
Plan

automatic properties

implicit typing

simplified initialization

anonymous types

lambda expressions

extension methods

linq (to xml)

automatic properties

the pattern

private int cislo;
public int Cislo
{
get { return cislo; }
set { cislo = value; }

}

can be replaced by simpler

public int Cislo; { get; set; }

automatic properties

disatvantages of the former

code is longer and less readable
temptation to use a public field
the code with same purpose is in two places

properties of the latter

both getter and setter can have different access
the generated backing field has no default value!

implicit typing

if you use the var keyword the compiler will deduce the type
of a variable

the variable is still strongly typed (it is no VARIANT)

the conditions

the variable is local
it is a single variable declared and initialized
the value is not null, method group or anonymous function
the type is known in compile time
any expression can be used

implicit typing

for

less to write
less to read
you do not have to write the same thing twice like
Dictionary<string, KeyValuePair<int, string>> dict
=
new Dictionary<string, KeyValuePair<int,
string>>();

against

code is less readable (the case of constants)
”it doesn’t feel right”

implicit typing

recomendations

don’t do it against others in your team

when in doubt allways type explicitly

using and foreach

the code is more declarative

simplified initialization

arrays can be initialized using the block syntax
int [] intar =
new int [] 1, 2, 3;

the idea is to use the same pattern to initialize other types

the public properties are used as named elements

it is possible to initialize embedded objects

simplified initialization of collections

exactly the same syntax as for arrays

the type must implement IEnumerable

the type must have an Add method(s)

a suitable overload of an Add method is called

use it for

constant collections
unit test initialization
encapsulated parameters (both objects and collections)

implictly typed arrays

the compiler can derive even the type of an array being
initialized

new int [] { 1, 2, 3 }
is replaced by

new [] { 1, 2, 3 }
all the objects must be convertible to a single common object
so

new[] {new StringWriter(), new MemoryStream() }
won’t compile

anonymous types

object initializer can be used as an expression (i.e. in place of
a variable or constant)

new { Name = "Tom"; Age = 4; }
the class is being generated with

constructor with all the initialization values
public read-only properties
private read-only backing fields
overrides for Equals, GetHashCode and ToString

projection initializers

lambda expressions

a very handy way of representing delegates

Func<T> delegate type

any delegate syntax can be used to initialize Func<T>

(T x, S y) => b(x, y)

(x, y) => b(x,y)

higher order functions can be created

parentheses can be omitted for only one parameter

lambda expressions

lambda expressions can be compiled form expression trees

expression tree is a tree of objects representing a piece of code
- an expression

abstract class Expression has two important members

Type - indicates a type of the resulting expression
NodeType - indicates the kind of expression as indicated by the
ExpressionType enum (e.g. Add, Multiply, Invoke)

expressions are created using static methods of the Expression
class

lambda expressions

expression trees can be turned into delegates using the
Compile method

the generic Expression class is the type of the statically typed
expressions

lambda expressions can be converted to compiled expression
trees - not all of them obviously

the main purpose of the expression trees is to abstract the
execution model from the desired logic

we can define an expression in c#, then convert the tree to a
native language of a particular platform (e.g. SQL)

we still get some compiler checks (not the case when we use
strings)

extension methods

a way to extend the behavior of a group of objects

they are methods :

of a non nested, non generic static class
at least one parameter
first parameter has only one modifies this

you call them just like any other method of the corresponding
type

the best overload is called (of the most specific type)

you can call e.m. even on a null reference (IsEmptyOrNull on
string)

extension methods

put extension methods in their own namespace

it should allways be applicable to all instances of the type
being extended

decide whether it is applicable to the null reference and act
accordingly

put methods extending a particular type in one static class

extension methods

the main reason for extension methods to exist is that they
can be chained

x.Where(p1).Where(p2).Reverse()

instead of

s.Reverse(s.Where(s.Where(x, p1), p2))

extension methods

interesting extensions in the Enumerable static class

they have usual static counterparts

good for testing the behavior of some linq operators

linq to objects

all this exists because of linq

linq is a ”syntactic sugar” for making the queries to various
data sources

more declarative

unified

checked by the compiler

supported by IntelliSense

linq to objects

Language INtegrated Query

a feature consisting of language features and library classes

all three of the following lines use linq

var names = Enumerable.Select(people, p =>
p.Name);

var names = people.Select(p => p.Name);

var names = from p in people select p.Name;

linq - fundamental concepts

sequences

you have access just to the current element
you do not know how many are yet to come
IEnumerable<T> is a sequence not a collection

deferred execution - streaming vs. buffering

query operators

linq - fundamental concepts

the query expression just transforms a sequence in other
sequences

it is translated in the early phase of the compilation into a
normal C# code

it consists of

context words
range variables
expressions

linq - basic expressions

from x in y select x

x is a range variable

y is a source

its scope is the expression
used for passing the data along the expression
it’s basically just one element of the sequence
they are just variables for translation of expressions to lambda
expressions

translation

from x in y select b(x)

translates into

y.Select(x => b(x))

the translation is textual - no interfaces needed, no particular
types (not evem Enumerable)

any variables in the lambda expressions are captured!

translation

all the types are usually inferred (when using a generic
collection as a source)

if not use from string x in list ... which translates to

list.Cast<string()> ...

OfType<T> method can be used to filter out inappropriate
values

projection

the Select method singnature is

IEnumerable<TR> Select(Func<T, TR> selector)

the select is erased when trivial using other operators but

from x in y select x is not the same as y!

the projection expression uses the anonymous types extensively

Filtering

the where keyword

parameter is a predicate

more filters are evaluated from left to right and all of them
must be true

group together the filters that are logically close

ordering

order by x, y [descending]

any number of expressions

translates into OrderBy and ThenBy[Descending] methods

return IOrderedEnumerable<T>

last order by ”wins”

a buffering operation

let

results of some operation can be saved using let keyword

introduces a new range variable

compiler uses so called transparent identifiers

use when you need to precompute a value before executing
the query

inner joins

{LE} join RRV in RS on LKS equals RKS

left sequence is streamed, right is buffered

the ordering is (l1, r11), (l1, r12), . . . , (l2, r21), . . .

in each of the key selectors only the corresponding range
variable is in scope

group joins

into keyword

to each element of the left sequence a sequence of
corresponding elements is selected

the result is (l1, (r11, r12, . . .)), (l2, (r21, r22, . . .), . . .

can be used to implement SQL left outer joins — the
corresponding sequence can be null

the resulting sequence is in bijective correspondece with the
left one

cross joins

just use two from

the second from’s source can be defined in terms of the first’s
range variable

the result is (l1, (r11, r12, . . .)), (l2, (r21, r22, . . .), . . .

can be used to implement SQL left outer joins — the
corresponding sequence can be null

the resulting sequence is in bijective correspondece with the
left one

grouping

group by b(x), x is the range variable

the result is
((b(x1), (x11, x12, . . .)), (b(x2), (x21, x22, . . .)), . . .)

every elements is the value of the grouping key plus the
sequence of the corresponding elements

the sequence of keys is streamed

the resulting sequence is in bijective correspondece with the
left one

query continuation

fst-query into ident snd-query(ident)

is the same as

from x in (fst-query) snd-query

into can be inserted after any select or group by

creating own linq providers

IQueryable interface

inherits from IEnumerable

there is a Queryable class

it uses expression trees (Enumerable uses delegates)

creating own linq providers

IQueryable interface

contains three properties — Expression, Provider,
ElementType

the constructor creates an initial expression

to create a new query

1 ask the existing query for its expression
2 modify it to a new expression
3 ask the existing query for its provider
4 call CreateQuery on the provider using the new expression

to set things in motion — call GetEnumerator on the query
or Execute on the provider

