Domácí úlohy z minulého týdne Návodné úlohy MB102 ­ 6. demonstrovaná cvičení Řady a mocninné řady Masarykova univerzita Fakulta informatiky 25.3. 2008 Domácí úlohy z minulého týdne Návodné úlohy Plán přednášky 1 Domácí úlohy z minulého týdne 2 Návodné úlohy Domácí úlohy z minulého týdne Návodné úlohy Příklad 1. Sečtěte následující řady (výsledné komplexní číslo vyjádřete v algebraickém tvaru): 1 n=0 1 (2i+2)n , 2 n=0 1 (4i)n - 1 5n+1 . Domácí úlohy z minulého týdne Návodné úlohy Příklad 1. Sečtěte následující řady (výsledné komplexní číslo vyjádřete v algebraickém tvaru): 1 n=0 1 (2i+2)n , 2 n=0 1 (4i)n - 1 5n+1 . Řešení. 1 n=0 1 (2i+2)n = 6 5 - 2 5 i, 2 n=0 1 (4i)n - 1 5n+1 = 47 68 - 4 17 i. 2 Domácí úlohy z minulého týdne Návodné úlohy Příklad 2. Určete, zda následující řady konvergují či divergují 1 n=1 1 n+ n , 2 n=1 n3+4n n5-5n2-1 . Domácí úlohy z minulého týdne Návodné úlohy Příklad 2. Určete, zda následující řady konvergují či divergují 1 n=1 1 n+ n , 2 n=1 n3+4n n5-5n2-1 . Řešení. Obě divergují (odhadněte zespodu harmonickou řadou). 2 Domácí úlohy z minulého týdne Návodné úlohy Příklad 3. Určete poloměr konvergence následujících mocninných řad: 1 n=0 (2008)nxn, 2 n=1 2008xn, 3 n=0 n-1 n2n xn, 4 n=0 n!xn. Domácí úlohy z minulého týdne Návodné úlohy Příklad 3. Určete poloměr konvergence následujících mocninných řad: 1 n=0 (2008)nxn, 2 n=1 2008xn, 3 n=0 n-1 n2n xn, 4 n=0 n!xn. Řešení. 1 1 2008 , 2 1, 3 , 4 0. 2 Domácí úlohy z minulého týdne Návodné úlohy Plán přednášky 1 Domácí úlohy z minulého týdne 2 Návodné úlohy Domácí úlohy z minulého týdne Návodné úlohy Oscar II, Král Švédský, 1829 ­ 1907 Problém pohybu n těles ,,Je dán systém konečně mnoha hmotných bodů, které na sebe působí podle Newtnova zákonu gravitace. Za předpokladu, že žádné dva body se nikdy nesrazí, nalezněte funkci pro dráhu (danou v souřadnicích) každého z daných bodů. Tato funkce by měla dána moncinnou řadou závisející na čase a měla by stejnoměrně konvergovat. Henri Poincaré, franzouzský matematik a fyzik, 1854 ­ 1912 1889 Článek ,,O pohybu nebeských těles Henri Poincaré, franzouzský matematik a fyzik, 1854 ­ 1912 1889 Článek ,,O pohybu nebeských těles Domácí úlohy z minulého týdne Návodné úlohy Určete následující limity: 1 lim n (n - 4 n), Domácí úlohy z minulého týdne Návodné úlohy Určete následující limity: 1 lim n (n - 4 n), 2 lim x0 1-cos(x) x2 Domácí úlohy z minulého týdne Návodné úlohy Určete všechna x R, pro které konvergují následující mocninné řady: 1 n=1 xn!, Domácí úlohy z minulého týdne Návodné úlohy Určete všechna x R, pro které konvergují následující mocninné řady: 1 n=1 xn!, 2 n=1 (-1)n 2n+1 x2n+1, Domácí úlohy z minulého týdne Návodné úlohy Určete všechna x R, pro které konvergují následující mocninné řady: 1 n=1 xn!, 2 n=1 (-1)n 2n+1 x2n+1, 3 n=1 2n n xn.