
CSL Model Checking for the GreatSPN Tool?

Davide D’Aprile, Susanna Donatelli, and Jeremy Sproston

Dipartimento di Informatica, Università di Torino, Torino, Italy
{daprile,susi,sproston}@di.unito.it

Abstract. Csl is a stochastic temporal logic that has been defined for
continuous time Markov chains, and that allows the checking of whether
a single state, or a set of states, satisfies a given probabilistic condition
defined over states or over a path of states. In this paper we consider the
problem of Csl model checking in the context of Generalized Stochastic
Petri Nets. We present a translation from Generalized Stochastic Petri
Nets to the input formats of two well-known Csl model checkers, namely
ETMCC and Prism. The transformation to ETMCC is realized at the
Markov Chain level, while that to Prism is defined, as much as possible,
at the net level. The translations are applied to a multiserver polling
model taken from the literature.

1 Introduction

Generalized Stochastic Petri Nets (GSPN) [1] and their coloured counterpart
Stochastic Well-formed Nets (SWN) [1,6] are widespread formalisms for the mod-
elling of complex systems. They have been designed for performance evaluation,
but they can, and have been, used also to validate qualitative properties of the
system under study, either using structural properties, checkable on the net itself
without building the state space, or using reachability analysis.

Recently a stochastic logic for Continuous Time Markov Chains (CTMC) has
been defined [4,5], named Continuous Stochastic Logic (Csl), which collapses
in a single logic the ability to specify qualitative and quantitative properties.
Csl properties are verified at the state-space level using the model checking
paradigm [8].

The ability to verify GSPN and SWN against Csl properties would increase
the qualitative and quantitative verification capability of GSPN (and SWN)
tools: in particular we think that this feature is particularly significant for SWN
models, because of the limited availability of algorithms and tools to check struc-
tural properties on SWN (and in general on coloured nets). Moreover SWN is
a very useful formalism for two main motivations: its ability to represent com-
pactly complex models thanks to the ability of identifying tokens in a net using
colours, and the possibility of computing the state space and the underlying
CTMC in an efficient manner through the exploitation of symmetries [6]. Last,
but definitely not least, we concentrate on this specific class of coloured nets for

? Supported in part by the MIUR-FIRB project PERF.

C. Aykanat et al. (Eds.): ISCIS 2004, LNCS 3280, pp. 543–553, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

544 Davide D’Aprile et al.

pragmatic reasons, because we have full access to a tool for the definition and
analysis of GSPN and SWN, named GreatSPN [10], which has been developed
over the last 20 years at our department. We add that there is not a wide choice
of alternative tools for stochastic coloured nets: a simple form of colours is im-
plemented in the APNN tool [3] of the University of Dortmund, and a notion of
colours based on replication is implemented in UltraSAN [16] of the University
of Illinois.

Our mid-term goal is indeed to have CSL facilities for SWN nets, and in this
paper we report on the first step we have undertaken in this direction: to add
to GreatSPN a Csl model-checking facility for GSPNs. Instead of building a
new model checker we have linked GreatSPN to two well known CSL-model
checkers: ETMCC [12], a joint effort of the Universities of Erlangen and Twente,
and Prism [15], of the University of Birmingham. We have not considered for
the moment the Csl model checker built-in in APNN [3], instead preferring to
use two “stand-alone” model checkers, the motivation being that we hope they
can be not too difficult to connect with the GreatSPN modules for SWN,
and because there is already some reported experience in interfacing other tools
(ETMCC has been interfaced with the Petri net tool DaNAMiCS [9], and the
process algebra tool TIPP [11], while Prism has been interfaced with the PEPA
process algebra [13]).

The paper is organized as follows. Section 2 provides the necessary back-
ground on Csl and on the tools used in this work (ETMCC, Prism, and
GreatSPN), Section 3 introduces the translations from GreatSPN to ETMCC

and Prism, translations which are used in Section 4 to show examples of Csl

model checking for a GSPN model taken from the literature. Section 5 concludes
the paper.

2 Preparing the Ground: Csl, ETMCC, Prism, and

GreatSPN

In this section we provide a brief, informal introduction of Csl followed by
a presentation of the three tools involved in this work: ETMCC, Prism, and
GreatSPN. Due to space limitations, the presentation of the tools is only par-
tial, centered on the main features used for our goals.

2.1 Model Checking Csl Properties

The syntax of Csl [4,5] is defined as follows:

Φ ::= a | Φ ∧ Φ | ¬Φ | P./λ[XIΦ] | P./λ[ΦU IΦ] | S./λ[Φ]

where a ∈ AP is an atomic proposition, I ⊆ R≥0 is a nonempty interval, inter-
preted as a time interval, where R≥0 denotes the non-negative reals, ./∈ {<,≤
,≥, >} is a comparison operator, and λ ∈ [0, 1] is interpreted as a probability.
Csl formulae are evaluated over CTMCs whose states are labelled with the sub-
set of atomic propositions AP that hold true in that state. Atomic propositions

CSL Model Checking for the GreatSPN Tool 545

represent elementary assertions that are either true or false in a state (such as
inCriticalSection, faultDetected). As usual, Φ1 ∨ Φ2 abbreviates ¬(¬Φ1 ∧ ¬Φ2),
Φ1 ⇒ Φ2 abbreviates ¬Φ1 ∨ Φ2, and X and U abbreviate X [0,∞) and U [0,∞)

respectively.
The interpretation of the formulae of Csl is as follows: a state s satisfies the

atomic proposition a if state s is labelled with a, ∧ and ¬ have the usual inter-
pretation, while s satisfies S./λ[Φ] if the sum of the steady state probabilities,
obtained by letting the CTMC evolve from state s, of the states that satisfy Φ

is ./ λ. A state s satisfies the “bounded next” formula P./λ[XIΦ] if the prob-
ability that the transition taken from s leads to a state satisfying Φ, and that
the duration of the transition lies in I , is ./ λ. Finally, a state s satisfies the
“bounded until” formula P./λ[Φ1U

IΦ2] if the probability of Φ2 being true in a
future execution from s after d time units have elapsed, where d ∈ I , and where
the execution remains in states satisfying Φ1 until Φ2 is reached, is ./ λ. Exam-
ples of Csl formulae, taken from [5], are the following. The formula S≤10−5 [a]
is true if the probability of being in a state labelled by the atomic proposition
a in steady-state is not greater than 0.00001. The formula P≤0.01[aU [10,20]b] is
true if the probability of being in a b-labelled state after between 10 and 20 time
units have elapsed, while remaining in a-labelled states before that point, is not
greater than 0.01. Finally, the formula P≥0.5[¬aU [10,20]S≥0.8[b ∨ c]] is true if,
with probability at least 0.5, we will reach a state between 10 and 20 time units
(while avoiding a-states) in which the probability of being in a b- or c-labelled
state in equilibrium is at least 0.8. The formal semantics of Csl can be found
in [5].

Model checking a CTMC against a Csl formula Φ amounts to computing
the set of states Sat(Φ) such that s ∈ Sat(Φ) if and only if Φ is true in state s.
Model checking a formula Φ consists of computing the set Sat(Φ) of states which
satisfy Φ by computing the sets of states which satisfy the subformulae of Φ; first,
the sets of states satisfying the “shortest” subformulae of Φ (that is, the atomic
propositions) are computed, then these sets are used to compute the sets of
states satisfying progressively “longer” subformulae. When probability bounds
are present in the formula (in the cases of P./λ or S./λ) the model-checking
algorithm requires the computation of transient or steady state probabilities of
the original CTMC as well as, possibly, a number of additional CTMCs built
through manipulation of the original one [5].

2.2 Three Tools: ETMCC, Prism, and GreatSPN

The ETMCC Tool. ETMCC is a prototype tool supporting the verification
of Csl-properties over CTMCs [12]. Once the rate matrix R and the labelling
L (which can be regarded as a function from the set of states to the power
set of atomic propositions, so that L(s) ⊆ AP represents the set of atomic
propositions true in state s) of a CTMC have been determined, model checking
of Csl formulae can take place.

ETMCC has been written in JAVA and provides a simple graphical user
interface. The input models for ETMCC are CTMCs, that can be provided in

546 Davide D’Aprile et al.

two different, ASCII-based formats. The set AP of atomic propositions and the
labelling L is also specified in an input file (in the publicly available version the
cardinality of AP is limited to 67). It is obvious that, for large CTMCs, the two
input files should be automatically produced by some higher-level formalism: two
tools supporting a high-level formalism that are already interfaced with ETMCC

are the process algebra tool TIPP [11] and the SPN tool DaNAMiCS [9].

In terms of solution algorithms ETMCC supports the usual set of choices for
Markov chains: Power method, Gauss-Seidel, Jacobi, JOR and SOR, as well as a
solution for bounded until U I and bounded next XI based on numerical solution
of a set of Volterra integral equations [12]. The CTMC is stored in sparse format.

The Prism Tool. Prism supports analysis of Discrete Time Markov Chains,
Markov Decision Processes, and Csl model checking of CTMCs. An important
characteristic of Prism is its ability to work with symbolic data structures like
BDDs and MTBDDs [7], which can store the state space of the model efficiently.
Three verification options are possible: fully symbolic (infinitesimal generator
and probability vector as MTBDDs), fully sparse (infinitesimal generator as
sparse matrix and the full probability vector) and hybrid (infinitesimal generator
as MTBDDs and the full probability vector). In terms of solution algorithms
Prism supports the usual set of choices for Markov chains, including the Power
method, Gauss-Seidel, Jacobi, JOR and SOR. The Prism input language is
based on the Reactive Modules language [2].

Model checkers only allow to check whether a certain formula is satisfied in
a state, or to determine all the states that satisfy a formula. Csl formulae may
include a probability bound, which has to be specified by the user. An interesting
feature of Prism is its ability to determine the value of this probability if it is
left unspecified (by substituting the value with a “?”) in the formula.

Prism has a graphical interface for the management of modules and proper-
ties and for the visualization of results of multiple experiments. Model-checking
analyses can be executed from the graphical user interface or from the command
line.

The GreatSPN Tool. GreatSPN [10] is a tool for the definition and analysis
of GSPN and SWN. Analysis in GreatSPN is supported by structural analysis of
the net (computation of P- and T- invariants, deadlocks and traps), reachability
analysis (liveness of transitions, ergodicity of the CTMC) and computation of
performance indices through CTMC solutions or simulation. GreatSPN has a
graphical interface for the definition and analysis, but all solution algorithms
can also be launched from the command line thanks to a number of pre-defined
scripts. The portion of GreatSPN that we shall use in this work relates to the
computation of the state space and of the underlying CTMC.

CSL Model Checking for the GreatSPN Tool 547

3 Using Prism and ETMCC with GreatSPN

As described in Section 2, Csl model checking of CTMCs requires three main
ingredients: (1) a model, the underlying semantics of which is a CTMC, (2) a
set AP of atomic propositions (simple strings) and a labelling function L from
states of the Markov chain to subsets to AP , and (3) a Csl model checker.

Csl model checking of GSPNs requires a slightly modified set of ingredients:
(1) a GSPN model, (2) a set of atomic propositions expressed in terms of net
elements like the number of tokens in a place, comparison between marking of
different places, and enabling degree of transitions, and (3) a Csl model checker.

In the following we illustrate two different approaches to GSPN model check-
ing using preexisting tools: the first one is the interface with Prism, which is
realized at the net level, the second one is the interface with ETMCC, which is
realized at the CTMC level.

3.1 GreatSPN and Prism

The Prism input language is a state-based language that is built upon modules
and variables. The state of the system is a valuation of the variables of each of
the system’s modules. A module is a set of declarations and commands: each
command is of the form guard −→ rate : update, where guard specifies a
logical condition on the system variables, rate is the rate of the exponentially
distributed delay associated to the command, and update is a set of assignments
which specify the new values of the variables in terms of old ones (and a prime
is used to distinguish the new value from the old one).

We define a translation to Prism modules only for SPNs; that is, for GSPNs
without immediate transitions (the classical SPN formalism defined by Molloy
in [14]). An SPN is defined as (P, T, I, O, W, m0), where P is the set of places,
T is the set of transitions, I, O : P × T → 2N is the set of input and output arcs
with associated multiplicity, W : T → R≥0 defines the rate of the exponential
distributions associated to transitions, and m0 : P → N describes the initial
marking. Due to space reasons we assume the reader is familiar with the SPN
semantics.

For a bounded SPN, a unique Prism module is created using the following
rules:

1. For each place p ∈ P a variable of name p is declared. Letting the bound for
place p be denoted by bp, we can let the range of the variable p be [0, bp].
The variable p is initialized to the value of m0(p).

2. For each transition t ∈ T a new command of the form guard −→ rate:

update is added to the module, where guard represents the enabling con-
dition of t, expressed as the logical conjunction of as many predicates as
there are input places to t. Each predicate is of the form p ≥ I(p, t), where p

is the name of the Prism variable for place p. We set rate to W (t). Finally,
update represents the modification to the marking due to the firing of t,

548 Davide D’Aprile et al.

Definition of net
using GreatSPN

Great2Prism
(under implementation)

PRISM
CSL model checker

.net, .def files
(GreatSPN format)

.sm files
(PRISM format)

CSL formula
(PRISM format)

Model checker output

Definition of net
using GreatSPN

gmc2emc

ETMCC
CSL model checker

.net, .def files
(GreatSPN format)

.xlab
(set of all
possible labels)

 CSL formula
(ETMCC syntax)

Model checker output

.stc file
(ETMCC format)

APfilter

.lab file
(ETMCC format)

Fig. 1. Using Prism and ETMCC to model check GreatSPN models

built as the conjunction of |P | assignments, one for each place p ∈ P . The
conjunct for place p ∈ P , with associated Prism variable p, is defined by

p’ =

p + O(p, t) − I(p, t) if I(p, t) > 0 ∧ O(p, t) > 0
p− I(p, t) if I(p, t) > 0 ∧ O(p, t) = 0
p + O(p, t) if I(p, t) = 0 ∧ O(p, t) > 0 .

Note that similar translations have been used to obtain Prism modules of SPN
models on the Prism website [15].

With regard to the atomic propositions, in Prism the set AP is implicitly
defined, by allowing the user to include in a Csl formula any logical condi-
tion on the values of the variables. In the proposed translation place names are
mapped one-to-one to variable names, and therefore any logical expression on
place marking is allowed and is realized trivially.

The formalism of SPN can also be extended with inhibitor arcs, for which
the presence of a given number of tokens in a place may preclude the firing
of an otherwise-enabled transition. For example, inhibitor arcs of degree 1 can
be incorporated in our translation in the following manner: for each transition
t ∈ T , the enabling condition guard is defined as above, but is extended with
an additional conjunct of the form p= 0 for each inhibitor arc which points at
t, where P is the variable associated with the source place of the inhibitor arc.

Figure 1 (left) describes the user point of view of the proposed approach:
the GSPN model is defined using the graphical interface of GreatSPN, and
structural analysis can be performed for a quick check of model correctness. The
output of the GreatSPN interface (two files in ASCII that describe the GSPN)
are passed to the translator (that is still under construction), that produces a

CSL Model Checking for the GreatSPN Tool 549

Prism module. Csl formulae are specified by the user through the graphical
interface of Prism using logical expressions on place names.

3.2 GreatSPN and ETMCC

The generation of the ETMCC input model from GreatSPN is simple, thanks
to the use of two off-line solvers of GreatSPN: newRG for the generation of
the reachability graph of the GSPN, newMT for the generation of the CTMC
underlying the GSPN model, and seeMTX for the visualization in ASCII of
the CTMC itself. The output of seeMTX is very similar to the .stc input file
format of ETMCC, and the translation poses no particular problems.

More delicate is instead the definition of the .lab input file to ETMCC,
which lists the set of atomic propositions and, for each CTMC state, the atomic
propositions satisfied in that state. An atomic proposition in ETMCC is simply
a string (with some syntactical limitations): we have chosen to define the atomic
propositions by considering all possible numbers of tokens in places in all the
reachable markings of the net, and defining properties for equality, greater than,
etc. For example if p is a place in the net with 0, 1, or 2 tokens, then the set AP
will include the strings: peq0, peq1, peq2, pgt0, pgt1, and pgt2. For i ∈ {0, 1, 2},
a state is labelled with peqi (pgti, respectively) if the corresponding marking
has i tokens in place p (more than i tokens in place p, respectively). However,
this approach tends to generate a (usually needlessly) large AP set, because only
some of the atomic propositions defined are referred to in a given Csl formula.
Also recall that the publicly-released version ETMCC version only allows for a
maximum cardinality of 67. Therefore we have built a filter that selects only the
atomic propositions used in the formula being checked.

The perspective of the user with regard to the translator is depicted in Fig-
ure 1 (right). As in Section 3.1, the user commences by defining the GSPN
using GreatSPN. The gmc2emc converter is then used to produce the CTMC
file (with extension .stc), and an intermediate file in .lab format (called .xlab)
that contains the list of atomic propositions and the association with the states.
The converter gmc2emc makes use of the off-line GreatSPN solvers mentioned
above. The user then specifies the atomic propositions of interest and the AP-
filter module eliminates unnecessary elements from AP .

4 Example of CSL Model Checking

The translators defined in the previous section are now applied to an example
taken from the literature: a cyclic multiserver polling system, as for example in
[1]-chapter 9. Polling systems comprise a set of stations and a number of servers
shared among the stations and that move from station to station. The servers
follow a given order and a precise policy determining when and for how long
the server should serve a given station before moving to the next one. Figure 2
depicts an SPN model of a polling system consisting of N = 4 stations and S

servers. In each station i there are K clients that execute the cycle composed by

550 Davide D’Aprile et al.

K= 2
S= 3

Ki= 2

Ps2Pq2

Pa2K

Pw3

Ps3Pq3

Pa3K

Pw0S

Ps0Pq0

Pa0Ki Pa1K

Pq1 Ps1

Pw1 Pw2

serve3

walk3b

walk3a
arrive3

serve2
walk2a

walk2b

arrive2

serve1

walk1b

walk1a
arrive1

serve0

walk0b

walk0a
arrive0

Fig. 2. SPN of a four-stations multiple server polling system

// variables: station1

Ps1 : [0..K];
Pw1 : [0..S];
Pa1 : [0..K] init K;

Pq1 : [0..K];

// commands: station1
// of transition walk1a

[] (Pq1>0) & (Pw1>0) -> 1 : (Pq1’=Pq1-1) & (Pw1’=Pw1-1) & (Ps1’=Ps1+1);
// of transition walk1b
[] (Pq1=0) & (Pw1>0) -> 1 : (Pw1’=Pw1-1) & (Pw2’=Pw2+1);

// of transition serve1
[] (Ps1>0) -> 1 : (Ps1’=Ps1-1) & (Pw2’=Pw2+1) & (Pa1’=Pa1+1);

// of transition arrive1
[] (Pa1>0) -> 1 : (Pa1’=Pa1-1) & (Pq1’=Pq1+1);

Fig. 3. Fragment of Prism code for one station

places Pai, Pqi, and Psi. A client in Pai is doing some local work (transition
arrive i which has single server policy), it then goes to a queue place (Pqi) where
it waits for a server. When a server arrives, one client in the queue is selected
and receives service (place Psi and transition serve i which has infinite server
policy). A server which has provided service to queue i “walks” to the next queue
(queue (i + 1) mod 4 since we are assuming a circular ordering), represented by
a token in place Pwi. When the server arrives at station (transition walk ia) it
provides service if some client is waiting in the queue; if not it moves on to the
next queue (transition walk ib). In Figure 3 we show the fragment of the Prism

code in which the variables and commands of one station are defined. A different
translation of the system to a Prism model can be found at the Prism webpage.

Our experiments have considered three models. Model A has one client in
each station, a single server and all transitions of rate 1. Model B has ten clients
in station 0, two clients in the remaining stations, and two servers. All rates
in model B are set to 1, apart from the rate of arrival of clients in station 0,
which is 0.25, and the rate of arrival for all other stations is set to 0.5. Model C
has thirty clients in station 0, four clients in the remaining stations, and three
servers. All rates in model C are set to 1, apart from the rate of arrival of clients
in station 0, which is 0.4, and the rate of arrival for all other stations is set to
0.25. All transitions in each model have a single server policy. Models A, B and
C have 96, 7902 and 360104 states respectively.

We have verified the following properties using Prism and ETMCC. Note
that our atomic propositions are written as comparisons of the number of tokens

CSL Model Checking for the GreatSPN Tool 551

in a place with natural numbers: such comparisons can be written in terms of
variables in the case of Prism (for example, p> 0), or as the strings introduced
in Section 3.2 in the case of ETMCC (for example, pgt0).

Property (1) - Steady state probability of at least one client in queue 0:

S=? [Pq0 > 0] .

We are using here the Prism notation S=? to indicate that we do not want to
check a value, but we ask the tool to compute the steady state probability for all
states that verify Pq0 > 0. In ETMCC we have checked instead S>0 [Pq0 > 0];
as expected, this property is satisfied in all states in all models, because the
models are ergodic. During the computation ETMCC outputs also the aggre-
gated probability for states satisfying Pq0 > 0. This aggregated probability was
computed also using GreatSPN, to increase our confidence in the translations.

Property (2) - Absence of starvation (clients waiting in a queue will be
served):

(Pq0 > 0 ⇒ P≥1 [true U Pq0 = 0]) .

In all models, the property is true in all states reachable from the initial state
(including those in which Pq0 = 0, since the second operand of the implication
is satisfied in all states of each model). This property that does not require
the CTMC solution, and instead relies on reachability analysis of the model’s
underlying graph.

Property (3) - Probability of service within a deadline: Since all transitions
have infinite support and the CTMC is ergodic, then all states will have a non-
null probability of service within a deadline, while only the states in which the
service is being provided will have a 1 probability. The CSL formula that we
have checked is

P=? [(Pq0 > 0 ∧ Ps0 = 0) U [0,5] Ps0 > 0] .

The output of Prism and ETMCC lists the probability of satisfying the until
formula from each state.

Property (4) - Reproducibility of the initial marking: Since we are working
only with reachable states, we can check the simple property

P≥1 [true U “init”],

where “init” is a logical condition that fully characterizes the initial marking
(and it is therefore different for the various systems that we have verified). This
property is satisfied by all states in all models.

Property (5) - Reproducibility of the initial marking with a deadline:

P=? [true U [0,10] “init”].

This property is similar to property (3); it is satisfied by all states and the same
comments as above apply.

The tools produce the probability of reaching the “init” state from any of
the states of the model. This probability is 1 from the “init” state itself and

552 Davide D’Aprile et al.

is instead very low for all other states: for model A, these probabilities for all
states are less than 0.01, whereas, after changing the interval to [0,1000], the
probabilities of all states are less than 0.25.

Property (6) - Circularity of a server: We wish to check whether a server will
present itself more than once at station 0.

P≥1 [G (Pw0 = 1 ⇒ P≥1 [X (Pw0 = 0 ⇒ P≥1[true U Pw0 = 1])])],

where P≥1 [GΦ] (read “globally Φ with probability 1”) abbreviates the Csl

formula ¬P≤0 [true U ¬Φ]. The property is satisfied by all states in all models.
Comment. We observed that the speed of the two tools ETMCC and Prism

in obtaining results for our polling system models was comparable. Note that we
chose the fully sparse verification engine of Prism in order to be able to make
this comparison; instead, Prism also supports MTBDD and hybrid verification
engines, which can facilitate verification of larger systems. We experimented with
the Jacobi and Gauss-Seidel options, and generally found that verification using
Gauss-Seidel was more efficient for our models (we terminated the experiments
using Jacobi on model C after one hour). Finally, we observed that for models B
and C (which both have thousands of states) methods for “filtering” the results
of model checking were required, in order to output the probabilities for a small
number of states of interest.

5 Conclusions

In this paper we have reported on our investigation to add Csl model checking
capabilities to GreatSPN. For the time being the work has concentrated on
GSPN models for which two Csl model checkers have been considered: ETMCC

and Prism. For the first one the implementation has been completed and it is
available through the first author of this paper: indeed in this case, since the
interfacing takes place at the CTMC level, an implementation was necessary to
be able to experiment with GSPN of non trivial size. For Prism instead the
implementation is still under definition, although a syntactic translation from
SPN to Prism modules, upon which the implementation can be based, has been
defined. The translation can be used to manually transform a SPN into a Prism

module relatively easily.

References

1. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. John Wiley (1995)

2. Alur, R., Henzinger, T.A.: Reactive Modules. Formal Methods in System Design
15 (1999) 7–48

3. APNN Web Page.
http://ls4-www.cs.uni-dortmund.de/APNN-TOOLBOX/toolbox_en.html

4. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-Checking Continuous Time
Markov Chains. ACM Transactions on Computational Logic 1 (2000) 162–170

http://ls4-www.cs.uni-dortmund.de/APNN-TOOLBOX/toolbox_en.html

CSL Model Checking for the GreatSPN Tool 553

5. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-Checking Algorithms
for Continuous-Time Markov Chains. IEEE Transactions on Software Engineering
29 (2003) 524–541

6. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic Well-Formed
Coloured Nets for Symmetric Modelling Applications. IEEE Transaction on Com-
puters 42 (1993) 1343–1360

7. Clarke, E.M., Fujita, M., McGeer, P., McMillan, K., Yang, J., Zhao, X.: Multi-
Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix Rep-
resentation. In: Proceedings of the International Workshop on Logic Synthesis
(IWLS’93). (1993) 6a:1–15
Also available in Formal Methods in System Design 10 (1997) 149–169

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
9. DANAMiCS Web Page.

http://www.cs.uct.ac.za/Research/DNA/DaNAMiCS/DaNAMiCS.html

10. The GreatSPN Tool. http://www.di.unito.it/~greatspn

11. Hermanns, H., Herzog, U., Klehmet, U., Mertsiotakis, V., Siegle, M.: Compo-
sitional Performance Modelling with the TIPPtool. Performance Evaluation 39

(2000) 5–35
12. Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M.: A Tool for Model-

Checking Markov Chains. International Journal on Software Tools for Technology
Transfer 4 (2003) 153–172

13. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

14. Molloy, M.K.: Performance Analysis Using Stochastic Petri Nets. IEEE Transac-
tion on Computers 31 (1982) 913–917

15. PRISM Web Site. http://www.cs.bham.ac.uk/~dxp/prism

16. UltraSAN Web Site. http://www.crhc.uiuc.edu/UltraSAN/index.html

http://www.cs.uct.ac.za/Research/DNA/DaNAMiCS/DaNAMiCS.html
http://www.di.unito.it/~greatspn
http://www.cs.bham.ac.uk/~dxp/prism
http://www.crhc.uiuc.edu/UltraSAN/index.html

	Introduction
	Preparing the Ground: unhbox voidb @x hbox {sc {Csl}}, unhbox voidb @x hbox {sc {ETMCC}}, unhbox voidb @x hbox {sc {Prism}}, and unhbox voidb @x hbox {sc {GreatSPN}}
	Model Checking unhbox voidb @x hbox {sc {Csl}} Properties
	Three Tools: unhbox voidb @x hbox {sc {ETMCC}}, unhbox voidb @x hbox {sc {Prism}}, and unhbox voidb @x hbox {sc {GreatSPN}}

	Using unhbox voidb @x hbox {sc {Prism}} and unhbox voidb @x hbox {sc {ETMCC}} with unhbox voidb @x hbox {sc {GreatSPN}}
	unhbox voidb @x hbox {sc {GreatSPN}} and unhbox voidb @x hbox {sc {Prism}}
	unhbox voidb @x hbox {sc {GreatSPN}} and unhbox voidb @x hbox {sc {ETMCC}}

	Example of CSL Model Checking
	Conclusions

