PV178: Programming for .NET Framework

Threads and Synchronization

Vojtéch Forejt, forejt@fi.muni.cz
Martin Osovsky, osovsky@ics.muni.cz

Faculty of Informatics and Institute of Computer Science
Masaryk University

April 2, 2009

Threads

m Used to improve application’s behaviour by running several
tasks concurrently

m Perform task in background while redrawing GUI
m Download data from several servers at one time
" ...

m System.Threading namespace

m Thread class provides basic thread support

Threads

Thread Class

m Runs method given by delegate in constructor
m delegate type: ThreadStart, ParametrizedThreadStart

Start method starts the thread

ThreadState property — Unstarted, Running,
WaitSleepJoin, AbortRequested, Stopped,...

Static method Sleep "blocks” the current thread for given
time and changes thread state to WaitSleepJoin

m Join method “blocks” the current thread until a thread
(whose Join method is called) terminates. Changes thread
state to WaitSleepJoin

Threads

Thread Class cont.

m Interrupt method “wakes” the current thread
m Raises ThreadInterruptedException
m Changes thread state to Running
m Abort method may be used for terminating thread

m ThreadState changed to AbortRequested

m Raises ThreadAbortException

m Called thread may call static method ResetAbort and state is
changed to Running

Threads

Thread Life Cycle

ResetAbort ()

WaitSleepJoin —) AbortRequested

S =
Wait () 2 5
—+ (]
Sleep() ol o
. S o)
Join() 3 =
ctor @ o
Start () g thread ends v
Unstarted —— Running p Stopped

ThreadStart executed ‘

Threads

Example

m ThreadsExample.cs

Threads

Thread Priority

m Specifies thread priority for scheduling purposes

m Lowest, BelowNormal, Normal, AboveNormal, Highest,

Threads

Example

m ThreadPriorityExample

Threads
[1}

ThreadPool

ThreadPool Class

m Thread creation may be handled using this class;

m Delegate of type WaitCallBack is passed to static method
QueueUserWorkItem.

m Maximal and minimal number of threads in thread pool may
be get/set using (Get|Set) (Min|Max)Threads

m GetAvailableThreads returns number of threads that can
be run in addition to current ones.

Threads
oce

ThreadPool

Example

m ThreadPoolExample.cs

Synchronization

Synchronization — Motivation

m In a multithreaded environment, some resources may be
shared

m Access to shared resources may require special care
//two shared integers x and vy
int z =vy,;

y = X
X = z;

Synchronization

Example

m CriticalSectionExample.cs

Synchronization

Synchronization Primitives

Interlocked operations — safely modify variables

Monitor — gives access to a resource to one thread at a time

m Mutex — as above, allows synchronization of multiple

processes

Semaphore — gives acces to a resoucre to limited number of

threads

m ReaderWriterLock — Allows multiple reading threads, or one
writing thread

Synchronization
°

Interlocked

Interlocked Class

m Provides static methods to safely access shared variables
m Methods
®m Increment and Decrement
m Add
m Exchange and CompareExchange — allows exchanging values
in variables
® Read — reads a 64 bit value.

Synchronization
©000

Mutexes

Monitor Class

m Controls access to objects

m Grants a lock for an object to a single thread

m Threads call monitor’s static methods, object to synchronize
on is given as parameter.

m Methods
m Enter — acquire lock on object, if object is locked, blocks until
it is freed

m TryEnter — as above, but does not block and returns bool

m Exit — releases the lock

m Wait — releases the lock and blocks the thread until it
reacquires the lock

m Pulse — signals a waiting thread that object's lock state has
changed

m PulseAll — same as Pulse, but signals all waiting threads

Synchronization
0®00

Mutexes

Monitors — Syntactic Sugar

m In C#, lock statement performs Enter and Exit
automatically

lock (obj)
{

//now obj is locked for current thread
}

m MethodImplAttribute attribute of the method with value
Synchronized marks critical section spanning whole method

[MethodImpl(MethodImplOptions.Synchronized)]
void SomeMethod ()

{

//this code will never be run by two threads
//at the same time

}

Synchronization
ocoeo

Mutexes

Example

m MonitorsBasicExample

Synchronization
ocooe

Mutexes

Example

m MonitorExample

Synchronization
[I}

Mutexes

Mutex Class

m May be used for synchronization between processes
m Methods
m Static OpenExisting — returns mutex of a given name

m WaitOne
B ReleaseMutex

Synchronization
oce

Mutexes

Example

m MutexExample

Synchronization
[I}

Semaphores

Semaphore Class

m Used where the number of threads accessing the shared
resource should be limited

Holds a count of threads currently in critical section

Maximum number of threads in critical section given in
constructor
m Methods

m WaitOne
m Release

Synchronization
oce

Semaphores

Example

m SemaphoreExample.cs

Synchronization
°

Readers and writers

ReaderWriterLock Class

m Used where a shared resource may be used for writing by one
thread, or for reading by multiple threads.
m Methods

m AcquireReaderLock and AcquireReaderLock
m UpgradeToWriterLock
m ReleaselLock

Asynchronous operations

Asynchnous Operations

m Tasks that may be time consuming (e.g. 10) may support
asynchronous calling.

m E.g. BeginWrite and EndWrite methods of Stream

Asynchronous operations

IAsyncResult Interface

m Represent a status of asychronous operation, returned e.g. by
BeginWrite
m Property IsCompleted — true if operation already ended

Asynchronous operations

Calling Delegates Asynchronously

m Every delegate has the following methods
m BeginInvoke
B Takes same arguments as delegate, plus AsyncCallback
delegate, and object representing application state (last two
may be null)
m Executed asynchronously, returns IAsyncResult
m EndInvoke
m Gets IAsyncResult and returns value returned by delegate
calling
m [f asynchronous call has not ended yet, current thread blocks
and waits for the end

Asynchronous operations

Example

m AsyncDelegatesExample.cs

	Threads
	ThreadPool

	Synchronization
	Interlocked
	Mutexes
	Mutexes
	Semaphores
	Readers and writers

	Asynchronous operations

