t W r i t e r w r ;

4 //assign the textwriter to the filestream

5 wr = new S t r e a m W r i t e r (f s ,

e E n c o d i n g . G e t E n c o d i n g (1 2 5 0)) ;

7 //write a line to the file

s w r . W r i t e L i n e (" W r i t t e n ^ i n ^ f i l e ") ;

9 w r . C l o s e () ; //close the writer

io f s . C lose () ; //close the stream

C # , like many object-oriented languages, handles errors and

abnormal conditions with exceptions. An exception is an object

that encapsulates information about an unusual program

occurrence.

It is important to distinguish between bugs, errors, and exceptions.

A bug is a programmer mistake that should be fixed before the

code is shipped. Exceptions are not a protection against bugs.

Although a bug might cause an exception to be thrown, you should

not rely on exceptions to handle your bugs. Rather, you should fix

the bug.

When your program encounters an exceptional circumstance, such

as running out of memory, it throws (or "raises") an exception.

When an exception is thrown, execution of the current function

halts and the stack is unwound until an appropriate exception

handler is found.

Exceptions

To signal an abnormal condition in a C # class, you throw an

exception. To do this, use the keyword throw. This code creates a

new instance of System.Exception and then throws it:

i E x c e p t i o n e x c e p t i o n ;

2 e x c e p t i o n = new E x c e p t i o n (" S o m e t h i n g ^ b a d ^ h a p p e n e d ")

3 t h r o w e x c e p t i o n ;

• s

Exceptions handling

In C#, an exception handler is called a catch block and is created
with the catch keyword.

i try_{
2 //an exception can occur here

3 }
4 catch (Except ionType e) {
5 //here we catch an ExceptionType exception
e //and all derived from ExceptionType too

* }
s f i n a l l y {
9 //this code is always executed

• s

Exception class: useful members

string Message

The error message that explains the reason for the exception.

string StackTrace

A string that describes the contents of the call stack

s t r i n g ToStringO
The default implementation obtains the name of the class
that threw the current exception, the message, the result of
calling ToString on the inner exception, and the StackTrace.

You can create your own exception classes by deriving from the
Exception class. Example:

i //derive from the Exception class
2 publ ic class MyExcept ion : Except ion {
3 //constructor with message
4 public MyExcept ion (s t r i n g message)
5 : base(message) {
e } //ctor with message and inner exception
7 public Except ion (s t r i n g message, Except ion in
s : base(message , i n n e r) {

}

10 }

Raise MyException:

i throw new MyExcept ion (" My^ except ion ^occured !") ;

Exceptions task

Add exceptions handling to the Subtitle timing application and
cover all possible problems, that may occur (can't read from input
file, can't write to output file, wrong format of line, etc.). Try to
use your own exception too.

• s

• s

