
Threads Synchronization Asynchronous operations

PV178: Programming for .NET Framework
Threads and Synchronization

Vojtěch Forejt, forejt@fi.muni.cz
Martin Osovský, osovsky@ics.muni.cz

Faculty of Informatics and Institute of Computer Science
Masaryk University

April 2, 2009

Threads Synchronization Asynchronous operations

Threads

Used to improve application’s behaviour by running several
tasks concurrently

Perform task in background while redrawing GUI
Download data from several servers at one time
. . .

System.Threading namespace

Thread class provides basic thread support

Threads Synchronization Asynchronous operations

Thread Class

Runs method given by delegate in constructor

delegate type: ThreadStart, ParametrizedThreadStart

Start method starts the thread

ThreadState property – Unstarted, Running,
WaitSleepJoin, AbortRequested, Stopped,. . .

Static method Sleep “blocks” the current thread for given
time and changes thread state to WaitSleepJoin

Join method “blocks” the current thread until a thread
(whose Join method is called) terminates. Changes thread
state to WaitSleepJoin

Threads Synchronization Asynchronous operations

Thread Class cont.

Interrupt method “wakes” the current thread

Raises ThreadInterruptedException
Changes thread state to Running

Abort method may be used for terminating thread

ThreadState changed to AbortRequested
Raises ThreadAbortException
Called thread may call static method ResetAbort and state is
changed to Running

Threads Synchronization Asynchronous operations

Thread Life Cycle

Unstarted Running

WaitSleepJoin

Stopped

AbortRequested

ctor

Start()

Wait()
Sleep()
Join()
con

d
ition

m
et

ResetAbort()

Abort()

th
read

en
d

s

thread ends

ThreadStart executed

Threads Synchronization Asynchronous operations

Example

ThreadsExample.cs

Threads Synchronization Asynchronous operations

Thread Priority

Specifies thread priority for scheduling purposes

Lowest, BelowNormal, Normal, AboveNormal, Highest,

Threads Synchronization Asynchronous operations

Example

ThreadPriorityExample

Threads Synchronization Asynchronous operations

ThreadPool

ThreadPool Class

Thread creation may be handled using this class;

Delegate of type WaitCallBack is passed to static method
QueueUserWorkItem.

Maximal and minimal number of threads in thread pool may
be get/set using (Get|Set)(Min|Max)Threads

GetAvailableThreads returns number of threads that can
be run in addition to current ones.

Threads Synchronization Asynchronous operations

ThreadPool

Example

ThreadPoolExample.cs

Threads Synchronization Asynchronous operations

Synchronization – Motivation

In a multithreaded environment, some resources may be
shared

Access to shared resources may require special care

// two s h a r e d i n t e g e r s x and y
i n t z = y ;
y = x ;
x = z ;

Threads Synchronization Asynchronous operations

Example

CriticalSectionExample.cs

Threads Synchronization Asynchronous operations

Synchronization Primitives

Interlocked operations – safely modify variables

Monitor – gives access to a resource to one thread at a time

Mutex – as above, allows synchronization of multiple
processes

Semaphore – gives acces to a resoucre to limited number of
threads

ReaderWriterLock – Allows multiple reading threads, or one
writing thread

Threads Synchronization Asynchronous operations

Interlocked

Interlocked Class

Provides static methods to safely access shared variables

Methods

Increment and Decrement
Add
Exchange and CompareExchange – allows exchanging values
in variables
Read – reads a 64 bit value.

Threads Synchronization Asynchronous operations

Mutexes

Monitor Class

Controls access to objects

Grants a lock for an object to a single thread

Threads call monitor’s static methods, object to synchronize
on is given as parameter.

Methods

Enter – acquire lock on object, if object is locked, blocks until
it is freed
TryEnter – as above, but does not block and returns bool
Exit – releases the lock
Wait – releases the lock and blocks the thread until it
reacquires the lock
Pulse – signals a waiting thread that object’s lock state has
changed
PulseAll – same as Pulse, but signals all waiting threads

Threads Synchronization Asynchronous operations

Mutexes

Monitors – Syntactic Sugar

In C#, lock statement performs Enter and Exit
automatically

lock (o b j)
{

//now o b j i s l o c k e d f o r c u r r e n t t h r e a d
}
MethodImplAttribute attribute of the method with value
Synchronized marks critical section spanning whole method

[MethodImpl (MethodImplOpt ions . S y n c h r o n i z e d)]
void SomeMethod ()
{

// t h i s code w i l l n e v e r be run by two t h r e a d s
// at t he same t ime

}

Threads Synchronization Asynchronous operations

Mutexes

Example

MonitorsBasicExample

Threads Synchronization Asynchronous operations

Mutexes

Example

MonitorExample

Threads Synchronization Asynchronous operations

Mutexes

Mutex Class

May be used for synchronization between processes

Methods

Static OpenExisting – returns mutex of a given name
WaitOne
ReleaseMutex

Threads Synchronization Asynchronous operations

Mutexes

Example

MutexExample

Threads Synchronization Asynchronous operations

Semaphores

Semaphore Class

Used where the number of threads accessing the shared
resource should be limited

Holds a count of threads currently in critical section

Maximum number of threads in critical section given in
constructor

Methods

WaitOne
Release

Threads Synchronization Asynchronous operations

Semaphores

Example

SemaphoreExample.cs

Threads Synchronization Asynchronous operations

Readers and writers

ReaderWriterLock Class

Used where a shared resource may be used for writing by one
thread, or for reading by multiple threads.

Methods

AcquireReaderLock and AcquireReaderLock
UpgradeToWriterLock
ReleaseLock

Threads Synchronization Asynchronous operations

Asynchnous Operations

Tasks that may be time consuming (e.g. IO) may support
asynchronous calling.

E.g. BeginWrite and EndWrite methods of Stream

Threads Synchronization Asynchronous operations

IAsyncResult Interface

Represent a status of asychronous operation, returned e.g. by
BeginWrite

Property IsCompleted – true if operation already ended

Threads Synchronization Asynchronous operations

Calling Delegates Asynchronously

Every delegate has the following methods
BeginInvoke

Takes same arguments as delegate, plus AsyncCallback
delegate, and object representing application state (last two
may be null)
Executed asynchronously, returns IAsyncResult

EndInvoke

Gets IAsyncResult and returns value returned by delegate
calling
If asynchronous call has not ended yet, current thread blocks
and waits for the end

Threads Synchronization Asynchronous operations

Example

AsyncDelegatesExample.cs

	Threads
	ThreadPool

	Synchronization
	Interlocked
	Mutexes
	Mutexes
	Semaphores
	Readers and writers

	Asynchronous operations

