
Week 5 References

PV178: Programming for the CLI Environment
Seminar: Week 5

Tomáš Pochop

Institute of Computer Science and Faculty of Informatics
Masaryk University

April 2, 2007



Week 5 References

Example 1

Write a class BinaryHeap that represents a binary heap. Nodes in
heap are of the same generic type T , where T implements the
IComparable < T > interface. The BinaryHeap class is serializable.
The binary heap is represented by an array, allow to set the length
of the array via constructor. Implement all heap operations.
Create one instance of BinaryHeap class of some type (e.g. int), fill
it with some values. Demonstrate serialization and deserialization.



Week 5 References

Binary heap

Binary heap is a binary tree with two additional constraints:

1 The shape property: the tree is either a perfectly balanced
binary tree (all leaves are at the same level), or, if the last
level of the tree is not complete, the nodes are filled from left
to right.

2 The heap property: each node is higher than or equal to each
of its children according to some comparison predicate which
is fixed for the entire data structure.



Week 5 References

Binary heap operations

1 Add an item to the heap

2 Remove the root from the heap



Week 5 References

Binary heap - adding

1 Add the element on the bottom level of the heap.

2 Compare the added element with its parent; if they are in the
correct order, stop.

3 If not, swap the element with its parent and return to the
previous step.



Week 5 References

Binary heap - removing

1 Remove the root.

2 Replace it with the last element on the last level.

3 Compare the replacing element with its children; if they are in
the correct order, stop.

4 If not, swap the element with the bigger child and return to
the previous step.



Week 5 References

IComparable<T> interface

Defines a generalized comparison method that a value type or class
implements to create a type-specific comparison method for
ordering instances. One method – public int CompareTo(T
otherObject)

1 Compares the current object with another object of the same
type.

2 Returns 0 if this object is equal to other.

3 Less than zero if this object is less than the other parameter.

4 Greater than zero if this object is greater than other.



Week 5 References

Type parameters

the generic types are defined with type parameters

class List <T> { T method() {}}

when used, type parameters are substituted with type
arguments

List<int> lint = new List<int>

by instantiation a type is constructed substituting type
arguments in all occurrences of the type parameter

class List<int> {int method() {}



Week 5 References

Constraints on Type parameters

can apply restrictions on types that can be used as type
parameters

where keyword

five types of constraints:

where T : struct value type (except Nullable)
where T : class reference type
where T : new() must have a public parameterless constructor
(must be specified last)
where T : <base class name> must be or derive from the
specified class.
where T : <interface name> must be or implement the
specified interface (multiple can be specified, can also be
generic)
where T : U must be or derive from the argument supplied for
U (naked type constraint)



Week 5 References

Serialization

1 default serialization – objects marked with [Serializable]
attribute

2 explicit serialization – objects implementing ISerializable
interface

3 Class BinaryFormatter serializes and deserializes an object,
or an entire graph of connected objects, in binary format

4 void BinaryFormatter.Serialize(Stream stream,
Object object) - serializes an object, or graph of connected
objects, to the given stream.

5 Object BinaryFormatter.Deserialize(Stream stream) -
deserializes a stream into an object graph



Week 5 References

Explicit serialization - ISerializable interface

Only one method:
void ISerializable.GetObjectData(SerializationInfo si,
StreamingContext sc)

1 this method is called by serialization

2 SerializationInfo carries data to be serialized

3 StreamingContext describes the source and destination of a
given serialized stream, and provides an additional
caller-defined context.

4 si.AddValue(string name, Object value) adds the
specified object into the SerializationInfo store, where it
is associated with a specified name. (Overloaded for more
types.)



Week 5 References

Explicit deserialization

The class must implement a special constructor which is used by
deserialization.

1 MySerializableClass(SerializationInfo si,
StreamingContext sc){ ... }

2 int si.GetInt32(string name) returns the int value
associated to the name

3 Object si.GetValue(string name, Type type) returns
the Object associated to the name, type is the type of the
value to retrieve (the System.Type typeof(sometype)
operator can be used to obtain the type)



Week 5 References

Namespaces

1 System.Collections.Generic

2 System.Runtime.Serialization

3 System.Runtime.Serialization.Formatters.Binary

4 System.IO



Week 5 References


	Week 5
	Example 1

	References

