
PV178: Programming for the CLI Environment
Seminar: Week 5

Tomáš Pochop

Institute of Computer Science and Faculty of Informatics
Masaryk University

April 2, 2007

• S

Write a class BinaryHeap that represents a binary heap. Nodes in
heap are of the same generic type T, where T implements the
IComparable < T > interface. The BinaryHeap class is serializable.
The binary heap is represented by an array, allow to set the length
of the array via constructor. Implement all heap operations.
Create one instance of BinaryHeap class of some type (e.g. int), fill
it with some values. Demonstrate serialization and deserialization.

Binary heap is a binary tree with two additional constraints:

D The shape property: the tree is either a perfectly balanced
binary tree (all leaves are at the same level), or, if the last
level of the tree is not complete, the nodes are filled from left
to right.

B The heap property: each node is higher than or equal to each
of its children according to some comparison predicate which
is fixed for the entire data structure.

Binary heap operations

Add an item to the heap

Remove the root from the heap

• s

Binary heap - adding

Add the element on the bottom level of the heap.

Compare the added element with its parent; if they are in the
correct order, stop.

If not, swap the element with its parent and return to the
previous step.

• s

Q Remove the root.

B Replace it with the last element on the last level.

B Compare the replacing element with its children; if they are in

the correct order, stop.

Q If not, swap the element with the bigger child and return to

the previous step.

Defines a generalized comparison method that a value type or class
implements to create a type-specific comparison method for
ordering instances. One method - pub l i c i n t CompareTo(T
otherObject)

Q Compares the current object with another object of the same
type.

B Returns 0 if this object is equal to other.

B Less than zero if this object is less than the other parameter.

• Greater than zero if this object is greater than other.

• the generic types are defined with type parameters

c lass Lis t <T> { T method() {}}

• when used, type parameters are substituted with type
arguments

List<int> l i n t = new List<int>

• by instantiation a type is constructed substituting type
arguments in all occurrences of the type parameter

class List<int> {int methodQ {}

• can apply restrictions on types that can be used as type
parameters

• where keyword

• five types of constraints:
• where T : struct value type (except Nullable)

• where T : class reference type

• where T : new() must have a public parameterless constructor

(must be specified last)

• where T : <base class name> must be or derive from the

specified class.

• where T : <interface name> must be or implement the

specified interface (mult iple can be specified, can also be

generic)

• where T : U must be or derive from the argument supplied for

U (naked type constraint)

• g - = it -00*0

Q default serialization - objects marked with [S e r i a l i z a b l e]

attribute

B explicit serialization - objects implementing I S e r i a l i z a b l e

interface

Q Class B i n a r y F o r m a t t e r serializes and deserializes an object,

or an entire graph of connected objects, in binary format

Q v o i d B i n a r y F o r m a t t e r . S e r i a l i z e (Stream stream,

Objec t object) - serializes an object, or graph of connected

objects, to the given stream.

B Ob jec t B i n a r y F o r m a t t e r . D e s e r i a l i z e (S t r e a m stream) -

deserializes a stream into an object graph

ooooooooo«oo

Explicit serialization - ISerializable interface

Only one method:

void ISer ia l izable .GetObjec tData(Ser ia l iza t ionInfo si,
StreamingContext sc)

Q this method is called by serialization

Q S e r i a l i z a t i o n i n f o carries data to be serialized

B S t reamingContex t describes the source and destination of a

given serialized stream, and provides an additional

caller-defined context.

Q s i . A d d V a l u e (s t r i n g name, Ob jec t value) adds the

specified object into the S e r i a l i z a t i o n i n f o store, where it

is associated with a specified name. (Overloaded for more

types.)

The class must implement a special constructor which is used by
deserialization.

Q MySeria l izableClass(Ser ia l izat ionInfo si,
StreamingContext sc){ . . . }

B i n t s i . G e t l n t 3 2 (s t r i n g name) returns the int value
associated to the name

Q Object s i . GetValue (s t r i n g name, Type type) returns
the Object associated to the name, type is the type of the
value to retrieve (the System.Type typeof (sometype)
operator can be used to obtain the type)

Jamespaces

Q System.Collections.Generic

B System.Runtime.Serialization

B System.Runtime.Serialization.Formatters.Binary

• System. 10

• s

• s

