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Abstract. We present a novel approach to the verification of concur-
rent pointer-manipulating programs with dynamic thread creation and
memory allocation as well as destructive updates operating on arbitrary
(possibly cyclic) singly-linked data structures. Correctness properties of
such programs are expressed by combining a simple pointer logic for
specifying heap properties with linear-time (LTL) operators for reason-
ing about system executions. To automatically solve the corresponding
model-checking problem, which is undecidable in general, we abstract
from non-interrupted sublists in the heap, resulting in a finite-state rep-
resentation of the data space. We also show that the control flow of a
concurrent program with unbounded thread creation can be character-
ized by a Petri net, making LTL model checking decidable (though not
feasible in practice). In a second abstraction step we also derive a finite-
state representation of the control flow, which then allows us to employ
standard LTL model checking techniques.

1 Introduction

Techniques for the verification of elementary properties of pointer programs are
highly desirable. Programming with pointers is error-prone with potential pit-
falls such as dereferencing null pointers and the emergence of memory leaks. So
far, the field of pointer analysis has primarily focused on sequential programs.
But pointer programming becomes even more vulnerable in a concurrent setting
where threads can be dynamically created, and where data structures such as
linked lists are shared between several threads.

We present an approach to model checking concurrent programs that operate on
singly-linked data structures. It stays within the realm of traditional (linear-time)
model checking. This facilitates the usage of standard model checkers for validat-
ing temporal properties addressing absence of memory leaks, dereferencing of null
pointers, dynamic creation of cells, and simple and position-dependent aliasing.

Our approach is illustrated by considering a simple concurrent programming
language that besides the usual control structures offers primitives for thread cre-
ation, pointer manipulation, cell creation and destruction, and (guarded) atomic
regions that allow to implement concurrency control constructs such as test-and-
set primitives, semaphores, and monitors.

J. Cuellar and T. Maibaum (Eds.): FM 2008, LNCS 5014, pp. 84–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Verifying Dynamic Pointer-Manipulating Threads 85

The operational semantics of our language is defined in a modular way. The
control-flow semantics is given by a (finite) Petri net whose places correspond
to the control locations of the program. The heap semantics is specified by
transformation rules which describe the effect of executing single commands.

The combination of both yields a labeled transition system (modeled by a
Petri net) which is generally infinite due to the unbounded creation of both
control threads and heap cells. Its desirable properties are expressed in a first-
order linear-time temporal logic (LTL) that is enriched with assertions on pointer
structures such as reachability and freshness of cells, or pointer aliasing.

Since the model-checking problem is generally undecidable in this setting we
introduce a first abstraction, which addresses the data space of the program.
Our list abstraction exploits a variant of summary nodes [7] to obtain a finite
representation of the heap and thus eliminates one potential source of undecid-
ability. In fact, known results then allow us to conclude that the data abstract
model-checking problem is decidable even though the underlying transition sys-
tem is still infinite (see Thm. 5.7). However, its intractability forces us to apply
a second abstraction step in which we also derive a finite-state representation of
the control flow, which altogether yields a finite transition system. As a result,
standard LTL model-checking algorithms can be employed. Both abstractions
are obtained in a fully mechanized manner. Moreover they are sound in the
sense that they over-approximate the concrete program behavior.

2 Related Work

Related work on the topic of analyzing pointer-manipulating programs can be
classified into the following (often overlapping) categories, which mainly focus on
sequential programming languages: predicate abstraction [1,8,23], shape analysis
[2,26,27], regular model checking [3,5], dataflow analysis [21,33,34], Hoare-style
approaches [6,18], and separation logic [22,24]. In summary, many of the char-
acterizing features of our approach are already present in earlier papers: the
restriction to singly-linked lists without data fields [1,3,11,16,19,20] which still
allows to model many practical applications such as device drivers, the introduc-
tion of abstract entities which represent a potentially unbounded number of heap
cells (called “summary nodes” in [7]), and the observation that, in this setting,
the number of sharing points in heap structures is bounded by the number of
program variables [1,4,20].

Pointer analysis in connection with concurrency is only considered in rather
few places. Most publications concentrate on specific questions such as aliasing
or escape analysis [25,28] or the analysis of safety properties [13,30], or partic-
ular applications such as concurrent garbage collection are studied [9,10,29]. To
our knowledge, the only pointer logics allowing to specify liveness properties of
concurrent systems are ETL [31] and NTL [11]. In contrast to these, however,
we avoid the use of temporal operators inside quantification. In this way, in-
volved mechanisms to keep track of the identities of individual heap nodes are
not required.
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Thus our approach is unique in that it supports concurrent programs with
dynamic thread creation, memory allocation, and destructive updates operating
on arbitrary (possibly cyclic) linked lists. Moreover it integrates both abstraction
and model checking in a fully automated way and supports a linear-time logic
in which both safety and liveness properties can be expressed, allowing to use
standard LTL model checkers.

3 A List-Manipulating Programming Language

Given sets PV of program variables and P of thread names, a dynamic list-
manipulating program (DLMP) π has the form (vi, v ∈ PV and pj , p ∈ P)

π = var v1, ..., vk; proc main(S0); p1(S1); ...; pl(Sl)
Here each Si (0 ≤ i ≤ l) is of the form si1; ...; siri with sij ∈ CMD, where CMD
is the set of the following commands:

PExp := PExp pointer assignment new(PExp) object creation
if BExp goto n conditional jump del(PExp) object destruction
goto n unconditional jump spawn(p) spawn instance of thread p

atc(BExp) guarded atomic region exit thread termination
end atc end of atomic region

Pointer expressions (PExp) comprise the special constant nil denoting an
undefined pointer value, a program variable, or the (de)referencing of a program
variable. Arbitrary dereferencing depths can be emulated using a sequence of
atomic assignments. The Boolean expressions (BExp) are standard.
PExp ::= nil | v | ∗v | &v BExp ::= PExp = PExp | BExp ∧ BExp | ¬BExp

Note that we do not allow nesting of atomic regions. In the following we assume
for simplicity that π as above is globally given (if not mentioned otherwise).

Fig. 1 shows a DLM-program that simulates a simple server/worker scenario.
The server creates new objects in an infinite loop and inserts them into a list.
For each object a new worker thread is spawned deleting one object from the
list when it is executed. Without imposing fairness constraints this may lead to
an infinite number of both objects and threads.

Petri Nets. We use Petri nets to describe the operational semantics of DLMPs.

Definition 3.1. A Petri net is a tuple P = (P, T, src, tgt , �, m0) where P is a
set of places, T a set of transitions, src, tgt : T → 2P associate each transition
with its source and target places, � : T → L is a transition labeling function,
and m0 : P → � the initial marking. A state of P is a marking m : P → �.
The set of all markings is denoted by Mark(P).

Petri nets are high-level representations of (infinite) transition systems whose
transitions are characterized by the token game. If in a marking m a transition
t is enabled, i.e. m(p) > 0 for all p ∈ src(t), and if its firing yields m′, we write
m �t m′. m � m′ means that there exists t ∈ T such that m �t m′.
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Definition 3.2 (Run). Let P = (P, T, src, tgt , �, m0) be a Petri net. A run of
P is a (possibly infinite) sequence of markings ρ = m0m1m2... ∈ Mark (P)� ∪
Mark (P)ω such that mi�mi+1. The set of all those runs is denoted by Runs(P).

For ρ = m0m1... ∈ Runs(P) let |ρ| ∈ � ∪ {∞} be the length of ρ. We
write ρ[k] to denote the suffix starting from the k-th marking, i.e., mkmk+1... ∈
Runs(P, T, src, tgt , �, mk) which implies ρ[k] = ε for |ρ| ≤ k, and we set ρi := mi.

Finally we call a Petri net k-safe if at no time any place holds more than k tokens
and bounded if there exists a k for which it is k-safe. Clearly only bounded Petri
nets can be represented by finite transition systems.

var x, y;
proc main(
01 new(x);
02 spawn(server); )

server(
11 spawn(worker);
12 atc(tt);
13 y := x;
14 new(x);
15 ∗x := y;
16 end atc;
17 goto 11; )

worker(
21 atc(x 	= nil);
22 y := x;
23 x := ∗x;
24 del(y);
25 end atc; )

Fig. 1. Server/Worker

Concrete Heap Semantics. Defining the semantics
of DLM-programs requires a formal model of the heap.

Definition 3.3. A heap configuration is a tuple H =
(N, A, μ, F ) with a set of nodes N ⊇ PV , a set of
abstract nodes A ⊆ N \ PV , a successor function μ :
N → Nnil (where Nnil := N ∪ {nil}), and a set of
flags F ⊆ Flags := {err, leak, del} ∪ {newn | n ∈ N} ∪
{spawnp | p ∈ P}.

H denotes the set of all heap configurations; H∅ ⊆
H the set of all concrete ones (i.e., those with A = ∅).

The nodes represent both the dynamic objects at run-
time and the static program variables (which cannot
be deleted). Edges, as formalized by the μ-function,
encode the points-to information of a specific program
state. The set A of abstract nodes will later be used for
our heap abstraction technique (see Sct. 4) and will be
empty throughout the current section. Finally the flags
give special information about a state, e.g., whether a
runtime error or memory leak occurred, a node was
created or deleted, or a thread has been spawned.

To delete unreachable nodes that do not influence
program semantics a garbage collection mapping de-
noted by ↓ is applied. Whenever it removes an unreachable node, it sets the leak
flag to indicate a potential memory leak.

Definition 3.4. Let H = (N, ∅, μ, F ) ∈ H∅. The semantics of pointer expres-
sions is given by the partial function [[· ]] : PExp ⇀ Nnil , defined as follows
(where ⊥ denotes the undefined value).1

[[nil ]] := nil [[v ]] := μ(v) [[∗v ]] := μ([[v ]]) [[&v ]] := v

The semantics of Boolean expressions, [[· ]] : BExp ⇀ �, is standard but strict,
i.e., it becomes undefined if at least one subexpression is undefined.

1 The definition implies μ(nil) = ⊥ and so [[· ]] can indeed yield undefined results.
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The effect of executing a program statement is captured by a transition rela-
tion which associates the source and target heap configuration with the given
statement and an indicator from the set {0, 1, ⊥}. Here 1 denotes the normal
execution of a statement or the selection of the then-branch of an if-command,
0 only occurs in the else-branch of if -statements, and ⊥ represents the failure of
a command (e.g., dereferencing a null-pointer).

Definition 3.5. The heap transformation relation, →h⊆ (H∅\{Herr})×CMD×
{0, 1, ⊥} × H∅, is given as follows. Here Herr := (PV , ∅, {v �→ nil | v ∈ PV },
{err}), H = (N, A, μ, F ) ∈ H∅ \ {Herr} with A = ∅, and f [x/y] denotes a func-
tion update where y is the new value of x. (We only show some example rules.)

[[α ]] �= ⊥
H,v := α

1→h (N, A, μ[v/[[α ]]], ∅)↓
[[α ]] = ⊥

H,v := α
⊥→h Herr

H,new(v) 1→h (N � {n}, A, μ[v/n], {newn})↓
[[α ]] �= nil

H,del(α) 1→h (N \ {[[α ]]}, A, μ[[[α ]]/⊥, μ−1([[α ]])/nil ], {del})↓
[[b ]] �= ⊥

H, if b goto n
[[b ]]→h (N, A, μ, ∅)

[[b ]] = ⊥

H, if b goto n
⊥→h Herr

[[b ]] = 1

H,atc(b) 1→h Ĥ

[[b ]] = ⊥

H,atc(b) ⊥→h Herr

Note that the heap flags (except err) are only active in the configuration directly
following the corresponding event.

As our final goal is to combine the heap and control-flow semantics, we now
represent the heap transformation relation by a Petri net. The labels will later
be used for synchronizing the two nets.

Definition 3.6. The concrete heap semantics is the (infinite, 1-safe) Petri net
Ph := (P, T, src, tgt , �, m0) with P ⊆ H∅, T = {(H, H ′, c, x) | H, c

x→h H ′)},
src(H, H ′, c, x) = {H}, tgt(H, H ′, c, x) = {H ′}, �(H, H ′, c, x) = (c, x), m0(H0) =
1 for a given H0 ∈ P (typically the empty heap), and m0(H) = 0 for H 	= H0.

Control-Flow Semantics. In the context of concurrency and dynamic thread-
ing it does not suffice to only consider the effects of certain statements on the
heap; the control flow of the program is also crucial. It can again be modeled by
a Petri net.

Definition 3.7. The control-flow semantics of π is given by the Petri net Pc :=
(P, T, src, tgt , �, m0) with P = {lock}∪

⋃l
i=0

⋃ri

j=1{ij}, � : T → CMD×{0, 1, ⊥},
m0(01) = 1, m0(lock) = 1 and m0(p) = 0 for all p /∈ {01, lock}. For 0 ≤ i ≤ l
and 1 ≤ j ≤ ri let lockij be the singleton set containing lock if sij is not inside
an atomic region and the empty set otherwise. The transitions (T , src and tgt)
are then given as follows:
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sij �(t) src(t) tgt(t)
if b goto n (sij , 0) {ij} ∪ lockij {i(j + 1)} ∪ lockij

(sij , 1) {ij} ∪ lockij {in} ∪ lockij

(sij , ⊥) {ij} ∪ lockij ∅
goto n (sij , 1) {ij} ∪ lockij {in} ∪ lockij

atc(b) (sij , 1) {ij, lock} {i(j + 1)}
(sij , ⊥) {ij, lock} ∅

end atc (sij , 1) {ij} {i(j + 1), lock}
spawn(px) (sij , 1) {ij} ∪ lockij {i(j + 1), x1} ∪ lockij

exit (sij , 1) {ij} ∪ lockij lock

α := α′,new(α),del(α) (sij , 1) {ij} ∪ lockij {i(j + 1)} ∪ lockij

(sij , ⊥) {ij} ∪ lockij ∅

If one of the target places is not in P we omit the corresponding out-edge (e.g.
in case of thread termination or a jump out of range).

Example 3.8. The graph in Fig. 2 shows the Petri net modeling the control-flow
semantics of the program from Fig. 1. The round nodes represent the places
and the rectangles the (labeled) transitions of the net. If there are incoming and
outgoing edges to the same place they are drawn as bidirectional arrows. In the
initial state there are only tokens in the places 01 and lock.

Concrete DLMP-Semantics. Now that we defined the heap as well as the
control flow semantics of our programming language we have to combine both.

Definition 3.9. Let Pc = (P c, T c, srcc, tgtc, �c, mc
0) be the control flow and

Ph = (P h, T h, srcc, tgtc, �h, mh
0 ) the heap semantics of π. The concrete seman-

tics of π is the Petri net P := Pc ⊗ Ph := (P c ∪ P h, T, src, tgt , �, m0) where
T = {((tc, th) ∈ T c × T h | �c(tc) = �h(th)}
src(tc, th) = src(tc) ∪ src(th)
tgt(tc, th) = tgt(tc) ∪ tgt(th)

�(tc, th) = �c(tc)

m0(p) =

{
mc

0(p) if p ∈ P c

mh
0 (p) otherwise

As one might suspect the concrete semantics cannot be used as-is in verification
techniques since DLM-programs are Turing complete2.

4 Data Abstraction

To tackle the verification problem we use heap abstraction techniques to generate
a data abstract semantics that over-approximates the behavior of the concrete
one, i.e., whose runs cover all concrete ones. In our setting this approach is correct
but generally incomplete: although we can conclude from the satisfaction of a
2 DLM-programs can simulate a counter machine (the values of the counters are rep-

resented by lists of the corresponding length).
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01 •

02

new(x), 1 new(x),⊥

spawn(server), 1

11

spawn(worker), 1

12

13

14

15

atc(tt), 1atc(tt),⊥

y := ∗x, 1y := ∗x,⊥

new(x), 1new(x),⊥

16

∗x := y, 1∗x := y,⊥

17

end atc, 1

goto 1, 1

21

22

23

24

atc(x �= nil), 1 atc(x �= nil),⊥

y := x, 1 y := x,⊥

x := ∗x, 1 x := ∗x,⊥

25

del(y), 1 del(y),⊥

end atc, 1

lock •

Fig. 2. Control-flow semantics for the server/worker example

property in the abstract state space the validity in the concrete case, the inverse
is not possible anymore. Our heap abstraction is parameterized via a global
constant M ∈ � which allows a systematic refinement. For a given M > 0 we
set � := {0, 1, ..., M, �}, where � represents all values greater than M .

x

x

Fig. 3. An Abstraction Morphism

Chain Abstraction and Canonical
Configurations. For heap abstraction
we adopt the idea of summary nodes.
Summary nodes are not allowed to rep-
resent arbitrary structures but only so-
called chains which are non-interrupted
sublists, i.e., list segments where only the
head node is allowed to have more than
one predecessor. This abstraction tech-
nique is well known [7,11,26]. For further
details you may also refer to [15].

Based on the concept of chains one can define so-called abstraction morphisms
which are surjective functions of the type h : N1 → N2 for Hi = (Ni, Ai, μi, Fi) ∈
H that retain the graph structure while collapsing chains of length greater than
M to abstract nodes. In Fig. 3 an example is depicted.
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We write H2 ≤ H1 to denote that there is an abstraction morphism that
abstracts H1 to H2. In this context we will also write h(H1) = H2 lifting h to
heap configurations. If |N1| = |N2|, h is an isomorphism. We then write H1 ∼= H2.

Note that a given source configuration can give rise to different abstractions.
To obtain a unique canonical representation of a concrete heap configuration we
collapse only maximal chains and do not abstract nodes that are closer than
three μ-steps to a program variable. This yields a concrete expression semantics.

The set of all such canonical configurations is denoted by H�. It can be shown
that for every concrete heap configuration a unique canonical configuration exists
which is related to the former by a morphism h� [15]. We will use it as abstraction
function in the following. The lower graph in Fig. 3 is a canonical configuration.

Abstract Heap Semantics. Regarding the expression semantics nothing needs
to be modified in the data-abstract setting: in a canonical configuration, abstract
nodes have a distance greater than two from the variable nodes such that ev-
ery pointer expression refers to a concrete node. The expression semantics can
therefore be chosen identical to the concrete case (Def. 3.4), now interpreted on
canonical configurations.

Definition 4.1 (Abstract Heap Transformation Relation). The abstract
heap transformation relation ⇒h⊆ (H�/∼= \{{Herr}})×CMD×{0, 1, ⊥}×H�/∼=
is depicted in Fig. 4 for H = (N, A, μ, F ) ∈ H�. We focus on assignments
since the other rules are analogous to the concrete case. For simplicity we use
representatives of the isomorphism classes.

In Fig. 4 the semantic rules are visualized by examples. Rules 1 and 2 lead to a
potential increase in the distance from variables to abstract nodes: consider an
assignment of the form y := nil . If y points into a list whose head is referred to by
another variable, we possibly increase the distance from that variable to abstract
nodes. The assignment therefore potentially yields a non-canonical configuration
making a re-abstraction necessary.

In rule 3 there might be the necessity for both concretization and abstrac-
tion. The execution of the assignment yields an intermediate configuration which
is generally not canonical since the variable v could now be too close to an
abstract node. Therefore we have to find a more concrete configuration H ′

whose abstraction yields the intermediate configuration. There might be more
than one solution, thus this rule is nondeterministic (indicated by dashed ar-
rows). After the concretization a re-abstraction is used to obtain the canonical
form.

Due to our canonical representation, H�/∼= is finite and its size depends (lin-
early) on the number of program variables and the value of the precision con-
stant M3. This implies the finiteness of the abstract heap semantics but not the
boundedness of the data abstract program semantics as defined below.

3 The number of nodes is bounded by (2M + 3) · |PV |.
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Definition 4.2. The abstract heap semantics is the Petri net Ph
� := (P, T, src,

tgt , �, m0) with P ⊆ H�/∼=, T = {(K, K ′, c, x) | K, c
x⇒h K ′}, �(K, K ′, c, x) =

(c, x), src(K, K ′, c, x) = {K}, tgt(K, K ′, c, x) = {K ′} and m0(K0) = 1 for a
K0 ∈ P (e.g. the empty heap congruence class) and m0(K) = 0 for K 	= K0.

The data abstract program semantics is given by the Petri net P� := Pc ⊗Ph
�

where ⊗ is as in Def. 3.9.

5 A Logic for Pointer Programs

In the previous sections we have defined our programming language and both
its concrete and abstract semantics. In this section we will present a logic which
allows us to reason about heap configurations and program behavior. In the
following LV denotes a set of logical variables with LV ∩ PV = ∅.

Pointer Logic. Pointer Logic deals with single configurations, and can be used
to express graph properties as well as to inspect the special heap flags.

Definition 5.1. We define the set of Pointer Logic formulae (PL-formulae) as
follows:

NExp ::= nil | v (∈ PV ) | x (∈ LV ) | ∗NExp
Atomic ::= tt | ff | f (∈ Flags) | NExp = NExp | NExp � NExp

PL ::= Atomic | ¬PL | PL ∧ PL | ∃x : PL
As usual we will use the logical operations ∨, →, and ∀ as abbreviations. In con-
trast to pointer expressions in DLM-programs, the logic supports dereferencing
operations of arbitrary depth. The predicate � expresses the reachability of
heap objects, whereas = is true iff both expressions refer to the same object.

Definition 5.2. Let β : LV ⇀ N be a valuation function instantiating logical
variables with heap nodes and (N, ∅, μ, F ) ∈ H∅ a concrete heap configuration.
Then we define [[· ]] : NExp ⇀ Nnil for x ∈ LV , v ∈ PV and α ∈ NExp by:

[[nil ]] := nil [[v ]] := v [[x ]] := β(x) [[∗α ]] := μ([[α ]])
Note the semantic difference in comparison to the programming language. In the
logic a variable v is interpreted by itself and not by the node it is referencing. This
allows the check for identity of program variables without introducing a reference
operator. The semantics of PL with respect to concrete heap configurations is
quite standard and therefore omitted.

Reasoning about Abstract Computations. When switching to abstract
configurations we run into several complications since logical variables can be
bound to both concrete and abstract nodes. In the latter case we have to record
to which concrete node, represented by the abstract node, a variable is bound.
This could lead to undefinedness of PL-formulae. The problem mainly occurs in
direct comparisons of the form α = α′. To solve it we choose the global precision
constant M in dependence of the formula ϕ ∈ PL, assuming from now on that

M ≥
∑

x∈Variables(ϕ)

{j + 1 | ∗jx occurs in ϕ},

and introduce the concept of abstract valuations.
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Given H ∈ H� and ϕ ∈ PL, an abstract valuation is of the form η = (β, o, δ)
where β : PV → N maps logical variables to (abstract) nodes, o : PV → �

denotes the offset of a variable “inside” an abstract node, and δ : PV → PV ⇀
� is a “distance matrix” for the logical variables (referring to the same abstract
node). δ is only defined if both arguments are mapped to the same entity, and
o is only different from 1 if the corresponding variable is mapped to an abstract
node. The set of all such valuations will be denoted by ValH,ϕ.

Using this concept one can define a function dH,η : NExp × NExp → {0, 1, ∞}
measuring the “distance” of pointer expressions, where distance here means either
0 if the expressions are mapped onto the same (concrete) node, 1 if the second
argument is reachable from the first, or ∞ if neither is the case (see [15] for details).

Definition 5.3. Let H = (N, A, μ, F ) ∈ H� and η = (β, o, δ) ∈ ValH,ϕ. The
satisfaction relation |= for PL-formulae on canonical configurations is then given
as follows (omitting the trivial cases):

H, η |= f iff f ∈ F , where f ∈ Flags
H, η |= α1 = α2 iff dH,η(α1, α2) = 0
H, η |= α1 � α2 iff dH,η(α1, α2) ≤ 1
H, η |= ∃x : ϕ iff ∃n ∈ N, off ∈�, dist : V (ϕ) ⇀� s.t.

H, (βη[x/n], oη[x/off ], δη[x/dist]) |= ϕ
H |= ϕ iff ∃η ∈ ValH,ϕ s.t. H, η |= ϕ

[H ]∼= |= ϕ iff H |= ϕ

Temporal Pointer Logic. Pointer Logic enables us to express properties of sin-
gle configurations. However it cannot be used to specify (ongoing) computations,
i.e., configuration sequences. To this aim we extend it by temporal operators.

Definition 5.4. The set of Temporal Pointer Logic formulae (TPL-formulae)
is given as follows:

TPL ::= PL | ¬TPL | TPL ∧ TPL | X TPL | TPL U TPL

For ϕ ∈ TPL we use the the abbreviations Fϕ := ttUϕ and Gϕ := ¬F¬ϕ.

Note that it is not possible to nest PL-quantifiers and temporal operators. To
do so it would be necessary to keep track of the object identities between states,
which is difficult in the presence of abstract nodes. In addition it would blow
up the state space and exclude the use of standard model checking algorithms.
Only a few approaches support this idea [11,31]; most other works in the area
consider only the shape of the heap. Clearly this restriction results in a loss of
expressivity, nonetheless we can specify many interesting properties.

Example 5.5. For our server/worker system from Fig. 1 it holds true:

1. GX tt (never deadlock, i.e., there is always a successor state)
2. ¬F err (no pointer errors)
3. GF ∃n : newn (new objects are created infinitely often)
4. GF spawnworker (infinitely often worker processes are spawned)
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5. G(∃n : newn → F spawnworker)
(for every new object a worker thread is spawned)

6. ¬G(spawnworker → F del)
(the creation of a worker process does not necessarily result in the deletion
of a node, i.e., fairness is not guaranteed)

More general correctness properties are:
7. F ∗v = ∗w (v and w will eventually become aliases)
8. G¬(∃x : (v � x ∧ w � x)) (v and w always point to disjoint heap parts)
9. G(∀x : (v � x → (¬∃y : (x � y ∧ ∗y � x))))

(v always points to a non-cyclic list)
10. FG(¬leak) (only finitely many memory leaks can occur)
11. G(∀x : (v � x → (∀y : (y � x → v � y)))) (v always points to a chain)

As mentioned before TPL specifies computation paths. These are given as se-
quences of heap configurations according to the Petri net representing the pro-
gram semantics. By construction, for each marking m there is exactly one p ∈
H�/∼= ∪ H∅ such that m(p) = 1.

Definition 5.6. Let P� = (P, T, src, tgt , �, m0) be the abstract (or concrete) se-
mantics of π. For a given run ρ ∈ Runs(P�) the satisfaction relation |= for
ϕ ∈ TPL, assuming w.l.o.g. that the maximal PL-subformulae in ϕ are closed,
is defined as follows (again omitting the trivial cases):

ε 	|= ϕ
ρ |= ϕ (∈ PL) iff ρ 	= ε ∧ ∃p ∈ P ∩ (H�/∼= ∪ H∅) : ρ0(p) = 1 ∧ p |=PL ϕ
ρ |= Xϕ iff ρ[1] |= ϕ
ρ |= ϕUψ iff ∃k ≤ |ρ| : ρ[k] |= ψ and ∀j < k : ρ[j] |= ϕ

We write P� |= ϕ iff ρ |= ϕ for all ρ ∈ Runs(P�) and π |= ϕ iff Pc ⊗ Ph
� |= ϕ.

Note that finite traces are included in the semantics of TPL. This implies that
the equivalence ¬Xϕ ↔ X¬ϕ does generally not hold.

Model Checking Temporal Pointer Logic. The Turing completeness of
DLM-programs implies that the model checking problem for TPL-formulae is
undecidable. The following theorem shows that it suffices to employ data ab-
straction to obtain a positive result.

Theorem 5.7. The data-abstract model checking problem is decidable, i.e., we
can decide whether Pc ⊗ Ph

� |= ϕ.

Proof. The idea is to evaluate all maximal PL-subformulae on the heap configura-
tions, to label (the transitions of) P� by atomic propositions and accordingly elim-
inate the PL-subformulae in ϕ to obtain an LTL-formula ϕ′ (see Algorithm 6.4).
The next step is to construct two automata A and B where A is a finite automaton
recognizing the finite words, and B a nondeterministic Büchi-automaton accept-
ing the infinite words satisfying ϕ′. Then according to [12] the model checking
problem is decidable using a formula of the type defined in [32] to formulate the
Büchi acceptance condition for B and a reduction to the reachability problem for
Petri net markings that is decidable in EXPSPACE [17]. ��
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The result is important but more of theoretical interest due to the high com-
plexity of the problem. Thus we have to apply further simplifications to obtain
practically feasible results.

6 Control-Flow Abstraction

The idea of the control-flow abstraction is similar to the data abstraction. Instead
of recording for each Petri net place the exact number of tokens we only do this
up to a certain resolution. A global constant C ∈ � parameterizes the resolution
bound. � := {0, ..., C, �} is used analogously to �. What we obtain is an over-
approximation Pc

� of the concrete control-flow semantics Pc. The first step is
the modification of the Petri net semantics.

Definition 6.1. An abstract Petri net is of the form P = (P, T, src, tgt , �, m0)
with abstract markings that are functions of the type m : P → �.

Definition 6.2. Let P = (P, T, src, tgt , �, m0) be an abstract Petri net, m, m′ ∈
Mark (P) and t ∈ T . Then �t ⊆ Mark (P) × T × Mark (P) is given by4:

m �t m′ ⇔ ∀p ∈ srct : m(p) > 0 ∧ ∀p ∈ P :

m′(p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m(p) − 1 if p ∈ src(t) \ tgt(t) and m(p) 	= �

C or � if p ∈ src(t) \ tgt(t) and m(p) = �

m(p) + 1 if p ∈ tgt(t) \ src(t)
m(p) otherwise

The abstract control-flow semantics Pc
� is defined as the concrete one, but using

the abstract transition relation �.

Definition 6.3. The abstract semantics of π is the Petri net P�� := Pc
� ⊗ Ph

� .

If we now want to apply model checking, i.e., verify that a TPL-formula ϕ is
satisfied by P��, we evaluate all maximal PL-subformulae of ϕ on the heaps in
P��, substitute them by atomic propositions, generate the underlying (finite)
transition system, label it with atomic propositions according to the evaluation
of subformulae, and solve the resulting model checking problem for LTL with
finite traces [14].

Algorithm 6.4. Let P�� = (P, T, src, tgt , �, m0) be given and ϕ ∈ TPL the
formula to verify. Let Ψ := {ψ ∈ PL | ψ is a maximal subformula of ϕ} =
{ψ1, ..., ψr} and a1, ..., ar be atomic propositions.
1. Generate a finite transition system T := ({m | m0 �� m}, m0, �, lab) with

lab(m) :=
r⋃

i=1

{ai | ∃p ∈ P ∩ H�/∼= : m(p) = 1 ∧ p |= ψi}

2. Solve T |=?
LTL ϕ[ψ1/a1, ..., ψr/ar] (admitting finite traces).

4 Note that �t can be nondeterministic for a given transition t.
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Fig. 5. Size of the state space for the server/worker example

Limitations and Refinement. Due to the over-approximation of the state
space, there may exist abstract computations falsifying the property to verify
and not corresponding to concrete ones. These false negatives can be eliminated
through abstraction refinement by increasing the parameters M and C. The size
of the state space is a linear function wrt. M (and C). This is visualized in
Fig. 5 for our server/worker example employing a prototype version of our tool
which is currently under development (note the logarithmic scale of both axes).
Thanks to the implicit universal quantification over paths in the LTL approach,
however, the successful verification of a property in the abstract case implies its
correctness in the concrete case, i.e., false positives are excluded.

Note that our framework can be easily extended to three truth values, to
eliminate false positives. The “don’t know” answer would then only be given
if the resulting transition system contains both positive and negative traces.
In the other cases the answer would be an exact “yes” or “no”. This would
require the additional checking of a CTL formula in the case that the LTL
model checker falsifies the property. If the answer is “don’t know” a refinement
step by increasing M and/or C is necessary.

7 Conclusions and Future Work

We have presented a framework for the verification of concurrent pointer-manipu-
lating programs with dynamic thread creation, unbounded heap size, and destruc-
tive updates. Correctness properties are specified using temporal pointer logic
(TPL) which is essentially a pointer logic for expressing heap properties enriched
with temporal operators. Rather than requiring dedicated algorithms, the TPL
model checking problem is reduced to an LTL model checking problem by
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appropriate abstractions. The trade-off is the restriction to list-like data struc-
tures and to static variables as well as the limitation in expressiveness of the logic
because object identities are not tracked between configurations.

Currently we are implementing the method to analyze more interesting ex-
amples. We are planning to support the user in handling abstract computations
which violate a given property, either by deriving concrete counterexamples or
by suggesting refinements to eliminate false negatives. Finally we are working
on an extension to arbitrary data structures.

Acknowledgments. We would like to thank Ulrich Schrempp for developing the
prototype implementation of our analysis framework, which was used for com-
puting the state spaces in the server/worker example.
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2. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy shape analysis. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 532–546. Springer, Heidelberg (2006)

3. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 517–531. Springer, Heidelberg (2006)

4. Bouajjani,A.,Habermehl,P.,Moro, P., Vojnar, T.:Verifying programswith dynamic
1-selector-linked list structures in regular model checking. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 13–29. Springer, Heidelberg (2005)

5. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree
model checking of complex dynamic data structures. In: Yi, K. (ed.) SAS 2006.
LNCS, vol. 4134, pp. 52–70. Springer, Heidelberg (2006)

6. Bozga, M., Iosif, R., Lakhnech, Y.: On logics of aliasing. In: Giacobazzi, R. (ed.)
SAS 2004. LNCS, vol. 3148, pp. 344–360. Springer, Heidelberg (2004)

7. Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In:
PLDI 1990, pp. 296–310. ACM Press, New York (1990)

8. Dams, D., Namjoshi, K.S.: Shape Analysis through Predicate Abstraction and
Model Checking. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.)
VMCAI 2003. LNCS, vol. 2575, pp. 310–323. Springer, Heidelberg (2002)

9. Das, S., Dill, D.L.: Successive approximation of abstract transition relations. In:
LICS 2001, pp. 51–58. IEEE Computer Society Press, Los Alamitos (2001)

10. Das, S., Dill, D.L., Park, S.: Experience with Predicate Abstraction. In: Halb-
wachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 160–171. Springer,
Heidelberg (1999)

11. Distefano, D., Katoen, J.-P., Rensink, A.: Safety and liveness in concurrent pointer
programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2005. LNCS, vol. 4111, pp. 280–312. Springer, Heidelberg (2006)

12. Esparza, J.: On the decidability of model checking for several μ-calculi and Petri
nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Hei-
delberg (1994)

13. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In:
PLDI 2007, pp. 266–277. ACM Press, New York (2007)



Verifying Dynamic Pointer-Manipulating Threads 99

14. Havelund, K., Rosu, G.: Testing linear temporal logic formulae on finite execution
traces. Technical Report TR 01-08, RIACS (2001)

15. Katoen, J.-P., Noll, T., Rieger, S.: Verifying concurrent list-manipulating programs
by LTL model checking. Technical Report 2007-06, RWTH Aachen University,
Dept. of Computer Science, Germany (April 2007)

16. Lahiri, S.K., Qadeer, S.: Verifying properties of well-founded linked lists. In: POPL
2006, pp. 115–126. ACM Press, New York (2006)

17. Lambert, J.L.: A structure to decide reachability in Petri nets. Theor. Comput.
Sci. 99(1), 79–104 (1992)

18. Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, S., Srivastava, S., Yorsh, G.:
Simulating Reachability Using First-Order Logic with Applications to Verification
of Linked Data Structures. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI),
vol. 3632, pp. 99–115. Springer, Heidelberg (2005)

19. Manevich, R., Berdine, J., Cook, B., Ramalingam, G., Sagiv, M.: Shape analysis
by graph decomposition. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 3–18. Springer, Heidelberg (2007)

20. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate abstraction and
canonical abstraction for singly-linked lists. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, pp. 181–198. Springer, Heidelberg (2005)

21. Nystrom, E.M., Kim, H.-S., Hwu, W.W.: Bottom-up and top-down context-
sensitive summary-based pointer analysis. In: Giacobazzi, R. (ed.) SAS 2004.
LNCS, vol. 3148, pp. 165–180. Springer, Heidelberg (2004)

22. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In:
POPL 2004, pp. 268–280. ACM Press, New York (2004)

23. Podelski, A., Wies, T.: Boolean Heaps. In: Hankin, C., Siveroni, I. (eds.) SAS 2005.
LNCS, vol. 3672, pp. 268–283. Springer, Heidelberg (2005)

24. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS 2002, pp. 55–74. IEEE Computer Society Press, Los Alamitos (2002)

25. Rugina, R., Rinard, M.: Pointer analysis for multithreaded programs. SIGPLAN
Not. 34(5), 77–90 (1999)

26. Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages
with destructive updating. ACM Trans. Program. Lang. Syst. 20(1), 1–50 (1998)

27. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

28. Salcianu, A., Rinard, M.: Pointer and escape analysis for multithreaded programs.
In: PPoPP 2001, pp. 12–23. ACM Press, New York (2001)

29. Vechev, M.T., Yahav, E., Bacon, D.F.: Correctness-preserving derivation of con-
current garbage collection algorithms. In: PLDI 2006, pp. 341–353. ACM Press,
New York (2006)

30. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued
logic. ACM SIGPLAN Notices 36(3), 27–40 (2001)

31. Yahav, E., Reps, T., Sagiv, M., Wilhelm, R.: Verifying Temporal Heap Properties
Specified via Evolution Logic. In: Degano, P. (ed.) ESOP 2003 and ETAPS 2003.
LNCS, vol. 2618, pp. 204–222. Springer, Heidelberg (2003)

32. Yen, H.-C.: A unified approach for deciding the existence of certain Petri net paths.
Inf. Comput. 96(1), 119–137 (1992)

33. Yong, S.H., Horwitz, S.: Pointer-range analysis. In: Giacobazzi, R. (ed.) SAS 2004.
LNCS, vol. 3148, pp. 133–148. Springer, Heidelberg (2004)

34. Zhu, J., Calman, S.: Symbolic pointer analysis revisited. In: PLDI 2004, pp. 145–
157. ACM Press, New York (2004)


	Verifying Dynamic Pointer-Manipulating Threads
	Introduction
	Related Work
	A List-Manipulating Programming Language
	Data Abstraction
	A Logic for Pointer Programs
	Control-Flow Abstraction
	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




