
Rootkit
From Wikipedia, the free encyclopedia

A rootkit is a program (or combination of several programs) designed to take fundamental control (in Unix terms
"root" access, in Windows terms "Administrator" access) ofa computer system, without authorization by the system's
owners and legitimate managers. Access to the hardware (ie,the reset switch) is rarely required as a rootkit is intended
to seize control of the operating system running on the hardware. Typically, rootkits act to obscure their presence on
the system through subversion or evasion of standard operating system security mechanisms. Often, they are also
Trojans as well, thus fooling users into believing they are safe to run on their systems. Techniques used to accomplish
this can include concealing running processes from monitoring programs, or hiding files or system data from the
operating system.[1]

Rootkits may have originated as regular, though emergency,applications, intended to take control of an unresponsive
system, but in recent years have been largely malware to helpintruders gain access to systems while avoiding
detection. Rootkits exist for a variety of operating systems, such as Microsoft Windows, Mac OS X[2] [3] , Linux and
Solaris. Rootkits often modify parts of the operating system or install themselves as drivers or kernel modules,
depending on the internal details of an operating system's mechanisms.

Contents

1 History
2 Common use
3 Types

3.1 Firmware
3.2 Virtualized
3.3 Kernel level
3.4 Library level
3.5 Application level

4 Detecting
5 Removing
6 Comparison with computer viruses and worms
7 Publicly available
8 See also
9 References
10 External links

History

The termrootkit or root kit originally referred to a maliciously modified set of administrative tools for a Unix-like
operating system. If an intruder could replace the standardadministrative tools on a system with a rootkit, the
modified tools would give the intruder administrative control over the system while concealing his activities from the
legitimate system administrator. The earliest known rootkit was written ca. 1990 by Lane Davis and Riley Dake for
SunOS 4.1.1. There was an earlier, quite famous, exploit equivalent to a rootkit which was perpetrated by Ken
Thompson of Bell Labs against a Naval Laboratory in California to win a bet. Thompson subverted the C compiler in
a distribution of Unix to the Lab.

Rootkits were so named because they allowed an intruder to become a root user (ie, the system administrator) of a
Unix system. Since then, similar software has been developed for other operating systems, and the termrootkit has
been broadened to include any software that surreptitiously alters an operating system so that an unauthorized user
can take arbitrary control of the system.



Rootkits became much better known in 2005, when Sony BMG caused a scandal by including rootkit software on
music CDs which altered the Windows OS to allow access to anyone aware of the rootkit's installation. Supposedly,
this was done to enforce copy protection of the music on the CDs. The scandal following the discovery and
subsequent public notice of this corporate-sponsored malware—a scandal made much worse by the clumsy and ill-
informed statements of Sony executives—made many users previously unfamiliar with rootkits wary.

Common use

A successfully installed rootkit allows unauthorized users to act as system administrators, and thus to take full control
of the 'rootkitted' system. Secondary to this purpose, mostrootkits typically hide files, network connections, blocks of
memory, or registry entries (eg, on Windows systems) from other programs used by system administrators to detect
specially privileged accesses to computer system resources. However, a rootkit may masquerade as or be intertwined
with other files, programs, or libraries with other purposes. It is important to note that while the utilities bundled with
a rootkit may be maliciously intended, not every rootkit is always malicious. Rootkits may be used for both productive
and destructive purposes.

A rootkit which hides utility programs, usually does so to abuse a compromised system, and often include so-called
"backdoors" to help the attacker subsequently access at will. A simple example might be a rootkit which hides an
application that spawns a command processing shell when theattacker connects to a particular network port on the
system. Kernel rootkits may include similar functionality. A backdoor may also allow processes started by a non-
privileged user to run as though it were started by a privileged user (including the root user) and to carry out functions
normally reserved for the superuser.

Many other utility tools useful for abuse can be hidden usingrootkits. This includes tools for further attacks against
computer systems with which the compromised system communicates, such as sniffers and keyloggers. A possible
abuse is to use a compromised computer as a staging ground forfurther abuse (see zombie computer). This is often
done to make the abuse appear to originate from the compromised system (or network) instead of the attacker's. Tools
for such attacks can include denial-of-service attack tools, tools to relay chat sessions, and e-mail spam distribution. A
major malicious use for rootkits is to allow the rootkit's programmer to see and access user names and log-in
information of systems requiring them. Collection of such information from many systems (thousands or more) is
easily possible. This makes rootkits even more hazardous, as it allows trojans to access this personal information
while the rootkit covers it up.

It has become increasingly popular for virus writers to makeuse of rootkit technologies. The reason for this is obvious
– they make it possible to hide malware from PC users and antivirus programs. Numerous source codes for ready-
made rootkits can be found on the Internet, which inevitablyleads to their widespread use in various trojans or
spyware programs etc.

But rootkits are not always used to attack and gain control ofa computer. Some software may use rootkit techniques to
hide from 3rd party scanners to undetectably detect tampering or attempted breakins. Some emulation software and
security software is known to be using rootkits.[4] Alcohol 120% and Daemon Tools are commercial examples of the
use of non-hostile rootkits.

Rootkit is a term now somewhat loosely applied to cloaking techniques and methods.[5]

Types

There are at least five kinds of rootkits: firmware, virtualized, kernel, library, and application level kits.

Firmware

A firmware rootkit uses device or platform firmware to create a persistent malware image. The rootkit can
successfully hide in firmware because firmware is not ofteninspected for code integrity. John Heasman demonstrated
the viability of firmware rootkits in both ACPI firmware routines[6] and in a PCI expansion card ROM.[7]

Virtualized



These rootkits work by modifying the boot sequence of the machine to load themselves instead of the original
operating system. Once loaded into memory, a virtualized rootkit then loads the original operating system as a Virtual
Machine, thereby enabling the rootkit to intercept all hardware calls made by the guest OS. TheSubVirt (http://
www.eecs.umich.edu/virtual/papers/king06.pdf) laboratory rootkit, developed jointly by Microsoft and University of
Michigan researchers, is one example of a Virtual Machine based rootkit (VMBR); Blue Pill is another.

Kernel level

Kernel level rootkits add additional code and/or replace portions of an operating system, including both the kernel and
associated device drivers. Most operating systems don't enforce any security distinctions between the kernel and
device drivers. As such, many kernel mode rootkits are developed as device drivers or loadable modules, such as
Loadable Kernel Modules in Linux or device drivers in Microsoft Windows. This class of rootkit is perceived as
dangerous simply because of the unrestricted security access the code has obtained, regardless of the features the
rootkit may employ. Any code operating at the kernel level may have serious impacts on entire system stability if
mistakes are present in the code. The first and original rootkits did not operate at the kernel level, but were simple
replacements of standard programs at the user level. Although traditionally security advances were made first on Unix
systems, the first kernel rootkit was developed for WindowsNT 4.0 and released in the mid-1990's by Greg Hoglund.

Kernel rootkits can be especially dangerous because they can be difficult to detect. The reason they can be difficult to
detect is because they operate at the same level as the operating system, thus they can modify or subvert any request
made by software on the running system. In a situation such asthis, the system itself cannot be trusted. An accepted
proper response in such a case is to perform system analysis offline using a second 'trusted' system and mounting the
hard drive of the infected system as a resource.

Library level

Library rootkits commonly patch, hook, or replace system calls with versions that hide information about the attacker.
They can be found, at least theoretically, by examining codelibraries (under Windows the term is usually DLL) for
changes or against the originally distributed (and so presumably rootkit free) library package. In practice, the variety
of modified libraries distributed with applications and ServicePacks makes this harder than it should have been.

Application level

Application level rootkits may replace regular application binaries with trojanized fakes, or they may modify the
behavior of existing applications using hooks, patches, injected code, or other means.

Detecting

Rootkit binaries can often be detected by signature or heuristics based antivirus programs, at least until they're run by a
user and are able to attempt to conceal themselves. There areinherent limitations for any program that attempts to
detect rootkits while the program is running under the suspect system. Rootkits are suites of programs that modify
many of the tools and libraries upon which all programs on thesystem depend. Some rootkits attempt to modify the
running kernel via loadable modules on Linux (and some otherUNIX varieties), and through VxDs, virtual external
drivers, on MS Windows platforms. The fundamental problem with rootkit detection is that if the operating system
currently running has been subverted, it cannot be trusted,including to find unauthorized modifications to itself or its
components. In other words, actions such as requesting a list of all running processes, or a list of all files in a
directory, cannot be trusted to behave as intended by the original designers. Rootkit detectors running on live systems
currently only work because the rootkits they can detect have not yet been developed to hide themselves fully.

The best, and most reliable, method for rootkit detection isto shut down the computer suspected of infection, and then
check its storage by booting from an alternative medium (e.g., a rescue CD-ROM or USB flash drive). A non-running
rootkit cannot (ideally) hide its presence, and most established antivirus programs will identify rootkits armed via
standard OS calls (which are often tampered with by the rootkit) and lower level queries, which ought to remain
reliable. If there is a difference, the presence of a rootkitinfection should be assumed. Running rootkits attempt to
protect themselves by monitoring running processes and suspending their activity until the scanning has finished; this
is more difficult if the rootkit is not allowed to run.

Security software vendors have attempted a solution by integrating rootkit detection into traditional antivirus products.
Should a rootkit decide to hide during scanning, it will be identified by the stealth detector. If it decides to temporarily



unload from the system, the traditional antivirus will findit using fingerprint detection. Since anti-virus productsare
almost never entirely capable of catching all viruses in public tests, this approach may be doubted on past behavior.
But this combined approach may force attackers to implementcounter-attack mechanisms (so called retro routines) in
their rootkit code that will forcibly remove security software processes from memory, effectively killing the antivirus
program. As with computer viruses, the detection and elimination of rootkits will be an ongoing struggle between tool
creators on both sides of this conflict.

There are several programs available to detect rootkits. OnUnix-based systems, three of the most popular are
chkrootkit, rkhunter and OSSEC. For Windows, there are manyfree detection tools such as Sophos Anti-Rootkit
(http://www.sophos.com/products/free-tools/sophos-anti-rootkit.html) , F-Secure Blacklight (http://www.f-
secure.co.uk/blacklight/blacklight.html) , HypersightRootkit Detector (http://northsecuritylabs.com/) or Radix Anti-
Rootkit (http://www.usec.at/rootkit.html) . Another Windows detector is RootkitRevealer from Microsoft (formerly
Sysinternals) which detects current rootkits by comparingthe results from the OS to the actual listing read from the
disk itself (cross-checking). However, some rootkits started to add RootkitRevealer toa list of files it does not hide
from -- so in essence, they remove differences between the two listings, and the detector doesn't report them (most
notably the commercial rootkitHacker Defender Antidetection). Another method is to compare content of binaries
present on disk with their copies in operating memory - some differences can be introduced by legal operating system
mechanisms (e.g., memory relocation), but some can be very likely classified as system call hooks introduced by a
running rootkit (System Virginity Verifier). Zeppoo is another software product which detects rootkits under Linux
and UNIX systems.

As always, prevention is better than cure, for being certainyou have removed a rootkit typically involves re-
installation of all software. If the integrity of the systeminstall disks is trusted, cryptography can be used to monitor
the integrity of the system. By "fingerprinting" the systemfiles immediately after a fresh system install and then again
after any subsequent changes made to the system (e.g., installing new software), the user or administrator will be
alerted to any dangerous changes to the system's files. In the fingerprinting process a message digest is used to create a
fixed-length "digest" dependent on every bit in the file being fingerprinted. By calculating and comparing message
digest values of files at regular intervals, changes in the system can be detected.

Detection in firmware can be achieved by computing a cryptographic hash of firmware and comparing hash values to a
whitelist of expected values, or by extending the hash valueinto TPM (Trusted Platform Module) configuration
registers, which are later compared to a whitelist of expected values. Code that performs hash, compare, and/or extend
operations must itself not be compromised by the rootkit. The notion of an immutable (by a rootkit) root-of-trust, if
implementable, ensures that the rootkit does not compromise the system at its most fundamental layer. Rootkit
detection using a TPM is further described in Stopping Rootkits at the Network Edge, January 2007. (https://
www.trustedcomputinggroup.org/news/Industry_Data/Whitepaper_Rootkit_Strom_v3.pdf)

Removing

Many hold this to be forbiddingly impractical. Even if the nature and composition of a rootkit is known, the time and
effort of a system administrator with the necessary skills or experience would be better spent re-installing the
operating system from scratch. Since drive imaging software makes the task of restoring a “clean” OS installation
almost trivial, there is no good reason to try to dig a rootkitout directly."I suppose traditional rootkits could be made
to be as hard to remove as possible even when found, but I doubt there is much incentive for that, because the typical
reaction of an experienced sysadmin on finding a rooted system is to save the data files, then reformat [and reinstall].
This is so even if the rootkit is very well known and can be removed 100%." —Rootkit Question (http://
forums.spywareinfo.com/lofiversion/index.php/t52360.html)

While most Anti-Virus and Malware Removal tools remain ineffective against rootkits, tools such as BartPE and other
Preinstallation Environment(PE) or Live Distros allow users to boot their computer with a fresh (presumably) "un-
rooted" copy of the operating system. This allows users to examine and replace affected system files and delete
offending rootkits of most types while keeping the underlying systems intact. Since most rootkits hook system files
needed at the lowest level of the OS, booting into Safe Mode will not usually allow removal of the rootkit process. In
contrast, PE's do not rely on the infected underlying systemstructure but instead load a clean read-only copy of the
Operating System allowing full control and detection of therootkit. While most Administrators prefer a clean
reinstall, a skilled Administrator using a PE can often delete and clean a rooted system if a reinstall is not a viable
option.



Comparison with computer viruses and worms

The key distinction between a computer virus and a rootkit relates to propagation. Like a rootkit, a computer virus
modifies core software components of the system, insertingcode which attempts to hide the "infection" and provides
some additional feature or service to the attacker (ie, the "payload" of a virus).

In the case of the rootkit the payload may attempt to maintainthe integrity of the rootkit (the compromise to the
system) --- for example every time one runs the rootkit's version of theps command, it may check the copies ofinit
andinetd on the system to ensure that they are still compromised, "re-infecting" as necessary. The rest of the payload
is there to ensure that the intruder continues to control thesystem. This generally involves having backdoors in the
form of hard-coded username/password pairs, hidden command-line switches or 'magic' environment variable settings
which subvert normal access control policies of the uncompromised versions of the programs. Some rootkits may add
port knocking checks to existing network daemons (services) such asinetd or thesshd.

A computer virus can have any sort of payload. However, the computer virus also attempts to spread to other systems.
In general, a rootkit limits itself to maintaining control of one system.

A program or suite of programs that attempts to automatically scan a network for vulnerable systems and to
automatically exploit those vulnerabilities and compromise those systems is referred to as a computer worm. Other
forms of computer worms work more passively, sniffing for usernames and passwords and using those to compromise
accounts, installing copies of themselves into each such account (and usually relaying the compromised account
information back to the intruder through some sort of covertchannel).

There are also hybrids. A worm can install a rootkit, and a rootkit might include copies of one or more worms, packet
sniffers or port scanners. Also many of the e-mail worms are commonly referred to as "viruses." So all of these terms
have somewhat overlapping usage and are often conflated.

Publicly available

Like much malware used by attackers, many rootkit implementations are shared and are easily available on the
Internet. It is not uncommon to see a compromised system in which a sophisticated publicly available rootkit hides the
presence of unsophisticated worms or attack tools that appear to have been written by inexperienced programmers.

Most of the rootkits available on the Internet are constructed as an exploit or "proof of concept" to demonstrate
varying methods of hiding things within a computer system and of taking unauthorized control. Since these are often
not fully optimized for stealth, they sometimes leave unintended evidence of their presence. Even so, when such
rootkits are used in an attack they are often very effective.

See also

Hacker con
Computer virus
Host-based intrusion detection system
The SANS Institute
2005 Sony BMG CD copy protection scandal

References

1. ^ Brumley, David (1999-11-16). invisible intruders: rootkits in practice (http://www.usenix.org/publications/login/1999-9/
features/rootkits.html) . USENIX.

2. ^ Leyden, John (2004-10-25). Mac OS X rootkit surfaces: Unpleasant Opener (http://www.theregister.co.uk/2004/10/25/
mac_rootkit_opener/) . The Register. Retrieved on 2007-07-15.

3. ^ SH.Renepo.B Symantec Security Response Report: SH.Renepo.B (http://www.symantec.com/security_response/
writeup.jsp?docid=2004-102218-1803-99) . Symantec. Retrieved on 2007-07-15.

4. ^ Russinovich, Mark (2006-02-06). Using Rootkits to Defeat Digital Rights Management (http://blogs.technet.com/
markrussinovich/archive/2006/02/06/using-rootkits-to-defeat-digital-rights-management.aspx) .Winternals. SysInternals.
Archived from Using Rootkits to Defeat Digital Rights Management the original (http://www.sysinternals.com/blog/2006/02/
using-rootkits-to-defeat-digital.html) on 2006-08-31.Retrieved on 2006-08-13.



5. ^ Unearthing Root Kits (http://www.windowsitpro.com/Article/ArticleID/46266/46266.html) by Mark Russinovich in
Windows IT Pro June 2005.

6. ^ Implementing and Detecting an ACPI Rootkit, by John Heasman, presented at BlackHat Federal, 2006.
7. ^ Implementing and Detecting a PCI Rootkit (http://www.ngssoftware.com/research/papers/Implementing_And_Detecting_

A_PCI_Rootkit.pdf) by John Heasman, 15 November, 2006.

Mark Russinovich, Advanced Malware Cleaningvideo (http://www.microsoft.com/emea/itsshowtime/
sessionh.aspx?videoid=359) , Microsoft TechEd: IT Forum,November 2006
Robert S Morris, Sr. "UNIX Operating System Security", BSTJ, Vol. 62, No. 8, 1984 Bell Systems Technical Journal
Greg Hoglund and James Butler.Rootkits: Subverting the Windows Kernel. Addison Wesley, 2005. ISBN 0-321-29431-9
Nancy Altholz and Larry Stevenson.Rootkits for Dummies. John Wiley and Sons Ltd, 2006. ISBN 0-471-91710-9
Ric Veiler. Professional Rootkits. Wrox, 2007. ISBN 978-0-470-10154-4

External links

White paper on new-generation rootkit detection (http://northsecuritylabs.com/downloads/whitepaper-html/)
antirootkit.com (http://www.antirootkit.com) (Up to date rootkit information, news and removal software for less
experienced users - also has a list of all rootkits in the wild)
Testing of antivirus/anti-rootkit software for the detection and removal of rootkits (http://www.anti-malware-
test.com/?q=taxonomy/term/7) made by Anti-Malware Test Lab, January 2008
Testing of anti-rootkit software (http://www.informationweek.com/news/
showArticle.jhtml?articleID=196901062) made by InformationWeek, January 2007
Steve Gibson's Security Now! Episode #9 (http://www.grc.com/sn/SN-009.htm) (on rootkits)
Steve Gibson's Security Now! Episode #12 (http://www.grc.com/sn/SN-012.htm) (on rootkits)
Steve Gibson's Security Now! Episode #127 (http://www.grc.com/sn/SN-127.htm) (on Corporate Security -
MBR rootkit update)
Sony, Rootkits and Digital Rights Management Gone Too Far (http://blogs.technet.com/markrussinovich/
archive/2005/10/31/sony-rootkits-and-digital-rights-management-gone-too-far.aspx) (Mark Russinovich's first
blog entry about the Sony DRM rootkit, from which the scandalensued)
Designing BSD Rootkits (http://www.oreilly.com/catalog/1593271425/) An Introduction to Kernel Hacking
(book by Joseph Kong)
How to remove spyware from your PC: rid yourself of rootkits (http://www.pcworld.ca/news/column/
23a7f73b0a010408001a024ccab0dd5e/pg1.htm)
Glossary of malware terminology (http://www.antispywarecoalition.org/documents/glossary.htm) ("Rootkit" has
a negative connotation)
White paper on hypervisor rootkit technology (http://www.crucialsecurity.com/documents/hvmrootkits.pdf)

Retrieved from "http://en.wikipedia.org/wiki/Rootkit"
Categories: Malware | Rootkits
Hidden categories: All articles with unsourced statements| Articles with unsourced statements since September 2007

This page was last modified on 29 April 2008, at 21:58.
All text is available under the terms of the GNU Free Documentation License. (SeeCopyrights for details.)
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c)(3) tax-
deductible nonprofit charity.


