
Plan

managed modules

execution of managed code

metadata

deployment and assemblies



managed modules

code is compiled in managed modules

PE executables

contain headers (PE and CLR)

metafata

IL code



the pe and clr headers

PE header

PE32 or PE32+ format
gui, cui or dll
timestamp
ignored for IL only modules

CLR header

required version of CLR
flags
MethodRef for entry point
location and size of metadata, resources
strong name



metadata overview

set of data tables describing what is defined in the module

additional information about what the module references

all metadata is always associated (embedded in) with the
module (unlike IDL or TLB)

uses of metadata

no headers and library files needed
Visual Studio uses md for IntelliSesnse
CLR verification process
serialization
garbage collection



IL overview

stack based high level (object-oriented) assembly language

CPU-independent, no registers

object oriented features — can instantiate objects (newobj
instruction)
call virtual methods (callvirt), work with members (ldfld, stfld)

special purpose instructions for some types — arrays (ldelem)

type independent arithmetic instructions — add, mul

instruction for loading and storing (constants, indirect, local
variables, arguments), eg. ldstr, ldarg, ldloc, stloc

branching, labels, exceptions handling



modules and assemblies overview

CLE actually works with assemblies

assemblies are assembled from one or more module files

assembly is what we would call a component



loading the CLR

CLR is loaded by the so called runtime host (native process)

typically — the windows shell, ASP.NET, Intenet Explorer

there is an API to load the runtime into a process and run
managed code (COR API)

the runtime must be installed (MSCorEE.dll is present in the
system directory)

version of the runtime — registry, CLRVer utility

windows examines the header and creates the appropriate
process type
windows loads the appropriate version of MSCorEE.dll
the primary thread runs the function in MSCorEE.dll, that
does initialization, loads the EXE assembly and jumps to the
entry point function in it
similarly if a process calls LoadLibrary with a dll assembly



executing assembly code

all types in a method are scanned

the type tables are created

when a method is called, the IL is found (using metadata),
verified, compiled and stored, the pointer stored in the table

only one performance hit by the first call

both the il and native code can/may not be optimized
(unoptimized code mainly for debugging — the nops in code)

why JIT compilation can be faster

target platform can be determined at run time (CPU specific
instructions)
certain tests can be allays false on the target platform
JITter could profile the execution of the code and reorganize
and the recompile the code



verification

verification examines the IL code and checks if the code is safe

it simulates every possible control flow and verifies the stack

every method is called with correct number of parameters

that parameters have proper types

return values are used properly

based on metadata for methods

verification allows more applications (AppDomains) to run in
one process



unsafe code

any code containing embedded native code, unmanaged
pointers, methods returning managed pointers etc.

it is not verified — verification is denied or skipped (if the
appropriate permission is set)

PEVerify.exe utility



CTS and CLS quick revision

the application (assembly) consist of modules

each consist of types

types consist of members (fields, methods, properties and
events)

all have visibility — types in the assembly (public or internal)
members in the type and assembly (private, protected,
protected and/or internal, public)

CTS defines rules for inheritance, virtual methods, object
life-time

the language code and types behavior are to be considered
separate (see C++ multiple inheritance)

the single root of hierarchy as a basic rule for inheritance

CLS for language interoperability (some constaints)

on a very basic level all members are fields and methods



Unmanaged code interoperability

PInvoke — functions in native dlls can be called directly
(using the DLlImport atribute), must define all structures and
datatype (StructLayout attribute)

managed code can use existing COM components (tlbimp
utility)

COM components can use managed code (tlbexp and regasm
utilities)

a very rich topic — marshalling of types etc.



.NET framework design goals

windows have been considered ”unstable”

dll hell

instalation complexity

security problems



bulding types into modules

basic command line : csc /t:exe /r:MsCorLib.dll
Program.cs

/t switch — module type (exe, winexe, library, module)

/r switch — referenced assemblies (MsCorLib.dll
authomatically)

common switches in the response file use csc @respfile
file.cs

default — local CSC.rsp and global CSC.rep response files



Metadata

each module contains metadata



definition and reference tables

definition tables

ModuleDef, TypeDef, MethodDef, FieldDef, ParamDef,
PropertyDef, EventDef

reference tables

AssemblyRef, ModuleRef, TypeRef, MemberRef

use IlDasm to inspect metadata



assemblies

modules are combined into assemblies, typically one managed
module per assembly

one module is considered primary — it contains special
metadata called manifest

assembly defines reusable types

assembly is marked with version number

assembly can have security information associated

benefits of multimodule assemblies — incremental download,
adding resources and datafiles, different prgramming
languages in one assembly



Manifest

one PE file in the assembly contains the assembly metadata,
this file is loaded first by the CLR

AssemblyDef, FileDef, ManifestResourceDef,
ExportedTypesDef

the manifest states that the file is a part of the assembly, the
modules do not reference the assembly



AL

to create assembly use the csc compiler or al assembly linker

modules are compiled with /t:module switch

they have .netmodule extensions and are PEs of dll type

/addmodule switch add a module to the assembly created

al combines the modules and creates a manifest only module



assemblies and resources

al /embed or /link switches

csc /resource and linkresource switches

/win32res switch



version resource information

resource information is added to the assembly

assembly level attributes eg.
[assembly:AssemblyFileVersion("1.0.0.0")]

AssemblyInfo.cs in Visual Studio

version resources : AssemblyFileVersion,
AssemblyInformationalVersion, AssemblyVersion (relevant to
CLR)

Major version, Minor version, Build number, Revision number



culture

assemblies containig code should have neutral culture

satellite assemblies — contain only resources

use al to create (/embed and /c switches)

in code use ResourceManager object

use [assembly:AssemblyCulture(”en-US”)] in code



two kinds of deployment

private — in one installation directory, weak name (just file
name)

global deployment — assemblies identified by strong name,
stored in Global Assembly Cache (strong name)

global suitable for sharing, violates simple installation goal



strong names and the SN utility

sn consists of

file name (without extension)

version number

culture

public key

sn utility creates a private public key pair : sn -k file.keys

sn -p keysfile pukeyfile — use to extract the public key

sn -tp pubkeyfile — use to view public key

public key token — 64 bits hash of public token

to sign the assembly use /keyfile switch



the GAC and the Gacutil utility

GAC path — c:\Windows\Assembly

the gacutil utility

gacutil /i — instal assembly

gacutil /u — uninstall assembly

gacutil /l — list assemblies



delayed signing

if you do not have the private key use /delaysign and public
key file instead

use sn -Vr AssemblyName so that you can install the
assembly in the GAC

use sn -R assembly keyfile to sign the assembly with the
private key



resolving type references

IL refers to a member

IL refers to a type

TypeRef indicates ModuleRef, AssemblyRef or ModuleDef

if ModuleRef or ModuleDef - load the type from the
appropriate module (file)

if AssemblyRef

if weakly named - search the AppBase
if strongly named - search the GAC and then the AppBase
load the manifest file and its ExportedTypesDef



Memory management

The program resources consume memory

they are stored on the thread’s stack or in the managed heap

every type is a resource

the lifetime of a resource

1 new memory is allocated (newobj)
2 it is initialized (.ctor)
3 resource is used by the application
4 tear down the state (Dispose pattern)
5 free the memory (Garbage collector)



Advantages over native programming

no need to worry about the size

no need to worry about freeing the memory

so no ugly memory bugs

but a lot of resources still need to be closed by hand —
system handles (files, tokens etc.)



New objects creation

CLR allocates resources on the managed heap

it is similar to the C-runtime heap, but it is managed
completely by CLR

when a process is initialized CLR reserves a contiguous re of
addresses in the memory

CLR maintains a pointer (NextObjPtr), initially set to the
base address of the region

when newobj instruction is called, the CLR
1 calculates the memory required for the types and its base fields
2 add bytes needed for object overhead (8 bytes for 32 bit 16

bytes for 64 bit environment)
3 checks if there is enough of free memory on the heap
4 if so the memory starting the NextObjPtr is zeroed out, the

type constructor is called (using NextObjPtr as this) the
calculated type size is added to NextObjPtr the object address
is returned



Advantages over C-runtime heap

allocating memory means simply adding to a pointer (in C the
linked list of records must be walked)

objects are created in the contiguous manner (in C the
consecutively created object can be separated by megabytes of
memory

if you create object with strong relationship consecutively, it
can improve performance (FileStream and BinaryWriter)

but there must be a mechanism to ensure that there is always
enough of free space garbage collection



Garbage collection

a mechanism to find objects no longer needed by the
application and reclaim their memory

is usually executed, when there is not enough memory on the
heap (after newobj call the object size + NextObjPtr is an
address not in the reserved region)

if there is not enough memory after the garbage collection
ends, exception is thrown (OutOfMemoryException)



Garbage collection

application has a set of roots storage locations containing a
memory pointer to a reference type object (can be null)

local variables, static fields and method parameters of
reference types are roots

when garbage collection is started it walks the stack
determining roots in all the methods tables

mark phase then it iterates through roots and marks all
objects referenced by them (following in-object references
recursively, it does not mark objects twice)

compact phase all not marked objects memory is reclaimed,
others are shifted down in memory to keep the heap compact

all roots references are updated to the shifted addresses

NextObjPtr is updated accordingly



Garbage collection

performance hit, but occurs only when generation 0 is full

the lifetime of an object is fully managed by CLR

no leaks, no access to freed memory

no memory fragmentation

the object referenced by the local variable does not live until
the end of the method

in debugged code JIT makes the lifetime longer



Finalization

last meal for the object before it is killed

used for freeing the unmanaged resources (file and other
operating system handles, network resources)

when the garbage collector determines that the object is
garbage it first calls the method

the C++ destructor syntax is used (∼classname)

the compiler emits the Finalize method and a try catch block
in it that calls the base objects Finalize method



Finalization

Finalization occurs when

generation 0 is full
GC.Collect() method is called
Windows is reporting low memory
CLR unloads an appdomain
CLR shuts down

special thread is used, timeouts are used in some cases
(unloading the CLR)

the GC maintains the Finalization list (objects with Finali
method)

during collection the collected objects from the Finalization
list are moved to Freachable queue the references are
considered roots

during the next garbage collection the object are removed
from the queue and their Finalize methods are called



the algorithm

CLR GC is a Generational Garbage Collector

assumptions:

the newer object, the shorter lifetime
the older object, the longer lifetime
collection a part of the heap is faster then collecting the whole



administrative control and publisher policy

when the process starts the heap is empty

the budget size for generation 0 is selected (256 kB CPU L2
cache)

budget size is selected for generation 1 (say 2 MB)

budget size is selected for generation 2 (say 10 MB)

all newly allocated objects are in generation 0

when the allocation surpasses its size GC is started



algorithm continued

object that survived are moved to generation 1 only generation
0 is collected until the generation 1 budget size is surpassed

if generation 1 is full it is also collected and surviving object
are moved to generation 2

only three generations are supported (0,1,2)

the GC is self tunning (the smaller the budget size, the mor
frequent GC)

e.g. the size of generation 0 can be halved if the lifetime of
objects is very short

if all generation 0 objects are garbage, the memory is freed
only by subtracting form NewObjPtr


